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The past decade of logic synthesis research has looked at using Binary Decision Diagrams

(BDDs) as an alternative to the traditional sum-of-product representation of logic func-

tions. When compared to the later, logic synthesis algorithms using BDDs have been

shown to have significantly better scalability, however, the area quality produced has

been poor. This thesis describes two new improvements to BDD-based logic synthesis.

The first is a sharing extraction algorithm to improve area. The second is a logic folding

approach, where equivalent logic transformations are shared to improve runtime.

The algorithms are evaluated in a new logic synthesis tool called FBDD. Experimental

results on the MCNC benchmarks show an average area savings of 21% and runtime

improvements of 3 times, when compared to a state-of-the-art BDD based logic synthesis

system.
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Chapter 1

Introduction

Logic synthesis, the task of optimizing gate level networks, has been the corner stone of

modern electronic design automation methodology since the 1990s. As the chip size grows

exponentially, and as the logic synthesis task increasingly becomes coupled with physical

design, the synthesis runtime has emerged as a new priority, in addition to the traditional

metrics of synthesis quality, including area, speed and power. To this end, there is

a growing interest in migrating from an algebraic method, exemplified by SIS [19], to a

Binary Decision Diagram (BDD) based method, exemplified by BDS [22]. Compared with

the former, which uses cube set as the central data structure for design optimization, the

latter exploits the compactness and canonicality of BDD so that Boolean decomposition,

Boolean matching and don’t care minimization can be performed in an efficient way.

Despite these advantages, our experiments on publicly available packages show that BDD

based methods are not yet competitive with cube set based methods in terms of area

quality.

A major reason for the difference in quality between BDD based and cubeset based

synthesis is the lack of a sharing extraction strategy. Sharing extraction is the process

of extracting common functions among gates in the Boolean network to save area. Their

usefulness have long been proven in cube set based systems. One example implementation
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is kernel extraction, which has been central in producing low area designs in the SIS [19]

synthesis package and commercial tools. In contrast, BDD based systems have provided

relatively low support for sharing extraction.

In this thesis, we describe the first sharing extraction algorithm that directly exploits

the structural properties of BDDs. More specifically, we make the following contributions.

First, we demonstrate that by limiting our attention to a specific class of extractors

(similar to limiting to kernels in the classic method), namely two-variable disjunctive

extractors, effective area reduction can be achieved. Second, we show that an exact,

polynomial time algorithm can be developed for the full enumeration of such extractors.

Third, we show that just like the case of kernels, there are inherent structures for the

set of extractors contained in a logic function, which we can use to make the algorithm

incremental and as such, further speed up the algorithm. As a result, our logic synthesis

system performs consistently better than state-of-the-art BDD synthesis packages both

in terms of runtime and synthesis quality.

To further improve runtime and scalability, we propose a logic synthesis approach

that exploits the regularities commonly found in circuits. Regularities, are the repetition

of logic functions. They are clearly abundant in array-based circuits such as arithmetic

units, but can also be found in random logic as well. Using the simple metric of regularity,

(# of logic components) / (# of logic component types), we typically found the regularity

of datapath circuits to be on the order of several hundreds. It is interesting to note that

it is usually the datapath circuit that blows up circuit complexity.

The introduction of the BDD, with it’s fast equivalence checking properties, has made

the fast detection of regularity in circuits possible. Equivalence checking, can now be

performed among functions, without concern of function size, in constant time. Our logic

synthesis system, aggressively applies this new capability throughout the entire synthesis

flow. With regularity information at hand, logic transformations applied to one circuit

structure can be easily shared wherever the logic structure is repeated. This dramatically
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reduces the number of logic transformations required for synthesis and improves runtime.

The rest of the thesis divided in to five chapters. In chapter 2, we introduce the

BDD and describe how it relates to logic synthesis. Chapter 3 gives an exact BDD based

sharing extraction algorithm, followed by a faster two variable version. In chapter 4 the

regularity aware framework is described, along with examples of how it is applied to logic

synthesis tasks. In chapter five we give experimental results. And finally, we conclude in

chapter six.
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Chapter 2

Background

2.1 Boolean Network

A Boolean Network is a directed acyclic graph whose nodes represent gates, and whose

input and output edges represent the fanin and fanout of the gate respectively. In this

thesis, we only deal with gates represented by completely specified, single output Boolean

functions. A Boolean function is a mapping between the values of its n input signals to

the value of its output signal {0, 1}n → {1, 0}. It is completely specified if each binary

input vector maps to either a constant one or zero, as opposed to incompletely specified

functions where the input vectors may correspond to an undefined (or don’t care) output

value.

Efficient representation of the Boolean function is central to building scalable and ef-

ficient logic synthesis systems. The first representation taught in any elementary course

on digital logic, is the Truth Table. In the truth table, each record (or row) maps an

input vector with an output value. All input vectors (or minterms) are written out to

define the function. While effective for illustrating ideas, such as logic minimization using

Kaurnough Maps, this representation has only been of theoretical importance because

of poor scalability. Its exponential growth with respect to the number of inputs, makes
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functions of even moderate size impractical. A more practical represention, for the pur-

pose of logic synthesis, is the cubeset representation. Here a third, don’t care value, can

be used to mark variables in the input vector of a record (called cubes in cubeset form).

A variable marked as don’t care indicates that the record’s output value does not depend

on that variable. For example, the input vectors 1011 and 1001 both produce a 1 output

and can be rewritten as 10− 1. In practice, almost all classes of logic functions found in

digital circuits can be efficiently represented using these don’t cares. Furthermore, exact

and efficient logic minimization algorithms (Esspresso) and sharing extraction algorithms

(kernel extraction), that use cubesets as their logic function representation, have made

cubesets the work horse of logic synthesis for the past two decades.

Recently there has been interest in another function representation, called Reduced

Ordered Binary Decision Diagram (ROBDD or just BDD for short), introduced to the

CAD community by Bryant [4]. The BDD has several attractive properties. It is canoni-

cal: function blocks that implement the same Boolean function and share the same sup-

port set have the same BDD representation. As a result, equivalent nodes in the BDD

can be identified and collapsed easily to make the BDD compact. The BDD has also

been shown to have several fast decomposition algorithms including XOR and Boolean

decompositions that previous to the BDD, were difficult to perform [22].

Examples of the various representations for the function F = abc + abc + ac is illus-

trated in Figure 2.1.

2.2 Binary Decision Diagram

A Binary Decision Diagram is a directed, acyclic graph with a root node that represents

a function, and terminal nodes ’1’ and ’0’ which are the outcomes of the function. The

value of a function is determined by beginning at the root node and traversing down the

graph, through a series of decisions, that lead to either the ’1’ or ’0’ terminal. Each node
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a b c s

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(a) TruthTable

a b c s

0 0 0 1

0 1 1 1

1 - 1 1

(b) Cubeset

 a 


 b 


 c 


  F  


1


(c) Bianry Decision Dia-

gram

Figure 2.1: Various Boolean Function Representations.

n in the graph contains three pieces of information; it is represented by one variable of

the function n.var, and has two edges pointing to other nodes in the graph, n.then and

n.else. When evaluating the function at node n, the then edge (n.then) is traversed if

the variable pointed to by n.var is true, otherwise the else edge (n.else) is traversed.

The BDD of F = abc + abc + abc is shown in Figure 2.2. Dashed edges represent else

edges, while solid lines represent then edges.

A Reduced Ordered Binary Decision Diagram (ROBDD) adds some restrictions to

make the BDD compact and canonical. In the ROBDD, the variables have a total

ordering that place all nodes of the same variable to a fixed level in the BDD. The

ROBDD, as such, still grows exponentially with the number of inputs. Two reduction

rules make the ROBDD compact. The first reduction rule removes redundant tests

(Figure 2.3a). A node u with u.then = u.else will traverse to u.then regardless of the

value of u.var. The node can be eliminated by redirecting nodes that point to u to
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 a 


 b 


 c 


  F  


0
 1
0
 0
 1
 1
0
 0


Figure 2.2: Binary Decision Diagram.

point to u.then (u.else) directly. The second reduction rule removes duplicate nodes

(Figure 2.3b). Two nodes u, v that have the same var, then and else values produce the

same function. v can be removed by redirecting edges pointing to v to u instead.

u


v
 v


e1
 e2
 e1
 e2


(a) Remove Redundant Tests.

u


e1
 e2


v


e3
 e4


u


e1
 e2
 e3
 e4


(b) Remove Duplicate Nodes.

Figure 2.3: ROBDD Reduction Rules.

The ROBDD version of F = abc+ abc+ abc, shown in Figure 2.4, has a total of three

nodes, down from the seven node version in Figure 2.2.

Modern day BDDs add a third type of edge called compliment edges which allow

for further reductions in BDD size. Compliment edges differ from regular edges in that

they return the compliment (instead of the regular) value of the BDD they point to.

Compliment edges are restricted to being else edges. In total, BDDs are made up of
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 a 


 b 


 c 


  F  


50


48


47


1
 0


Figure 2.4: Reduced Ordered Binary Decision Diagram.

three edge types: then edges, regular else edges, and compliment else edges. The ROBDD

version of F = abc+abc+abc with compliment edges is shown in Figure 2.5. Compliment

edges are represented by dotted lines. For brevity, ROBDDs with compliment edges are

simply refered to as BDDs for the remainder of the thesis.

 a 


 b 


 c 


  F  


4b


48


42


1


Figure 2.5: Reduced Ordered Binary Decision Diagram with Compliment Edges.

BDDs bring with them, several advantages over the traditional cubeset representation.

First they are compact for more classes of functions than the cubeset. Both can represent

algebraic gates such as AND and OR gates efficiently. However, cubesets have difficulty

representing arithmetic intensive circuits such as XOR and MUX gates. The size of the

cubeset grows exponentially with the number of inputs for XOR and MUX gates, while
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the size of the BDD grows linearly. Compact representations for arithmetic logic reduces

memory consumption, and also translates into algorithms with faster runtimes.

A second advantage of BDDs is that under a common variable ordering, they are

canonical. A representation is canonical if the representation for logic funtions is a unique.

By constrast, there is more than one way to represent a function in cubeset form. Being

canonical has the benefit of making equivalence checking extremely fast. Two functions,

with the same variable order, will produce exactly the same BDDs and equivalence can

be determined by a constant time pointer comparision. This new capability has opened

opportunities in several areas including Boolean matching and verification, to name a

few.

2.3 Logic Synthesis Flow

The Boolean network produced by a high level description language (HDL), such as

Verilog or VHDL, is not suitable for direct circuit implementation. The Boolean network

is subject to contain redundancies and gates with fan-ins that are too large. The purpose

of logic synthesis is to transform this Boolean network into one that is composed of a

realizable set of gates while optimizing some cost functions such as gate count and speed.

Logic synthesis is a well studied problem with over 30 years of history. Our BDD based

system follows a SIS-like synthesis flow which divides synthesis into four major tasks;

Sweep, Eliminate, Logic Simplification, and finally Decomposition. Where BDD based

systems differ, is in the way they perform each synthesis task. In this section we give

a brief introduction to the logic synthesis process with specific attention given to BDD

based algorithms.
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Figure 2.6: Basic synthesis flow.

2.3.1 Sweep

The sweep stage removes some obvious redundancies in the Boolean network by looking

for two conditions. The first simplification, called constant node propagation, simplifies

gates that are directly connected to power or ground. In Figure 2.7a, constant prop-

agation simplifies a three input AND gate with a constant ’1’ at it’s input into a two

input AND gate. The second simplification, called common support merging, simplifies

gates that have input variables repeated more than once in their support. In Figure 2.7b,

common support merging simplifies a three input AND gate with a repeating input into

a two input AND gate. These simplifications are easy to apply and are performed early

in the synthesis flow to reduce the overall complexity of the circuit before more time

consuming logic transformations are applied.

2.3.2 Eliminate

The eliminate stage attempts to remove inter-gate redundancies by merging adjacent,

highly correlated gates together. Elimination is performed through trial and error by

collapsing a gate into it’s fannout. If the complexity after elimination is lower than the
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a b 1 a b

(a) Constant Propagation.

a b a b

(b) Common Support Merging.

Figure 2.7: Sweep Operations.

complexity before elimination by some threshold, then the elimination is accepted. We

use total BDD node count as the measure of complexity. In Figure 2.8, two two-input

AND gates are transformed into a single two-input AND gate after elimination.

a
b f a

b f

eliminate

AND
AND AND

Figure 2.8: Elimination.

The size of most industrial circuits prevent function blocks from being completely

collapsed into the primary outputs. Large BDDs can cause memory blow up: the num-

ber of nodes in completely collapsed networks are several orders of magnitude greater

than their uncollapsed counterparts [22]. Also, the speed of variable ordering becomes

prohibitive for large BDDs. A balance is needed between collapsing function blocks to

remove inter-gate redundancies and keeping BDD sizes reasonable.

2.3.3 Simplification

Once the function blocks have been collapsed, the Boolean networks are simplified through

variable reordering. This is similar to the two-level minimization of cubesets performed
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in SIS. Variable reordering reduces the number of nodes in a BDD through iterative,

variable swapping techniques. Because variable ordering is slow and may need to be ap-

plied several times during logic synthesis, variable ordering can contribute to a significant

portion of the runtime.

Figure 2.9 shows the BDD for function F = before and after simplification. The

node count is reduced from 16 to 7. In general, the size of the BDD is quite sensitive to

variable order.

 X0 


 X1 


 X2 


 X3 


 X4 


 X5 


 X6 


  F  


5e


57
 5d


56


53


5c


59
5b
55


4a


1


4f
 5a
 58
 48


54
49


(a) Before Simplification.

 X4 


 X0 


 X1 


 X2 


 X5 


 X3 


 X6 


  F  


5e


5c


57


1


53


5d


4b


4a


(b) After Simplification.

Figure 2.9: Logic Simplification.

2.3.4 Decomposition

Often, the circuit generated by an HDL will contain gates that are too complex for direct

implementation. These gates must be recursively broken down in to smaller gates, until

they can be properly handled by a technology mapper. Usually the requirement is that

gates be decomposed into basic gates such as AND, OR, XOR, MUX gates. A number

of papers have been published on the subject of [11][22][2][16].
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Figure 2.10: Decomposition.
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Chapter 3

Sharing Extraction

3.1 Introduction

The purpose of sharing extraction is to extract common functions from among gates in

the network to save area. It is similar to decomposition, where large gates get broken

down in to smaller gates of lesser complexity, but has the added task of finding sharing

opportunities at the same time.

a b c d e f g

m n

a b

m n

c d e f g

Share Extract

Figure 3.1: Sharing Extraction.

Sharing extraction plays a direct role in the outcome of area quality produced. It is

of very practical value, as demonstrated by the highly effective cubeset based kernel ex-

traction algorithm. But while an effective sharing extraction algorithm exists for cubeset
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based systems, it’s treatment in BDD based systems to date has been weak. An effective

sharing extraction algorithm is required if BDD based systems are to produce area qual-

ity competative with cubeset based systems. In this chapter, we describe a BDD based

sharing extraction algorithm that addresses this problem.

3.2 Related Works

Perhaps the most widely used sharing extraction algorithm is the cubeset based kernel

extraction described in [3]. Their algorithm works by enumerating candidate factors,

for all gates, followed by selecting the factor that generates the most area reduction,

as measured by their size and number of repetitions. Their factoriztions take the form

F = AB+C, where supp(A) and supp(B) are disjoint. Here they make the simplification,

that a variable and it’s compliment are treated as two independent variables, in order to

make the algorithm fast. Their sharing extraction algorithm is active, because at each

step, an attempt is made to extract the best sharing opportunity. In constrast, passive

sharing extraction finds sharing only after the fact.

Sawada et. all [18] describe a BDD based equivalent for kernel extraction. While

they use BDDs to represent logic functions, they are represented in ZDD form, which

implicitly represents cubesets. Essentially, the algorithm is cubeset based and cannot use

the advantages of the BDD as described earlier.

A subproblem of sharing extraction, and one that has garnered the most attention

in BDD based systems, is decomposition. The purpose of decomposition, like sharing

extraction, is to break large gates down into smaller ones. It differs in that decompositions

are judged by area savings with respect to a single gate, without considering external

opportunities for sharing. Because of it’s strength in decomposition, BDD based synthesis

systems often perform decomposition first and then apply a passive form of sharing

extraction.
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BDS[22] takes an approach to synthesis that moves away from cubesets altogether.

They identify good decompositions by relying heavily on structural clues in the BDD.

1, 0 and X dominators produce algebraic AND, OR and XOR decompositions respec-

tively. They also describe structural methods for non-disjunctive decomposition based

on their concept of a generalized dominator. They also perform other non-disjunctive

decompositions, such as variable and functional mux decompositions. After performing

a complete decomposition of the circuit, they perform sharing extraction by computing

BDDs for each node in the Boolean network, in terms of the primary inputs. Nodes

with equivalent BDDs can be shared. For obvious reasons, this passive form of sharing

extraction produces sharing results inferior to kernel extraction.

Mishchenko et. all [13] developed a BDD based synthesis system centered on the Bi-

decomposition of functions. They give a theory for when strong or weak bi-decompositions

exist and give expressions for deriving their decomposition results. Their sharing ap-

proach makes several improvements over BDS. First, their sharing extraction step is

interleaved with decomposition so that sharing can be found earlier, avoiding redundant

computations. Second, they retain don’t care information across network transformation

to increase flexibility in matching. However, their’s is still a passive sharing extraction.

3.3 Overview

Our sharing extraction algorithm shares similarities with the well known kernel extrac-

tion algorithm, used in cubeset based systems. Like kernel extraction, our algorithm

decomposes sharing extraction into a two-step flow. In the first step, the candidate ex-

tractors are enumerated for each gate in the network. For practicality, not all extractors

can be enumerated because they are too numerous. In kernel extraction, extractors are

limited to those of the algebraic kind, because they can be found efficiently on the cube

set. Similarly, we limit our extractors to disjunctive extractors because they can be found
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efficiently on the BDD. Later the runtime of the algorithm is improved by limiting ex-

tractors to two variables, which we shall show, does not adversly affect the area quality

produced.

In the second step, common extractors among multiple gates are selected for sharing.

Committing some extractors destroys others so ordering is important in choosing the

extractors that have the most impact. One method that works well, is to select the

extractors greedily, based on the size of the extractor and the number of times the

extractor is repeated. The remainder of this chapter will focus on the enumeration and

selection of extractors.

We use the following conventions for notations. Uppercase letters F, G, H represent

functions. Lowercase letters a, b, c represent the variables of those functions. Supp(F ) is

the support set of F. We call the function produced by taking function F and setting it’s

variable x to the constant 1, the positive cofactor of F with respect to x and is denoted

by F |x. Similarily, the function produced by taking function F and setting it’s variable

x to the constant 0 is called the negative cofactor of F with respect to x, and is denoted

by F |x. [F, C] represents an incompletely specified function with F as it’s completely

specified function and C as it’s care set. ⇓ represents the restrict operation.

3.4 Functional Extraction

Given two functions F and E, the extraction process breaks F into two simpler functions,

extractor E and remainder R.

F (X) = R(e, XR) (3.1)

R(e, XR) = eR1(XR) + eR2(XR) (3.2)

e = E(XE) (3.3)

X is the support set of F . XE is the support set of E. XR is the support set of R.

XE

⋃
XR = X.
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Both R1 and R2 have multiple solutions. The range of solutions can be characterized

by an incompletely specified function [F, C], where F is a completely specified solution

and C is the care set. One solution is R1 = F and R2 = F . We obtain the C conditions

by noting R1 is a don’t care when E is false and R2 is a don’t care when E is true.

R1 = [F, E] (3.4)

R2 = [F, E] (3.5)

We want a completely specified solution that minimizes the complexity of R1 and R2.

To do this, we assign the don’t care conditions in a way that minimizes the resulting node

count. This problem was found to be NP complete [17] but a solution can be obtained

using one of several don’t care minimization heuristics. One well known heuristic, which

has been shown to be fast, is the restrict operation [7, 20, 8]. Applying the restrict

operator, the final equations for the remainder and extractor are shown below:

R(e, XR) = e(F ⇓ E) + e(F ⇓ E)

e = E(XE)

3.5 Disjunctive Extraction

The last section described how to compute the remainder for an arbitrary function and

extractor. In this section we describe a specialized extraction algorithm tailored to dis-

junctive extractors.

An extractor is disjunctive if it does not share support with its remainder. In con-

trast, an extractor is conjunctive if it does share support with its remainder. Examples

of disjunctive and conjunctive extraction are shown in Figure 3.2. Disjunctive extrac-

tions are ideal for area, because they form a perfect partition of the function, where
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the remainder and extractor produced have no redundancies between them. However,

disjunctive extractors are not always available, in which case, conjunctive extraction is

required to break the function down.

R


E


F


(a) Conjunctive Extraction.

R


E


F


(b) Disjunctive Extraction.

Figure 3.2: Conjunctive vs. Disjunctive Extraction.

It is important to note that by limiting the solution space to disjunctive extractors,

some sharing opportunities will be missed. Restricting candidate extractors is necessary

however, because the generalized sharing extraction problem is NP hard. Neverthe-

less, disjunctive extractors are good candidates because they can be found and matched

quickly. We show experimentally that they are effective in reducing area.

3.5.1 Extractor Types

In addition to being disjunctive, the extractor considered must satisfy additional proper-

ties to avoid repeating redundant computations. The first restriction is that extractors be

prime, that is, an extractor of size N must not be disjunctively extractable by a function

of size less than N. For example, abcd, can be extracted by abc, however, since abc can

also be extracted by ab, abc is not considered a valid extractor. The motivation for this

restriction is to reduce processing and memory consumption. Without this restriction a

function may have on the order of O(NN) disjunctive extractors, where N is the number

of variables of the function. With the restriction, the number of disjunctive extractors is

limited to O(N2). Prime extractors can be shared recursively to find larger, non-prime,
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extractors.

Another condition that must be satisfied, is that the extractor must evaluate to 0

when the input vector is 0. An extractor and its complement produce the same extrac-

tion; computing both is redundant. The condition ensures that only one polarity of the

extractor is considered. Forcing extractors to satisfy E(0) = 0, ensures that E is not

considered, since E(0) = 1.

In total, three properties must be satisfied for an extractor of size N to be valid.

Condition 1: The extractor forms a disjunctive extraction.

Condition 2: The extractor cannot be extracted by a function of less than N vari-

ables.

Condition 3: The extractor evaluates to ’0’ when all inputs are false.

3.5.2 Enumerating Extractors

The enumeration step identifies all disjunctive extractors for every gate in the Boolean

network. Once enumerated, the extractors are matched to find extractors that are shared

by multiple gates. The enumeration algorithm works by considering all combinations of

variables. For each combination of variables, the algorithm determines whether the set

of variables can form a disjunctive extractor. An example of a function and its valid

extractors is shown below.

Example 1 The valid extractors of F = abc + d + e are Φ(F ) = {ab, bc, ac, d + e}.

The disjunctive extractors in Example 2 are more difficult to find by inspection.

Example 2 The valid extractors of F = a be + ab e + abf + ab f + cef are Φ(F ) =

{a ⊕ b, ef}
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It turns out, E = a ⊕ b is a disjunctive extractor with R = Ee + Ef + cef as the

corresponding remainder. And E = ef is a disjunctive extractor with R = abE + cE

as the corresponding remainder. While identifying extractors by inspection may seem

difficult, there is a relatively efficient algorithm to find disjunctive extractors on the BDD.

The answer may be efficiently computed on the BDD by checking for equivalence between

certain cofactors of F .

Theorem 1 Let E be an N variable disjunctive extractor of F . Let S = {S0, · · · , S2N−1}

be the set of all minterms of E. Then E is a disjunctive extractor of F iff all cofactors

of F with respect to the minterms in S map to exactly two functions (R1 and R2).

Case: ⇐

1.

F = S0 · F |S0
+ · · ·+ S2N−1 · F |S

2N−1
By Shannon’s expansion

Let U = {U0, · · · , UJ−1} be the minterms of S such that F |Ui
= R1, 0 ≤ i ≤ J − 1.

Let V = {V0, · · · , VK−1} be the minterms of S such that F |Vi
= R2, 0 ≤ i ≤ K − 1.

And U and V form a partition of S; U ∩ V = �, U ∪ V = S

F = (U0 + · · ·+ UJ−1) · R1 + (V0 + · · ·+ VK−1) · R2

Since U and V form a partition of S, U0 + · · ·+ UJ−1 = (V0 + · · ·+ VK−1)
′.

A disjunctive extraction is possible by setting e = U0+· · ·+UJ−1 and F = e·R1+e·R2.

Case: ⇒

2. E is a disjunctive extractor of F ⇒ F can be written as F (X) = H(XE , e), e = E(XE),

where X is the support of F , XE is the support of E, and XE = X − XE.

F = H(XE, e)

= e · H(XE, e)|e + e · H(XE, e)|e By Shannon’s expansion
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= E(XE) · H(XE, e)|e + E(XE) · H(XE, e)|e

Let U = {U0, · · · , UJ−1} be the minterms that make up the on-set of E(XE).

Let V = {V0, · · · , VK−1} be the minterms that make up the off-set of E(XE).

U ∪ V , enumerate all the minterms of variables in XE.

F = (U0 + · · · + UJ−1) · H(XE, e)|e + (V0 + · · ·+ VK−1) · H(XE, e)|e

Enumerating the cofactors of F with respect to the minterms of XE, we have, F |U0
=

· · · = F |UJ−1
= H(XE, e)|e and F |V0

= · · · = F |VK−1
= H(XE, e)|e. The cofactors of

F with respect to the minterms of E map to exactly two functions.

3. Q.E.D.

The cofactor condition can be checked fairly quickly. Cofactors with respect to a

cube can be determined in O(|G|) time. And cofactors can be compared, on the BDD,

in constant time. For fixed N , the overall complexity of determining if a set of variables

can be disjunctively extracted is O(|G|).

The algorithm for determining if a set of variables form a valid, disjunctive extractor

works as follows: All 2N cofactors of F with respect to the N variables considered

for extraction, are computed. If all cofactors map to exactly two functions, and the

extractor satisfies the three conditions for valid extractors, then the set of variables form

a valid, disjunctive extractor. Condition 1 is met by construction. To meet Condition

2, extractors of smaller size are enumerated before extractors of larger size. Variables

that belong to extractors of smaller size will not be considered when finding extractors of

larger size. For example, all two variable extractors are found first. Those variables that

belong to a two variable extractor are not considered when enumerating three variable

extractors. This ensures no three variable extractor contains a two variable extractor.

Finally, functions are inverted if they do not meet the 3rd condition.

Once a set of variables XE is determined to have a valid, disjunctive extraction,

the exact function to be extracted is computed. The cofactors of F with respect to the

minterms of XE, map to exactly two functions, R1 and R2. The extractor is computed by
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setting the on-set of the extractor to be the sum of those minterms c where F |c = R1. It

follows that the off-set is composed of those minterms c where F |c = R2. The extractor

is then complemented, if required, to satisfy the third condition of valid extractors,

E(0) = 0. The algorithm to find disjunctive extractors is shown in Figure 1.

The enumeration algorithm is now applied to the difficult function in Example 2. For

XE = {a, b}, the four cofactors of F with respect to these two variables are listed below:

F |ab = cef (3.6)

F |ab = e + f + cef (3.7)

F |ab = e + f + cef (3.8)

F |ab = cef (3.9)

(3.10)

All cofactors map to exactly two functions, so we know from Theorem 1 that {a, b}

can be extracted disjunctively. The two cofactors are R1 = e + f + cef and R2 = cef

. Two minterms produce cofactor R1. They are the cofactors with respect to minterms

ab and ab. These two minterms form the on-set of the extractor. Hence the extractor is

E = a ⊕ b. The Remainder is R = E(cef) + E(e + f + cef). Computing the cofactors

with respect to variables {e, f} determines that ef is also a disjunctive extractor. All

other combinations of variables result in a mapping to more than two cofactors of F , and

hence those variable combinations do not produce disjunctive extractors.

3.5.3 Matching Extractors

Once the extractors are enumerated, the extractors are matched to determine if there is

sharing. The candidate extractors are matched by computing an integer signature for

the extractors. The signature is a bit vector, where each bit represents a minterm of the

extractor. The bit is a ’1’ if the minterm belongs to the on-set of the extractor, ’0’ if
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Algorithm 1 Finding Disjunctive Extractors

findExtractors( F ) { 1

L = �; 2

forall( variable combinations XE of F ) { 3

R1 = �; 4

R2 = �; 5

E = ′0′; 6

isDisjunctive = TRUE; 7

forall( minterms C of XE ) { 8

if( R1 6= F |C ∧ R2 6= F |C ) { 9

if( R1 = � ) 10

R1 = F |C ; 11

else if( R2 = � ) 12

R2 = F |C ; 13

else{ 14

isDisjunctive = FALSE; 15

break; 16

} 17

18

if( R2 = F |C ) 19

E = Or(E, C); 20

} 21

if( isDisjunctive = FALSE ) 22

break; 23

} 24

if( E(0) = 1 ) 25

E = E; 26

27

L = L + E; 28

} 29

return L ; 30

} 31
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it belongs to the off-set. Because extractors are limited to support of size 5, at most 32

bits are required to represent a function. Comparing extractors for equivalence amounts

to comparing the signatures (an integer comparison) and the support of the extractors.

The value of the signature depends on the ordering of the support variables. For exam-

ple, the signature for function F = abc+d, with variable order {a,b,c,d} is 1110101010101010,

while the signature for F with variable order {d,c,b,a} is 1111111110000000. To ensure

that the variable orders are consistent, the support is sorted by the address location of

the variables before the signature is computed.

Each extractor is rated by a cost function based on the size of the extractor and

number of instances in the circuit. At each step, the extractor with the lowest cost is

accepted in a greedy fashion. The cost function is computed as C = N − (N − 1) ∗ M ,

where N is the support size and M is the number of matches found.

3.5.4 Analysis

The sharing extraction algorithm just described presents a novel BDD based method

for finding extractors actively; a task that previously was not available for BDD based

systems. It differs from traditional sharing extraction techniques in two major ways. First

it allows the entire synthesis flow to be BDD based. The compactness and efficiency with

which Boolean operation can be performed on the BDD, ultimately translates into faster

runtimes than could be achieved with cube sets. Second, this algorithm is able to extract

Boolean gates such as XOR gates, which was difficult to do on cube sets.

Although the algorithm described is well suited for BDDs, it can not be as efficiently

performed on cube sets. While computing cofactors on the cube sets is also a linear

time operation with respect to the size of the logic function, there is difficulty in com-

paring cofactors for equivalence. Unlike in the BDD, the cube set representation of logic

functions are not canonical and comparison of logic functions cannot be performed in

constant time. Even if this difficulty could be overcome, the runtime benefits of using

25



BDDs would be lost when performing the sharing extraction technique on cube sets.

While the sharing extraction algorithm described can theoretically handle extractors

of arbitrary size, for practical purposes, the size of extractors considered must be re-

stricted. Large extractors present a difficulty in computational complexity because the

number of variable combinations that need to be considered grows exponentially with the

size of the extractor. There are O(NM/MM) variable combinations to consider for ex-

tractors of size M and functions of size N. The complexity becomes unmanageable fairly

quickly for values of M greater than 5. In the next section we show that the algorithm

works well for small values of M and give further improvements to reduce runtime.

3.6 Disjunctive Two Variable Extraction

Sharing Extraction with large extractors is slow because of the exponential growth in

the number of variable combinations that need to be considered. In this section, the

extractor size is limited to two variables. In addition to reducing the number of variable

combinations considered for extraction, two variables extractors have some added prop-

erties that make their extraction incremental and fast. It will be shown experimentally

that typical circuit designs are dominated by two variable extractors and only a negligible

area penalty is experienced when ignoring large extractors.

Definition 1 Given function F , extractor E and remainder R, good extractors are two

variable extractors whose variables are disjunctive from R.

3.6.1 Extractor Types

All two variable functions are considered potential good extractors. A two variable

function has four unique input values. Each of these input values have two possible

outputs. That makes 42 = 16 unique, two variable, functions. The one and zero constants

and the single variable functions (F = a, F = a, F = b and F = b) make six trivial
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functions. These functions cannot produce good extractions. The ten remaining functions

are listed below:

F = ab F = a + b

F = a + b F = ab

F = a ⊕ b F = a⊕b

F = ab F = a + b

F = ab F = a + b

The right five functions are compliments of the left five. They will produce the same

extractions so half can be discarded. In total, there are five functions to consider when

looking for good extractions.

3.6.2 Computing Extraction

Good extractors require equivalence between certain cofactors of F . For now, we show

how to compute extraction for a good AND extractor. The same procedure shown here

can be applied to derive extractions for all other good extractors.

Theorem 2 E = ab is a good extractor of F iff F |ab = F |ab = F |ab.

Prove: If E = ab is a good extractor of F then F |ab = F |ab = F |ab.

1.

F = R1ab + R2ab

= R1ab + R2ab + R2ab + R2ab

2.

F |ab = R2

F |ab = R2

F |ab = R2
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Prove: If F |ab = F |ab = F |ab then E = ab is a good extractor of F .

3.

R1 = [F, ab], from Equation 3.4.

F |ab, F |ab, F |ab are don’t cares. Set them to zero.

R1 ⇒ F |ab

R1 does not contain a or b.

4.

R2 = [F, ab]

= [F |abab + F |abab + Fabab, ab]

Given F |ab = F |ab = F |ab,

R2 = [F |ab(ab + ab + ab), ab]

= [F |abab, ab]

⇒ F |ab

R2 does not contain a or b.

5.

R = eR1 + eR2

= eF |ab + eF |ab

The remainder contains neither a or b.

6. Q.E.D.

Similarly, cofactor conditions for the other four good extractors exist as well. These

cofactor conditions are listed in Table 3.1.

Let’s compare the runtime of extraction for arbitrary functions and good functions.

Determining if function E(a, b) is a good extractor, using the first algorithm, requires an

extraction computation for each of the 5 extractor types. Each extraction computation

requires 2 restrict operations. That’s a total of 10 restrict operations. By comparison,

the second algorithm computes four cofactors of F. The cofactors are computed once and
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Condition Extractor Remainder

F |ab = F |ab = F |ab AND R = eF |ab + eF |ab

F |ab = F |ab = F |ab OR R = eF |ab + eF |ab

F |ab = F |ab = F |ab AND10 R = eF |ab + eF |ab

F |ab = F |ab = F |ab AND01 R = eF |ab + eF |ab

F |ab = F |ab XOR R = eF |ab + eF |ab

& F |ab = F |ab

Table 3.1: Cofactor conditions for good extraction

reused in the detection of each of the extractor types. On the BDD, with it’s recursive

cofactoring structure, single cube cofactors are computed in O(G) time, where G is the

number of BDD nodes.

The complete extraction search algorithm is shown in algorithm 2. The for loop

iterates O(N 2) times, where N is the number of variables, and each time performs a

O(G) cofactor operation. Thus the total worst case complexity for finding the good

extractors of a function is O(N 2G).

3.7 Incrementally Finding Extractors

In this section we discuss techniques that speed up the extraction algorithm further. The

first improvement uses the property that good extractors of a function continue to be

good extractors in their remainders. Instead of rediscovering these good extractors, they

can be copied over.

Theorem 3 Let E1 and E2 be arbitrary good extractors of F . Supp(E1) = {a, b},

Supp(E2) = {c, d} and Supp(E1)
⋂

Supp(E2) = �. If R is the remainder of F extracted

by E1, then E2 is a good extractor of R.
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Algorithm 2 Finding Good Extractors

findExtractors( F ) {

forall( pairs of variables (a,b) ) { 32

A = F |ab; 33

B = Fab; 34

C = F |
ab

; 35

D = F |
ab

; 36

37

if( B = C = D ) 38

// Found good AND (ab) extractor. 39

else if( A = B = C ) 40

// Found good OR (a+b)extractor. 41

else if( A = B = D ) 42

// Found good ab extractor. 43

else if( A = C = D ) 44

// Found good ab extractor. 45

else if( A = D and B = C ) 46

// Found good XOR (a ⊕ b) extractor. 47

}} 48
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NOTE: Here we show this is true for the case where E1 = ab and E2 = a + b. The

same analysis can be applied to show the theorem is true for other combinations of good

extractors.

Case: E1 = ab and E2 = a + b

1. E1 is a good AND extractor ⇒ F |ab = F |ab = F |ab

E2 is a good OR extractor ⇒ F |cd = F |cd = F |cd

2.

R|cd = (eF |ab + eF |ab)|cd

= eF |abcd + eF |abcd

3.

R|cd = (eF |ab + eF |ab)|cd

= eF |abcd + eF |abcd, Using Fcd = Fcd,

= eF |abcd + eF |abcd

4.

R|cd = (eF |ab + eF |ab)|cd

= eF |abcd + eF |abcd Using Fcd = Fcd,

= eF |abcd + eF |abcd

5. R|cd = R|cd = R|cd ⇒ c + d is a good extractor of R.

6. Q.E.D.

Thus we can obtain some good extractors of R by copying them from F . We call these

extractors “copy” extractors. Copy extractors do not account for all good extractors of

R. The good extractors missed are those formed with variable e. To find these extractors,

cofactor conditions between e and every other variables of R must be checked. Extractors

found in this way are called “new e” extractors. These two types of extractors, in fact,

account for all good extractors of R. The benefit is that good extractors of R can be

obtained through “copy” and “new e” extractors. This is faster than computing good
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extractors directly.

Theorem 4 Let R be the remainder of F extracted by E1. E is a good extractor of R

iff E is a “copy” extractor or “new e” extractor.

Prove: If E is a “copy” extractor or “new e” extractor of R, then E is a good extractor

of R.

1. Theorem 3 says “copy” extractors are good extractors. “new e” extractors are good

extractors by construction.

Prove: If E is a good extractor of R then E is a “copy” extractor or “new e” extractor.

NOTE: Again, for compactness, we only prove this for the case where E1 = ab and

E2 = c + d.

2. F |ab = F |ab = F |ab

R = eF |ab + eF |ab

R|cd = R|cd = R|cd

3.

R|cd = R|cd = R|cd

e(F |ab)|cd + e(F |ab)|cd

= e(F |ab)|cd + e(F |ab)|cd

= e(F |ab)|cd + e(F |ab)|cd *

⇒ (F |ab)|cd = (F |ab)|cd = (F |ab)|cd

(F |ab)|cd = (F |ab)|cd = (F |ab)|cd

⇒ (F |a)|cd = (F |a)|cd = (F |a)|cd

4. From *, we have

(F |ab)|cd = (F |ab)|cd = (F |ab)|cd

(F |ab)|cd = (F |ab)|cd = (F |ab)|cd

⇒ (F |a)|cd = (F |a)|cd = (F |a)|cd
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5. F |cd = F |cd = F |cd

Case: Both c and d are elements of F .

Then c + d is a good extractor of F so c + d is a “copy” extractor.

Case: One of c or d is the e variable.

Then c + d is a “new e” extractor.

6. Therefore, an OR extractor must be either a “copy” or “new e” extractor.

The complexity of transferring extractors from F to R is O(N 2). The complexity for

finding new extractors involving variable e is O(NG). The total complexity for finding

extractors for a remainder is O(N 2 +NG). The incremental algorithm only applies when

finding extractors for remainders. When finding extractors for functions whose parent

extractors have not been computed, the O(N 2G) complexity still applies.

3.8 Transitive Property of Good Extractors

The O(N2G) complexity required to find the initial set of extractors can be reduced if

we are willing to relax the condition that all good extractors be found.

Theorem 5 E1(a, b) and E2(b, c) are good extractors of F ⇒ ∃ E3(a, c) such that E3(a, c)

is a good extractor of F .

Here we only consider the case where E1(a, b) = ab (an AND extractor). The analysis

presented can be applied to prove the proposition is true for all functions of a and b.

Function E2(b, c) can be one of 5 extractor functions.

Case: E2 = bc

E1 is a good AND extractor ⇒ F |ab = F |ab = F |ab (1)

E2 is a good AND extractor ⇒ F |bc = F |bc = F |bc (2)

1.

F |ac = (F |ac)|bb + (F |ac)|bb
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= F |abcb + F |abcb using (1)

= F |abcb + F |abcb

= F |abc

2.

Fac = (F |ac)|bb + (F |ac)|bb

= F |abcb + F |abcb, using (1)

= F |abcb + F |abcb using (2)

= F |abcb + F |abcb

= F |abc

3. Similarly,

F |ac = F |abc

⇒ F |ac = F |ac = F |ac

⇒ E3(a, c) = ac is a good AND extractor of F .

Similarly, if E2 = bc, then F |ab = F |ab = F |ab which implies E3(a, c) = ac is a good

extractor of F .

Case: E2 = b + c

Here we show that b + c cannot be a good extractor. Assuming that both ab and b + c

are good extractors results in the contradiction that F is independent of a.

E1 is a good AND extractor ⇒ F |ab = F |ab = F |ab (1)

E2 is a good OR extractor ⇒ F |bc = F |bc = F |bc (2)

4.

F |bc = (F |bc)|a)a + (F |bc)|a)a

= F |abca + F |abca, using (1)

= F |abca + F |abca

= F |abc

= (F |bc)|a
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5.

F |bc = (F |bc)|a

⇒ F |bc is not dependent on a.

6. Since F |bc = F |bc = F |bc, F |bc and F |bc also do not depend on a.

7.

F |bc = (F |bc)|aa + (F |bc)|aa

= F |abca + F |abca, using (1)

= F |abca + F |abca

= F |abc

= (F |bc)|a

⇒ F |bcdoes not depend on a

8. F |bc, F |bc, F |bc, F |bc all do not depend on a ⇒ F does not depend on a, a contradiction.

Therefore, b + c cannot be a good extractor of F when ab is a good extractor of F .

Similarly, E2 = bc and E2 = b ⊕ c cannot be good extractors of F when E1 = ab is a

good extractor of F .

We have shown that for the two valid functions of E2 ∃ E3(a, b) that is a good extractor

of F .

9. Q.E.D.

The transitive property of good extractors allows us to reduce the complexity of

finding good extractors. In our previous algorithm, the O(N 2G) complexity arose from

the need to explicitly find extractors between every pair of variables. Using the transitive

property of extractors, we only look for extractors between variables that are adjacent

in the BDD order. This reduces the number of pairs we consider from O(N 2) to O(N).

The transitive property then, is applied across successively adjacent extractors to find

additional extractors. The new algorithm relies on a heuristic: If two variables a and b

form a good extractor, then they are likely to satisfy one of two conditions:
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1. They are adjacent in the BDD variable order.

2. They are separated by variables that form good extractors with their adjacent

variables.

This is not a rule however, as good extractors can be formed that do not satisfy the

above conditions. The heuristic works well however, because variables that form good

extractors are likely clustered together in the BDD variable order; It reduces node count.

What we have is a trade off between finding all extractors, and finding them quickly. In

our experimental results however, the tradeoff in using this heuristic is minimal, degrading

area quality by only 0.1%.

3.9 Summary

In this chapter we described a fast, BDD based, sharing extraction algorithm that aims to

reduce area. The first incarnation of this algorithm finds all disjunctive extractors of size,

up to five variables. The extractors are found when the cofactors for all permutations

of cubes for the extraction variables in the equation, map to exactly two functions. A

unique bit string representation of the extractor is computed and hashed to find matching

extractors, which can be extracted and shared.

The computational complexity of finding large extractors grows polynomially with

the gate size, and exponentially with the extractor size. For extractors of size K, and

functions of size N , the complexity of this problem is O(NK · 2K|G|). Because of the

exponential growth complexity, K is reasonable for only values of less than or equal to

five.

Several refinements to the algorithm have been made to reduce computational com-

plexity further. As we will show experimentally, small values of K are sufficient in cap-

turing most sharing opportunities. In fact, of extractors sized two to five, two variable

extractors account for 99.7% of shared extractors found. The computational complexity
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of finding extractors of size two is O(N 2|G|). This is reduced further by finding extractors

incrementally. Disjunctive extractors of a function are also disjunctive extractors of the

functions produced by extraction. A heuristic, using the transitive property of disjunc-

tive extractors, look for extractors between adjacent variables. In total, the refinements

produce an algorithm that finds disjunctive extractors in O(N |G|) time, which is in line

with the complexity of other synthesis transformations such as decomposition.
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Chapter 4

Folded Logic Transformations

4.1 Introduction

With the rapid shrinking of process geometries and corresponding abundance in logic

resources, the complexity of designs has been growing at a rate that is making it a chal-

lenge for logic synthesis tools to keep their runtimes manageable. In the design of large

circuits, design reuse through hierarchy or repetition of logic structures is often applied

to reduce design effort. This theme can be used to speed up synthesis speed. In this

chapter we exploit the inherent regularity in logic circuits to share the transformation re-

sults between equivalent logic structures, called logic folding, with the focus of improving

runtime.

4.2 Related Works

Regularity awareness was first used in placement in an effort to improve circuit density

and reduce interconnect by Arikati [1]. Arikati performed regularity extraction by ana-

lyzing circuit connectivity and using a signature based approach to recognize regularity.

In his algorithm, signatures are used to match the structural relationship between a gate

and its neighbors. Regularity extraction starts with slices, with each slice containing
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a single gate with the same gate type as those in the other slices. Adjacent gates are

merged into the slice when their signatures are found to match the signatures of other

gates with respect to the other slices. Kutzschebauch [12] later applied this idea to logic

synthesis in an effort to reduce the loss of regularity during logic synthesis. While he

was able to improve the post synthesis regularity of circuits by on average 57%, the run

time, on average, increased by 8%.

4.3 Overview

We use a simpler form of regularity that only considers equivalence between single gates,

or pairs of gates. Logic transformations typically operate on one or two gates at a time.

When matching single gates, we are interested in whether a gate is functionally equivalent

to other gates in the network. When dealing with pairs of gates, we are also interested

in how the pair is interconnected. Capturing this regularity information enables us to

detect instances in the circuit where the same logic transformation is applied more than

once. Noting that many circuits exhibit a fair amount of regularity, and noting that many

logic transformations depend solely on the logic functions of the gates, we propose to use

logic folding to identify regularities in the circuit, to share the logic transformations and

improve runtime.

4.4 Single Gate Matching

Prior to the BDD, equivalence checking between two Boolean functions was expensive.

The cube set representation, faced two hurdles when performing equivalence checking.

First, cube sets are not canonical and the cost of putting them in a canonical form is

expensive. Second, even if cube sets could be made canonical, they still required the

comparison of the cubes in order to confirm equivalence. This is much slower than

the constant time requirement for equivalence checking with the BDD. Because logical
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equivalence between gates could not be determined easily, each gate stored it’s own copy

the logic function, and no attempt to share the logic function representations was made.

In our circuit representation, we take advantage of fast BDD based matching by

separating gates from their logic functions. The logic functions are stored in a global

function manager where the N variables of a function are mapped to the bottom N

generic variables of the function manager. When a new gate is constructed, its logic

function is constructed in the global function manager. If the BDD for the logic function

finds a match, then the function is shared and the gates are grouped together. Otherwise

a new function is added to the global manager.
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Figure 4.1: Regularity Extraction.

Sharing the BDD function representation among gates in the circuits obviously re-

duces memory requirements. The runtime advantage, however, is that gates can be

grouped by logical equivalence and logic transformations performed on one gate can be

shared among all members of the group.
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4.4.1 Boolean Matching

Folded logic is not without its problems and limitations. Two Boolean functions can

have more than one BDD representation when the variables of the BDDs are mapped

differently to the generic variables of the Global BDD Manager. When this occurs, the

match is missed and the BDDs are mistaken as different Boolean functions. As a result,

logic transformations involving these BDDs must be performed separately. Given that

for an n variable function, there are up to O(n!) different variable orderings, it seems

unlikely for two equivalent functions to match.

The set of valid variable orders for a function can be dramatically reduced by apply-

ing variable reordering. Since BDDs are typically variable ordered anyways, to conserve

memory, this comes at no extra cost. However, variable ordering alone is not sufficient for

discovering most matches. To illustrate this point, the sifting variable ordering algorithm

[15] is applied to several logically equivalent BDDs, whose starting variable orders are

randomly chosen. This procedure is applied to the largest gate in each of the MCNC

benchmarks. Table 4.1 (PMSIFT) shows the rate of matching obtained. Ideally, match-

ing should be 100% because the logic functions compared are equivalent. However, on

average, sifting can only discover 17% of the matches.

The problem described above, called permutation-independent Boolean Matching, has

been investigated in the context of library cell binding and logic verification. Ercolani and

De Micheli [10] propose a matching algorithm for EPGAs where BDDs are constructed for

all possible input permutations of the uncommitted EPGA module, and stored together

in a global manager. While practical for EPGA mapping, where logic functions are

only compared against the EPGA module, the memory requirements of this approach

are not practical when arbitrarily many gates are compared with each other. Debnath

and Sasao [9] devise a permutation-independent, canonical form for the logic function

where the rows of the truth table are represented as bits in a bit vector. Each bit

indicates whether the row is part of the on-set of the function. The size of the bit vector
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grows exponentially with the size of the support set, and is not practical for regularity

detection, where large gates exist. Ciric and Sechen [5] propose a canonical form where

the function is represented as the concatenation of minterms. Their algorithm performs

an exhaustive branch and bound search for the unique identifier which can be obtained

through minterm reordering and variable reordering. Their algorithm also cannot handle

the large gates that may exist in a logic network.

Mohnke, Molitor and Malik [14] propose a solution to the Boolean matching problem

that does not suffer from the runtime and memory limitations of the algorithms described

earlier. Their technique is based on computing signatures for the inputs of the logic

functions that are independent of the variable order. The inputs can be sorted by their

signatures to generate a variable order. Two BDDs that represent the same Boolean

functions will produce the same input signatures. If each input signature is unique, then

a unique variable ordering can be created from the signatures, and the resulting BDDs

will be equivalent.

One example of an input signature is the Cofactor satisfy count signature[14]. For an

input variable x, its input signature is defined to be the number of input assignments for

which the logic function is true when x is true. In BDD representation, this corresponds

to the number of paths to the one terminal and can be computed in O(|G|) time, where

|G| is the number of nodes in the BDD. The limitation of this approach is that, unlike

the Boolean matching techniques described earlier, it does not result in a canonical form.

Input signatures may alias, resulting in non-unique variable orders. In folded synthesis,

where the goal is to decrease runtime, some missed matches can be tolerated. Using

the Cofactor satisfy count signature to create an initial variable order allows 78% of the

matches to be found. The results are shown in Table 4.1 (PMSIG). Mohnke et al report

in [14] that for the set of signatures they implement, unique signatures are obtained in

92% of the circuits in the LGSynth91 and ESPRESSO benchmarks.

In spite of the problems described above, the potential benefit of logic folding is huge.
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Table 4.1: Matching Rate for Sifting and Input Signature Methods.

Circuit PMSIFT (%) PMSIG (%)

C1355.blif 10.42 100.00

C1908.blif 1.14 100.00

C2670.blif 1.00 100.00

C3540.blif 22.68 76.16

C5315.blif 2.38 100.00

C6288.blif 50.72 100.00

C7552.blif 1.00 100.00

dalu.blif 1.06 37.56

des.blif 1.54 26.78

frg2.blif 1.00 25.94

i10.blif 1.00 25.98

i8.blif 1.04 100.00

i9.blif 11.04 100.00

k2.blif 32.74 100.00

pair.blif 79.58 76.36

rot.blif 1.00 100.00

t481.blif 1.02 100.00

vda.blif 100.00 100.00

x3.blif 1.02 17.52

AVERAGE 16.91 78.23

If a match is found early on, there are savings on the immediate logic transformation,

as well as on all downstream logic transformations. Folding is essentially free. The cost

of folding is to copy BDDs to and from the global BDD manager, but this copying is

required anyways when isolating a BDD for variable reordering.

4.5 Matching Gates Pairs

Earlier we showed how a logic transformations result, when applied to a single gate, can

be shared among all logically equivalent gates. There are some logic transformations

however that work on two gates at a time. For example, elimination collapses one gate
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into its fanout. In this section we describe how sharing transformations can be extend

to pairs of gates.

Two gate pairs P1 and P2, have the same logic transformation result when the gate

pairs meet two requirements. First, the Boolean function for each of the two gates in P1

must match with the corresponding gates in P2. (i.e. P1.gate1.bool = P2.gate1.bool and

P1.gate2.bool = P2.gate2.bool). With the Boolean functions of the gates already matched

in the shared function manager (described earlier) this problem is easily solved by using

a hash table with the two Boolean functions of gate pair as the hash key. Secondly, we

need to match how the gates of a gate pair are interconnected. In particular, we need

to identify which variables are shared, and the positions that the shared variables take

in the support sets. This information is called support configuration. When the Boolean

functions and support configurations of two gate pairs match, their transformation results

will be the same.

4.5.1 Support Configurations

Support configuration tells us how variables are shared between the two gates. It does

not record information about where the support comes from, but rather what position

that shared variable takes in the support sets. Therefore, two gate pairs can have very

different support sets but identical support configurations. Before explaining how support

configuration is computed, we make a few assumptions that are required of the gates.

First, no gate has repeating input variables in its support. And second, no gate has

constant values in its support. Both conditions can be met by sweeping the circuit for

these instances, and simplifying a gate whenever repeated or constant variables are found

in its support.

Let S1 and S2 be two support sets. A support configuration is an unordered set of

pairs where each pair corresponds to a shared variable. The first element of each pair

represents the position of the shared variable in S1 and the second element of each pair
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represents the position of the shared variable in S2. The support configuration can be

computed in linear time with respect to the size of the support sets.

Example 3 Let S1 = {a, d, b, c} and S2 = {c, d, e, f, g} . The arrangement is shown in

Figure 4.2. Their support configuration is C(S1, S2) = {(1, 1), (3, 0)}.

1 2 3 1 2 3 4

a b c d e f g

m n

gate1 gate2

0 0

Figure 4.2: Support Configuration Example.

The purpose of computing support configurations is to find matching with support

configurations in other gate pairs. Support configuration matching is performed very

frequently. Whenever a gate pair is created, its support configuration must be compared

with all other existing gates pairs for equivalence. A simple way to compare two support

configurations is to do a linear traversal of their lists. However, this is a significantly

slower than the constant time, pointer comparison done with Boolean matching.

4.5.2 Characteristic Function

We present a faster way to compare support configurations by computing a characteristic

function. In our formulation of the characteristic function, we use BDDs to represent the

elements of a set. An element is represented as a Boolean function of log2(N) variables,

where N is the number of elements in the set. Let x0, · · · , xK−1, be the K variables of

the characteristic functions. Then the elements of the set are assigned as follows:
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P (0, X) = xK−1 · · ·x1 · x0 (4.1)

P (1, X) = xK−1 · · ·x1 · x0 (4.2)

P (2, X) = xK−1 · · ·x1 · x0 (4.3)

P (3, X) = xK−1 · · ·x1 · x0 (4.4)

etc · · · (4.5)

P (i, X) is used to denote the characteristic function for ith element using the variables

X = x0, · · · , xK−1. This representation grows logarithmically with the size of the set, and

each element is represented by a single cube. The characteristic functions for the elements

are combined to form a support configuration characteristic function.

Let S1 be a support set of size |S1|. Let S2 be a support set of size |S2|. Let

C(S1, S2) = {(x1, y1), (x2, y2), · · · , (xK, yK)} be their support configuration, where K is

the number of shared variables. Let X be a set of log2(|S1|) variables. Let Y be a set of

log2(|S2|) variables (independent of X).

Then the support configuration characteristic function is computed as,

Q = P (x1, X)P (y1, Y ) + P (x2, X)P (y2, Y ) + · · ·+ P (xK−1, X)P (yK−1, Y )

The memory requirements for this representation are quite modest; the number of

variables of the characteristic function is log2(|S1|)+log2(|S2|). The major advantage with

the characteristic function representation, however, comes from that fact that when stored

as a BDD, equivalence between support configurations can be confirmed in constant time.

4.6 Applications

All transformations are characterized by one or two logic functions as input, one or more

logic functions for output and a mapping between the variables of the new logic functions

and the old. In this section, we give a description of how the folded synthesis technique is
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applied to speed up the runtime for four logic synthesis transformations: simplification,

decomposition, elimination and sharing extraction.

4.6.1 Folded Simplification

A logic expression can be expressed in a number of ways, with some expressions being

more compact than others. The goal of simplification is to minimize the complexity of

a logic function in an effort to reduce area. In BDD based logic synthesis, one measure

of the complexity is the size of its BDD. This size is very sensitive to the variable order

chosen and many techniques have been devised to select a variable order that minimizes

the node count. BDD based simplification amounts to applying variable reordering on a

logic function of a gate, and remapping its support set accordingly. Using the property

that two logically equivalent gates have the same result after simplification, simplification

is performed on one logic function and the result applied to all instances of that function.

4.6.2 Folded Decomposition

The folded decomposition algorithm is shown in Algorithm 3. Each decomposition is

performed one BddClass at a time (and potentially more than one BddInstance at a

time). The BDD for the BddClass is decomposed into two or more smaller BDDs. If

these BDDs are not found in the Global BDD Manager, new BddClasses are created for

them. Otherwise, the existing BddClasses are used. The BddInstances are updated to

reflect the changes. If the new BddClasses can be decomposed further, they are added to

the heap. The heap is used to decompose the BddClasses in order of non-increasing size

of their support set. Decomposing BDD’s in this order ensures that no decompositions

are repeated.

The folded decomposition process is illustrated in Figure 4.3. The Boolean functions

for the gates are stored in a global manager where two unique Boolean functions have been

identified (Figure 4.3b). The BDD with the largest support set, cell i1, is decomposed
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Algorithm 3 Folded Decomposition

DecomposeAll() { 49

forall( BddClasses in the Boolean network ) 50

Push(heap, BddClass, BddClass.numVariables); 51

while( f = Pop(heap) ) { 52

〈g, h, op〉 = decompose(f); 53

if( !bddExists(g) ) 54

create BddClass for g; 55

if( !bddExists(h) ) 56

create BddClass for h; 57

update instances(f, g, h, op); 58

if( g has more than two nodes ) 59

Push(heap, g, g.numVariables); 60

if( h has more than two nodes ) 61

Push(heap, h, h.numVariables); 62

} 63

} 64

first. The decomposition result transforms cell i1 into the XOR of a XNOR and NOT

gate (Figure 4.3c). cell i1’s BDD is then removed from the Global manager and replaced

with XNOR, NOR and NOT BDDs (Figure 4.3e). The two original cell i1 instances are

replaced with NOR, XNOR and NOT instances (Figure 4.3d).

4.6.3 Folded Elimination

Elimination is the process of merging nodes on the Boolean network with the goal of

removing inter-gate redundancies. An adjacent pair of gates form an elimination pair

〈G1, G2, pos〉, which consists of a parent gate G1, child gate G2 and a position pos. The

child gate has fanout to the parent gate and pos is the position of the variable in the

parent gate that is to be substituted by the child function.

Two elimination pairs, P1 and P2, produce the same elimination result if the logic

functions of its gates are the same, the position where they connect is the same, and their
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Figure 4.3: Folded Decomposition.

support configurations are the same. i.e. P1.G1 = P2.G1, P1.G2 = P2.G2, P1.pos = P2.pos

and C(P1.G1, P1.G2) = C(P2.G1, P2.G2). A hash table is used to identify elimination

pairs with the same gate functions, position pos and support configuration. When an

elimination pair is created, it is matched against the hash table. Eliminations pairs that

match are grouped together. The elimination result can be computed once and shared

among all members of the group.

4.6.4 Folded Sharing Extraction

Sharing extraction has two separate computations that can take advantage of regularity.

The first computation is the enumeration of extractors. Equivalent functions will produce

the same list of disjunctive extractors which can be shared by all instances of the function.

This is the cost of computing cofactors between all adjacent variables of the function,

to determine if they can be disjunctively extracted. The extractors found are written in

terms of generic variables, not in terms of absolute support. This computation is done

only once, then the extractor list is enumerated in terms of absolute support for each
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instance of the function.

Consider the functions F = ab+cd and G = lm+ad. In terms of generic variables, the

logic functions are identical, H = x0x1+x2x3. The extractors are enumerated on the logic

function to produce the following extractors (x0x1, x2x3). At this point, the expensive

process of computing the cofactor conditions has been completed. The extractors for F

and G are then enumerated by remapping the generic variables to actual support. F has

extractors ab, cd and G has extractors lm, ad.

The second computation where regularity can be taken advantage of, is the compu-

tation of remainders. When an extractor is selected for sharing, it must be extracted

from it’s parent function to produce a remainder. This requires the expensive process of

computing the extractor, and then simplifying the function through variable reordering.

For an extraction that breaks F down into remainder R and extractor E, extractions

that involve the same F and use the same relative positions of the variables of E in F ,

produce the same remainders. In the example given earlier, the remainder for F when

extracting (a, b) is the same as the remainder for G when extracting (l, m) because the

logic functions for F and G are the same, and the relative position of the variables of

their extractors are the same (using variables (x0, x1)). Thus the remainder R = e+ v2v3

is computed once only, and shared by both instances F and G.

4.7 Summary

In this chapter, the regularity of circuits is used to improve runtime by sharing the re-

sults of logically equivalent transformations. At the foundation, the logic functions are

stored in a common repository where they are shared by the gates that implement them.

The fast equivalence checking of BDDs makes this capability possible. In contrast, the

Sum of Product representation is not canonical, and the cost of equivalence checking pro-

hibitively expensive. Some transformations, such as decomposition and simplification,
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depend solely on one logic function. For these transformations, a logic transformation is

applied by logic function, and the result applied to all gates that implement it. Other

transformations, such as elimination, depend on a pair of gates, and their interconnection

(called support configuration). The pair of gates are matched in the way single gates are

matched, by comparing their BDD pointers. The support configurations are matched by

comparing their canonical, BDD based, characteristic functions. When these transfor-

mations involve the same pair of gates and same support configuration, then they share

the same transformation result.
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Chapter 5

Experimental Results

5.1 FBDD Package

To evaluate our proposal we implemented a complete logic synthesis system, called

FBDD, that includes the sharing extraction algorithm and regularity aware techniques

described in this thesis. FBDD is a BDD-based, combinational circuit optimization pro-

gram. It starts with a gate level description of a circuit in the Berkeley Logic Interchange

Format (BLIF) [19]. FBDD then applies a set of algorithms to minimize area while also

breaking the circuit down into basic gates in preparation for technology mapping. The

output produced, is an area optimized, technology-independent circuit in BLIF or struc-

tural Verilog format. BLIF output enables a path from FBDD to academic, standard cell

or FPGA technology mappers. Industry standard Verilog output allows for integration

with a wider array of tools, including commercial tools.

In addition to the new optimization techniques described in this thesis, FBDD also im-

plements many of the standard tasks required of typical synthesis systems. This includes

the sweep, elimination, simplification and decomposition steps. Sweep simplifies support

sets with repeat inputs or constant inputs. Elimination attempts to remove redundancy

between gates. And simplification reduces the complexity of the logic function within
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gates. Decomposition consists of a set of algorithms to decompose large gates, while

minimizing area. The set of Decomposition algorithms we implement are the disjunctive

AND, OR and XOR decompositions based on 1,0 and X dominators in BDS. We also

implement the Boolean AND/OR decomposition based on their generalized dominator,

and variable and functional MUX decomposition [22]. When a decomposition problem

is encountered, all algorithms are tried and the solution that produces the lowest BDD

node count is selected.

The sharing extraction and decomposition steps are interleaved. Sharing extraction is

applied first, to find as much disjunctive sharing as possible. When no more extractors can

be found, decomposition is applied to further break down those gates. As decompositions

are applied, new disjunctive extractors may surface so sharing extraction is re-applied.

This cycle continues until the circuit is completely decomposed.

FBDD contains over 26000 lines of code, written in the C programming language.

Low level BDD storage and manipulation are handled with the CUDD package [21],

developed by Fabio Somenzi at the University of Colorado at Boulder. FBDD runs on

both the Linux and Solaris operating systems.

5.2 Evaluation Methodology

The experiments are conducted on a dual processor Solaris Blade 1000 with 2.5 GB mem-

ory running SunOS version 5.8. Two sets of publically available benchmarks are used

in the experiments. The MCNC91 benchmarks [23], are highly reported in academic

publications and we use it enable comparison with other works. We use only the combi-

national, multi-level examples with approximate gate counts of 500 or more for testing.

Even so, the circuits obtained from MCNC91 are relatively small by today’s standards.

To complement them, we also report results on the ITC99 benchmarks [6], which include

a set of large processor cores.
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In our studies we also use a synthetic benchmark which is made up of repeating

instances of a template circuit. For the template circuit we use rot.blif from the MCNC91

benchmark. This benchmark is used to study runtime growth with respect to regularity

while the keeping the logic content the same. We also run tests on adder circuits of

varying bit widths to determine the tools ability to find sharing and handle XOR gates.

When reporting the area of synthesized circuits, the areas of the individual gates in

the circuit, after technology mapping, are summed together. The SIS Mapper is used

to perform technology mapping to the lib2.genlib standard cell library from the MCNC

benchmark. Another common measure of area is literal count, however, we use the area

after technology mapping as our metric because the tools (FBDD, SIS, BDS) target

different levels of decomposition, which has an effect on literal count.

5.3 Experiment Overview

The goal of the experiments is to quantify the area and runtime benefits of our new

sharing extraction algorithm and folded synthesis approach. Section 5.4 focuses on our

new sharing extraction algorithm. To justify our restriction to only extractors of two

variables, we analyze the computational effort required to find extractors of various sizes,

in Section 5.4.1, and compare that to their area improvement. In Section 5.4.2 we com-

pare exhaustive, all pairs, two variable, extractor enumeration to fast adjacent pairs of

variables enumeration. Finally, a comparison of FBDD with sharing extraction versus

FBDD without sharing extraction is given in Section 5.4.3.

Section 5.5 focuses on the scalability of our folded synthesis approach. The folded

approach shares logic transformations to reduce runtime. But the effectiveness of this

method depends on the proportion of sharable to non-sharable costs. In Section 5.5.1,

we use a controlled experiment, where the regularity of the benchmark is increased, while

the logic content is held constant. A small, relative growth in the runtime indicates that
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the sharable costs, make up the majority. Section 5.5.2 we investigate the effectiveness

of folded synthesis on the MCNC benchmarks. We report the number of transformations

performed, and the number of transformations that could be shared. We do this for each

of the major synthesis stages - decomposition, elimination and sharing extraction.

Finally, in Section 5.6 we compare FBDD with two other publically available synthesis

systems, SIS and BDS. We compare the runtime and area results against the MCNC and

ITC benchmarks in Section 5.6.1 and Section 5.6.2 respectively. The scalability of the

tools is evaluated against the regularity controlled, synthetic benchmark in Section 5.6.3.

We show an adder example in Section 5.6.4, where sharing extraction and XOR extraction

are important.

5.4 Sharing Extraction

5.4.1 Maximum Extractor Size

The runtime of sharing extraction grows exponentially with the size of the extractors

considered. We stated that the runtime could be improved by limiting extractors to two

variables without much sacrifice in area. In this section we give empirical evidence to

support that claim.

The large examples of the MCNC benchmark were synthesized using varying maxi-

mum extractor sizes of two to five. The exact algorithm, which enumerates all variable

combinations, is used. The runtimes spent on sharing extraction are summed together

and shown in Figure 5.1. From the figure, a steep trade off between maximum extrac-

tor size and runtime can be seen. Sharing extraction with extractors of five variables is

over nine times slower than with extractors of two variables. With such large runtimes,

sharing extraction dominates the overall runtime of synthesis.

To determine the effect that maximum extractor size has on area, we performed

logic synthesis with a maximum extractor size of 5, and collected information on the
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Figure 5.1: Runtime vs. Maximum Extractor Size.

distribution of extractor sizes found. The number of shared extractors found for circuits

in the MCNC benchmark are collected and reported in Table 5.1. Each number in the

table indicates the number of prime extractors found, for a given size. An extractor of

size K is prime if it cannot be disjunctively extracted by a function of size less than K.

The data shows that two variable extractors clearly make up the majority. On average,

extractors of size three through five make up only 0.33% of the shared extractors found,

with two variable extractions making up the rest. This is not an entirely obvious result.

The number of prime extractors with N variables grows super exponentially with respect

to N. As analyzed earlier, there are 5 two variable valid extractors (prime extractors of

positive polarity). This number grows to 52 three variable valid extractors and 28620 four

variable valid extractors. If circuits were composed of random circuits, the proportion of

two variable extractors would be much less. In practice, circuits are typically composed

of highly structured logic, such as AND, OR and XOR gates, which can be disjunctively
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Table 5.1: Distribution of Shared Extractor Sizes.

Circuit 2 Var 3 Var 4 Var 5 Var

C1355 12 0 0 0

C1908 176 0 0 0

C2670 163 9 0 1

C3540 198 0 0 0

C5315 502 2 3 0

C6288 0 0 0 0

C7552 492 2 0 0

alu4 70 7 4 0

dalu 707 10 0 0

des 1697 0 0 0

frg2 619 0 0 0

i10 785 0 0 0

i8 2096 0 0 0

i9 566 0 0 0

k2 1911 0 0 0

pair 116 6 0 0

rot 73 3 0 0

t481 2733 0 0 0

too large 359 0 0 0

vda 888 0 0 0

x3 234 0 0 0

Total 14397 39 7 1

extracted using two variable extractors.

The area results produced using the varying maximum extractor sizes are shown in

Figure 5.2. With relatively few large extractors available for sharing, the effort put into

their detection has little effect on area results. Since the computational cost of finding

large extractors is high, and the area gain almost non-existent, the runtime of sharing

extraction can safely be improved by ignoring large extractors, without significantly

affecting area.
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Area vs. Maximum Extractor Size
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Figure 5.2: Area vs. Maximum Extractor Size.

5.4.2 Fast Two Variable Extraction

Further improvements in runtime are possible when the extractor size is fixed at two.

Extractors can be found incrementally and transitively which alleviate the need to process

extractors between all pairs of variables. While algorithmically faster, the fast extraction

algorithm is inexact and may miss some sharing opportunities, however the loss was

found to be minimal. In total, the fast extraction algorithm runs 2.5 times faster than

the exact algorithm, while inflating area by merely 0.08%.

5.4.3 Sharing Extraction vs. No Sharing Extraction

Finally, to determine the impact that sharing extraction has on area, we obtain area re-

sults produced using FBDD both with and without sharing extraction enabled. For the

best area and runtime balance, we use the fast, two variable sharing extraction algorithm
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Figure 5.3: Fast vs. Exact Two Variable Extraction.
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in these tests. The area results are shown in Figure 5.4. The benefit experienced from

sharing extraction is highly dependent on the circuit type. Circuits k2 and vda experi-

encing savings of over 100%, while a few circuits do not benefit from sharing extraction

at all. Overall however, most circuits do experience benefit from sharing extraction, with

the average area savings found to be a substantial 28%.

As an added benefit, our sharing extraction algorithm also improves the overall run-

time of logic synthesis. The runtime results for FBDD with and without sharing extrac-

tion is shown in Figure 5.5. Adding sharing extraction capabilities to logic synthesis has

resulted in a runtime improvement of 82%! This is possible because sharing extraction

is interleaved with decomposition, which work together in breaking the circuit down into

basic gates. Each transformation that is handled with sharing extraction means that

one less decomposition is required. Our findings indicate that the computational cost

of performing sharing extraction is less than the cost of decomposition. The result, is a

synthesis system with both substantially improved area and runtime.

5.5 Scalability

Logic transformations are performed in a folded fashion where logically equivalent func-

tions share logic transformations. To determine the effectiveness of this approach, we

count the number of regular transformations, which are the number of transformations

required in a non folded environment, and compare it to the number of folded transfor-

mations required.

5.5.1 Synthetic Benchmark

In this experiment we investigate the scalability of folded synthesis. We wish to see how

folded synthesis performs as regularity is increased in a controlled manner. To do this

we generate benchmark circuits by instantiating varying number of copies of a template
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Sharing Extraction vs. No Sharing Extraction 
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Figure 5.4: Sharing Extraction vs. No Sharing Extraction [Area].
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Sharing Extraction vs. No Sharing Extraction 
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Figure 5.5: Sharing Extraction vs. No Sharing Extraction [Runtime].
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circuit. For the template circuit we use rot.blif from the MCNC benchmark. In this way,

regularity is increased while the logic content of the circuit remains the same. In total,

there are ten benchmark circuits with the number of instances of rot varying from one

to ten. We report the runtime growth for the elimination, decomposition and sharing

extraction stages against this synthetic benchmark.

Elimination

The runtime growth of elimination is shown in Figure 5.6. The “Time” and “# of Folded

Elims” plots show normalized values, which emphasize growth instead of absolute value,

to enable their comparison. The normalized values are computed as V (N)normalized =

V (N)/V (1), where N is the number of instances. A “Reference” line reflects the total

time required for elimination if each instance of rot were processed individually. From the

graph, it shows that “# of Folded Elims.” remains constant for all circuits repetitions,

due to the fact that additional instances can share the eliminations computed for the

first.

The total runtime of elimination can be broken down into sharable and non-sharable

components. In elimination, the sharable components consist of collapsing BDDs with

the compose operation, and the simplification of the composed function that follows.

The shared components are computed once, and the result shared with all compatible

elimination pairs. The non-shared parts consist of computing the characteristic functions

for the support configurations, and updating the gate instances in the Boolean network

as eliminations are committed. As regularity is increased with each added repetition,

the cost of computing the sharable components remain unchanged while the cost of the

non-sharable components grows linearly. In practice, the sharable costs may grow as

well because the sequence in which transformations take place in each template instance

cannot be guaranteed to be the same. But in practice, any increase in the sharable costs

are minimal.
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Figure 5.6: ROT.blif - Elimination.

The normalized values for the actual time, plotted in Figure 5.6, closely follows the

“# of Folded Elims.”. At 10 repetitions, the actual time has grown to a mere 1.36,

illustrating that the sharable costs dominate the overall cost of elimination. The cost of

the non-sharable component, while not negligible, grows far more slowly than if regularity

were not used.

Decomposition

The runtime growth for decomposition, as shown in Figure 5.7 has characteristics similar

to the growth for elimination. Again, the count for the number of folded transformations

remains relatively constant for all numbers of repetitions. Although this time, the plot is

not perfectly constant, due to differences in the way each instance is synthesized. For de-

composition, the sharable portion consists of computing the various BDD decomposition

algorithms. The non-sharable portion consists of updating the gates for each instance as
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ROT - Runtime Growth of Decomposition


0


2


4


6


8


10


12


1
 2
 3
 4
 5
 6
 7
 8
 9
 10


# of Repetitions


Reference

# Folded Decomp.

Time


Figure 5.7: ROT.blif - Decomposition.

decompositions are applied. The non-sharable costs makes up an even smaller fraction

of the total cost when compared to elimination where support configurations were com-

puted. As a result, the growth rate for actual time spent on decomposition grows even

slower than that of elimination. At 10 repetitions, only an 18% increase in the runtime

of decomposition is experienced.

Sharing Extraction

Sharing extraction has two separate, sharable computations. The first sharable compu-

tation, called SE1 for reference, is the enumeration of disjunctive extractors. Equivalent

functions will produce the same list of disjunctive extractors which can be shared by all

instances of the function. This is the cost of computing cofactors between all adjacent

variables of the function to determine if they can be disjunctively extracted. It does not

include, however, enumerating the extractors in terms of absolute support, which must
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be performed for each gate individually.

The second sharable component, called SE2 for reference, is the computation of re-

mainders. When an extractor is selected for sharing, it must be extracted from its parent

function to produce a remainder, which requires the expensive process of simplification

through variable reordering. For an extraction that breaks F down into remainder R and

extractor E, extractions that involve the same F and use the same relative positions of

the variables of E in F , produce the same remainders.

The growth for the number of folded computations for each of SE1 and SE2 are shown

in Figure 5.8. The number of folded computations remains virtually flat for both plots.

At 10 repetitions, only 10% more folded SE1 computations and 11% more folded SE2

computations are required. Due to the high non-sharable cost of manipulating large lists

of extractors, the actual runtime grows quite noticeably. The run time of the sharing

extraction component is doubled when synthesizing 10 instances. However, the overall

growth is still far smaller than if each computation were performed individually.

Runtime Growth

The total, overall runtime, is shown in Figure 5.9. It has growth similar with the three

major synthesis steps described earlier. 2403 ms were required to synthesize a circuit

with 10 repetitions of rot.blif where 12800 ms would have been required if each instance

were synthesized individually; a runtime savings of 81%.

5.5.2 MCNC

Here we look at how folded synthesis performs under a set of comprehensive bench-

marks. We run the benchmarks through FBDD and count the number of folded and

regular transformations performed. Dividing the number of regular transformations by

the number of folded transformations gives an indication of the runtime improvement

that can be expected. It is essentially an upperbound on the achievable speedup.
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Figure 5.8: ROT.blif - Sharing Extraction.
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Figure 5.9: Runtime Growth of ROT.
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Elimination

Figure 5.10 shows the number of regular versus folded eliminations counted. On average,

the folded approach requires 3.85 times less eliminations than the regular approach.

Reductions varied between 1.07 times in alu4 to 136.25 times in circuit C6288.

Decomposition

Figure 5.11 shows the number of regular versus folded decompositions counted. On

average, the folded approach requires 4.35 times less decompositions than the regular

approach. Reductions varied between 1.73 times in circuit alu4 to 30 times in circuit

C6288.

Sharing Extraction

The number of regular and folded extractor enumerations are shown in Figure 5.12. On

average, 11 extractor enumerations share one computation. The number of regular and

folded remainder computations are shown in Figure 5.13. On average, 3 remainders share

one computation.

5.6 Comparison with SIS and BDS

We run the benchmarks through FBDD and two other synthesis systems, SIS and BDS.

SIS, a cube set based synthesis system, was developed at UC Berkeley. It has a flexible

command line interface that allows users to try different combinations of optimization

tasks. We run SIS using the well known script.rugged script. BDS, is a BDD based logic

synthesis system, developed at the University of Massachusetts Amherst. We run BDS

using its default options. To obtain area information, the optimized netlists are mapped

to a standard cell library using the SIS mapper.
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Folded vs. Regular Elimination
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Figure 5.10: Folded vs. Regular Elimination.
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Folded vs. Regular Decomposition
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Figure 5.11: Folded vs. Regular Decomposition.
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Folded vs. Regular Sharing Extraction 1
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Figure 5.12: Folded vs. Regular Extractor Enumeration.
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Folded vs. Regular Sharing Extraction 2
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Figure 5.13: Folded vs. Regular Remainder Computation.
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5.6.1 MCNC Benchmarks

The sharing extraction algorithm and regularity aware folded synthesis approach has

enabled FBDD to have both dramatically improved area and runtime results over a

previously state-of-the-art BDD based logic synthesis system BDS. The area results are

shown in Figure 5.14. For test case, k2.blif, for which BDS was unable to run successfully,

the area result produced by SIS was used in its place, for the purpose of computing

averages. FBDD, on average, produces circuits with 21% less area than BDS. While a

major improvement, FBDD still falls short of SIS which produced circuits with 15% less

area.

In terms of runtime, FBDD clearly runs faster than BDS and SIS. The runtime results

are shown in Table 5.15. For test case, k2.blif, which BDS could not synthesize, the

runtime produced by FBDD is used in its place for the purpose of computing an average.

Note that to accommodate SIS’s runtime for too large, the time axis was extended from

250,000ms to 2,500,000ms. On average, FBDD runs over 15 times faster than SIS and 3

times faster than BDS.

5.6.2 ITC Benchmarks

The ITC [6] benchmarks, developed at Politecnico di Torino, include subsets of the Viper

and 80386 processor cores which offer test cases that are 13 times larger than those found

in the MCNC benchmarks. We use the ITC benchmarks to evaluate the performance of

the synthesis tools on large benchmarks. The results for FBDD and SIS are shown in

Figure 5.16. BDS cannot not synthesize sequential circuits and could not be included in

this study.

Due to the nature of processor cores, which contain a high degree of regularity FBDD

was able to synthesize the ITC benchmark circuits in 12 times less time than SIS, on av-

erage. The average does not include circuits b17 or b17 1 which could not be synthesized
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FBDD vs. SIS vs. BDS [Area]
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Figure 5.14: FBDD vs. SIS vs. BDS [Area].
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Fbdd vs. SIS vs. BDS [Runtime]
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Figure 5.15: FBDD vs. SIS vs. BDS [Runtime].
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ITC Benchmarks - Area
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Figure 5.16: FBDD vs. SIS vs. BDS.
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with SIS in under eight hours. As is consistent with the results found with the MCNC

benchmarks, SIS produced better area by 16%.

5.6.3 Synthetic Benchmark

To evaluate the behavior of the synthesis tools as regularity is increased, we revisit the

benchmarks used earlier where multiple instances of rot.blif are synthesized together.

The result is shown in Figure 5.17. As shown earlier, regularity awareness enables FBDD

to synthesize multiple copies of rot.blif together, much faster than would be possible if

each instance were synthesized individually. FBDD requires a relatively small amount

of runtime for each additional instance of rot.blif. On the other hand, BDS takes more

time to synthesize the copies together than separately. Synthesizing one copy of rot.blif

takes BDS 1420 ms, while synthesizing 10 copies requires 16950 ms. The growth of SIS’s

runtime is significantly worse requiring 75100ms to synthesize 10 copies together, when

only 4300ms was required to synthesize one copy.

5.6.4 Adders

In this experiment, we compare the synthesis of ripple carry adders, to illustrate the

importance of XOR gates in synthesis. The experiment contains four adders of varying bit

widths. The adders begin completely collapsed and the tools are applied to demonstrate

their ability to automatically extract XOR gates and find sharing to produce a solution

of minimum area. The area results obtained are shown in Figure 5.18.

Both FBDD and BDS are able to find the area optimal ripple carry adder solution,

given their ability to extract XOR gates. In this case, BDS’s passive sharing extraction

algorithm is sufficient in finding the sharing between output functions.
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ROT Runtime - FBDD vs. BDS vs. SIS
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Figure 5.17: ROT.blif - Runtime comparison between FBDD,BDS and SIS.

SIS’s solution leads to poor area quality. While SIS is able to find the sharing between

the output functions, the solution it produces for the full adder units is an overly complex

interconnection of AND and OR gates. Furthermore, the runtime characteristics is very

poor, given the inefficient cube set representation for arithmetic circuits. The explosion

in size of arithmetic type functions is a serious limitation for the cube set representation,

and caused SIS to fail to complete the synthesis of a modest sized 16-bit adder in under

eight hours. For this reason, arithmetic circuits are generally left untouched in cube set

based synthesis systems, or are handled by special purpose generators. As the circuit

types considered for automated synthesis continue to move from the traditional glue

logic towards arithmetic and datapath intensive circuits, this difference will become more

pronounced.
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Synthesis of Adders, Area vs. Bit Width
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Figure 5.18: Synthesis of Adders, Area vs. Bit Width.
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Chapter 6

Conclusion

In this thesis, a new sharing extraction algorithm and regularity based framework for

BDD based logic synthesis was described. A key finding of this thesis is the use of two

variable, disjunctive extractors as candidates for sharing extraction. With the BDD,

these extractors can be found quickly by computing the result of a few cofactors. Old,

disjunctive, two variable extractors remain valid in their remainder functions, enabling

a fast, incremental solution. And disjunctive, two variable extractors are transitive,

enabling us to reduce the search to extractors of adjacent variables, while sacrificing very

little in terms of area quality.

The fast equivalence checking capability of the BDD has opened a new opportunity

for regularity extraction. As regularity is in abundance, this regularity can be applied to

share logic transformations to improve runtime.

While the area quality produced by FBDD continues to lag that of SIS, significant

improvements over existing BDD based systems have been made. Fundamentally, BDDs

are smaller and faster data structure to work with and better equipped to deal with

arithmetic type circuits. As the algorithms of BDD based logic synthesis matures, they

have the potential to significantly advance the state of the art and replace the cube set

at the representation of choice.
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