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ABSTRACT

This paper describes a graphical method of nonlinear 

circuit analysis. The method combines circuit analysis 

using driving-point impedances and signal flow graphs 

with distortion analysis using the Volterra series. The 

result is a method of distortion analysis which is more 

intuitive and flexible than traditional methods. The 

method is demonstrated in the analysis of a com-

mon-emitter amplifier in which the second- and 

third-order harmonic distortion ratios are determined. 

The method is also applied to comparing the distortion 

of different voltage buffer circuits based on an emitter 

follower and on a differential pair with unity gain feed-

back.

INTRODUCTION

Distortion is a key issue in the design of many types of 

circuits. The Volterra series has long been used to ana-

lyze distortion in analog circuits[1]. Unlike numerical 

simulations which give no information about the source 

of the distortion, closed form expressions for distortion 

components in terms of circuit parameters can be found 

using the Volterra series. Unfortunately, the method of 

presenting the Volterra series analysis can be complex, 

and its results give little instinct into how the distortion 

is affected by the circuit parameters. Consequently, the 

Volterra series is often under-utilized by circuit design-

ers. 

In this paper we demonstrate how signal flow graphs 

(SFG), traditionally applied to linear systems, can be 

combined with the Volterra series to present a more intu-

itive analysis of distortion when the circuit behaves in a 

weakly nonlinear way. The SFG is derived using driv-

ing-point impedance analysis, or the DPI/SFG method 

proposed by Ochoa[2][3]. The method is demonstrated 

in the distortion analysis of a common-emitter amplifier. 

Simulation results are provided to demonstrate the accu-

racy of the expressions derived using the SFG. The SFG 

method is used to obtain apriori distortion figures and 

trends prior to lengthy and involved simulations involv-

ing transient analysis and FFT. Finally, we demonstrate 

how this method can be used by designers to gain insight 

through the distortion analysis of two different buffer 

circuits realizations that are based on an emitter follower 

and a differential pair. 

THE VOLTERRA SERIES

Many practical circuits can be assumed to behave in a 

weakly nonlinear way, and under this condition, closed 

form expressions for the nonlinearity can be obtained 

using the Volterra series. The Volterra series for a circuit 

is generally represented as a summation of nth order 

operators as shown in Figure 1, where

(1)

Figure 1. Block Diagram representation of the Volterra Series

The function hn(τ1,...,τn) in (1) is what is known as a 

Volterra kernel. Hn(s1,...,sn), the multi-dimensional 

Laplace transform of hn(τ1,...,τn), can be used to calcu-

late the magnitude of distortion components. The com-

plex frequency variable is given by  for 

. The representation of the nonlinearity as a 

summation of operators of different order operating on a 

signal allows us to examine the contribution of each 

order of nonlinearity individually. Dominant contribu-

tions can then be identified and analyzed. For weakly 

nonlinear circuits that are excited by small signals, usu-

ally only the first three terms are retained. In addition, 

second-order components are largely cancelled in fully 

differential designs.

AMPLIFIER DISTORTION ANALYSIS

As an example, we will analyze the distortion in the 
common-emitter (CE) amplifier shown in Figure 2. Our 
analysis is based on the distortion analysis presented in 
[4][5] using the Volterra Series. The nonlinearities 
considered in this circuit are due to the resistor rπ and 
the transconductance gm. These nonlinearities are 
associated with the exponential I-V characteristic of the 
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transistor: . This characteristic can be 
approximated using the first three terms of a power 
series. 

(2)

(3)

where IB is the base dc bias current, and the power series 

coefficients are given by 

(4)

Figure 2. Schematic of the common emitter amplifier circuit

The nonlinear terms in (2) and (3) can be represented in 

the schematic by the two current sources iNLgπ and 

iNLgm as shown in Figure 3. The nonlinear currents are 

given by:

(5)

(6)

Figure 3. Small signal equivalent circuit with nonlinearities

The linear, second-, and third-order responses of the 

amplifier can be represented together in a single SFG as 

shown in Figure 4. The Volterra Series has allowed us to 

separate the response of each order and to create a SFG 

where the node voltages directly correspond to the Volt-

erra kernels[5][6]. We can obtain the Volterra kernels 

directly by applying a normalized input, vin=1, and by 

solving the output signal for each order system.

Boxes are drawn around the SFG of the linear small-sig-

nal circuit to emphasize that the same basic linear net-

work is solved for each order subsystem but with 

different nonlinear inputs. The linear properties of SFGs 

such as superposition still hold within these boxes. Three 

additional symbols in the graph are introduced which are 

not usually used in SFGs since they represent nonlinear 

operations: the x2 block, the x3 block, and the multipli-

cation block. The nonlinear operations appear between 

the boxed SFG layers and determine the nonlinear sig-

nals which excite each system. The number of frequency 

variables, , required for each level of response is equal 

to the order of the kernel. The following sections discuss 

the development of the SFG in Figure 4. 

Figure 4.Combined SFG for solving the kernels of the circuit

LINEAR SYSTEM

Our first step is to analyze the linearized circuit shown in 

Figure 5 by removing all the sources of nonlinearities in 

the circuit, and to determine the first-order SFG block, 

H1. The SFG shown in Figure 6 can be easily derived 

from the circuit using the DPI/SFG method [2][3], where 

the black circles represent node voltages, and the white 

circles represent the short-circuit currents at the same 

nodes. To obtain the Volterra kernel H1vout(s), we nor-

malize the input and rename nodes as shown in the 

first-order system in Figure 4. The resulting transfer 

function is 

(7)

The notation we use for the transfer function H1vout(s) is 

such that the subscript ‘1’ refers to a 1st order kernel 

transform and the subscript ‘vout’ refers to the output 

node.

Figure 5. Linearized small signal equivalent circuit

Figure 6. SFG of the linearized circuit in frequency domain

HIGHER ORDER SYSTEMS

Kernel transforms of higher order are found by solving 

the same basic linear network with a few changes. The 

series expansion expression in (2) suggests that the lin-

ear network is no longer directly excited by the input sig-

nal, but by new excitations in the form of nth order 

nonlinear current sources that represent the nonlinear 

components. The sources are placed in parallel with each 

nonlinear element and the orientation of each source is 

the same as the corresponding controlled current in the 

iB I S β⁄( )e
vBE V T⁄

=

i
B

I
B

gπv
be

K
2gπv

be

2
K

3gπv
be

3
+ + +≈

i
C

β iB βI
B

g
m

v
be

K
2gm

v
be

2
K

3gm
v
be

3
+ + +≈=

K
2gπ K

2gm
β⁄ g

m
2βV

t
( )⁄ K

3gπ K
3gm

β⁄ g
m

6βV
t

2

 
 ⁄= =,= =

rB

RL CL

vin

VCC

vout

vb

i
NLgπ K

2πvbe

2
K

3πvbe

3
+=

i
NLgm

K
2gm

v
be

2
K

3gm
v
be

3
+=

RL CLrπ iNLgπ gmvbe iNLgm

vb
rB

vin

vout

si

1/(gB+gπ) - gm 1/(gL+(s1+s2)CL)

H2vout(s1,s2)H2vbei2SCb i2SCvout

1/(gB+gπ) - gm 1/(gL+(s1+s2+s3)CL)

H3vout(s1,s2,s3)H3vbei3SCb i3SCvout

vin = 1

gB 1/(gB+gπ) - gm 1/(gL+sCL)

 H1vout(s)H1vbei1SCb i1SCout

x
2

x

x

x1
x2

-2K2gm-2K2gπ
-K3gπ

-K3gm

x
3

-K2gm-K2gπ

1st Order System

2nd Order System

3rd Order System

H
1vout

s( ) g– mg
B

gB gπ+( ) gL sCL+( )( )⁄=

RL CL
gmvberπ

rB

vin

vout
vb

vbe

+

-

vin

gB 1/(gB+gπ) - gm 1/(gL+sCL)

voutvbei1SCb i1SCout



33

original circuit. The nonlinear signals then propagate 

through the rest of the linear circuit. The circuit to be 

solved is shown in Figure 7[5]. The voltages and cur-

rents are represented by the same notation of the kernels. 

The same network is solved for each order but at differ-

ent frequencies and with different expressions for the 

nonlinear sources. In [4] it was shown that the nonlinear 

response of order n can be determined in terms of the 

lower order nonlinear responses. 

To solve for the second-order kernel, the SFG is obtained 

from the circuit in Figure 7 after setting n=2, note that 

the input voltage is short-circuited. In the SFG of Figure 

4, the contribution of the second-order nonlinear current 

sources is represented by the additional branches going 

into the short-circuit current nodes, i2SCb and i2SCout. 

Noting that Hvbe is not a function of frequency, then the 

nonlinear current sources i2NLgπ and i2NLgm can be 

expressed as[5]:

(8)

The SFG shows that the nonlinearity of both rπ and gm is 

due to a squaring of the controlling 1st order signal 

H1vbe(s) and a nonlinearity coefficient. 

Figure 7. Circuit to be solved for the nth order kernels

To calculate the third-order harmonic distortion compo-

nent the Volterra kernels are found by solving for node 

voltages in the linearized network of the third-order sys-

tem labelled in Figure 4. The total nonlinear current 

going into the short-circuit node i3SCb is due to the non-

linear current iB through gπ and can be referred to as 

i3NLgπ. Similarly, the total nonlinear current going into 

i3SCout is due to the current iC of transconductance gm

and referred to as i3NLgm. Since Hvbe is independent of 

frequency, the third-order nonlinear current sources 

are[5]

(9)

As (9) illustrates, the third-order nonlinearity results 

from a component due to the multiplication of three 1st

order signals, and a component due to the multiplication 

of a 1st order signal and a second-order signal. Making 

use of (4) and (6) we can prove that

(10)

HARMONIC DISTORTION ANALYSIS

Having derived the SFG to the third-order, we can now 

proceed to analyze the second- and third-order harmonic 

distortion of the amplifier. The harmonic distortion HD2

is the ratio between the second-order output and the 

first-order output when jω2 = jω1. 

(11)

where A is the input amplitude. The second-order har-

monic output is scaled by 1/2 due to the squaring opera-

tion, which can be understood from the trigonometric 

identity (Acosω1t)2 = (A2/2)(1+cos2ω1t). It also results 

from applying (1). The kernels H2vout and H1vout are 

found by directly solving for the node voltages in the 

SFG of Figure 4. Solving for the kernels directly and 

assuming that rB << rπ we have

(12)

At low frequencies, HD2 is independent of the bias 

point, HD2 = A/4Vt, and at high frequencies, the distor-

tion reduces to HD2 = A/8Vt.

The distortion of common emitter amplifier output was 

analyzed by performing transient simulations for the 

circuit and taking the fast Fourier transform (FFT) of the 

output waveform. Figure 8 compares the second-order 

harmonic distortion obtained from (12) with that 

obtained from the transient analysis, which was repeated 

at different frequencies for an input amplitude of 10mV. 

We notice that the SFG obtained HD2 is very close to 

the actual HD2. The transistor models used for 

simulation neglects the internal base, emitter, and 

collector resistors. To account for their effects they must 

be added in the SFG analysis, this was avoided in this 

work to simplify the SFG.

Figure 8. HD2 for the CE amplifier vs. frequency

HD3 is the ratio between the third-order output and the 

first-order output when jω3 = jω2 = jω1.

(13)

From the SFG in Figure 4, it can be shown that:

(14)

If we assume rB << rπ, the HD3 expression becomes
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(15)

Again, we see that at low frequencies, HD3 is indepen-

dent of bias point, HD3 = A/24Vt, and at high frequen-

cies, the distortion reduces to HD3 = A/72Vt. In general, 

the third-order harmonic distortion is a function of fre-

quency given by (15). Figure 9 compares the third-order 

harmonic distortion obtained from (15) with that 

obtained from the transient analysis, which was repeated 

at different frequencies for an input amplitude of 10mV. 

We notice that the SFG obtained HD3 is close to the 

actual HD3. Thus the SFG of Figure 4 illustrates how 

nonlinear signal components are introduced into the sys-

tem and how they propagate.

Figure 9. HD3 for the CE amplifier vs. frequency

COMPARING DISTORTION OF DIFFERENT 

CIRCUITS

We now present a method for comparing the distortion 

of different circuit topologies using SFG. When a circuit 

is represented as a SFG, the SFG can be readily 

manipulated and simplified so that distinctly different 

circuit topologies share the same SFG topology. This 

provides a direct method for comparing circuits. For 

example, a buffer can be realized using a simple emitter 

follower (EF) or by feeding back the output of a 

differential pair to the negative terminal (DP), Figure 

10.

Figure 10. Two buffer circuits: a) Emitter follower b) Differen-

tial pair with the unity feedback

Both circuits have the same function but differ in many 

characteristics such as the level shift that takes place in 

the emitter follower, the accuracy of the gain offered by 

the circuit (ideally unity), the distortion offered by each 

circuit, and the bandwidth. The differential pair is 

biased using twice the current as the emitter follower to 

ensure the same DC point for all transistors. 

Consequently, all transistors have the same power series 

coefficients. The low frequency combined SFGs of both 

circuits can be obtained as explained previously, and are 

shown here in Figure 11 and Figure 12, which show 

only to the second-order to illustrate the method, but it 

can be extended to any order.

Figure 11. Combined SFG for solving the kernels of the DP

Here the SFGs are simplified by using the fact that 

, where H1vout is the low frequency gain of 

the linearized buffer circuit. For the EF it can be 

expressed as:

(16)

While the gain of the DP with unity feedback can be 

expressed as:

(17)

The relation between the kernel H1vx of the differential 

pair and the output kernel can be expressed as:

(18)

Figure 12. Combined SFG for solving the kernels of the EF  
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The SFG of the DP with feedback can now be reduced 

using SFG rules to make the comparison between both 

circuits possible; all inputs are referred back to a single 

input node, and the overlapping loops are separated 

(Appendix). The reduced SFG for the DP is shown in 

Figure 13. The purpose of the SFG manipulation is to 

represent both SFGs in a way to allow a direct 

comparison. We see that both circuits have essentially 

the same SFG but with different transmittances to the 

second-order system, where

(19)

and,

(20)

This implies that the ratio of the second-order distortion 

generated by both circuits is directly related to the ratio 

of the coefficients on the input branches in the SFGs of 

Figure 12 and Figure 13.

(21)

Figure 13. Combined SFG of the DP after reduction

For a bias current of 100µA, β=84, and R=15KΩ, the 

gain of the DP was H1vout=0.93, and the ratio A=1.034, 

while the gain of the EF was H’
1vout=0.9989. Using 

these values this ratio is 52.4 dB. This is confirmed by 

the simulation results in Figure 14. Since the EF was 

biased with a high impedance current source and wasn’t 

connected to a resistive load, the emitter current and 

hence the base-emitter voltage is fixed, this explains 

why the EF offered low distortion. On the other hand in 

the DP, the sum of the emitter currents of both 

transistors is fixed but as the input voltage varies the 

current distribution slightly changes. The input stage 

can be viewed as an EF loaded with two resistors in 

series (1/gm+R), then the output voltage is taken across 

R. This explain why the gain of the DP in this case is 

less than the EF. Consequently, the base-emitter voltage 

of the DP transistors varies more than in the EF case 

giving rise to more distortion. The same analysis can be 

carried out to compare the third-order distortion. In 

which the SFG will remain the same, and the only 

change will be the injected third-order nonlinear 

currents. 

CONCLUSION

In this paper, we demonstrated how signal flow graphs 

can be applied to weakly nonlinear circuits and used to 

analyze distortion. Representing the distortion compo-

nents of different orders on the same graph illustrates 

how nonlinearities are generated in the system and how 

various parameters affect the response. The SFG method 

provides a powerful tool in comparing the performance 

of different circuits from the distortion point of view. It 

also helps in the interpretation of distortion results 

obtained from simulations. 

Figure 14.  HD2 for both circuits at low frequencies vs. input 

signal amplitude
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APPENDIX

This appendix Shows the steps for reducing the SFG of 
the differential pair with unity feedback.
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