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How To Set a Status Flag in One Clock Domain, Clear It in Another, and 
Never, Ever Have to Use an Asynchronous Clear for Anything but Reset 

Overview 
There are times when it is important to generate a status flag that is set by an 
event in one clock domain and reset by an event in a different clock domain. 
Using a D-type flip-flop where a “1” is clocked in from one clock domain, and its 
asynchronous reset is pulsed by logic in the second clock domain is the time-
honored method to achieve this function. While there is nothing logically wrong 
with this, it introduces other problems such as combinational logic driving an 
asynchronous reset pin, uncertainty in timing constraint boundaries, and 
muddying the global reset function. Here I present an alternative method for 
generating a multiple clock domain flag register that mitigates these problems. 
It’s called the “Flancter” (named by my colleague, Mark Long), and is shown in 
Figure 1. 
 
As you can see, it is made up of two D-type flip-flops, an inverter, and an 

exclusive OR (XOR) gate. Notice that the asynchronous reset inputs to the flip-
flops are shown unconnected for clarity only. Normally, these would be tied to the 
global set/reset net in the system. 
 
Operation of the Flancter is simple; when FF1 is clocked (rising edge of 
SET_CLK while SET_CE is asserted), OUT goes high. Contrariwise, when FF2 
is clocked (rising edge of RESET_CLK while RESET_CE is asserted), OUT goes 
low. Note that this circuit must be used in an interlocked system where the flip-
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Figure 1 - Basic Flancter. 
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flops won’t be continuously clocked by the two clock domains. Also, the output 
must be synchronized with additional flip-flops to mitigate metastability when 
crossing clock domains (more about this later). 

How It Works 
To explain its operation, I like to rearrange the circuit as shown in Figure 2. 
 

 
This is exactly the same circuit as shown in Figure 1, but untwisted so that the 
two inputs to the XOR gate are clearly visible. You can see that the XOR gate’s 
upper input is labeled Q1, while its lower input is labeled Q2.  Also, Q1 and Q2 
are the Q outputs of FF1 and FF2, respectively. Now for the trick part of this 
magic trick: the D input to FF1 comes from an inverter, so whenever FF1 is 
clocked, Q1 assumes the opposite state of Q2 and the output of the XOR gate 
will go high. When FF2 is clocked, Q2 becomes the same as Q1, and the output 
will go low. In summary, clocking FF1 causes OUT to go high and clocking FF2 
causes OUT to go low. 
 
A timing diagram will help describe the Flancter’s operation. Figure 3 shows the 
basic timing diagram: 
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Figure 2 - Rearranged Flancter. 
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The basic points of interest in the timing diagram are: 
• SET_CLK and RESET_CLK are asynchronous to each other. 
• At point A, the rising edge of SET_CLK while SET_CE is high causes Q1 to 

go high because it gets the inverted value of Q2. Also, OUT goes high 
because it is the XOR of Q1 and Q2. 

• At point B, the rising edge of RESET_CLK while RESET_CE is high causes 
Q2 to go high because it gets the value of Q1. Also, OUT goes low because it 
is the XOR of Q1 and Q2. 

• At point C, Q1 again gets the inverted value of Q2, causing OUT to go high. 
• At point D, Q2 goes low because it gets the value of Q1, causing OUT to go 

low. 

So What’s Wrong With It? 
There are a few things wrong with the Flancter from the start. One problem is 
that it uses two flip-flops to create a single flag bit. This is a minor fault when you 
consider that most FPGAs have an abundant supply of flip-flops. A more serious 
issue is how to use the output. Remember that the output can change 
synchronously to either clock domain. You need to resynchronize the output to 
whichever clock domain needs to see it; often both clock domains. It is common 
to use two flip-flops in series as a metastability-resistant synchronizer. 
 
However, the most serious drawback to the Flancter is that operating the set and 
reset flip-flops must be mutually exclusive in time. This means that when logic in 
clock domain 1 sets the Flancter, it doesn’t attempt to set the Flancter again until 
it sees that it has been reset. Likewise, the logic in clock domain 2 never 
attempts to reset the Flancter unless it sees that it has been set. Establishing this 
kind of interlocked protocol guarantees that both of the Flancter’s flip-flops won’t 
be clocked simultaneously (or within each other’s setup and hold time windows).  
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Figure 3 - Basic Flancter Timing. 
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Applications of the Flancter 
There are many applications of the Flancter, but a very common application is 
interfacing a microprocessor to an FPGA. Typically, the microprocessor and 
FPGA logic run on separate clocks. When the microprocessor writes a control 
register within the FPGA, the Flancter can be used as a status flag to tell an 
internal state machine that new data is available. Likewise, a state machine 
within the FPGA can use the Flancter to generate an interrupt to the 
microprocessor that is subsequently cleared by a read or interrupt-acknowledge 
cycle from the microprocessor, as shown in Figure 4. 
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Figure 4 - Flancter Used for Microprocessor Interrupt. 
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Things to notice in Figure 4: 
• The Flancter is made up of FF1, FF2, the inverter, and the XOR gate. 
• The state machine, FF1, FF3, and FF4 are all synchronous to SYSCLK. 
• The microprocessor (uP) runs off its own clock, PCLK. 
• The state machine pulses SET_CE for one SYSCLK cycle when it needs to 

request an interrupt. 
• The microprocessor performs a read cycle from a predefined address to reset 

the interrupt.  Although not shown, reading from this address may also cause 
a status register to be driven onto the microprocessor’s data bus allowing 
simultaneous reading of status and resetting of interrupt. 

• FF3 and FF4 are resynchronizing flip-flops used to filter any metastable logic 
conditions from propagating into the state machine. 

• The particular microprocessor used in this example employs metastable 
resistant techniques on its INT input. 

• The interrupt sequence is defined such that setting and resetting the interrupt 
flag cannot occur simultaneously.   

 
The following timing diagram helps illustrate the operation: 
 

 
Things to notice in Figure 5: 
• The FPGA’s state machine sets the interrupt request (INT) at point A. 
• Sometime later, the microprocessor responds to the interrupt by reading a 

status register, thus resetting the interrupt request at point B. 
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Figure 5 - Flancter Interrupt Timing Diagram. 
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HDL Examples 

Verilog Example 
//---------------------------------------------------------------------  
// FileName     : flancter.v 
// Author       : Rob Weinstein 
// --------------------------------------------------------------------  
 
module flancter ( 
 // Inputs 
 ASYNC_RESET, 
 SET_CLK, 
 SET_CE, 
 RESET_CLK, 
 RESET_CE,  
 // Outputs 
 FLAG_OUT 
 ) ; 
 
input ASYNC_RESET; 
input SET_CLK; 
input SET_CE; 
input RESET_CLK; 
input RESET_CE; 
output FLAG_OUT; 
 
// Internal Registers 
reg SetFlop; 
reg RstFlop; 
 
// Output assignments 
assign FLAG_OUT = SetFlop ^ RstFlop; 
 
// The Set flip-flop  
always @(posedge SET_CLK or posedge ASYNC_RESET)  
begin : set_proc 
 if (ASYNC_RESET) 
  SetFlop <= 0; 
 else if (SET_CE) 
  SetFlop <= ~RstFlop; // Flops get opposite logic levels. 
end 
 
// The Reset flip-flop  
always @(posedge RESET_CLK or posedge ASYNC_RESET) 
begin : reset_proc 
 if (ASYNC_RESET) 
  RstFlop <= 0; 
 else if (RESET_CE) 
  RstFlop <= SetFlop; // Flops get the same logic levels. 
end 
     
endmodule 
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VHDL Example 
------------------------------------------------------------------ ----- 
-- FileName       : flancter.vhd 
-- Author         : Rob Weinstein 
-----------------------------------------------------------------------  
 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity flancter is 
 port ( 
  ASYNC_RESET : in std_logic; 
  SET_CLK     : in std_logic; 
  SET_CE  : in std_logic; 
  RESET_CLK   : in std_logic; 
  RESET_CE  : in std_logic; 
  FLAG_OUT  : out std_logic 
 ); 
end flancter; 
 
architecture flancter of flancter is 
signal SetFlop  : std_logic; 
signal RstFlop  : std_logic; 
 
begin 
 
 --The Set flip-flop  
 set_proc:process(ASYNC_RESET, SET_CLK)  
 begin 
  if ASYNC_RESET = '1' then 
   SetFlop <= '0'; 
  elsif rising_edge(SET_CLK) then 
   if SET_CE = '1' then 
    -- Flops get opposite logic levels. 
    SetFlop <= not RstFlop;  
   end if; 
  end if; 
 end process; 
  
 --The Reset flip-flop  
 reset_proc:process(ASYNC_RESET, RESET_CLK)  
 begin 
  if ASYNC_RESET = '1' then 
   RstFlop <= '0'; 
  elsif rising_edge(RESET_CLK) then 
   if RESET_CE = '1' then 
    -- Flops get the same logic levels. 
    RstFlop <= SetFlop;  
   end if; 
  end if; 
 end process; 
 
 FLAG_OUT <= SetFlop xor RstFlop; 
 
end flancter; 
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Synthesis Result 
The Verilog example was run through Synplify and the resulting HDL Analyst 
RTL view is shown in Figure  below: 
 

 
Note that in the RTL view, clock-enabled flip-flops are shown as multiplexers in 
front of D-type flip-flops. 

Variations on a Flancter 
While the basic Flancter is very simple, many useful variations are possible.  I 
describe some of the more interesting variations below. 

Flancter Variation #1 
One interesting variation lets you use a Flancter in lieu of a D-type flip-flop whose 
async clear input is used to save a clock cycle. In some single-clock-domain 
systems, the original designer relied on an async clear to immediately reset a 
flip-flop so that it would be reset by the next rising clock edge. A variation of a 
Flancter can give you the same functionality without relying on an async clear 
input. Figure 7 shows this variation: 
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Note that this is the same as the Basic Flancter, but it uses a single clock input, 
CLK, and the reset flip-flop is clocked on the falling edge of that clock. 
 
Its operation is depicted in the timing diagram in Figure 8: 
 

 
Things to notice in Figure 8: 
• OUT goes high on the rising edge of CLK at point A in response to SET_CE. 
• Sometime later, RESET_CE is pulsed for one CLK cycle, synchronous to the 

rising edge of CLK, but…  
• OUT responds to RESET_CE by going low on the falling edge of CLK at point 

B. 
• OUT is already low by the next rising edge of CLK at point C. 
• If a synchronous reset had been used, OUT would still be high at point C. 

Flancter Variation #2 
Another variation on the Flancter is to have OUT come up high after global reset.  
This is easily achieved by making sure that either FF1 or FF2 (but not both) uses 
an async preset instead of an async clear. Figure 9 shows what I mean: 
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Figure 8 - Flancter Timing for Variation #1. 
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Flancter Variation #3 
This variation operates in three different clock domains. 
 

 
The particular configuration shown in Figure 10 is set by one clock domain and 
reset by either of two other clock domains. Note that the flip-flop connected to the 
setting domain, FF1, has an inverter on its D input, while the flip-flops connected 
to the resetting domains, FF2 and FF3, do not. This variation works equally well 
with two setting domains and one resetting domain. The rule is to use inverters 
on the flip-flops in the setting domains and no inverters on the flip-flops in the 
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Figure 9 - Flancter Variation #2. 
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Figure 10 - 3-Way Flancter. 
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resetting domains. The inputs to the XOR gates are simply the Q outputs of all 
the registers except the one we are driving. For instance, the D input of FF1 uses 
the XOR of Q2 and Q3. Note that Q1 is not used in the input function to FF1. 
Likewise, FF2 is based on Q1 and Q3, but not Q2 and FF3 is based on Q1 and 
Q2, but not Q3. 
 
A Flancter variation can be built with any number of setting and resetting clock 
domains; this is an n-way Flancter. The rules for building an n-way Flancter are: 
• Use n flip-flops, one for each clock domain (FF1...FFn). 
• The output of the n-way Flancter is simply the XOR of all of the Q outputs. 
• The D input to any particular flip-flop (call it FFm), is the logical XOR of the Q 

outputs of all the flip-flops except the one we are driving (Q1… Qn except 
Qm). 

• An inverter is inserted at the D inputs of a flip-flop based on whether that 
particular flip-flop is used for setting or resetting the n-way Flancter. Use 
inverters for setting flip-flops or no inverters for resetting flip-flops. 

• Designing a protocol in which only one flip-flop is clocked at a time is the 
biggest problem with the n-way Flancter. Remember, the Flancter is only 
reliable when the flip-flops are never clocked simultaneously. 

Summary 
I turned 37 this year and I got to thinking that all the “greats” did their best work 
long before they reached my age. As I look back on my design career, I realize 
that I haven’t designed any circuits or developed any theorems that will bear my 
name like the Pierce Oscillator or Shannon’s Sampling Theorem. The best I can 
do is to offer the Flancter as my legacy. Perhaps someday, the Weinstein-
Flancter will be found in the indexes of engineering tomes right between Watt-
Hour and Wien-Bridge. 
 


