

 Page 1 of 11

Application Note: The "Flancter" by Rob Weinstein
July 2000

How To Set a Status Flag in One Clock Domain, Clear It in Another, and
Never, Ever Have to Use an Asynchronous Clear for Anything but Reset

Overview
There are times when it is important to generate a status flag that is set by an
event in one clock domain and reset by an event in a different clock domain.
Using a D-type flip-flop where a “1” is clocked in from one clock domain, and its
asynchronous reset is pulsed by logic in the second clock domain is the time-
honored method to achieve this function. While there is nothing logically wrong
with this, it introduces other problems such as combinational logic driving an
asynchronous reset pin, uncertainty in timing constraint boundaries, and
muddying the global reset function. Here I present an alternative method for
generating a multiple clock domain flag register that mitigates these problems.
It’s called the “Flancter” (named by my colleague, Mark Long), and is shown in
Figure 1.

As you can see, it is made up of two D-type flip-flops, an inverter, and an

exclusive OR (XOR) gate. Notice that the asynchronous reset inputs to the flip-
flops are shown unconnected for clarity only. Normally, these would be tied to the
global set/reset net in the system.

Operation of the Flancter is simple; when FF1 is clocked (rising edge of
SET_CLK while SET_CE is asserted), OUT goes high. Contrariwise, when FF2
is clocked (rising edge of RESET_CLK while RESET_CE is asserted), OUT goes
low. Note that this circuit must be used in an interlocked system where the flip-

D Q
CE

CLR

FF1

D Q
CE

CLR

FF2

RESET_CLK

RESET_CE

SET_CE

SET_CLK

OUT

Q1

Q2

Figure 1 - Basic Flancter.

Application Note The Flancter

 Page 2 of 11

flops won’t be continuously clocked by the two clock domains. Also, the output
must be synchronized with additional flip-flops to mitigate metastability when
crossing clock domains (more about this later).

How It Works
To explain its operation, I like to rearrange the circuit as shown in Figure 2.

This is exactly the same circuit as shown in Figure 1, but untwisted so that the
two inputs to the XOR gate are clearly visible. You can see that the XOR gate’s
upper input is labeled Q1, while its lower input is labeled Q2. Also, Q1 and Q2
are the Q outputs of FF1 and FF2, respectively. Now for the trick part of this
magic trick: the D input to FF1 comes from an inverter, so whenever FF1 is
clocked, Q1 assumes the opposite state of Q2 and the output of the XOR gate
will go high. When FF2 is clocked, Q2 becomes the same as Q1, and the output
will go low. In summary, clocking FF1 causes OUT to go high and clocking FF2
causes OUT to go low.

A timing diagram will help describe the Flancter’s operation. Figure 3 shows the
basic timing diagram:

D
Q

C
E C

LRFF
1

D
Q

C
EC
LR

FF2

RESET_CLK

RESET_CE

SET_CE

SET_CLK

OUT

Q1

Q2

Figure 2 - Rearranged Flancter.

Application Note The Flancter

 Page 3 of 11

The basic points of interest in the timing diagram are:
• SET_CLK and RESET_CLK are asynchronous to each other.
• At point A, the rising edge of SET_CLK while SET_CE is high causes Q1 to

go high because it gets the inverted value of Q2. Also, OUT goes high
because it is the XOR of Q1 and Q2.

• At point B, the rising edge of RESET_CLK while RESET_CE is high causes
Q2 to go high because it gets the value of Q1. Also, OUT goes low because it
is the XOR of Q1 and Q2.

• At point C, Q1 again gets the inverted value of Q2, causing OUT to go high.
• At point D, Q2 goes low because it gets the value of Q1, causing OUT to go

low.

So What’s Wrong With It?
There are a few things wrong with the Flancter from the start. One problem is
that it uses two flip-flops to create a single flag bit. This is a minor fault when you
consider that most FPGAs have an abundant supply of flip-flops. A more serious
issue is how to use the output. Remember that the output can change
synchronously to either clock domain. You need to resynchronize the output to
whichever clock domain needs to see it; often both clock domains. It is common
to use two flip-flops in series as a metastability-resistant synchronizer.

However, the most serious drawback to the Flancter is that operating the set and
reset flip-flops must be mutually exclusive in time. This means that when logic in
clock domain 1 sets the Flancter, it doesn’t attempt to set the Flancter again until
it sees that it has been reset. Likewise, the logic in clock domain 2 never
attempts to reset the Flancter unless it sees that it has been set. Establishing this
kind of interlocked protocol guarantees that both of the Flancter’s flip-flops won’t
be clocked simultaneously (or within each other’s setup and hold time windows).

B

SET_CLK

SET_CE

Q1

Q2

OUT

A C

D

RESET_CLK

RESET_CE

Figure 3 - Basic Flancter Timing.

Application Note The Flancter

 Page 4 of 11

Applications of the Flancter
There are many applications of the Flancter, but a very common application is
interfacing a microprocessor to an FPGA. Typically, the microprocessor and
FPGA logic run on separate clocks. When the microprocessor writes a control
register within the FPGA, the Flancter can be used as a status flag to tell an
internal state machine that new data is available. Likewise, a state machine
within the FPGA can use the Flancter to generate an interrupt to the
microprocessor that is subsequently cleared by a read or interrupt-acknowledge
cycle from the microprocessor, as shown in Figure 4.

D Q
CE

CLR

FF1

D Q
CE

CLR

FF2

SYSCLK

Q1

Q2

State
MachineSYSCLK

Control
Inputs

Address
Decode

uP

RD_L

INT

ADDRESS

Part of FPGA

SYSCLK Domain

uP Clock Domain

PCLK

DQ

CLR

FF3

SYSCLK

DQ

CLR

FF4

SYSCLK

Q3Q4

SET_CE

RESET_CE

Figure 4 - Flancter Used for Microprocessor Interrupt.

Application Note The Flancter

 Page 5 of 11

Things to notice in Figure 4:
• The Flancter is made up of FF1, FF2, the inverter, and the XOR gate.
• The state machine, FF1, FF3, and FF4 are all synchronous to SYSCLK.
• The microprocessor (uP) runs off its own clock, PCLK.
• The state machine pulses SET_CE for one SYSCLK cycle when it needs to

request an interrupt.
• The microprocessor performs a read cycle from a predefined address to reset

the interrupt. Although not shown, reading from this address may also cause
a status register to be driven onto the microprocessor’s data bus allowing
simultaneous reading of status and resetting of interrupt.

• FF3 and FF4 are resynchronizing flip-flops used to filter any metastable logic
conditions from propagating into the state machine.

• The particular microprocessor used in this example employs metastable
resistant techniques on its INT input.

• The interrupt sequence is defined such that setting and resetting the interrupt
flag cannot occur simultaneously.

The following timing diagram helps illustrate the operation:

Things to notice in Figure 5:
• The FPGA’s state machine sets the interrupt request (INT) at point A.
• Sometime later, the microprocessor responds to the interrupt by reading a

status register, thus resetting the interrupt request at point B.

SYSCLK

SET_CE

Q1

Q2

INT

A

RD_L

RESET_CE

ADDRESS

B

Status Address

Figure 5 - Flancter Interrupt Timing Diagram.

Application Note The Flancter

 Page 6 of 11

HDL Examples

Verilog Example
//---
// FileName : flancter.v
// Author : Rob Weinstein
// --

module flancter (
 // Inputs
 ASYNC_RESET,
 SET_CLK,
 SET_CE,
 RESET_CLK,
 RESET_CE,
 // Outputs
 FLAG_OUT
) ;

input ASYNC_RESET;
input SET_CLK;
input SET_CE;
input RESET_CLK;
input RESET_CE;
output FLAG_OUT;

// Internal Registers
reg SetFlop;
reg RstFlop;

// Output assignments
assign FLAG_OUT = SetFlop ^ RstFlop;

// The Set flip-flop
always @(posedge SET_CLK or posedge ASYNC_RESET)
begin : set_proc
 if (ASYNC_RESET)
 SetFlop <= 0;
 else if (SET_CE)
 SetFlop <= ~RstFlop; // Flops get opposite logic levels.
end

// The Reset flip-flop
always @(posedge RESET_CLK or posedge ASYNC_RESET)
begin : reset_proc
 if (ASYNC_RESET)
 RstFlop <= 0;
 else if (RESET_CE)
 RstFlop <= SetFlop; // Flops get the same logic levels.
end

endmodule

Application Note The Flancter

 Page 7 of 11

VHDL Example
-- -----
-- FileName : flancter.vhd
-- Author : Rob Weinstein

library IEEE;
use IEEE.std_logic_1164.all;

entity flancter is
 port (
 ASYNC_RESET : in std_logic;
 SET_CLK : in std_logic;
 SET_CE : in std_logic;
 RESET_CLK : in std_logic;
 RESET_CE : in std_logic;
 FLAG_OUT : out std_logic
);
end flancter;

architecture flancter of flancter is
signal SetFlop : std_logic;
signal RstFlop : std_logic;

begin

 --The Set flip-flop
 set_proc:process(ASYNC_RESET, SET_CLK)
 begin
 if ASYNC_RESET = '1' then
 SetFlop <= '0';
 elsif rising_edge(SET_CLK) then
 if SET_CE = '1' then
 -- Flops get opposite logic levels.
 SetFlop <= not RstFlop;
 end if;
 end if;
 end process;

 --The Reset flip-flop
 reset_proc:process(ASYNC_RESET, RESET_CLK)
 begin
 if ASYNC_RESET = '1' then
 RstFlop <= '0';
 elsif rising_edge(RESET_CLK) then
 if RESET_CE = '1' then
 -- Flops get the same logic levels.
 RstFlop <= SetFlop;
 end if;
 end if;
 end process;

 FLAG_OUT <= SetFlop xor RstFlop;

end flancter;

Application Note The Flancter

 Page 8 of 11

Synthesis Result
The Verilog example was run through Synplify and the resulting HDL Analyst
RTL view is shown in Figure below:

Note that in the RTL view, clock-enabled flip-flops are shown as multiplexers in
front of D-type flip-flops.

Variations on a Flancter
While the basic Flancter is very simple, many useful variations are possible. I
describe some of the more interesting variations below.

Flancter Variation #1
One interesting variation lets you use a Flancter in lieu of a D-type flip-flop whose
async clear input is used to save a clock cycle. In some single-clock-domain
systems, the original designer relied on an async clear to immediately reset a
flip-flop so that it would be reset by the next rising clock edge. A variation of a
Flancter can give you the same functionality without relying on an async clear
input. Figure 7 shows this variation:

SetFlop

R
QD

RstFlop

R
QD

set_proc_SetFlop_5

0

1

reset_proc_RstFlop_5

0

1 FLAG_OUT

FLAG_OUT

RESET_CE

RESET_CLK

SET_CE
SET_CLK

ASYNC_RESET
Figure 6 - Synthesized Flancter.

D Q
CE

CLR

FF1

D Q
CE

CLR

FF2

RESET_CE

SET_CE

CLK

OUT

Q1

Q2

Falling Edge
Triggered

Figure 7 - Flancter Variation #1.

Application Note The Flancter

 Page 9 of 11

Note that this is the same as the Basic Flancter, but it uses a single clock input,
CLK, and the reset flip-flop is clocked on the falling edge of that clock.

Its operation is depicted in the timing diagram in Figure 8:

Things to notice in Figure 8:
• OUT goes high on the rising edge of CLK at point A in response to SET_CE.
• Sometime later, RESET_CE is pulsed for one CLK cycle, synchronous to the

rising edge of CLK, but…
• OUT responds to RESET_CE by going low on the falling edge of CLK at point

B.
• OUT is already low by the next rising edge of CLK at point C.
• If a synchronous reset had been used, OUT would still be high at point C.

Flancter Variation #2
Another variation on the Flancter is to have OUT come up high after global reset.
This is easily achieved by making sure that either FF1 or FF2 (but not both) uses
an async preset instead of an async clear. Figure 9 shows what I mean:

CLK

SET_CE

Q1

Q2

OUT

A

RESET_CE

B C

Figure 8 - Flancter Timing for Variation #1.

Application Note The Flancter

 Page 10 of 11

Flancter Variation #3
This variation operates in three different clock domains.

The particular configuration shown in Figure 10 is set by one clock domain and
reset by either of two other clock domains. Note that the flip-flop connected to the
setting domain, FF1, has an inverter on its D input, while the flip-flops connected
to the resetting domains, FF2 and FF3, do not. This variation works equally well
with two setting domains and one resetting domain. The rule is to use inverters
on the flip-flops in the setting domains and no inverters on the flip-flops in the

D Q
CE

PRE
FF1

D Q
CE

CLR

FF2

RESET_CLK
RESET_CE

SET_CE
SET_CLK

OUT

Q1

Q2

Figure 9 - Flancter Variation #2.

D Q
CE

CLR

FF1

D Q
CE

CLR

FF2

RESET1_CLK
RESET1_CE

SET_CE
SET_CLK

OUT

Q1

D Q
CE

CLR

FF3

RESET2_CLK
RESET2_CE

Q2

Q3

Q2
Q3

Q1
Q3

Q1
Q2

Figure 10 - 3-Way Flancter.

Application Note The Flancter

 Page 11 of 11

resetting domains. The inputs to the XOR gates are simply the Q outputs of all
the registers except the one we are driving. For instance, the D input of FF1 uses
the XOR of Q2 and Q3. Note that Q1 is not used in the input function to FF1.
Likewise, FF2 is based on Q1 and Q3, but not Q2 and FF3 is based on Q1 and
Q2, but not Q3.

A Flancter variation can be built with any number of setting and resetting clock
domains; this is an n-way Flancter. The rules for building an n-way Flancter are:
• Use n flip-flops, one for each clock domain (FF1...FFn).
• The output of the n-way Flancter is simply the XOR of all of the Q outputs.
• The D input to any particular flip-flop (call it FFm), is the logical XOR of the Q

outputs of all the flip-flops except the one we are driving (Q1… Qn except
Qm).

• An inverter is inserted at the D inputs of a flip-flop based on whether that
particular flip-flop is used for setting or resetting the n-way Flancter. Use
inverters for setting flip-flops or no inverters for resetting flip-flops.

• Designing a protocol in which only one flip-flop is clocked at a time is the
biggest problem with the n-way Flancter. Remember, the Flancter is only
reliable when the flip-flops are never clocked simultaneously.

Summary
I turned 37 this year and I got to thinking that all the “greats” did their best work
long before they reached my age. As I look back on my design career, I realize
that I haven’t designed any circuits or developed any theorems that will bear my
name like the Pierce Oscillator or Shannon’s Sampling Theorem. The best I can
do is to offer the Flancter as my legacy. Perhaps someday, the Weinstein-
Flancter will be found in the indexes of engineering tomes right between Watt-
Hour and Wien-Bridge.

