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Field-Programmable Gate Arrays (FPGAs) provide an easier path than Application-

Specific Integrated Circuits (ASICs) for implementing computing systems, and generally

yield higher performance and lower power than optimized software running on high-

end CPUs. However, designing hardware with FPGAs remains a difficult and time-

consuming process, requiring specialized skills and hours-long CAD processing times.

An easier design process abstracts away the FPGA via an “overlay architecture”, which

implements a computing platform upon which we construct the desired system. Soft-

processors represent the base case of overlays, allowing easy software-driven design, but

at a large cost in performance and area. This thesis addresses the performance limitations

of FPGA soft-processors, as building blocks for overlay architectures.

We first aim to maximize the usage of FPGA structures by designing Octavo, a strict

round-robin multi-threaded soft-processor architecture tailored to the underlying FPGA

and capable of operating at maximal speed. We then scale Octavo to SIMD and MIMD

parallelism by replicating its datapath and connecting Octavo cores in a point-to-point

mesh. This scaling creates multi-local logic, which we preserve via logical partitioning to

avoid artificial critial paths introduced by unnecessary CAD optimizations.

We plan ahead for larger Octavo systems by adding support for architectural ex-

tensions, instruction predication, and variable I/O latency. These features improve the
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efficiency of hardware extensions, eliminate busy-wait loops, and provide a building block

for more efficient code execution.

By extracting the flow-control and addressing sub-graphs out of a program’s Control-

Data Flow Graph (CDFG), we can execute them in parallel with useful computations

using special dedicated hardware units, granting better performance than fully unrolled

loops without increasing code size.

Finally, we benchmark Octavo against the MXP soft vector processor, the NiosII/f

scalar soft-processor, and equivalent benchmark implementations written in C synthe-

sized with the LegUp High-Level Synthesis (HLS) tool, and direct Verilog Hardware

Description Language (HDL) implementations. Octavo’s higher clock frequency offsets

its higher cycle count, performing roughly on-par with MXP, and within an order of

magnitude of the performance of LegUp and Verilog solutions, but with an order of

magnitude area penalty.
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Chapter 1

Introduction

We can think of Field-Programmable Arrays (FPGAs) as “Lego-on-a-chip”: a large num-

ber of small building blocks which, although not very capable by themselves, we can

assemble into larger, useful digital systems. In a nutshell, these building blocks include:

• small Look-Up Tables (LUTs), which can compute any Boolean function of a few

inputs (e.g.: 4 to 6) or act as small memories;

• flip-flops, which hold state;

• various arithmetic circuits, such as adders and multipliers;

• larger memory blocks, for efficient bulk storage;

• I/O blocks, which implement low-level off-chip interfaces;

• and a very large amount of programmable interconnect, which allows us to connect

all of these building blocks together.

Rather than implement digital systems directly in Application-Specific Integrated

Circuits (ASICs), a much longer and more costly process, we can trade-off area, power,

and performance, and instead implement such systems using an FPGA. Despite the trade-

offs relative to ASICs, FPGAs still enable higher-performance and lower power solutions

1
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than even highly-optimized software implementations on high-end CPUs, and unlike

ASICs, we can re-configure FPGAs as the application evolves. As power limits and the

slowing of Moore’s Law (through scaling limits or increasing costs) causes individual CPU

performance to level-out after decades of accelerated growth, FPGAs present an avenue

for higher performance without all the complications of large-scale parallel programming.

1.1 Motivation

Designing with FPGAs remains a difficult process, if a less costly one than with ASICs,

with hours-long CAD processing times after laborious hardware design. At the most

basic level, we can use Hardware Description Languages (HDLs) to describe logic fairly

directly, but at a low level akin to assembly programming or a stripped-down C language.

Alternately, we can use High-Level Synthesis (HLS) techniques to allow higher-level

system descriptions, which greatly eases design implementation, exploration, and verifi-

cation. However, HLS must still translate the description down to HDL, with the same

CAD processing time problems, and produces machine-generated “black box” implemen-

tations hard to relate to the original source code.

Finally, we can instead abstract away the FPGA itself by using it to implement a

more conventional computing platform, and then implement our desired system onto

this “overlay architecture”. For example, a scalar soft-processor (e.g.: Altera’s NiosII)

represents the simplest instance of an overlay.

By using overlays, we pay a further price in performance, power, and area, but gain

an even faster development cycle, mostly free from FPGA CAD processing time and

amenable to high-level software descriptions. Contrary to conventional CPUs, an overlay

still benefits from the FPGA’s re-configurability, allowing us to incrementally customize

the overlay to our application and recoup lost performance.
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We propose that overlays already provide a better design process for FPGAs, minimiz-

ing the use of HDLs and HLS, and maximizing the return for a given development effort.

Which leaves us with the question: How do we improve the performance of overlays?

1.2 Contributions

This dissertation focuses on improving the performance of soft-processors on FPGAs, as

building blocks for FPGA overlay architectures. Specifically:

• We construct Octavo, a soft-processor architecture tailored to the underlying FPGA,

capable of operating at maximal speed.

• We scale Octavo to SIMD and MIMD parallelism, and use partitioning to preserve

operating speed under scaling.

• We refine Octavo to support architectural extensions, instruction predication, and

variable I/O latency.

• We reduce Octavo’s addressing and flow-control overheads, executing them in par-

allel with ALU instructions.

We expand on these contributions in the following sub-sections.

1.2.1 Chapter 3: The Octavo Soft-Processor

Chapter 3 addresses the problem of adapting overlay architectures to the underlying

FPGA. The properties of an overlay architecture which maximizes the effective use of

the FPGA structures lead us to a fine-grained multi-threaded soft-processor approach.

Unlike prior multi-threaded processors, we use multi-threading to absorb internal circuit

delay rather than external memory latency. We introduce a simple technique to robustly

determine the amount of pipelining each major FPGA and processor structure requires to
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maximize use. A flattened memory hierarchy, without caches and directly addressed by

the instruction operands, provides a basis for a simplified ISA and memory-mapped I/O

ports for efficient future expansion. Despite the minimal ISA, we can synthesize memory

indirection more efficiently than conventional MIPS-like ISAs. We present Octavo, a

ten-pipeline-stage eight-threaded soft-processor, which can operate at the Block RAM

maximum of 550MHz on a Stratix IV FPGA. Design space exploration shows that the

entire family of Octavo designs scale well over word-width, memory depth, and number

of supported threads, presenting a promising foundation for later improvements.

This work was originally published at FPGA 2012, Monterey [77].

1.2.2 Chapter 4: Tiling Overlay Architectures

Chapter 4 addresses problems that emerge when scaling overlay architectures via tiling,

which replicates computing structures such as datapaths for SIMD parallelism, or entire

soft-processors for MIMD parallelism. Tiling designs introduces multi-localities (multiple

instances of equivalent logic), which the CAD tool optimizes down to single instances,

creating artificial critical-path fanouts to physically distant tiles. Rather than manually

controlling the optimization of multi-local logic via the CAD tool or HDL source an-

notations, a designer can use logical partitioning to preserve multi-locality and improve

performance, with lower design effort and negligible CAD time cost. Preserving multi-

localities improves operating frequency and compute density (i.e.: work per unit area),

with benefits increasing with the amount of tiling. For example, partitioning a mesh of

102 scalar Octavo soft-processors improves its operating frequency 1.54x, from 284 MHz

up to 437 MHz, while increasing its logic area by only 0.85%.

This work was originally published at ICFPT 2013, Kyoto [78].
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1.2.3 Chapter 5: Planning for Larger Systems

Chapter 5 expands Octavo’s memory addressing and adds support for annulling and re-

issuing instructions. We extend the write address space to eliminate the overlapping

of code and data address spaces, doubling the available data memory and removing all

non-code data from instruction memory. The extended write address space also creates

a “High” memory range to memory-map future hardware additions without consuming

precious I/O ports. We add an Empty/Full bit to each I/O port and use them to annul

and re-issue any instruction accessing I/O that is not ready. These predicated instructions

eliminate busy-wait loops and enable powerful conditional branches in Chapter 6.

1.2.4 Chapter 6: Approaching Overhead-Free Execution

Chapter 6 addresses the intrinsic addressing and flow-control overheads of processors,

which lead to a performance gap relative to custom FPGA implementations of algo-

rithms, regardless of relative clock speeds. We extract parallel addressing, flow-control,

and useful work sub-graphs out of the Control-Data Flow Graph (CDFG) of programs,

and concurrently execute them in Address Offset Modules (AOMs), Branch Trigger Mod-

ules (BTMs), and the regular ALU datapath. The AOMs provide memory indirection,

shared code across threads, and post-incrementing addressing. The BTMs eliminate all

flow-control opcodes, execute branches in parallel with ALU instructions, optionally can-

cel instructions based on static branch prediction, and support multi-way branches. A

program can hoist addressing and branching work out of loops and into the AOMs/BTMs.

We compare our optimized micro-benchmark code against an ideal “perfect” MIPS-like

CPU, which has no stalls or delay slots. Against this ideal CPU, using the AOMs/BTMs

achieves speedups ranging from 1.07x for control-heavy code, to 1.92x for looping code,

never performs worse than the original sequential code, and always performs better than

a totally unrolled loop. The AOMs/BTMs reduce raw clock speed by only 6.5%.

This work was originally published at ICFPT 2014, Shanghai [74].
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1.3 Organization

We organize the remainder of this dissertation as follows: Chapter 2 provides the relevant

basic background on FPGA architecture, the system design processes on FPGAs and

their limitations, a discussion of overlay architectures, and their potential for higher

performance. We present the aforementioned main research contributions in Chapters 3–

6, each as mostly stand-alone designs and experiments, and evaluate the resulting soft-

processor in Chapter 7. Chapter 8 presents a number of remaining issues left for future

work. Finally, Appendices A–H provide common experimental reference information,

some benchmark details, and discussions of the design process difficulties encountered.



Chapter 2

Background

[. . . ] it might be worth-while to point out that the purpose of abstracting is not to be vague,

but to create a new semantic level in which one can be absolutely precise.

Edsger W. Dijkstra (1930–2002) [40]

2.1 FPGA Architecture

This work addresses the question of “How do FPGAs want to compute?” in the context

of soft-processor overlay architectures. Thus, we take into account the architectural

particularities of FPGAs (i.e.: as opposed to custom Application-Specific Integrated

Circuits (ASICs)) when designing a high-performance soft-processor. In this section, we

present a high-level overview of modern FPGA architecture to point out, and place in

context, these significant features. We show generic structures, independent of particular

vendor details or implementation technology. Interested readers can read more in Hauck

and DeHon’s survey book [53].

2.1.1 Logic Elements

Figure 2.1 illustrates the basic Logic Element (LE) which performs general logic compu-

tations in an FPGA. Each LE receives a number of single-bit inputs (a–f) into a Look-Up

7
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Figure 2.1: Generic FPGA Logic Element (LE)

(a) Logic Cluster (LC) (b) LC Interconnect

Figure 2.2: Generic FPGA Island-Style Building Blocks.

Table (LUT), in this case with 6 inputs (6-LUT). The 6-LUT acts as a small RAM, which

we can load at configuration time with the 26 bits holding the Boolean truth table of the

particular logic function we want to implement. The main output of the 6-LUT (o) then

leaves the LE either directly as a combinational circuit or via a flip-flop.

Typically, FPGAs implement a 6-LUT as multiple 4-LUTs and 3-LUTs, allowing mul-

tiple outputs for sub-expressions or independent functions. However, we limit ourselves

to thinking of the ensemble as a single, universal 6-LUT with a single output, imple-

menting any Boolean function of 6 inputs. This simplification allows us to make good

design-time guesses about blocks of logic: whether they will need multiple levels of LEs,

and how to pipeline them.
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2.1.2 Logic Clusters and Interconnect

Figure 2.2(a) outlines how we can group LEs into larger Logic Clusters (LC) to compute

more complex logic functions, apply a given function to a wider bit vector, or locally

connect a number of distinct logic functions. We place the LEs in a column, with some

immediate nearest-neighbour connections (not shown). Each LE’s inputs and outputs

connect to a cross-bar (X-BAR) which allows arbitrary connections amongst LEs, fixed

at configuration time. Optionally, some FPGAs allow grouping the 6-LUT Boolean truth

table RAM within each LE in the Logic Cluster into a single, small Block RAM for more

efficient storage than the same capacity implemented using LE output registers alone.

Figure 2.2(b) places the Logic Cluster into a global Interconnect. The Logic Cluster

connects its cross-bar inputs and outputs to horizontal and vertical Interconnect via a

Connection Block (C). This interconnect contain channels with large numbers of buffered

wires, varying in length from a few Logic Clusters to the entire span of the FPGA.

Between adjacent channels, and at their intersections, there exists a Switch Box (S),

configured as fixed set of connections between channel wires. The Interconnect enables

us to connect multiple Logic Clusters together.

2.1.3 Island-Style FPGA Architecture

Figure 2.3 tiles the Logic Clusters and Interconnect into a 5×4 example corner of an

“Island-Style” FPGA architecture, where a “sea” of Interconnect surround each “island”

of logic. We replace some Logic Clusters with dedicated circuitry to implement specific

functions more efficiently than Logic Clusters can. Larger Block RAMs (BRAM) provide

dense and fast storage, while Digital Signal Processing Blocks (DSP) provide fast arith-

metic functions (e.g.: multipliers). We place each type of resource into a column spanning

the height of the FPGA, usually placing multiple Logic Cluster columns together before

placing a BRAM or DSP column. Finally, we attach I/O modules along the edges, each
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Figure 2.3: Generic Island-Style FPGA Architecture

possibly supporting a number of I/O functions (e.g.: differential signalling, clock recovery,

encoding/decoding, protocol stacks, etc. . . ).

2.2 Limitations of Design Processes with FPGAs

Despite their great ease relative to ASICs, implementing designs on FPGAs remains diffi-

cult: only a minority of engineers possess the specialized skills necessary to do hardware-
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level design work [118]1. Furthermore, as the size of the FPGA devices keeps increasing

with Moore’s Law, but without corresponding speedup from the CAD tools [30], com-

piling ever-larger designs takes many hours or days (e.g.: 3–30 hours [69], 5 hours [116],

“one or more CPU hours” [84], “over 35 hours” [65], etc. . . [127]). These growing de-

signs also strain our efforts at simulation and verification. This lengthening design cycle,

sometimes dubbed the productivity gap [59], eats away at the two main advantages of

FPGAs over custom ASICs: fast time-to-market and lower Non-Recurring Engineering

(NRE) design costs.

Broadly-speaking, an engineer can chose from three FPGA design processes:

• Hardware Description Languages

• High-Level Synthesis

• Overlays

2.2.1 Hardware Description Languages

Hardware Description Languages (HDLs) describe hardware fairly directly, with registers

holding state and combinational logic connecting their inputs and outputs. The level of

abstraction varies, ranging from low-level, gate-by-gate and bit-by-bit implementations

up to behavioural descriptions in terms of Boolean operators, conditional expressions,

and vectors of bits. Although several HDLs exist (e.g.: Abel, AHDL, VHDL, Verilog,

SystemVerilog, FHDL, MyHDL), VHDL and Verilog represent the majority of HDL use

today. This work uses Verilog-2001 as its implementation language.

While HDLs provide a reasonable design process for small, well-defined circuits, they

do not scale well to larger systems. Optimized designs make use of vendor-specific FPGA

blocks, which HDLs do not express portably. HDLs describe the circuit itself, rather than

1Surprisingly, the expected large ratio only applies to the US: roughly 1,361,700 software engineers
vs. 83,300 hardware engineers (16:1). In Canada [112]: 146,910 software engineers vs. 27,310 hardware
engineers (5:1). All numbers aggregate related jobs, an exclude electrical/electronic engineers to focus
on computing
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the higher-level system, leading to slow, un-necessarily detailed simulations and verifi-

cations, and long compilation time to the target FPGA. Finally, unlike many modern

programming languages (e.g.: Python, Perl, Lua, C++), HDLs cannot construct in-

creasingly abstract structures and functions to describe increasingly large and high-level

systems, forcing low-level descriptions of high-level ideas.

Even the relatively small, single-person effort of this work suffered from the limitations

of Verilog-2001 when designing highly-configurable sub-assemblies and composing them

into larger ones. We detail these limitations in Appendix D.

2.2.2 High-Level Synthesis

In contrast to HDLs, High-Level Synthesis (HLS) aims to automatically translate a more

practical High-Level Language (HLL) description of algorithms and systems down to

HDL, analogous to C++ providing higher-level abstractions on top of the underlying C

system. There have been too many attempts at HLS to list them all here, and most are

defunct: they either never left the lab, are no longer available commercially, or not in

active development. Currently, various groups maintain HLS systems based on various

HLLs, such as Bluespec (based on Haskell) [95], SystemC (a set of C++ classes) [50],

OpenCL (thread-parallel C code kernels) [109], LegUp (plain C to hardware synthe-

sis) [22], Xilinx’s Vivado, and others (see [16] for an overview). We benchmark against

LegUp in Chapter 7.

While these HLS systems do provide an easier way to describe hardware systems,

and considerably accelerate their simulation, interfacing with the FPGA vendors’ CAD

tools requires converting the HLL descriptions to HDL. Thus, these HLS tools still suffer

from long compilation times, and the resulting “black-box” implementations are hard to

debug when their behaviour differs from that of the simulated HLL.
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2.2.3 Overlays

Overlays primarily differ from HDLs and HLS by providing a layer of abstraction between

the implementation of a system and the FPGA hardware. Implementing a system on

an FPGA overlay does not require using FPGA CAD tools, avoiding their long compile

times and design process details. By analogy, an interpreted language (e.g.: Python)

provides an overlay over the CPU hardware, and the CPU itself acts as an overlay over

VLSI logic, with the same costs and benefits:

• We can use higher-level abstractions to describe the system.

• The design cycle reduces to a rapid re-compilation to the overlay.

• A system design becomes mostly portable across different implementations of the

same overlay.

• We pay a performance and size penalty relative to the system underlying the overlay.

• We can incrementally augment the overlay with custom “accelerators” to improve

application-specific performance.

Because overlays provide a layer of abstraction, multiple approaches exist, with vary-

ing trade-offs and programming models. We can divide the overlay approaches into

scalar soft-processors, vector processors, and “virtual” FPGA fabrics and Coarse-Grain

Reconfigurable Arrays (CGRAs).

Overlays: Design Cycle

In a nutshell, the overlay design cycle moves most of the iterations to software develop-

ment instead of hardware development, which includes time-consuming Place-and-Route

(P&R) of circuits onto the FPGA after each design change.

Place-And-Route presents the most intractable step and consumes the majority of

CAD processing time: At a glance, placing circuits implemented in n Logic Clusters
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amongst m possible locations on the FPGA (for m > n) has on the order of O(m!− (m−

n)!) possible solutions. For example, in Section 4.7.4 (pg. 80), where we create a mesh

of 102 soft-processors, P&R takes up 84% of the total 2-hour CAD time. Detailed CAD

time breakdowns can be found in Murray, Whitty, Liu, et al. [92].

Instead, the target application initially suggests a particular instance of an overlay

architecture, which gets synthesized and P&R’ed onto the FPGA. The designer then

implements the application as software on the overlay, with rapid design cycles. If the

overlay poses excessive difficulties or lacks a necessary feature, only then does the design

process go through a hardware iteration to produce a new overlay.

Given that each P&R run can take several hours, on top of the actual hardware

design effort, using overlays leads to a faster and easier overall design cycle as both the

software and hardware cycles progress more incrementally, with feedback between them:

The software designer can write simpler software on overlay hardware tailored to the

application domain, and the hardware designer is freed from implementing and verifying

an entire application in hardware, providing only the “heavy lifting” components required

to meet performance constraints, leaving complicated state and coordination to software.

Overlays: Scalar Soft-Processors

Single scalar soft-processors represent the degenerate case of overlays. They implement a

conventional processor architecture onto the FPGA to allow a direct migration of existing

software and easy addition of new hardware.

On the other hand, soft-processors cannot provide as high a performance as “hard”

CPUs. For example, even on the highest speed grade Stratix IV devices, Altera’s MIPS-

like NiosII/f soft-processor hovers around 240 MHz [11], despite a reconfigurable logic

rating of 800 MHz and the DSP and RAM blocks ratings of up to 600 MHz [10]. Because

of their relatively low Fmax, even if we fully populate an FPGA with soft-processors, and

somehow keep it entirely busy, virtually all the hardware would spend about half a clock
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cycle waiting for a few critical paths. Even in this best-case scenario, we use only about

half of the potential computing capacity of the FPGA.

Nonetheless, soft-processors are in wide use. FPGA vendors often provide their own

soft-processor designs, while several engineering firms provide reproductions of legacy

CPUs such as the MOS Technology 6502 and Zilog Z80, with fidelity ranging from binary-

compatible to cycle-accurate. Some CPU vendors have released HDL descriptions of their

CPUs for open use.

Some commercial and research soft-processors include:

Open Commercial CPUs Sun Microsystems (now Oracle) released open-source ver-

sions of their server CPUs (OpenSPARC T1 and T2), as did Gaisler Research for their

aerospace-oriented LEON CPU, also SPARC-based.

FPGA Vendor Soft-Processors These include Xilinx’s 32-bit MicroBlaze and 8-

bit PicoBlaze, Altera’s 32-bit NiosII, and Lattice Semiconductor’s LatticeMico32 and

LatticeMico8. All of the FPGA vendor soft-processors implement a conventional MIPS-

like architecture for easy software portability.

Multi-Processors As FPGAs grow in size, some research aimed to improve perfor-

mance by using multiple soft-processors together. The PolyBlaze system enhances the

MicroBlaze soft-processor to implement up to 8-way Symmetric Multi-Processing (SMP)

Linux systems [86]. Similarly, the Multi-Level Computing Architecture (MLCA) coordi-

nates up to 8 NiosII cores into a single Out-of-Order superscalar-like system [24]. Un-

nikrishnan et al. explore the synthesis and compilation to application-tuned many-cores

and interconnect networks [119]. Similarly, MARC generates a many-core system from

OpenCL kernels, with multi-threaded compute cores and a global shared memory [79].

Finally, Labrecque et al. compare the performance scaling of uni- and multi-processors

on FPGAs, specifically their caches and memory latencies [73].
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Multi-Threaded Some other research aims to improve the compute density (i.e.: work

done per unit area) of soft-processors, usually through multi-threading. The CUSTARD

system first explored the design space of multi-threaded soft-processors, comparing fine

and coarse-grained threading, removal of result forwarding paths, and generation of

custom instructions [41]. Fort et al. implement the Nios-compatible UTMP II multi-

threaded processor to demonstrate a significant area reduction by allowing multiple pro-

grams to share the same hardware blocks [47]. Labrecque’s exploration of multi-threaded

processors also finds significant area savings [71], and dynamically schedules threads to

reduce the overhead of locks on critical code sections [72]. Labrecque et al.’s previously

cited work [73] also compares single and multi-core multi-threaded processors with uni-

threaded processors.

FPGA-Centric Alternatively, some soft-processors start from the other end and tailor

themselves to the FPGA first rather than the application, hoping to reduce area and/or

improve performance. The Leros 16-bit microcontroller aims for minimal resource usage

by using an accumulator-based architecture, with a performance comparable to Xilinx’s

8-bit PicoBlaze [102]. Similarly, the iDEA processor makes efficient use of the complex

DSP blocks on Xilinx FPGAs to achieve similar performance to a MicroBlaze, but at half

the area and twice the clock speed [26,27]. Ehliar et al. design a single-threaded datapath

with carefully designed ALU and result forwarding to reach a high Fmax on Xilinx Virtex-

4 FPGAs [43]. The ρ-VEX processor uses dynamic partial FPGA reconfiguration to act

either as two 2-way VLIW processors or a single 4-way VLIW processor to favour either

data parallelism or instruction parallelism [14].

Overlays: Vector Processors

Given the flexibility and ease-of-use of scalar soft-processors, extending them to process

vectors of data provides a straightforward way to translate the spatial parallelism of

FPGAs into a well-understood form of data parallelism. Soft vector processors (SVPs)
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increase parallelism without the logic complexity and heavily multi-ported memories (and

thus lower net performance) of superscalar soft-processors [1, 2, 100].

All current SVPs share a similar architecture: a scalar soft-processor controls a num-

ber of vector lanes executing custom instructions on local vector memory. While the vec-

tor lanes process data, the scalar processor performs any scalar tasks, updates pointers

and counters, and prepares the next block of vector processing. By effectively unrolling

loops into vector operations, vector processors achieve significant speedups (up to 20x

with a single vector lane [31]) by eliminating inner loop overheads such as counting,

conditional branches, and loads/stores.

Yu and Lemieux make the initial argument for SVPs based on the abundance of mem-

ory and DSP blocks on FPGAs [134], later refined and named VIPERS [133]. Later teams,

also at the University of British Columbia (UBC), greatly expand upon this work. The

VESPA SVP (University of Toronto) further explores the design space for portability, cus-

tomization to the application, and adapting to the underlying FPGA hardware [130–132].

VEGAS (UBC) improves on VIPERS by moving to a single vector scratchpad memory,

rather than register files, fracturable ALUs for sub-word calculations, and address gen-

eration hardware, all lowering overhead and using on-chip memory more efficiently [31].

VENICE (UBC) further improves VEGAS by removing computation overhead, includ-

ing: 2D and 3D vector address generation, operation on arbitrarily unaligned vectors, and

per-byte conditional flags for conditional vector moves [106]. Finally, MXP (UBC, com-

mercialized by VectorBlox) improves VENICE in many ways, including: scatter/gather

with a coalescing cache [108], 2D and filtered DMA, custom vector instructions [107],

and adding streaming vector pipelines for floating-point support [105]. We benchmark

against MXP in Chapter 7.

Overlays: “Virtual” FPGAs and CGRAs

Finally, instead of a processor-based overlay, we can instead implement a “virtual”

FPGA-on-an-FPGA which presents an easier (and non-proprietary!) FPGA fabric for
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CAD tools, at some cost in area and speed. The ZUMA FPGA overlay uses LUTRAMs

(i.e.: RAMs built from the LUTs in a Logic Cluster) to implement virtual LUTs and

multiplexers, at a 40× area penalty over the underlying FPGA, but portably to both Xil-

inx and Altera devices [19]. Koch, Beckhoff, and Lemieux improved ZUMA by mapping

the overlay’s interconnect directly onto the FPGA switch fabric, reducing area overhead

by 3.7×, and demonstrated using the overlay to implement custom instructions for a

MIPS-like soft-processor [68].

Alternatively, we can map a program’s data-flow graph (DFG) onto a Coarse-Grained

Reconfigurable Array (CGRA) implemented on top of a conventional FPGA, enabling

very rapid synthesis and P&R. However, this approach is in earlier research stages than

processor-based overlays. Capalija and Abdelrahman’s CGRA overlay contains integer or

floating-point functional units connected via elastic pipelines [23]. Their overlay presents

a simpler P&R problem than the underlying FPGA: fitting a DFG onto the overlay takes

a few seconds at most. They maintain a high raw Fmax via floorplanning, in contrast to

our results in Chapter 4, which did not find an advantage to floorplanning.

2.3 Significant FPGA Features Affecting The Design

Process

Given the previous overview of FPGA architecture, one could easily dismiss FPGAs as a

larger, slower, more power-hungry substitute for ASICs [70, 125, 126]. However, FPGAs

gain enormously in relative ease and flexibility of design, as they abstract away the worst

of the difficulties of designing custom hardware. When aimed at specific tasks, rather

than general-purpose computations, FPGAs can achieve power and performance figures

closer to that of equivalent ASICs [52] (albeit with a larger area) than the best-case

equivalent software running on a CPU [33,85].
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When implementing a hardware design onto an FPGA, we must keep in mind some

of the properties of the underlying FPGA hardware, and of its CAD tools, if we wish to

reach the best possible performance:

Boolean Optimizations On the one hand, extensive and reliable logic synthesis and

Boolean optimizations free us from having to implement logic directly in low-level, error-

prone Boolean expressions. Instead, we can take advantage of behavioural descriptions

such as if-statements and leave the translation to Boolean logic, and its optimization, to

the CAD tool.

Furthermore, if we design a logic function to require 6 or fewer inputs, then we can

reasonably assume it maps to a single LE per output bit. This assumption allows us to

estimate, at design time, both the area and the speed of logic functions. For example, a

single LE can encode up to 16 different Boolean functions of 2 inputs2. Thus an ordinary

32-bit Logic Unit would approximately use 32 LEs, plus some interconnect routing if each

Logic Cluster contains fewer than 32 LEs. We design a similar Logic Unit in Chapter 3.9.

Logical Partitioning On the other hand, the CAD tool does not yet consider the

location of the synthesized logic. If a certain sub-function appears repeatedly, the CAD

tool may optimize it to a single instance feeding all its destinations. In large designs,

these destinations may physically lie far from the single source instance, artificially adding

routing delay and slowing down the final circuit, regardless of the area saved by logic

optimization. We can impart this spatial knowledge to the CAD tool by placing repeated

sub-functions into separate logical partitions to prevent excessive optimizations. We use

such logical partitioning in Chapter 4 to maximize the speed of SIMD and multi-core

soft-processors.

2Interestingly, this exactly implements the set of all possible 2-input Boolean functions [34].
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The Cost of Multiplexers When implemented directly in silicon, multiplexers can

cost as little as one pass-transistor per input, plus associated selector logic. However,

FPGAs use LEs to implement general multiplexers. If the number of input and selector

bits exceed the number of LUT inputs in the LE, then the CAD tool must split the imple-

mentation over multiple chained LEs, increasing area and lowering speed. Furthermore,

due to routability limitations, the CAD tool may have to pack these multiple LEs into

separate Logic Clusters, further worsening speed and area.

Thus, FPGAs discourage design implementations which make “large” decisions in a

single step, such as Content-Addressed Memories (CAMs) and cross-bars3. If possible, we

should break down large multiplexers into smaller units separated by pipeline registers,

or alternately avoid multiplexers altogether.

Fortunately, we can easily do both: the 6-LUT inside an LE naturally fits a 4:1

multiplexer (4 data bits plus 2 selector bits), and can immediately register its output

into the LE’s flip-flop. Furthermore, if the input bits have “1-of-N” encoding (i.e.: only

one bit set at any time), then we can use the 6-LUT as a 6-input OR gate to merge them

using fewer LEs and no selector bits. We do exactly that in Chapter 6.5.2 to calculate

multiple branches in parallel.

Interconnect Delay, Pipelining, and Retiming Interconnect delay forms the ma-

jority of the total delay on FPGAs [56], and has worsened across device generations [93,

Fig. 1]. The interconnect channels have relatively long wires, with many configurable

sources and sinks adding significant intrinsic capacitance. However, we can limit the

length of the connections through the channels by pipelining logic functions, which also

allows the CAD tool to retime logic across LEs and potentially further improve delay.

Simply implementing a logic function by itself on an FPGA does not provide a good

delay estimate, since the CAD tool can place the Logic Clusters containing the function

3Though some recent research cleverly uses Block RAMs as time-multiplexed components of high-
throughput switches [35]
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as closely as possible without interference from any other circuitry. This approach only

gives an approximate lower bound to the delay of the function on that FPGA. That said,

we can leverage the CAD tool to more robustly determine the actual delay of a function,

and also the required number of pipeline stages to reach a certain operating frequency.

Rather than implementing a function by itself, with dangling inputs and outputs, we

instead loop the outputs of the logic function back to its inputs (taking care to avoid

cancelling away logic), which forces the CAD tool to realistically use the Interconnect

throughout that function’s implementation. Placing some Logic Clusters in close proxim-

ity necessarily further separates other Clusters. We then add pipeline stages, sometimes

manually retimed into the current critical path, until the logic function operates at the

desired speed. The resulting implementation preserves its performance when integrated

into a larger pipeline. We use this “self-loop characterization” technique in Chapter 3 to

design a maximally fast soft-processor.

Place-And-Route Randomness Even with all the previous design techniques and

precautions, we do not immediately get a reliable performance estimation from the CAD

tool, especially for fast pipelines where a few percent difference add up to many MHz.

Each Place-And-Route (P&R) solution depends on pseudo-random processes, and

may mislead us by returning fast or slow outlier results. For example, the calculated

maximum clock speed (Fmax) of the soft-processor shown in Figure 6.4 (pg. 113) varies

over a 12% range, which for this design represents a difference of up to 63 MHz between

any two P&R solutions.

When constructing high-performance designs, integrating a misleadingly fast sub-

pipeline into a larger pipeline may make it difficult to meet performance targets in later

P&R runs, with the true cause now obscured by the additional circuitry via retiming and

generally greater complexity4.

4Exploration with Logical Partitioning may isolate the true critical paths (Chapter 4), but we should
avoid the problem in the first place.
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To avoid outlier P&R results, we compute the average operating speed of a pipeline

over a number of P&R runs (e.g.: 10, used throughout this work), each starting from a

different initial random seed. The average gives a more reliable measure of achievable

speed. Additionally, multiple P&R runs also reveal how many of all the solutions meet

or exceed the performance target, giving a hint as to the robustness of the design perfor-

mance. Similarly, when doing design space exploration, comparing average speeds better

measures the impact of any design changes. Running multiple P&R runs also increases

the likelihood of finding the best-possible solution. When benchmarking different sys-

tems, we want to fairly compare them at their peak possible performance, rather than the

average. We use average Fmax comparisons throughout this work, except for Chapter 7

where we benchmark at peak Fmax.

2.4 The Potential for Higher-Performance Overlays

Given the trade-offs of HDLs, HLS, and Overlays, how do we improve the FPGA design

process? We instead claim that overlays already provide an easier and faster develop-

ment process (Section 2.2.3). The problem then reduces to: How do we improve the

performance of overlays?

Existing overlays use conventional processor architectures to maintain compatibility

with existing software and tools. Unfortunately, this compatibility means ignoring the

underlying FPGA, treating it as a fungible, abstract substrate. Although some overlays

achieve a net performance gain over others, their datapaths still use the FPGA hardware

poorly in terms of area and clock speed versus more direct HDL implementations.

Instead, accounting for the architecture of the underlying FPGA might allow for an

overlay which reaches some of the “sweet spots” of the hardware. By taking the generic

FPGA architectural descriptions from Section 2.1 as a lens for a real device, we may find

hints towards a more FPGA-centric computer architecture. The following descriptions,

ratings, and results apply to an Altera Stratix IV device [5, 10, 81]:
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Interconnect Structure The FPGA interconnect does not consist exclusively of long

wire channels running alongside Logic Clusters (Figure 2.2(b), pg. 8), and does not con-

nect equally in all directions. For example, each Stratix IV Logic Array Block (LAB,

corresponding to a Logic Cluster in Figure 2.2(a)) consists of 10 Adaptive Logic Mod-

ules (ALMs, each approximately containing the equivalent of 2 Logic Elements from

Figure 2.1). Each LAB can directly drive a total of 30 other ALMs, mostly in its left

and right neighbouring LABs. Beyond this range, we must use sufficient pipelining and

explicit logic duplication to limit the interconnect lengths and avoid critical paths. We

address pipelining in Chapter 3 and logic duplication in Chapter 4. We do both at a

higher level and with greater automation than previous high-performance designs [56],

which manually placed and routed the logic.

Block RAMs Block RAMs have the highest operating speed of all Stratix IV hard

blocks. Large designs tend to exhaust the supply of Block RAMs before any other hard

block. Thus, to get the most work out of an FPGA, a design must maximize the work

done by the Block RAMs. When connecting Block RAMs together, only two pipeline

stages suffice to fully absorb the interconnect delay and grant a theoretical speed of 773

MHz. However, the minimum clock pulse width requirements limits the actual speed to

550 MHz. Furthermore, contrary to most commodity RAM which holds words of 32 or

64 bits, FPGA Block RAMs support a range of widths from eight to 72 bits, in multiples

of eight or nine, meant to support error correction. We measure the necessary pipelining

in Chapter 3, and take advantage of unusual word widths throughout this work.

Logic Synthesis The Stratix IV Adaptive Logic Module (ALM, corresponding to Logic

Elements in Figure 2.1) contains a number of 3-LUTs and 4-LUTs, which we can approx-

imate as a pair of 6-LUTs with some shared inputs. Some Boolean functions will map

more effectively to these LUTs than others. Deliberately designing Boolean functions to

limit themselves to 6 inputs guarantees a single logic-level implementation using 1 LUT
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per output bit, registered if needed. We explicitly follow this constraint when we design

the Logic Unit in Chapter 3.9, and use it as a guideline when designing addressing and

branching modules in Chapter 6.

Arithmetic In addition to Logic Elements, each Stratix IV LAB contains 20 stages of

dedicated ripple-carry logic for adders and subtractors. The performance of ALUs also

affects the total amount of work we can extract from an FPGA. Without pipelining, a

32-bit adder computes at 506 MHz: slower than the Block RAMs. Two pipeline stages

suffice to exceed the 550 MHz limit of Block RAMs and avoid a performance bottleneck.

We demonstrate such a fast adder/subtractor in Chapter 3.9. This same knowledge also

tells us that smaller adders (e.g.: 10 bits, for address offsets) will not require pipelining.

We take advantage of single-stage small adders in Chapter 6.

DSP Blocks The Stratix IV DSP blocks perform Multiply-Accumulate operations.

Their fully-pipelined operating speed varies from 600 MHz at 18 bits down to 480 MHz

at 36 bits. Using two DSP blocks clocked in counter-phase on a 300 MHz half-rate clock

and fed a demultiplexed data stream allows full-width 36x36bit multiplies with 72-bit

results at a rate of 600 MHz, thus also avoiding a bottleneck when coupled to 550 MHz

Block RAMs. We integrate such a dual-pipeline multiplier into the ALU in Chapter 3.9.

Conclusion With some careful design, and by accepting some pipelining latency, we

can maximize the amount of work done by the interconnect, memory, logic, and arith-

metic components of an FPGA. With a suitable architecture and programming model,

we could create an overlay with the highest operating frequency possible and which uses

each cycle to its fullest.
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2.5 Summary

Field-Programmable Gate Arrays (FPGAs) provide an easier and less expensive way

to implement custom computing hardware than Application-Specific Integrated Circuits

(ASICs). However, as FPGAs and the designs implemented upon them grow in size,

current design processes face limitations: Hardware Description Languages (HDL) do not

scale to large system designs and require hours of Place-And-Route (P&R) CAD time.

Efforts to implement designs using High-Level Synthesis (HLS) do improve the design

process, but still ultimately resort to conversion to HDLs, with the same drawbacks.

Finally, Overlay architectures abstract away the FPGA hardware to provide a software-

friendly target for system design, albeit at a greatly reduced performance and increased

area relative to HDLs and HLS, usually by implementing one or more soft-processor(s).

By accounting for the significant features of FPGAs which affect circuit design, primarily

pipelining to control delay, we can potentially improve the performance of overlays.



Chapter 3

The Octavo Soft Processor

The FPGA substrate encourages soft-processors to have larger, low-associativity caches,

deeper pipelines, and fewer bypass networks than similar hard processors.

Henry Wong, Vaughn Betz, and Jonathan Rose [125,126]

Overlay processor architectures allow FPGAs to be programmed by non-experts using

software, but prior designs replicate the architecture of their ASIC predecessors. This

approach gains compatibility with established programming systems, but pays a heavy

cost in performance since FPGAs do not provide the same building blocks as ASICs. In

this chapter we develop a new processor architecture which, from the beginning, accounts

for and exploits the predefined widths, depths, maximum operating frequencies, and other

discretizations and limits of the underlying FPGA architecture.

From this design effort, we created Octavo, a ten-pipeline-stage eight-threaded proces-

sor that operates at the Block RAM maximum of 550MHz on a Stratix IV FPGA. A great

number of parameters define Octavo’s configuration, allowing us to explore trade-offs in

datapath and memory width, memory depth, and number of thread contexts.

This work originally appeared at FPGA 2012, Monterey [77].

26
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3.1 Design Goals

From our previous observations in Chapters 2.3 and 2.4 on how to maximize the work

performed by individual FPGA structures, we ask: How do we create an overlay archi-

tecture which maximizes the use of the underlying structures of an FPGA? Such an ideal

architecture would meet the following design goals:

Abundant Parallelism The overlay supports a variety of parallelism, both as homo-

geneous (SIMD) and heterogeneous (MIMD) tasks, to adapt to the target application

and potentially make use of the entire FPGA device.

High Clock Frequency The overlay maintains a high operating frequency (Fmax), at

or close to the actual actual hardware maximum (550 MHz, limited by Block RAMs).

Otherwise, even with seemingly full usage of the FPGA, the overlay hardware remains

stable and idle for much of each clock cycle, wasting potential for work.

Low Architectural Overhead A high Fmax does not suffice for high performance.

The overlay also minimizes the number of instructions required to do useful work, and

conversely, minimizes the number of cycles per instruction. Ideally, each primitive opera-

tion (e.g.: add, multiply, XOR, memory load) requires one, single-cycle instruction running

at a maximal Fmax. Multi-cycle operations hoist their overhead outside of loops, or get

converted to dedicated hardware, to amortize their cost down towards a single cycle.

Few Stalls The overlay avoids delays from shared hardware contention, sequential data

dependencies, and external memory latencies, aiming to have each cycle do useful work.

Simplicity And Minimalism The overlay bases itself on a simple architectural foun-

dation which composes into new features or larger systems, without introducing the

aforementioned architectural overhead. If the overlay instead begins with an existing ar-

chitecture (hardware or software), the details of that architecture act as an “attractor” to
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other existing solutions, limiting exploration. Features of existing solutions may emerge

in the overlay, but only by construction, not assumption.

Congruence With FPGA Structures The low-level features (e.g.: word widths,

pipeline depths, address spaces, and primitive operations) of the overlay match those

favoured by the underlying FPGA, even if they might not match those of conventional

ASIC processors. Otherwise, the overlay introduces architectural overhead by emulating

a feature, or leaves hardware unused.

3.1.1 A Multi-Threaded Overlay

Our overviews of FPGAs (Chapters 2.3 and 2.4) point to the inevitability of pipelining

to get the most work out of FPGA structures. However, dependencies between pipeline

stages often prevent full utilization, and mitigating the dependencies over a single thread

of execution (e.g.: result forwarding, branch prediction, pipeline interlocks) reduces per-

formance either by lowering operating frequency and/or increasing the average cycles-

per-instruction count.

Therefore, to gain the benefits of pipelining, but avoid dependencies, we propose a

fully pipelined and multi-threaded overlay architecture with the simplest multi-threading

scheme: we apply the required number of pipeline stages to reach the maximum operating

frequency (Fmax), then multiplex the same number of hardware threads over the pipeline

in a strict round-robin order (i.e.: we issue an instruction from the next thread in sequence

each clock cycle, without variation).

A strict round-robin multi-threaded and fully-pipelined overlay architecture addresses

the properties of an overlay which maximizes the use of the underlying FPGA. Indepen-

dent threads provide initial parallelism, either SIMD, MIMD, or both. Full pipelining

enables a high Fmax to minimize hardware idle time. Each thread instruction appears

to complete in a single-cycle, and can each complete a larger amount of work over the

length of the pipeline. Strict round-robin thread scheduling eliminates stalls from the
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pipeline, and provides a deterministic relationship between threads to simplify program-

ming. Finally, full pipelining also allows the overlay to match the necessary pipelining of

FPGA structures, and does not impose other architectural constraints from above.

By disallowing the conventional practice where a stalled thread (e.g.: due to memory

latency) relinquishes its slot to another waiting thread, we nearly eliminate data and

structural hazards1, greatly simplifying the control logic and any interactions between

threads. We can then compose these highly-regular threads together to tackle larger

programming problems, despite their limited individual performance.

3.2 Related Work

Many prior FPGA-based soft-processors designs have been proposed, although these

have typically inherited the architectures of their ASIC predecessors, and none have

approached the clock frequency of the underlying FPGA hardware. Examples include

soft uniprocessors [3,128], multi-threaded soft-processors [32,41,47,71,90,91], soft VLIW

processors [14,60,97,101], and soft vector processors [31,130,133]. Jan Gray has studied

the optimization of processors specifically for FPGAs [49], where synthesis and technology

mapping tricks are applied to all aspects of the design of a processor from the instruction

set to the architecture.

Historically, several computers used multi-threaded pipelines: The CDC 6600 [115],

and its descendant the CDC Cyber 170 [25], offloaded I/O tasks to 10 Peripheral Proces-

sors, implemented as a single processing unit multiplexed in a strict round-robin manner

over 10 separate processor states and memories. Separating I/O from the main CPU

allowed the designers to focus on its (superscalar) parallelism for scientific applications.

The Denelcor HEP [39, 61] maintained separate multi-threaded pipelines for instruction

execution and memory accesses, moving threads between them as necessary. Each of up

1Not quite. Some branching and configuration single-cycle delay slots still exist, but cancelling
branches (Chapter 6.5.2) and instruction re-ordering virtually eliminate them.
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to 16 processors had an 8-deep pipeline but supported up to 128 threads. Also, each

memory location had an associated empty/full bit to automatically synchronize depen-

dent instructions, regardless of thread, forcing instructions to wait until their results were

empty and their operands full. The Tera MTA [20, 111], the HEP’s successor, pushed

the same concepts further with larger numbers of processors (up to 256), a 3-way VLIW

ISA, and allowed each thread to issue up to 8 outstanding memory references.

These past machines used multi-threading to absorb the access latency to main mem-

ory (or I/O), switching between threads while the pipelined load or store completed,

rather than using a conventional cached memory hierarchy, which would perform poorly

on large or irregular data sets. In contrast, our proposed overlay architecture uses multi-

threading to absorb the latency of the underlying FPGA structures, switching between

threads as each instruction moves one step down the pipeline, rather than using super-

scalar, vector, or multi-core parallelism to complete more work per (slower) cycle.

3.3 Contributions

To begin,we focus on the architecture of a single soft-processor core and provide the

following four contributions:

• we present the design process leading to an 8-thread multi-threaded soft-processor

family that operates at up to 550MHz on a Stratix IV FPGA;

• we demonstrate the utility of self-loop characterization for reasoning about the

pipelining requirements of processor components on FPGAs;

• we present a design for a fast multiplier, consisting of two half-pumped DSP blocks,

which overcomes hardware timing and CAD limitations;

• we present the design space of soft-processor configurations of varying datapath

and memory widths, memory depths, and number of pipeline stages.
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Figure 3.1: High-level overview of the architecture of Octavo.

3.4 Introducing Octavo

As a starting point, we show the simplest processor design we could imagine in Figure 3.1,

which is composed of at least one multi-ported memory (BRAMs) connected to an ALU ,

supplying its operands (A and B) and instruction (I) and receiving its result (R). We

argue that separate memory cache and register file storage is unnecessary: on an FPGA

both are inevitably implemented using the same BRAMs. Thus, we unify memory and

registers, reducing the data and instruction memories and the register file into a single

entity directly addressed by the instruction operand fields. For this reason our final archi-

tecture is indeed not unlike the simple one pictured, having only a single logical storage

component (similar to the scratchpad memory proposed by Chou et al. [31]). We demon-

strate that this single logical memory eliminates the need for immediate operands and

load/store operations, but for now requires writing to instruction operands to synthesize

indirect memory accesses.

Via the technique of self-loop characterization, where we connect a component’s out-

puts to its inputs to take into account the FPGA interconnect, we determine for memories

and ALUs the pipelining required to achieve the highest possible operating frequency.

This leads us to an overall eight-stage processor design that operates at up to 550MHz on a

Stratix IV FPGA, limited by the maximum operating frequency of the BRAMs. To meet
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the goals of avoiding stalls and maximizing efficiency, we multi-thread the processor such

that an instruction from a different thread resides in each pipeline stage [41,47,71,90,91],

so that all stages are independent with no control or data hazards or result forwarding

between them.

We name our processor architecture Octavo2, for nominally having eight thread con-

texts. However, Octavo is really a processor family since it is highly parameterizable

in terms of its datapath and memory width, memory depth, and number of supported

thread contexts. This parameterization allows us to search for optimal configurations

that maximize resource utilization and clock frequency.

3.5 Experimental Framework

We evaluate Octavo and its components on an Altera Stratix IV FPGA of the highest

speed grade, although we expect proportionate results on other FPGA devices given

suitable tuning of the pipeline. We test our circuits inside a synthesis test harness

to ensure an accurate timing analysis. We average the Quartus synthesis results over

10 random initial seeds, and tune Quartus to produce the highest-performing circuits

possible. Appendices A and B describe the experimental framework and Quartus settings

in detail.

3.6 Storage Architecture

We begin our exploration of FPGA-centric architecture by focusing on storage. Since

modern mid/high-end FPGAs provide hard block RAMs (BRAMs) as part of the sub-

strate, we assume that the storage system for our architecture will be composed of

BRAMs. Since we are striving for a processor design of maximal frequency, we want

2An octavo is a booklet made from a printed page folded three times to produce eight leaves (16
pages).
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Figure 3.2: Self-loop characterization of memories to maximum unrestricted Fmax

to know how the inclusion of BRAMs will impact the critical paths of our design. As

already introduced, we use the method of self-loop characterization, where we simply

connect the output of a component under study to its input, to isolate (i) operating

frequency limitations and (ii) the impact of additional pipeline stages.

Figure 3.2 shows four 32-bit-wide memory configurations: 256-word memories using

one BRAM with one (3.2(a)) and two (3.2(b)) pipeline stages, and 1024-word memories

using four BRAMs with two (3.2(c)) and three (3.2(d)) pipeline stages. The result for

a single BRAM (3.2(a)) is surprising: without additional pipelining, the Fmax reaches

only 398MHz out of a maximum of 550MHz (limited by the minimum-clock-pulse-width

restrictions of the BRAM). This delay stems from a lack of direct connection between

BRAMs and the surrounding logic fabric, forcing the use of global routing resources3.

However, two pipeline stages (3.2(b), with register automatically retimed into BRAM

output) increases Fmax to 656MHz, and four pipeline stages (not shown) absorb nearly

all delay and increase the achievable Fmax up to 773MHz. Increasing the memory depth

to 1024 words (3.2(c)) requires 4 BRAMs, additional routing, and some multiplexing

logic—and reduces Fmax to 531MHz. Adding a third pipeline stage (3.2(d)) absorbs the

additional delay and increases Fmax to 710MHz.

3In hindsight, a long tco (Clock-to-Output time) delay may also contribute.
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Table 3.1: Octavo’s Instruction Word Format.
Size: 4 bits a bits a bits a bits

Field: Opcode (OP) Destination (D) Source (A) Source (B)

These results indicate that pipelining provides significant timing slack for more com-

plex memory designs. In Octavo, we exploit this slack to create a memory unit that

collapses the usual register/cache/memory hierarchy into a single entity, maps all I/O

as memory operations, and still operates at more than 550MHz. To avoid costly stalls

on memory accesses, we organize on-chip memory as a single scratchpad [31] such that

access to any external memory must be managed explicitly by software. Furthermore,

since an FPGA-based processor typically implements both caches and register files out

of BRAMs, we pursue the simplification of merging caches and register file into a sin-

gle memory entity and address space. Hence Octavo can be viewed as either being (i)

registerless, since there is only one memory entity for storage, or (ii) registers-only, since

there are no load or store instructions, only operations that directly address the single

operand storage.

3.7 Instruction Set Architecture

The single-storage-unit architecture decided in the previous section led to Octavo’s in-

struction set architecture (ISA) having no loads or stores: each operand can address any

location in the memory. Immediate values are implemented by placing them in memory

and addressing them. Subroutine calls and indirect memory addressing are implemented

by synthesizing code, explained in detail later in Section 3.12. Despite its frugality, we

believe that the Octavo ISA can emulate the MIPS ISA4.

Table 3.1 describes Octavo’s instruction word format. The four most-significant bits

hold the opcode, and the remaining bits encode two source operands (A and B) and

a destination operand (D). The operands are all the same size (a address bits), and

4We emulate a MIPS-like ISA in Chapter 6, and also add hardware support for indirect memory.
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Table 3.2: Octavo’s Instruction Set and Opcode Encoding.
Mnemonic Opcode Action

Logic Unit
XOR 0000 D ← A ⊕ B
AND 0001 D ← A ∧ B
OR 0010 D ← A ∨ B
SUB 0011 D ← A − B
ADD 0100 D ← A + B

— 0101 (Unused, for expansion)
— 0110 (Unused, for expansion)
— 0111 (Unused, for expansion)

Multiplier
MHS 1000 D ← A · B (High Word Signed)
MLS 1001 D ← A · B (Low Word Signed)
MHU 1010 D ← A · B (High Word Unsigned)

Controller
JMP 1011 PC ← D
JZE 1100 if (A = 0) PC ← D
JNZ 1101 if (A 6= 0) PC ← D
JPO 1110 if (A ≥ 0) PC ← D
JNE 1111 if (A < 0) PC ← D

the width of the operands dictates the amount of memory that Octavo can access. For

example, a 36-bit instruction word has a 4-bit opcode, three 10-bit operand fields, and 2

bits unused—allowing for a memory space of 210 (1024) words5.

Table 3.2 shows Octavo’s instruction set and opcode encoding, with eight opcodes

allocated to Adder and Logic instructions, three for the Multiplier, and five allocated

to control instructions, with the remaining three opcodes left for future expansion. The

Logic Unit opcodes are chosen carefully so that they can be broken into sub-opcodes to

minimize decoding in the ALU implementation. The Multiplier instructions return the

High (MHS) and Low (MLS) word of the signed double-word product, and the unsigned

High word (MHU) as the unsigned Low word computes identically to the signed version.

Note that later work in Chapter 6 will eliminate all control instructions, replacing

them with more efficient programmable hardware modules, and freeing their five opcodes

for future use.

5We make use of the 2 unused bits in Chapter 5 to extend the Destination address space.
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Figure 3.3: Implementation of the A and B Memories with memory-mapped I/O ports.

3.8 Memory

Having decided the storage architecture and ISA for Octavo, we next describe the design

and implementation of Octavo’s memory unit. In particular, we describe the implemen-

tation of external I/O, and the composition of the different memory unit components.

I/O Support Having only a single memory/storage and no separate register file elim-

inates the notion of loads and stores, which normally implement memory-mapped I/O

mechanisms. Since significant timing slack exists between the possible and actual Fmax of

FPGA BRAMs, we can use this slack to memory-map I/O mechanisms without impact-

ing our high clock frequency. We map word-wide I/O lines to the uppermost memory

locations (typically 2 to 8 locations), making them appear like ordinary memory and

thus accessible like any operand. We interpose the I/O ports in front of the RAM read

and write ports: the I/O read ports override the RAM read if the read address is in

the I/O address range, while the I/O write ports pass through the write address and

data to the RAM. This architecture provides interesting possibilities for future multicore

arrangements of Octavo: any instruction can now perform up to two I/O reads and one

I/O write simultaneously; also, an instruction can write its result directly to an I/O port

and another instruction in another CPU can directly read it as an operand.
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Implementation Figure 3.3 shows the connections of Octavo’s memory units and de-

tails the construction of the A and B Memories. Each memory behaves as a simple

dual-port (one read and one write) memory, receiving a common write value R (the

ALU’s result), but keeping separate read and I/O ports (Figure 3.3(a)). Thus, the I, A,

and B Memories all hold identical contents6. The I Memory contains only BRAMs, while

the A and B Memories additionally integrate a number of memory-mapped word-wide

I/O ports (typically two or four). For the A and B memories, reads or writes take 2

cycles each but overlap for only 1 at RD0/WR1. A write (Figure 3.3(b)) spends its first

cycle registering the address and data to RAM and activating one of the I/O write port

write-enable lines based on the write address. The data write to the RAM and to all I/O

write ports occurs during the second cycle.7 A read (Figure 3.3(c)) sends its address to

the RAM during the first cycle and simultaneously selects an I/O read port based on the

Least-Significant Bits (LSB) of the address. Based on the remaining Most-Significant

Bits (MSB) of the address, the second read cycle returns either the data from the RAM

or from the selected I/O read port. Our experiments showed that we can add up to about

eight I/O ports per RAM read/write port pair before the average operating speed drops

below 550MHz.

6We eliminate this wasteful data duplication in Chapter 5.
7We implemented the RAM using Quartus’ auto-generated BRAM write-forwarding circuitry, which

immediately forwards the write data to the read port if the addresses match. This configuration yields
a higher Fmax since there is a frequency cost to the Stratix IV implementation of BRAMs set to return
old data during simultaneous read/write of the same location [10]. However, since pipelining delays the
write to a BRAM by one cycle, a coincident read will return the data currently contained in the BRAM
instead of the data being written.
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Figure 3.4: Detailed view of the Multiplier unit

3.9 ALU

In this section we describe the development and design of Octavo’s ALU components,

including the Multiplier, the Adder/Subtractor, the Logic Unit, and their combination

to form the ALU.

Multiplier Unit To support multiplication for a high-performance soft-processor it

is necessary to target the available DSP block multipliers. Although Stratix IV DSP

blocks have a sufficiently-low propagation delay to meet our 550MHz target frequency,

they have a minimum-clock-pulse-width limitation (similar to BRAMs) restricting their

operating frequency to 480MHz for word-widths beyond 18 bits 8.

Figure 3.4 shows the internal structure of Octavo’s Multiplier and our solution to the

8For widths ≤18 bits, it might be possible to implement the multiplier with a single DSP block, but
current CAD issues prevent getting results consistent with the published specifications [10] for high-
frequency implementations.
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clocking limitation: we use two word-wide DSP block multipliers9 in alternation on a

PLL-generated synchronous half-rate clock (clk/2), such that we can perform two inde-

pendent word-wide multiplications, staggered but in parallel, and produce one double-

word product every cycle. In detail, the operands A and B are de-multiplexed into the

two half-rate datapaths on alternate edges of the half-rate clock. A single state bit driven

by the system clock (clk) selects the correct double-word product (P ) at each cycle.

Adder/Subtractor We also carefully and thoroughly studied adder/subtractors and

logic units while building Octavo, again using the method of self-loop characterization

described in Section 3.6. We experimentally found that an unpipelined 32-bit ripple-

carry adder/subtractor can reach 506MHz, and that adding 4 pipeline stages increases

Fmax up to 730MHz. An unpipelined carry-select implementation only reaches 509MHz

due to the additional multiplexing delay, but requires only two stages to reach 766MHz.

Due to the 550MHz limitation imposed by BRAMs, a simple two-stage ripple-carry adder

reaching 600MHz is sufficient.

Logic Unit The Logic Unit performs bit-wise XOR, AND, and OR operations (Table 3.2).

It also acts as a pass-through for the result of the Adder/Subtractor, which avoids an

explicit multiplexer and allows us to separate and control the implementation of the

Adder/Subtractor from that of the Logic Unit. The Logic Unit efficiently maps to a

single ALUT (Adaptive Look-Up Table) per word bit: 3 bits for the opcode, plus one

bit from the Adder/Subtractor result, and 2 bits for the A and B operands of the bit-

wise operations, totalling 6 bits and naturally mapping to a single Stratix IV 6-LUT per

output bit.

9We implement each multiplier using an LPM instance generated by the Quartus MegaWizard utility.
Although the Altera DSP blocks have input, intermediate, and output registers, a designer can only
specify the desired number of pipeline stages that begin at the input to the DSP block—hence we
cannot specify to use only the input and output registers to absorb the delay of the entire DSP block.
We bypass this limitation by instantiating a one-stage-pipelined multiplier and feeding its output into
external registers. Later register-retiming optimizations eventually place these external registers into
the built-in output registers of the DSP block, yielding a two-stage pipelined multiplier with only input
and output registers.
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Figure 3.5: Organization of Octavo’s ALU

Combined ALU Design Figure 3.5 shows the block-level structure of the entire ALU,

which combines the Multiplier (∗), Adder/Subtractor (+-), and Logic Unit (&|~). All

operations occur simultaneously during each cycle, with the correct result selected by

the output multiplexer after four cycles of latency. We optimized each sub-component

for speed, then added extra pipeline registers to balance the path lengths. We use the

Logic Unit as a pipeline stage and multiplexer to reduce the delay and width of the final

ALU result multiplexer. The combined ALU runs at an average of 595MHz for a width

of 36 bits.

3.10 Controller

Figure 3.6 shows the design of the Octavo Controller. The Controller provides the current

Program Counter (PC) value for each thread of execution and implements flow-control.

A Program Counter Memory (PCM) holds the next value of the PC for each thread of

execution. We implement the PCM using one MLAB10 instead of a BRAM, given a

typically narrow PC (< 20 bits) and a relatively small number of threads (nominally 8,

but up to 16)—this also helps improve the resource-diversity of Octavo and will ease its

10Memory Logic Array Blocks (MLABs) are small (e.g., 32 words deep by 20 bits wide) memories
found in Altera FPGAs.
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Figure 3.6: The multi-threaded Controller, which implements flow-control.

replication in future multicore designs. A simple incrementer and register pair perform

round-robin reads of the PCM , selecting each thread in turn. At each cycle, the current

PC of a thread is incremented by one and stored back into the PCM . The current PC

is either the next consecutive value from the PCM , or a new jump destination address

from the D instruction operand.

The decision to output a new PC in the case of a jump instruction is based on

the instruction opcode OP and the fetched value of operand A. A two-cycle pipeline

determines if the value of A is zero (0?) or positive (+?), and based on the opcode OP

decides whether a jump in flow-control happens (JMP?)—i.e., outputs the new value

of the PC from D, instead of the next consecutive value from the PCM . A Controller

supporting 10-bit PCs for 8 threads can reach an average speed of 618MHz, though the

MLAB implementing the PCM limits Fmax to 600MHz.
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3.11 Complete Octavo Hardware

In this section, we combine the units described in the previous three sections to build

the complete Octavo datapath shown in Figure 3.7, composed of an instruction Memory

(I), two data Memories (A and B), an ALU, and a Controller (CTL).

We begin by describing the Octavo pipeline from left to right. In Stage 0, Memory

I is indexed by the current PC and provides the current instruction containing operand

addresses D, A, and B, and the opcode OP . Stages 1-3 contain only registers and perform

no computation. Their purpose is to separate the BRAMs of Memory I from those of

Memories A/B by a suitable number of stages to maintain a 550MHz clock: as shown

by the self-loop characterization in Section 3.6, we must separate groups of BRAMs with

at least two stages—having only a single extra stage between the I and A/B memories

would yield an Fmax of only 495MHz for a 36-bit, 1024-word Octavo instance.

We insert three stages to avoid having an odd total number of stages. Across stages

4 and 5, the A and B memories provide the source operands (of the same name). The

ALU spans stages 6-9 and provides the result R which is written back at address D to

both Memories A and B (across stages 4 and 5 again), as well as Memory I (at stage 0).

The Controller (CTL) spans stages 6 and 7 and writes the new PC back to Memory I

in stage 0. The controller contains the PC memory for all threads, and for each thread
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decides whether (i) to continue with the next consecutive PC value, or (ii) to branch to

the new target address D.

There are three main hazards/loops in the Octavo pipeline. The first hazard exists

in the control loop that spans stages 0-7 through the controller (CTL)—hence Octavo

requires a minimum of eight independent threads to hide this dependence. The second

hazard is the potential eight-cycle Read-After-Write (RAW) data hazard between con-

secutive instructions from the same thread: from operand reads in stages 4-5, through

the ALU stages 6-9, and the write-back of the result R through stages 4-5 again (recall

that writing memories A/B also takes two stages)—this dependence is also hidden by

eight threads. The third hazard also begins at the operand reads in stages 4-5 and goes

through the ALU in stages 6-9, but writes-back the result R to Memory I for the purpose

of the instruction synthesis introduced in Section 3.7 and described in detail in the next

section. This loop spans ten stages and is thus not covered by only eight threads. Rather

than increase thread contexts beyond eight to tolerate this loop, we instead require a

delay slot instruction between the synthesis of an instruction and its use.

3.12 Octavo Software

As described in Section 3.7, the Octavo ISA supports only register-direct addressing, since

all operands are simple memory addresses—hence the implementation of displacement,

indirect, or indexed addressing requires two instructions: a first instruction reads the

memory location containing the indirect address or the displacement/index, and stores

it into the source or destination operand of a second instruction that performs the ac-

tual memory access using the modified operand address. The remainder of this section

provides examples of indirection implemented using the Octavo ISA, including pointer

dereference, arrays, and subroutine calls.
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1 int a = 42;

2 int c = 88;

3 int *b = &c;

4 ...

5 a = *b;

(a) C code

1 a: 42

2 c: 88

3 b: c

4 ...

5 la r1, a

6 la r2, c

7 ...

8 lw r3, 0(r2)

9 sw r3, 0(r1)

(b) Optimized MIPS code

1 Z: 0

2 a: 42

3 c: 88

4 b: c

5 ...

6 or T, T, b

7 nop

8 T: add a, Z, 0

(c) Octavo code (pre-execution)

1 Z: 0

2 a: 88
3 b: c

4 c: 88

5 ...

6 or T, T, b

7 nop

8 T: add a, Z, c

(d) Octavo code (post-execution)

Figure 3.8: Code Synthesis: Pointer dereference example.

Later, in Chapter 6, we convert these techniques for memory indirection and array

traversal into hardware operating in parallel with the software. We leave hardware sub-

routine calls as Further Work in Chapter 8.

3.12.1 Pointer Dereference

The C code in Figure 3.8(a) performs an indirect memory access by dereferencing the

pointer b and storing the final value into location a. In the MIPS ISA (Figure 3.8(b)),

this code translates into a pair of address loads (we use the common ’la’ assembler macro

for brevity) followed by a displacement addressing load/store pair. Since the value of b

is known at compile time, we assume that the compiler optimizes-away the dereference

and uses the address of c directly.

In the Octavo ISA we synthesize indirect addressing at run-time by placing the address

stored in b into a source operand of a later instruction that stores into a the contents
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of the address taken from b. Without load/store operations, we instead use an ADD

with “register zero” as one of the operands. Figure 3.8(c) shows the initial conditions

of the Octavo code and begins with a memory location defined as “register zero” (Z)

and others containing the same initialized variables (a, b, and c) as the C code. Line

6 contains an instruction that OR’s a target instruction T (line 8) with the contents of

b (line 3)—note that T ’s second source operand initially contains zero. A NOP or other

independent instruction must exist between the generating instruction and its target

due to the 1-cycle RAW hazard when writing to Memory I (Section 3.11) if executing

less than 10 threads. Figure 3.8(d) shows the result of executing from line 6 onwards,

that replaces the zero source operand in T with the contents of b, and later executes

T with the modified operand, storing the contents of c into a. If the compiler knows

the value of the pointer b, it can perform these steps at compile-time and synthesize the

final instruction—avoiding the run-time overhead. To traverse a linked list or any other

pointer-based structure, the target instruction T instead can update the pointer b itself.

3.12.2 Iterating over Arrays

Despite the apparent inefficiency of needing to synthesize code to perform indirect mem-

ory accesses, manipulating the operands of an instruction can also have advantages. For

example, the C code in Figure 3.9(a) describes the core of a loop summing two arrays.

Figure 3.9(b) shows a straightforward translation to MIPS assembly: the same letters

as in the C code denote consecutive array locations. After a 3-instruction preamble to

load the array addresses into registers r1, r2, and r3, the next four instructions (lines

12-15) load the B and C array element values, sum them, and store them back into the

corresponding A element. The last three instructions increment the array pointers.

The equivalent Octavo assembly code in Figure 3.9(c) works in the same way, but

using synthesized code: after directly performing the array element sum at T on line 9,

we add 1 to each address operand using a word-wide value I on line 7. This increment
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1 int A[] = { 42, ...};

2 int B[] = { 23, ...};

3 int C[] = { 88, ...};

4 ...

5 *A = *B + *C;

6 A++;

7 B++;

8 C++;

(a) C code

1 A : 42

2 A’: ...

3 B : 23

4 B’: ...

5 C : 88

6 C’: ...

7 ...

8 la r1, A

9 la r2, B

10 la r3, C

11 ...

12 lw r5, 0(r2)

13 lw r6, 0(r3)

14 add r4 , r5, r6

15 sw r4, 0(r1)

16 addi r1, r1, 1

17 addi r2, r2, 1

18 addi r3, r3, 1

(b) MIPS code

1 A : 42

2 A’: ...

3 B : 23

4 B’: ...

5 C : 88

6 C’: ...

7 I : 0 1, 1, 1

8 ...

9 T : add A, B, C

10 add T, T, I

(c) Octavo code (pre-execution)

1 A : 111
2 A’: ...

3 B : 23

4 B’: ...

5 C : 88

6 C’: ...

7 I : 0 1, 1, 1

8 ...

9 T : add A’, B’, C’
10 add T, T, I

(d) Octavo code (post-execution)

Figure 3.9: Code Synthesis: Array access example.

value I contains the increment of each array pointer, each shifted to align with the

corresponding address field, and a zero value aligned with the opcode field. Adding I to

T yields the updated code for the next loop iteration in Figure 3.9(d). Compared to the

MIPS code in Figure 3.9(b), Octavo requires only two instructions instead of seven to

compute the same loop body.
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1 Z: 0

2 RET1: jmp X, 0, 0

3 RET2: jmp R, 0, 0

4
5 sub:

6 ...

7 E: jmp X, 0, 0

8
9 caller:

10 ...

11 add E, Z, RET2

12 jmp sub , 0, 0

13 R: ...

(a) pre-execution

1 Z: 0

2 RET1: jmp X, 0, 0

3 RET2: jmp R, 0, 0

4
5 sub:

6 ...

7 E: jmp R, 0, 0

8
9 caller:

10 ...

11 add E, Z, RET2

12 jmp sub , 0, 0

13 R: ...

(b) post-execution

Figure 3.10: Code Synthesis: Call/return example.

Synthesized code does however increase the size of loop preambles. Octavo’s loop

preamble overhead could become significant with many short nested loops, but compiler

optimizations such as loop coalescing would reduce it. Similarly, induction variable elim-

ination would reduce the amount of synthesized code required for more complex array

access patterns.

3.12.3 Synthesizing Subroutine Calls

Without call stack hardware support, Octavo must synthesize code to implement sub-

routine linkage using a method previously described by Knuth [67]. While somewhat

awkward, having to synthesize CALL and RET instructions saves two scarce opcodes for

other uses and enables conditional calls and returns at no extra cost.

Figure 3.10(a) shows a synthesized CALL and RET pair example. Lines 2 and 3

contain return jumps RET1 and RET2 that act as the “RET” for specific “CALLs” to

sub (lines 5-7). These return jumps get placed by callers at the exit point E of sub, that

currently contains a copy of RET1 placed there by a previous caller. Before jumping

to sub at line 12, the caller will change sub’s return jump target from X to R, the
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return point in the caller at line 13. Figure 3.10(b) shows the updated code after line 11

executes, with the exit point E updated to return to R. Using JNZ, JZE, JPO, or JNE

instead of JMP at line 3 implements a conditional subroutine return. Doing the same at

line 12 implements a conditional subroutine call.

Because this linkage scheme stores the return jump target address within the sub-

routine code, it does not allow a second call to a subroutine before the first call returns.

Within a single thread, recursive subroutines must be converted to iterative ones. Across

different threads, we must create thread-private copies of the subroutine. We outline a

basic solution for true subroutine calls as Further Work in Chapter 8.

3.13 Programming Model

To create programs that use Octavo most effectively, we must take into account Oc-

tavo’s pipelined and multi-threaded nature. Although Octavo’s strict round-robin multi-

threading (i.e.: without variation in thread order) may initially appear rigid, it allows us

to easily compose smaller threads together against larger problems. Similarly, the ab-

sence of stalls in the pipeline and the minimal RAW hazards allow us to easily keep the

pipeline fully utilized. We outline here some of the major features of Octavo’s pipelined

and multi-threaded programming model, and will update them as this work progresses

in later chapters.

3.13.1 Unrolling Code

Within a thread, consecutive instructions usually suffer no RAW hazards. Each thread

instruction can immediately use the result of the previous one. Exceptions arise when

a thread instruction writes outside of the ALU datapath to the Instruction memory 11.

These writes take effect after one thread cycle. Reordering instructions usually fills the

11And in Chapter 6, to the AOM and BTM.
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resulting delay slot, and we can unroll sequences of instructions with such RAW hazards

to keep the pipeline busy. For example, Listing 8.1 (pg. 161) presents a simple interpreter

which unrolls its writes to Instruction memory to avoid having to fill the delay slot with

a no-op. When programming an Octavo thread, we should unroll loops containing RAW

hazards as necessary to avoid no-ops, especially since Octavo favours small, tight loops

with little instruction re-ordering possible.

3.13.2 Pipelined Data-Parallel Multi-Threading

If an application has any regular data parallelism (e.g.: arrays), we can divide the work

across multiple Octavo threads. We should first solve the problem as if using a single

thread. We can then calculate the appropriate addresses in multiple copies of the single

thread code to divide the data into multiple pieces, one per thread, and run the cus-

tomized single-threaded solutions in each thread concurrently, filling Octavo’s pipeline.

Although this programming model resembles current multi-threaded and multi-core GPU

(Graphics Processing Unit) programming (e.g.: OpenCL), Octavo’s threads operate in-

dependently, without penalty for diverging control flow, as would occur on a GPU with

code containing conditional expressions.

However, this amplification by multi-threading also multiplies the cost of branching

and addressing. When all threads operate in a pseudo-SIMD manner, by executing

identical code in lock-step but on different data, then each branch also gets repeated

by the number of threads, effectively causing a large bubble in the pipeline. The cost

of addressing similarly increases: each thread requires a private copy of the code in

Instruction memory, and must each repeat the address calculations within each copy.

Nonetheless, we manage to eliminate these overheads in Chapter 6 with some hardware

improvements.



50 Chapter 3. The Octavo Soft Processor

3.13.3 Converting ILP to Multi-Threading

At the limit, if we cannot express a solution directly as multi-threaded parallelism, we can

schedule independent instructions across multiple Octavo threads to emulate superscalar

execution and increase the usage of the pipeline beyond a single Octavo thread. For

example, if we can apply loop transformations to enable loop unrolling and increase

Instruction-Level Parallelism (ILP), we can create as many independent “threads” of

execution as we need. Briefly put, we then schedule the new independent instructions

into consecutive Octavo threads. If an instruction depends on a previous one, we must

schedule it either as the next instruction in the same thread, or at the same point in

a following thread, to ensure the previous instruction has completed. Once we have

scheduled all the possible ILP, we can then software-pipeline where applicable to fill

empty slots in the used Octavo threads, or to replicate the process across more Octavo

threads (e.g.: 2 groups of 2 “superscalar” Octavo threads).

3.13.4 Difficulties: Synchronization

While threads may diverge in control-flow without problem, we cannot perform a subse-

quent “rendez-vous” across threads since the memory reads and writes of thread instruc-

tions are not atomic across threads. Eight clock cycles pass between a thread instructions’

source operand reads and its destination operand write, during which other threads may

read or write the same memory locations. Thus, a thread cannot implement an atomic

read-modify-write action upon which we could build some synchronization or exclusion

primitives such as test-and-set or compare-and-swap. We will need to use a hardware

I/O handshaking mechanism, introduced in Chapter 5, to construct atomic read and/or

write primitives (Section 5.3).
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Figure 3.11: Octavo maximum operating frequency vs. word width

3.14 Speed and Area

In this section, we examine many varying instances of Octavo as instantiated on a Stratix

IV EP4SE230F29C2 device. In particular we measure maximum operating frequency

(Fmax), area usage, and area density over a range of configurations, varying word width,

memory depth, and number of pipeline stages. We perform these experiments to confirm

that Octavo achieves our stated goals for a processor design (Section 3.1) over a wide

range of configurations.

3.14.1 Maximum Operating Frequency

Our first experiments address whether Octavo’s high Fmax will hold for non-trivial and

unconventional word widths and increasing memory depths. We find that, over a range

of word widths from 8 to 72 bits, Fmax remains high and degrades smoothly.

Figure 3.11 shows the maximum operating frequency Fmax of Octavo for word widths

ranging from 8 to 72 bits, and for Octavo instances with 8 to 16 pipeline stages. The
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Figure 3.12: Octavo maximum operating frequency vs. memory depths and word widths

dashed line indicates the 550MHz Fmax upper limit imposed by the BRAMs. As a rough

comparison we plot the 32-bit NiosII/f soft-processor, reported to be 230MHz for our

target FPGA [11]. For this experiment we limited memory depth to a maximum of 256

words so that each memory fits into a single BRAM, avoiding any effect on Fmax from

memory size and layout.

For all pipeline depths, Fmax degrades slowly from about 625MHz down to 565MHz

when varying word width from 8 to 36 bits. For 12 to 16 pipeline stages Fmax decreases

only 28% over a 9x increase in width from 8 to 72 bits, and still reaches just over 450MHz

at 72 bits width. Word widths beyond 36 bits exceed the native capacity of the DSP

blocks, requiring additional adders (implemented with ALUTs) to tie together multiple

DSP blocks into wider multipliers. Adding more pipeline stages to the Multiplier absorbs

the delay of these extra adders but increases total pipeline depth. Increasing pipeline

depth by 4 stages up to 12 absorbs the delay of these extra adders.

Unfortunately a CAD anomaly occurs for widths between 38 and 54 bits (inclusive),

where Quartus 10.1 cannot fully map the Multiplier onto the DSP blocks, forcing the use
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of yet more adders implemented in FPGA logic. Increasing the pipelining to 14 stages,

again by adding stages in the Multiplier, overcomes the CAD anomaly. Increasing the

pipelining to 16 stages has no further effect on Octavo, whose critical path lies inside the

Multiplier. The CAD anomaly affects Octavo in two ways: the affected word-widths must

pipeline the Multiplier further than normally necessary to overcome the extra adder delay,

and also show a discontinuously higher Fmax than the wider, unaffected word-widths (56

to 72 bits), regardless of the number of pipeline stages. Unfortunately this CAD anomaly

hides the actual behaviour of Octavo at the interesting transition point at widths of 36

to 38 bits, where the native width of both BRAMs and DSP blocks is exceeded.

Figure 3.12 shows the maximum operating frequency (Fmax) for a 16-stage Octavo

design over addressable memory depths ranging from 2 to 32,768 words and plotted for

word widths from 8 to 72 bits. We also mark the 550MHz actual Fmax upper limit

imposed by the BRAMs. We use 16 stages instead of 8 to avoid the drop in performance

caused by the CAD anomaly.

The previously observed discontinuous Fmax drop in Figure 3.11 for Octavo instances

with widths of 56 to 72 bits is visible here in the cluster of dashed and dotted lines lying

below 500MHz for depths of 256 to 4096 words. Similarly, the cluster of dashed lines

above 500MHz spanning 256 to 4096 words depth contains the word widths (38 to 54

bits) affected by the CAD anomaly.

A memory requires twice as many BRAMs to implement widths exceeding the native

BRAM maximum width of 36 bits. Unfortunately, the CAD anomaly masks the initial

effect on Fmax of doubling the number of BRAMs for the same depth when exceeding a

word width of 36 bits.

For depths up to 256 words, which all fit in a single BRAM, and widths below

where the CAD anomaly manifests (8 to 36 bits), Fmax decreases from 692MHz down

to 575MHz, a 16.9% decrease over a 4.5x increase in word width and 128x increase in

memory depth (2 to 256 words). For depths greater than 256 words, if we take as exam-

ple the narrowest width (50 bits) which can address up to 32,768 words, Fmax decreases
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Figure 3.13: Octavo area vs. memory depths and word widths

49.8% over a 64x increase in depth (512 to 32,768 words). The decrease changes little

as width increases: 42.1% at 72 bits width over the same memory depths. Overall, an

increase in memory depth affects Fmax much more than an increase in width, with the

effect becoming noticeable past 1024 words of depth.

Summary We summarize with two main observations: (i) widths > 36 bits require

additional logic and pipelining, and (ii) a CAD anomaly forces longer pipelines and hides

the actual curves for less than 14 pipeline stages. We also found that at least 12 pipeline

stages are necessary for widths greater than 56 bits, modulo the CAD anomaly, and that

memory depth has a greater effect on Fmax than word width, becoming significant beyond

1024 words.

3.14.2 Area Usage

Our next experiments tests if Octavo’s area scales practically as word width and memory

depth increase. Figure 3.13 shows the area used in ALUTs (Adaptive Look-Up Tables),
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excluding BRAMs and DSP blocks, over word widths ranging from 8 to 72 bits, for an

8-stage Octavo design. Where possible, for each width, we plot multiple points, each

representing an addressable power-of-2 memory depth ranging from 2 to 32,768 words.

We also mark the reported 1,110 ALUT area usage of the 32-bit NiosII/f soft-processor

on the same FPGA family [11].

For small memories having less than 256 words, the area used varies roughly linearly,

increasing 11.4x in area over a 9x increase in width. The CAD anomaly causes two small

discontinuous increases in the ALUT usage: +24.2% while increasing from 36 to 38 bits

width, and +16.5% from 54 to 56 bits, both cases for a memory depth of 256 words.

Increasing memory depth has little effect on the amount of logic used: at a width of 72

bits, the area increases from 2478 to 3339 ALUTs (+37.5%) when increasing the memory

depth from 256 to 32,768 (128x).

Summary We found that area varies roughly linearly with word width, varies little

with memory depth, and is also affected by the CAD anomaly.

3.14.3 Density

Our final experiments seek to find if some Octavo configurations are “denser” than others,

leaving fewer ALUTs (Adaptive Look-Up Tables), BRAMs, or DSP blocks unused within

their rectangular area (a LogicLock floorplan automatically determined by Quartus).

Figure 3.14 shows the density, measured as the percentage of ALUTs in actual use within

the rectangular area containing an 8-stage Octavo instance, over word widths ranging

from 8 to 72 bits and plotted for each addressable memory depth ranging from 2 to

32,768 words. BRAMs and DSP block do not count towards ALUT count. Word width

has no clear effect, but density drops sharply for depths exceeding 1024 words due to the

BRAM columns needing a larger rectangular area to contain them than would compactly

contain the processor logic implemented using ALUTs.
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Figure 3.14: Octavo density vs. memory depths and word widths

Figures 3.15(a) and 3.15(b) illustrate the effect of the layout of BRAMs on the density.

Each show an 8-stage, 72-bit wide Octavo instance with a memory of 1024 and 4096

words respectively. The large shaded rectangular area contains only the ALUTs used

by Octavo: any outside ALUTs belong to a test harness and do not count; the darker

columns contain the BRAMs implementing the Memory; the pale columns contain DSP

blocks implementing the Multiplier and are part of Octavo despite protruding below the

rectangular area in one instance; the remaining small blocks denote groups of ALUTs,

with shade indicating the relative number of ALUTs used in each group. When increasing

from a 1024 to 4096 word memory, the number of ALUTs used to implement Octavo

increases only 15.3%, but the density drops from 65% to 26% due to the unused ALUTs

enclosed by the required number of BRAMs.

For memories deeper than 1024 words, we could recover the wasted ALUTs by al-

lowing non-Octavo circuitry to be placed within its enclosing rectangular area, but this

choice may negatively affect Fmax due to increased routing congestion. Further work may
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(a) 1024 Words (b) 4096 Words

Figure 3.15: Physical layout of an 8-stage, 72-bit wide Octavo instance with (a) 1024
and (b) 4096 memory words.

lead us to create vector/SIMD versions of Octavo to reclaim unused resources12.

Summary Our experiments confirm our original intuition that there exists a “sweet

spot”—where the number of BRAMs used fits most effectively within the area of the

CPU—at approximately 1024 words of memory depth, regardless of word width.

12We create SIMD and many-core Octavo systems in Chapter 4.
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3.15 Conclusions

In this chapter we presented initial work to answer the question “How do FPGAs want

to compute?”, resulting in the Octavo FPGA-centric soft-processor architecture family.

Octavo is a ten-pipeline-stage, eight-threaded processor that operates at the BRAM

maximum of 550MHz on a Stratix IV FPGA, is highly parameterizable, and behaves

well under a wide range of datapath and memory width, memory depth, and number of

supported thread contexts:

• Fmax decreases only 28% (625 to 450MHz) over a 9x increase in word width (8 to

72 bits);

• Fmax decreases 49.8% over a 64x increase in memory depth (512 to 32k words), and

almost independently of word width;

• the amount of logic used is almost unaffected by memory depth: at a width of 72

bits, the usage increases from 2478 to 3339 ALUTs (+37.5%) when increasing the

memory depth from 256 to 32,768 (128x);

• the amount of logic used varies roughly linearly with word width, increasing 11.4x

over a 9x increase in width (8 to 72 bits);

• and the area density is unaffected by word width, but drops sharply for memory

depths exceeding 1024 words due to the BRAM columns needing a larger containing

rectangular area than that required for the processor logic.
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Tiling Overlay Architectures

Note that for these ultrahigh-speed designs, properly positioning the data takes more CLBs

than performing the computation. This observation suggests that wiring speed has more

importance than LUT speed for ultrahigh-performance designs.

Brian Von Herzen [56]

Common practice for large FPGA design projects divides sub-projects into separate

synthesis partitions to allow incremental recompilation as each sub-project evolves. In

contrast, smaller design projects avoid partitioning to give the CAD tool the freedom

to perform as many global optimizations as possible, knowing that the optimizations

normally improve performance and possibly area.

In this chapter, we show that for high-speed tiled designs composed of duplicated

components and hence having multi-localities (multiple instances of equivalent logic),

a designer can use partitioning to preserve multi-locality and improve performance. In

particular, we focus on the lanes of SIMD soft-processors and multicore meshes composed

of them, as compiled by Quartus 12.1 targeting a Stratix IV EP4SE230F29C2 device.

We demonstrate that, with negligible impact on compile time (less than ±10%):

• we can use partitioning to provide high-level information to the CAD tool about

preserving multi-localities in a design, without low-level micro-managing of the

design description or CAD tool settings;

59
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• by preserving multi-localities within SIMD soft-processors, we can increase both

frequency (by up to 31%) and compute density (by up to 15%);

• partitioning improves the density and speed (by up to 51 and 54%) of a mesh of

soft-processors, across many building block configurations and mesh geometries;

• the improvements from partitioning increase as the number of tiled computing

elements (SIMD lanes or mesh nodes) increases.

As an example of the benefits of partitioning, a mesh of 102 scalar soft-processors

improves its average operating frequency from 284 up to 437 MHz, its performance from

28,968 up to 44,574 MIPS, while increasing its logic area by only 0.85%.

This work originally appeared at ICFPT 2013, Kyoto [78].

4.1 Introduction

Soft overlay architectures can ease design challenges on FPGAs by making them more

software-programmable. Examples of such systems include VESPA [130], VEGAS [31],

VENICE [106], iDEA [26, 27], Octavo [77], and others [14, 73, 119, 135, 137]. In general,

overlays provide parallelism through “tiling” (duplicating in two dimensions) computing

elements such as datapaths and soft-processors. Our goals for this work are to discover the

best practices for achieving (i) maximum operating frequency, and (ii) maximum compute

density (the amount of possible work per unit area) for tiled soft overlays. Notably we

explore tiled designs that operate at much higher than usual clock frequencies (400 to

500 MHz), so we must carefully control their critical paths.

4.1.1 Terminology

Multi-Local Logic Tiled designs necessarily contain logically equivalent, duplicated

circuitry across each tiled element. We refer to this circuitry as “multi-local” since it
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operates locally and identically in multiple instances across a design. Normally, to reduce

logic usage, a CAD tool performs redundancy elimination to optimize multi-localities

down to a single instance (“deduplication”) and then fans-out its output to all the original

locations. While generally beneficial on a small scale, deduplication may introduce new

critical paths on a larger scale or in higher-speed circuits, for only a modest reduction in

logic usage. Current methods to control deduplication involve manually micro-managing

the design description or the CAD tool settings on a per-logic-node basis [104].

Connected multi-local logic has a common point of origin, feeding multiple identical

circuits producing identical outputs and/or entering the same state (e.g.: address and

instruction decoders in SIMD lanes). We typically observe connected multi-local logic

when tiling datapaths.

Unconnected multi-local logic shares no inputs or outputs, but produces identical

outputs and remains in identical states (e.g.: identical counters initialized at reset). We

typically observe unconnected multi-local logic when tiling entire soft-processors.

Partitioning Partitioning refers to the logical division of a design into one or more sub-

sections, usually at module boundaries, which then synthesize as separate netlists. The

total design remains the same except for certain optimizations such as register retiming

or (de)duplication, and Boolean simplifications, which do not cross partition boundaries.

In this study we find that partitioning provides a simple and effective method to provide

high-level information to the CAD tool to preserve multi-localities during synthesis and

thus avoid deleterious deduplication. Merely partitioning the major datapaths of a tiled

system suffices to prevent harmful global deduplication, while preserving beneficial local

optimizations, for little cost in area. Furthermore, this use of partitioning causes no

significant changes in total CAD time, granting improved performance “for free” without

increasing the design cycle time.

Compute Density Rather than focus entirely on maximum operating frequency, we

also consider the overall efficiency of the resulting designs in terms of computation per
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Figure 4.1: Block diagrams of Mesh, (SIMD) Core, and Scalar modules.

unit FPGA area per cycle—in other words, the compute density. A denser implementa-

tion is more desirable to replicate and tile into multicores. We demonstrate that parti-

tioning improves density by increasing speed more than area.

Floorplanning Floorplanning describes the process of spatially pre-allocating areas on

the FPGA device to sub-modules of a larger project, allowing them to evolve indepen-

dently as sub-projects without encroaching on the placement (and thus, the timing) of

other sub-modules. We find that floorplanning has no clear or predictable benefit to

compute density, and always lowers compute density relative to the same design without

a floorplan. However, these results also show that a designer can tile an overlay without

concern for the placement, proximity, or shape of each tile, letting the CAD tool find a

good solution itself.

Designers do currently use floorplanning and partitioning as project management

techniques to enable incremental re-compilation in larger, multi-part projects [4, 136],

but solely to preserve past CAD results, without any focus on improving performance

directly. Similarly, designers leave smaller projects unpartitioned and free-form to give

the CAD tool the freedom to perform as many global optimizations as possible, knowing

that those optimizations normally improve performance and area.
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4.1.2 Design Space

In this chapter, we focus on tiled designs composed of SIMD lanes of soft-processors, and

multicore meshes built up from these. We construct these designs as extensions to the

openly available Octavo1 soft-processor [77], described in Chapter 3, whose operating

frequency can reach up to the BRAM limit of 550MHz on Stratix IV FPGAs, and thus

presents a good candidate for exploring the effects of tiled scaling and partitioning.

Figure 4.1 outlines the modules and tilings used throughout: Meshes (Figure 4.1(a))

directly connect the I/O of Cores in a bidirectional North/South/East/West manner.

Each Core (Figure 4.1(b)) contains a Scalar processor with optional SIMD Lanes, all

pipelined one instruction behind the Scalar processor for best performance2. Each Scalar

(Figure 4.1(c)) processor contains a simple Control path and Data path with I/O memory-

mapped into the Data Memory. Each SIMD Lane contains a single Data path.

We explore the speed, area, and density of SIMD processors with 0 to 32 lanes, with

and without partitioning, and find that partitioning preserves multi-locality, increasing

speed and density significantly, and increasing area moderately. We try to extend these

SIMD results by adding instruction pipeline stages between each SIMD lane to force

a sequential dependency between each lane to prevent deduplication. Pipelining does

provide some benefits, but can only crudely approximate the effects of partitioning and

staggers the execution across SIMD lanes. Finally, we create rectangular meshes (with

North, South, East, and West point-to-point bidirectional links) of soft-processors, with

and without SIMD lanes. We find that constructing high-speed meshes exposes different

unconnected multi-localities, preserved with different partitioning, despite having the

same underlying hardware as in the SIMD study. Partitioning meshes also increases

their speed and density, with little area increase.

1Available on GitHub at https://github.com/laforest/Octavo
2We remove that pipeline register prior to benchmarking in Chapter 7, paying a 2–3% drop in average

Fmax in exchange for simpler programming by keeping all datapaths in lockstep.

https://github.com/laforest/Octavo
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4.1.3 Contributions

Our main contribution is demonstrating that partitioning can preserve the multi-locality

of tiled designs, without requiring detailed per-node micro-management, and without in-

terfering with other beneficial optimizations or the place-and-route process. Partitioning

also gives better results than having the CAD tool indiscriminately either globally remove

duplicate logic or not remove any. In addition, we demonstrate that: floorplanning pro-

vides no predictable benefits to compute density, and generally lowers it; partitioning the

major datapaths of SIMD and Mesh tiled soft-processors improves speed and compute

density, with the improvement increasing with the number of tiles and without increasing

the total CAD time; and that we can force the CAD tool to preserve multi-locality by

pipelining the paths between connected multiply-local logic instances, albeit also at the

cost of staggered execution, and with no improvement to unconnected multi-localities.

4.2 Experimental Framework

Our experiments target an Altera Stratix IV FPGA of the highest speed grade. We test

our circuits inside a synthesis test harness to ensure an accurate timing analysis. We

average the Quartus synthesis results over 10 random initial seeds, and tune Quartus

to produce the highest-performing circuits possible. Appendices A and B describe the

experimental framework and Quartus settings in detail.

To explore the effects of duplicate register removal, we sometimes disable this spe-

cific optimization, denoted throughout as “nrdr” (No Removal of Duplicate Registers).

We calculate compute density as total Peak MIPS (over all datapaths) per 100 eALMs

(equivalent ALMs, see Appendix A). By itself, a Stratix IV ALM roughly contains two

6-LUTs, two flip-flops, and two full-adders with carry-chain logic.

Our experiments and results only apply against Altera’s Quartus CAD tool suite. How-

ever, based on past experience when porting designs from Altera to Xilinx platforms [75],
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Figure 4.2: Average density heat map of a floorplanned Scalar Octavo Core

we believe that our partitioning techniques would produce similar results on Xilinx’s ISE

and Vivado CAD tools, once we accounted for their particular logic optimization be-

haviours.

4.3 Floorplanning a Scalar Core

We initially explored simply floorplanning multiple tiles into separate and adjacent floor-

plans (of sufficient area) to preserve their multi-localities, contain their critical paths,

and thus improve performance. However, this approach gives the CAD tool a harder

place-and-route problem to solve for an otherwise identical design, always produces worse

results than non-floorplanned versions, and thus we abandoned this approach.

Knowing this limitation, our new goal was to find a floorplan layout that would

act as a hint to the CAD tool to enable the logic of a single tile to fit better into the

structure of the FPGA hardware and improve performance, prior to any tiling. The



66 Chapter 4. Tiling Overlay Architectures

Stratix FPGA architecture [82] places each logic resource type (ALMs, BRAMs, DSPs,

etc...) into columns which span the height of the device and contain only one resource

type each. Each cell in these columns has a relatively tall, narrow rectangular shape,

and thus has more horizontal routing passing over it than vertical. We hypothesized

that some floorplan shapes might take advantage of the cell aspect ratio and routing

directional bias to improve logic usage and performance. We could then preserve the

post-placement layout inside the floorplan, and simply “rubberstamp” the optimized tile

across the FPGA.

Figure 4.2 shows a heatmap of the density of a Scalar Octavo Core when floorplanned

into rectangular areas ranging from 4x4 to 20x20 LABs (Logic Array Blocks), with DSP

and BRAM block excluded: The CAD tool may use DSP and BRAMs from outside

the floorplan if necessary, and may float the floorplan anywhere on the FPGA to get

good access to resources. A LAB contains a column of 10 ALMs with local interconnect.

A Scalar Core requires over 64 LABs of logic area within the floorplan to successfully

fit. The coordinates of a point on the heatmap denote a floorplan with a congruent

rectangular shape, with the origin as the opposite corner. White squares indicate where

the design did not fit in the floorplan.

As expected, forcing a tight fit (e.g.: less than 10x10) generally reduces Fmax, and

thus density, due to difficult routing. Any looser fit results in a middling density since the

floorplan poses fewer constraints on placement and routing. Thus, even having a mostly

full floorplan (or entire FPGA device) will not negatively affect density, regardless of

geometry, but will also not improve it. A “sweet spot” at the 6x12 and 12x6 points,

where the density jumps up by about 10% from about 47 to almost 52 Peak MIPS per

100 eALMs, suggests that an optimum floorplan shape does exist: the 8x9 and 9x8 points

enclose the same area, but have lower density.

However, if we compare the floorplanned density results with the density of the same

unfloorplanned Scalar Core in the next section, we see that even an ample floorplan has

a noticeable negative impact on density: with no floorplan constraint, the Scalar Core
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reaches a density of 54 Peak MIPS per 100 eALMs: 4% higher than the 6x12 and 12x6

sweet spots, and about 14% higher than most other floorplan geometries.3

4.3.1 Summary

Overall, floorplanning generally reduces density, regardless of shape and size, and provides

no predictable benefit. Thus, barring project management concerns, a designer should

tile an overlay without floorplanning, letting the CAD tool find a good placement solution

itself.

4.4 Partitioning Scheme Definitions

Throughout the remainder of this chapter, we refer to various partitioning schemes with

shorthand labels. In increasingly fine-grained order: “Flat”, which places the entire de-

sign inside one partition; “nrdr”, identical to “Flat” except with no removal of duplicate

registers; “Per-Core”, which places each soft-processor into separate partitions; and “Per-

Lane”, which places each scalar processor and each of its SIMD lanes into their own

separate partitions. We implement these schemes by declaring one or more modules

as separate design partitions in the CAD tool. We do not consider schemes combining

“nrdr” with “Per-Lane” or “Per-Core” as they always yielded worse results since not only

would we prevent inter-module optimizations, we would also prevent any internal and

usually beneficial optimizations.

4.5 Partitioning a SIMD Core

Many overlays increase parallelism by tiling datapaths in a SIMD manner. We extended

the Octavo soft-processor [77] to support SIMD processing and observed the same logic in

3After publication, private conversations with people inside Altera revealed that, because we let Quar-
tus float the location of the floorplan as required, some internal placement optimizations got disabled.



68 Chapter 4. Tiling Overlay Architectures

(a) Before Deduplication (b) After Deduplication

Figure 4.3: Deduplication of Instruction Decoding Pipeline in SIMD Lanes

each SIMD lane consistently appearing in the worst critical paths, with their propagation

delay increasing with the number of SIMD lanes. This multiply-local logic included the

instruction distribution pipelines within each SIMD lane, as well as any common instruc-

tion decoding logic, such as the I/O address decoders. The CAD tool deduplicated all

instances across all SIMD lanes, worsening the fanout distance of the remaining instance

as the number of lanes increased. Using partitioning to preserve the multi-local logic

avoids these artificial critical paths.

Figure 4.3(a) outlines how our Scalar Core supports SIMD operations by duplicating

its datapath once for each SIMD Lane. We feed instructions from the Instruction Mem-

ory (IM) to all Lanes in lock-step, but lagging one instruction behind the Scalar Core

(Figure 4.1(b)). Using fewer pipeline stages lowers Fmax by 2–3%, while more pipeline

stages do not significantly improve it. Each SIMD Lane contains its own copy of the in-

struction pipeline registers, feeding an Instruction Decoder (ID), to scale them with the

number of SIMD Lanes. We must explicitly duplicate the registers in the Verilog source

itself since the CAD tool will not automatically replicate registers to control longer paths

caused by increased fanout [104]4.

4Specifying a maximum fanout for the registers does not reliably prevent deduplication, and generally
fails silently!
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Figure 4.4: Average Fmax of partitioned SIMD Cores

Unfortunately, without partitioning, the CAD tool deduplicates the multi-local SIMD

instruction pipelines, resulting in the implementation shown in Figure 4.3(b). All SIMD

pipeline registers and ID instances reduce to a single instance, which then feed the SIMD

ALUs. Even if the CAD tool retimes the singular ID instance along the pipeline, the

last pipeline register must still fanout to many physically distant ALUs. This fanout

introduces artificial critical paths which worsen as the number of SIMD Lanes increases.

The CAD tool does not deduplicate the SIMD ALUs since independent, unpredictable

data memories also feed them, breaking multi-locality.

Figure 4.4 shows the average maximum operating frequency (Fmax) of a soft-processor

Core with 0 to 32 SIMD lanes when partitioned as a whole unit (“Flat”), or same with

no removal of duplicate registers (“nrdr”), and with the Scalar processor and each SIMD

Lane placed in their own partitions (“Per-Lane”). Under “Flat”, Fmax decreases from 555

to 372 MHz due to excessive deduplication. Both the “nrdr” and “Per-Lane” partitioning

schemes preserve the multiply-local logic in each Lane, thus limiting fanout distance and
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(a) Flat (373 MHz) (b) nrdr (456 MHz) (c) Per-Lane (489 MHz)

Figure 4.5: Fanout of the source nodes of the top 100 critical paths for a “Flat”, “nrdr”,
and “Per-Lane” partitioned 32-lane SIMD Core.

preserving Fmax to up to 482 MHz, a 30% gain over “Flat”.

4.5.1 Preserving Multi-Locality

Figure 4.5 illustrates the preservation of multi-locality when we partition SIMD Lanes,

or simply disable duplicate register removal, by spatially plotting on the FPGA device

the fanout of each source node in the top 100 critical paths of a 32-lane SIMD Core. The

“Flat” critical paths (4.5(a)) reach 373 MHz and originate from 21 centrally placed nodes

resulting from a deduplicated instruction pipeline fanning out over the entire design. The

“nrdr” critical paths (4.5(b)) originate from 43 instruction pipeline nodes, distributed

(and duplicated) more evenly over the design, and reach 456 MHz. Finally, the “Per-

Lane” critical paths (4.5(c)) originate from 64 nodes (mostly I/O port address decoders

fed by instruction operands) further spread out over the design, reaching 489 MHz because

we both preserved multi-locality across partitions and allowed optimizations (including

deduplication) within each partition.
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Figure 4.6: Average area increase of partitioned SIMD Cores, relative to “Flat”

4.5.2 Area Impact

Figure 4.6 shows the increase of the average area (in eALMs) of Cores with 0 to 32 SIMD

Lanes, under the “nrdr” and “Per-Lane” partitioning schemes, relative to the “Flat” area.

While “nrdr” and “Per-Lane” use more area than “Flat” since they prevents logic dedu-

plication, the “nrdr” scheme does so indiscriminately, preventing optimizations which

would normally occur inside “Per-Lane” partitions, resulting in a consistently larger to-

tal area. For reference, the “Flat” area ranges linearly from 1,027 to 25,779 eALMs, over

0 to 32 SIMD Lanes.

4.5.3 Compute Density

Figure 4.7 combines the results of Figures 4.4 and 4.6 into a chart of the compute density,

measured in Peak MIPS per 100 eALMs, of the “Per-Lane”, “nrdr”, and “Flat” parti-

tioning schemes for Cores with 0 to 32 SIMD Lanes. Partitioning “Per-Lane” improves

density once a design grows to the point of introducing new critical paths if multiply-local

logic gets globally optimized into a single instance. Thus, the “Flat” scheme provides

the best density with 4 SIMD Lanes or fewer (almost 63 at 3 Lanes, a roughly 5% in-

crease over “Per-Lane” and “nrdr”), while the multi-locality preservation of “Per-Lane”

improves density for larger number of SIMD Lanes (approx. 54.5 at 32 Lanes, a roughly
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Figure 4.7: Average compute density for partitioned SIMD Cores

14% increase over “Flat”). The “nrdr” scheme’s consistently larger area reduces its

density to below that of “Per-Lane”, despite having similar Fmax.

4.5.4 Comparing Partitioning Schemes

Figure 4.8 compares the results from Figures 4.4, 4.6, and 4.7 as the average percent

differences in Fmax, area (eALMs), and compute density (Peak MIPS per 100 eALMs)

of Cores with 0 to 32 SIMD Lanes, under “Per-Lane” and “nrdr” partitioning schemes,

relative to “Flat” partitioning. The solid lines compare “Per-Lane” over “Flat”, while the

dashed lines compare “nrdr” over “Flat”. A greater positive difference denotes a greater

increase relative to “Flat”. “Per-Lane” and “nrdr” always increase Fmax, by as much as

31%, with a corresponding 15% increase in compute density. However, the consistently

5% larger area of “nrdr” lowers its density to below that of “Per-Lane”, thus we do not

consider “nrdr” in later experiments. Finally, for 4 SIMD Lanes or fewer, “Flat” has 5

to 10% better density due to its greater logic optimizations and smaller fanout distances.
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Figure 4.8: Average percent differences in Fmax, area, and compute density of partitioned
SIMD Cores, relative to “Flat”

4.5.5 Summary

For SIMD Cores, partitioning “Per-lane” results in the greatest increase in Fmax and

density compared to keeping the entire Core within a single partition (“Flat”), even when

also disabling removal of duplicate registers (“nrdr”). “Per-Lane” partitioning preserves

the multi-locality within each SIMD Lane, avoiding the excessive fanout of instruction

pipelines and I/O port address decoders otherwise optimized to a single instance by

the CAD tool, while allowing beneficial local optimizations within each partition. The

improvement from partitioning increases with the number of SIMD Lanes, reflecting the

increasing multi-locality.

4.6 Layering a SIMD Core

From our exploration of SIMD Lane partitioning in Section 4.5, we know that a SIMD

Core implementation with fewer SIMD Lanes reaches a higher Fmax (Figure 4.4) due to
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Figure 4.9: Layered SIMD Lanes: 3 Lanes with 1 Lane Per Layer

lower instruction fanout.

Figure 4.9 illustrates how we could replicate the conditions of fewer SIMD Lanes in a

design with more SIMD Lanes. We divide N SIMD Lanes into M “layers” each containing

N/M SIMD Lanes, with one of these Lanes also acting as an instruction distribution

pipeline stage to the next layer. Because of this layering of SIMD lanes, each successive

layer lags the previous one by one instruction, which staggers their execution and would

complicate programming. However, as the number of layers increases, we effectively

re-introduce the instruction distribution pipeline registers that the “Flat” partitioning

optimizes away. These new registers sequentially depend on each other, since they hold

different instructions each, thus the CAD tool cannot deduplicate them and increase their

fanout. We can compare the impact of Layering with that of “Per-Lane” partitioning to

see if Layering can replace it.

Figure 4.10 shows the impact on the average Fmax (MHz) when layering combinations

of soft-processor configurations with N = [1, 2, 4, 8, 16, 32] SIMD lanes placed in each case

of M = [1, 2, 4, 8, 16, 32] layers (where possible), up to N layers containing 1 SIMD Lane

each. We show both “Flat” and “Per-Lane” partitioning of the layered SIMD Cores
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Figure 4.10: Average Fmax of “Per-Lane” and “Flat” layered SIMD Cores

where, in the “Per-Lane” case, each Layer gets placed in its own partition. The base case

consists of N Lanes each in 1 Layer (or, M Layers each containing 1 Lane), represented by

the solid lines, and identical to the results from Figure 4.4. The greatest Fmax increases

happen when each layer contains a single SIMD Lane, regardless of total Lane count.

For 32 lanes, the Fmax of “Per-Lane” increases by only 30 MHz (+6%) relative to to the

base case, while the Fmax of “Flat” increases by 65 MHz (+17%), which also increases

more throughout all Layer/Lane combinations. Even with the speed gains of Layering,

we see that “Per-Lane” partitioning of a single-layer SIMD Core (i.e.: solid line) always

performs better than any layered “Flat” version, and without staggering execution across

layers. Layering SIMD Lanes has little effect on area (< 2% increase at most).

4.6.1 Summary

Sequentially pipelining SIMD Lanes into layers preserves their multi-locality in a way the

CAD tool cannot optimize away, coarsely reproducing the effects of “Per-Lane” partition-
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ing of each SIMD Lane. If a designer cannot use partitioning, then pipelining provides

the next best alternative, albeit with staggered execution between Layers. However, par-

titioning by itself avoids the programming complications of staggered execution and will

always reach a higher Fmax.

4.7 Partitioning Meshes

To contrast with SIMD parallelism, we tile a number of Scalar and SIMD Octavo Cores

into rectangular Meshes (Figure 4.1(a)), with simple horizontal and vertical point-to-

point bidirectional links connecting read and write I/O ports, and compare them to

their building block Core in isolation. Tables 4.1 and 4.2 compare the Fmax (MHz), area

(eALMs), and density (Peak MIPS per 100 eALMs) of various Scalar and SIMD Cores

tiled into rectangular Meshes of various shapes and sizes, under three increasingly fine-

grained partitioning schemes: “Flat”, which keeps the entire mesh in a single partition;

“Per-Core”, which places each Core (including its SIMD lanes, if any) into a partition; and

“Per-Lane”, which places each Scalar Core, and each SIMD Lane, into their own separate

partitions. For single-Core Meshes (1x1), “Per-Core” and “Flat” are equivalent, so we

show “Flat” only.

4.7.1 Meshes of SIMD Cores

Table 4.1 compares Meshes with a total of 32 datapaths (number of datapaths in all

SIMD Lanes and Scalar Cores), along with their respective Core used as a building

block, ranging from a 4x8 32-node Mesh of Scalar Cores (1 datapath each), down to a

1x1 Mesh composed of a single 31-Lane SIMD Core (31 datapaths in SIMD Lanes, plus

1 datapath in Scalar Core).

Under “Flat” partitioning, the dominating critical paths originate in the deduplication

of a 3-bit free-running thread counter, found in the Control logic of each Core (see

Figure 4.1), which does not depend on the contents of any memory or the output of any
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Table 4.1: Speed/Area/Density of Partitioned Meshes with 32 Datapaths
Mesh SIMD Datapaths Scheme Fmax Area Density

(WxH) Lanes (Total) (MHz) (eALMs)

Scalar Core
1x1 0 1 Flat 555 1,027 54.0
4x8 0 32 Flat 362 36,379 31.8
4x8 0 32 Per-Core 481 36,651 42.0

1-Lane SIMD Core
1x1 1 2 Flat 540 1,799 60.0
1x1 1 2 Per-Lane 547 1,904 57.5
4x4 1 32 Flat 380 32,226 37.7
4x4 1 32 Per-Core 438 32,718 42.8
4x4 1 32 Per-Lane 468 34,348 43.6

3-Lane SIMD Core
1x1 3 4 Flat 518 3,313 62.5
1x1 3 4 Per-Lane 539 3,632 59.4
2x4 3 32 Flat 385 29,865 41.3
2x4 3 32 Per-Core 412 30,313 43.5
2x4 3 32 Per-Lane 461 32,321 45.6

31-Lane SIMD Core
1x1 31 32 Flat 374 25,096 47.7
1x1 31 32 Per-Lane 473 28,385 53.3

logic. Thus, the CAD tool considers them logically equivalent and optimizes them down

to a single instance. The fanout from this single counter instance causes a drop in Fmax

proportional to the number of Mesh nodes. We can demonstrate this drop by simply

separating the Cores into their own partitions (“Per-Core”) to preserve the multi-locality

of the thread counter, with Fmax improving in proportion to the number of Mesh nodes: a

4x8 Mesh of Scalar Cores improves its Fmax by 33%, while the equivalent but half-size 4x4

Mesh of 1-Lane SIMD Cores see a proportional improvement of 15%, and the quarter-size

equivalent 2x4 Mesh of 3-Lane SIMD Cores see a 7% improvement. Note that all these

Meshes have similar total areas, so the gain from “Per-Core” partitioning only depends

on the number of Cores, not their individual area.

Even after “Per-Core” partitioning, Mesh nodes with SIMD Lanes still have to pre-

serve the multi-locality of their instruction pipeline and I/O port address decoders. Par-
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Table 4.2: Speed/Area/Density of Partitioned Meshes with 102 Datapaths
Mesh SIMD Datapaths Scheme Fmax Area Density

(WxH) Lanes (Total) (MHz) (eALMs)

1x1 0 1 Flat 555 1,027 54.0
17x6 0 102 Flat 287 115,655 25.3
17x6 0 102 Per-Core 434 115,245 38.4
6x17 0 102 Flat 284 114,803 25.2
6x17 0 102 Per-Core 437 115,775 38.5

titioning “Per-Lane” suffices, since this scheme places each Scalar component of each

SIMD Core into its own partition, and thus also preserves the multi-locality of the thread

counter. In each case shown in Table 4.1, when going from “Per-Core” to “Per-Lane”

partitioning, the Fmax increases with the number of datapaths in each Core: the 4x4

Mesh of 1-Lane Cores improves by 7% (over “Per-Core”), the 2x4 Mesh of 3-Lane Cores

improves by 12%, and the 1x1 Mesh of a single 31-Lane SIMD Core improves by 26%.

Once we preserve all the multi-localities, the final Fmax of all the different 32-datapath

Meshes lie within a 4% range.

4.7.2 Meshes of Scalar Cores

Table 4.2 shows two shapes (17x6 and 6x17) of a Mesh of 102 Scalar Cores, the largest

number possible before running out of M9K BRAMs5. Spanning the entire FPGA device

(see Figure 4.11), this 102-node Mesh uses 67% of all logic, broken down by Quartus as:

76% of all memory bits, 74% of all flip-flops, and 24% of all ALUTs. The aspect ratio of

the 102-core Mesh has negligible effect on speed and area, and partitioning “Per-Core”

improves Fmax by 51 to 54%, again showing the benefits of preserving the multi-locality

of the thread counter and that our gains do not depend on being able to spatially separate

each datapath, as Figure 4.5 might imply.
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(a) Flat (331 MHz) (b) Per-Lane (489 MHz)

Figure 4.11: Fanout of the source nodes of the top 100 critical paths for “Flat” and
“Per-Lane” partitions of a 102-core 17x6 tiled mesh of Scalar Cores.

4.7.3 Preserving Multi-Locality

Figure 4.11 illustrates the fanout of the source nodes of the top 100 critical paths for

“Flat” and “Per-Lane” partitions of a 102-core 17x6 tiled mesh of Scalar Cores. The

“Flat” critical paths reach 331 MHz, and despite having no shared instruction pipelines

or address decoders, originate from only 2 centrally placed nodes resulting from the

deduplication of free-running thread counters common to the Control logic in all Cores

(see Figure 4.1), now fanning out over the entire design. In contrast, the “Per-Lane”

critical paths originate from 61 unrelated and dispersed nodes, and reach an Fmax of 489

MHz.

5Each Scalar Core uses 12 M9K BRAMs, leaving 11 unused out of 1235.
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4.7.4 Area, Speed, Density, and CAD Time

Since partitioning prevents deduplication of multi-local logic, it increases the area of a

tiled design. However, the area increases only proportionally to the size of the preserved

multi-local logic, not from partitioning itself. For example, the area of the 102-core 6x17

Mesh increases by less than 1% under “Per-Lane” partitioning, reflecting the tiny area of

the preserved multi-local 3-bit counters. At the other extreme, the area of the 1x1 Mesh

with 32 datapaths increases by 13% due to the larger area of multi-local SIMD instruction

pipelines and address decoders. In the middle, the area of the 4x8, 4x4, and 2x4 Meshes

(also with 32 datapaths) increases by 8% or less since the multi-localities include both

the smaller counters and the larger instruction pipelines and address decoders. In all

cases, no relation exists between the increase in Fmax and the increase in area.

The changes in Fmax and area as we scale-up Meshes suggest that: (i) we may be

getting near-optimal speed preservation from the CAD tool when partitioning; (ii) the

CAD tool introduces some unknown area overhead, causing a drop in density, even though

we added no extra hardware when tiling. Under “Per-Lane” partitioning, tiling a Scalar

Core 32 times in the 4x8 Mesh decreases Fmax only 13% (with similar decreases for the

4x4 and 2x4 Meshes). Increasing the tiling 3.18x further to 102 cores decreases Fmax by

only an additional 9%, down to 78% of the original speed of a single Scalar Core. A 22%

drop in speed over 102x scaling supports our original intuition that multiple independent

tiles should run at similar speeds to a single tile.

Intuitively, we expect that tiling without adding any other hardware should scale the

total area by the number of tiles. However, when tiling a Scalar Core 32 times (4x8 Mesh)

the area increases 35.7x (Table 4.1), and 112.2x when tiling it 102 times (Table 4.2): a 10

to 11% overhead. This area increase occurs regardless of the partitioning scheme used,

suggesting that it might not originate in new logic duplication or deduplication caused

by the tiling, especially with only nearest-neighbour point-to-point connections. If the

area increased as expected, and assuming the same final Fmax, the density of the 102-core
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mesh would reach 42.3, placing it within 8% of the densest 2x4 Mesh (or within 11% of a

similarly speculative 4x8 Mesh). Thus, we speculate that some area overhead introduced

by the CAD tool, rather than the decrease in Fmax, primarily causes the drop in density

as Meshes scale up.

Partitioning has no significant effect on CAD time. For example, for the 17x6 102-

core mesh, the total CAD time goes from 2h:28m when “Flat”, to 2h:17m (-7%) when

partitioned “Per-Lane”. Synthesis and Place-and-Route consume most of the total time.

The synthesis time went from 0h:18m to 0h:12m (-33%), since the CAD tool can synthe-

size each partition in parallel, but still represents only 12 to 8% of the total time. The

Place-and-Route time went from 2h:05m to 1h:55m (-8%), but still represents 84% of

the total, with or without partitioning. Furthermore, once partitioned for performance,

nothing prevents a designer from using partitioning (and optionally, floorplanning) to

enable incremental re-compilation and reduce future CAD time by containing the effect

of design changes [4, 29,136].

4.7.5 Summary

Different kinds of tiling (SIMD Lanes vs. Mesh) expose different multi-localities in the

same tile hardware, which we preserve with different partitioning schemes to recover lost

performance. Partitioning itself has no area impact: any increase in area purely de-

pends on the area of the preserved multi-local logic, with no correlation to the amount

of lost/regained performance. The CAD tool preserves the operating frequency of par-

titioned tiles extremely well as their number increases, but introduces an unexplained

proportional area overhead, independent of partitioning, which may explain the decreas-

ing compute density with scaling. Lastly, partitioning has no significant effect on total

CAD time, even without incremental recompilation.
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4.8 Related Work

Past work on partitioning and FPGAs address a different, but related problem: how to

partition the netlist of an ASIC project across multiple FPGAs for simulation [17]. Fang

and Wu [44, 45] found that using the design hierarchy to guide partitioning would lead

to higher logic block utilization and lower I/O pin utilization, which commonly formed

the bottleneck when partitioning over multiple FPGAs, and resembles our avoidance of

high-fanout paths. Some early work by Vahid, Frank, Le, and Hsu [120, 121] pointed to

the advantages of functional partitioning, the kind we do in this chapter, over structural

partitioning, where partitioning occurs after the synthesis of a final, flattened netlist.

They observed a similar control of the critical paths (and area increase) by avoiding

sharing logic between functions (i.e.: “multi-local” logic).

4.9 Programming Model: SIMD

The addition of SIMD Lanes naturally extends the pipelined multi-threading program-

ming model we describe in Section 3.13.2: each thread executes a private copy of the

same code with different address calculations to divide the data amongst the threads.

Each SIMD Lane effectively executes a copy of these original Scalar Octavo threads, but

does so on private data in the SIMD Lane’s A and B memories.

Difficulties: Data-Dependent Control-Flow Unfortunately, these SIMD copies of

the original Scalar Octavo threads must follow the branching of their controlling Scalar

thread. Thus, if the thread code contains data-dependent branches, each SIMD copy

may end up diverging, which we do not support. Instead, we have to execute both sides

of a data-dependent branch identically in each SIMD thread copy, then select the desired

result via a conditional move (CMOV) operation which does not itself require branching.

We can currently simulate CMOV using Boolean operations and bit-masks, and we outline

potential implementations in Section 8.6.1.
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Data Pre-Copy Across SIMD Lanes Since the SIMD Lanes cannot communicate

as-is6, we must pre-copy some data, normally shared across threads in the same datapath,

into each SIMD Lane at load time. For example, in Figure 7.6 (pg. 139), we show how to

convert a FIR filter to multi-threaded (and thus also, SIMD) operation by adding data

headers pre-copied from neighbouring data subsets.

4.10 Conclusions

Through our study of high-speed tiled FPGA overlays, we found the notion of “multi-

local” (repeated and logically-equivalent across tiles) logic useful to describe the origin of

the worst critical paths which emerge when tiling datapaths or even entire processors: By

default, the CAD tool performs redundancy elimination (“deduplication”) on all multi-

local logic, reducing it to a single instance which then fans out to all tiles, introducing

large and unnecessary critical paths for little area savings.

We found that partitioning the major datapaths of a high-speed tiled system into

separate netlists suffices to prevent harmful global deduplication of multi-local logic,

while preserving beneficial local optimizations. Partitioning provides:

• a simpler approach than the existing per-node micro-management of a design de-

scription or of the CAD tool settings;

• a lower area increase than disabling duplicate register removal in the CAD tool,

with the area increase only depending on the area of the preserved multi-local logic;

• greater performance benefits than forcibly introducing sequential dependencies via

pipelining;

• a performance increase that scales with the number of tiles;

• improved performance with no significant change in total CAD time.

6See Section 7.2.3 for an example of hardware-assisted SIMD cross-lane communications.
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Although our results specifically apply to Altera’s Quartus FPGA CAD tool suite we

believe, based on past experience when porting designs from Altera to Xilinx platforms [75],

that the same partitioning principles should hold for Xilinx’s ISE and Vivado CAD tools,

once we account for their particular logic optimization behaviours.



Chapter 5

Planning for Larger Systems

The first weakness of minicomputers was their limited addressing capability. The biggest (and

most common) mistake that can be made in a computer design is that of not providing

enough address bits for memory addressing and management. The PDP-11 followed this

hallowed tradition of skimping on address bits, but it was saved by the principle that a good

design can evolve through at least one major change.

C. Gordon Bell [18]

While Octavo’s architecture achieves a high Fmax (Chapter 3 and scales effectively

to an entire FPGA (Chapter 4), the ALU writes its results to all memories, uselessly

duplicating data in the A/B memories and eating up precious space in the I memory.

We can add any desired hardware extension via the I/O ports, but Fmax suffers as

their numbers increase. Also, the I/O ports are “bare”, without any handshaking to

signal the sender/receiver of consumed or available data, requiring inefficient software

busy-wait interfaces to variable latency devices such as DRAM controllers.

Thus, to set the stage for later architectural improvements (Chapter 6) and per-

formance benchmarking (Chapter 7), we must remove the duplication of ALU writes,

provide a separate address space for additional hardware, and enable the I/O ports to

autonomously synchronize data transfers without involving software.

85
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Table 5.1: Octavo’s Instruction Word Format with Extended Write Address Space
Size: 4 bits 12 bits 10 bits 10 bits

Field: Opcode (OP) Destination (D) Source (A) Source (B)

Figure 5.1: New Octavo memory map with 4 kilo-word memory write space.

5.1 Extending the Write Address Space

Octavo’s original instruction format (Table 3.1, pg. 34) uses 34 bits out of a 36-bit word:

4 bits for the opcode, and 10 bits each for both source operands and for the destination

operand, leaving 2 bits unused. We can append those 2 spare bits to the destination

operand, expanding it to 12 bits (Table 5.1).

Figure 5.1 illustrates the new memory map, treating the resulting 4 kilo-word write

address space as four 1 kilo-word pages: one for each of the A, B, and I memories, and

a new “High” memory area within which we can map new hardware extensions without

requiring I/O ports, but at the price of being “write-only”.

The memory reads execute as before, with the A/B operands indexing into their

corresponding A/B data memories, and the PC indexing into I memory (not readable

by A/B). However, we now decode writes from the ALU to only write into one of these

memories at a time, over a single contiguous write address space. This change avoids code
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Listing 5.1: Memory Write Address Offset Example

1 // A[1] and B[1] both contain 1

2 // A[100], B[100] , and I[100] contain 1

3 // Instruction format: OP D, A, B

4
5 // A[100] now contains 2

6 ADD 100, 100, 1

7
8 // B[100] now contains 2

9 ADD 1124, 1, 100

10
11 // I[100] now contains 3 (A[1] + B[100])

12 ADD 2148, 1, 100

and data duplication across memories, doubling the amount of available A/B memory,

and removes data from I memory and code from A/B memory.

5.1.1 Impact On Software

Because we re-map the write address space of the A/B/I memories to possibly non-zero

origins, the read and write addresses of a given memory location no longer necessarily

match. We must add the appropriate offset to a read address to get the write address of

the same location before we can use it as a destination operand address. Respectively,

to write to the same location in the A, B, and I memories, we add offsets of 0, 1024, and

2048 to the read address. Listing 5.1 illustrates the process in assembly.

We must currently add the offset at assemble/compile time, but we replace it with a

hardware solution in Chapter 6 where we can pre-set the offset for each memory.

5.2 Adding I/O Handshaking

Currently, the Octavo I/O read and write ports assert a read enable (rden) or write

enable (wren) signal when reading/writing, indicating received or newly written data.

However, no mechanism exists to determine if the other end has sent or can receive new
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Listing 5.2: Read Busy-Wait Loop Example

1 // WREN_INPUT: read port with wren bits from sending ports

2 // WREN_MASK: bit mask for wren bits of interest

3 // STATUS: status of the sending write ports

4
5 WAIT:

6 AND STATUS , WREN_INPUT , WREN_MASK // Mask out other ports

7 XOR STATUS , STATUS , WREN_MASK // Toggles STATUS bits

8 JNZ WAIT , STATUS , 0 // Wait while STATUS != 0

9 <read data here >

data, short of using a software loop to monitor another I/O port signalling readiness.

Complicating this limitation, any Octavo instruction may access up to 3 I/O ports (two

reads, one write). We must ensure that if any of the I/O ports are not ready, then none

of the reads and/or writes proceed, else we may lose data. We must somehow suspend

an instruction accessing un-ready I/O ports until all ports are ready.

Listing 5.2 outlines an example busy-wait loop which we would place before any

instruction which accesses an I/O read port (or two). We use an additional read port

(WREN INPUT) to receive the active-high wren bits of the sending write ports (e.g.: from

another Octavo core). Line 6 masks out the wren bits of the port(s) we want to receive

data from. Any remaining high bits indicate a ready sending port. Line 7 uses the same

mask to toggle the high bits back to low, and any low bits to high, hopefully generating

an all-zero STATUS indicating that all ports of interest are ready. Finally, line 8 jumps

on non-zero to restart the busy-wait process if any port(s) remain un-ready.

This example busy-wait loops selects from up to 36 ports in parallel, and could also

process write ports by connecting the receiving rden signals to WREN INPUT. However,

each instruction spent by a thread on a busy-wait loop adds 8 clock cycles of latency

to any transaction on the I/O port, greatly reducing the throughput of the fine-grained

interactions we expect within an Octavo overlay. We must also precede any instruction

accessing I/O with such a busy-wait loop, leaving less room in the limited instruction

memory for code performing actual work. Thus, we need a more efficient hardware
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Figure 5.2: New Octavo block-level diagram, with I/O predication

mechanism to handle unpredictable I/O latencies.

5.2.1 Instruction I/O Predication

Ideally, a thread instruction which accesses an unready I/O port should have no effect

and re-issue the next time around, eventually executing when all ports are ready. Thus,

a thread will automatically hang, with no additional overhead, until the instruction can

complete. All other threads remain unaffected. We can speak of this instruction as

predicated on the status of the I/O ports it accesses.

Figure 5.2 illustrates the high-level location of the I/O predication mechanism, in

pipeline stages 2 and 3, which inspects the A/B/D instruction operands and raises an

“Annul” signal (stage 4, top-centre) if the instruction accesses any I/O ports not able to

send/receive data, with the following effects:

• zeroes-out the instruction (converting it into a NOP) before it reaches the ALU

and the Controller,

• inhibits the wren and rden signals of all accessed I/O ports, preventing loss of data,

• signals the Controller to re-issue the PC value of the instruction, so it can try to

execute again.
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Figure 5.3: Block diagram of the I/O Read predication module.

The I/O Predication mechanism contains three major components: the I/O Read and

I/O Write predication modules, and the All I/O Ready module, which coordinates their

operation and ultimately generates the Annul signal. Enabling instruction re-issue also

requires modifications to the Controller.

5.2.2 I/O Read Predication

Figure 5.3 shows the block diagram of the I/O Read predication module, with each

pipeline stage labelled with its Octavo pipeline stage number. We require two I/O Read

modules, one for each of the A and B memories, each addressed by their corresponding

A/B instruction source operand.

In stage 2, we receive the operand address from stage 1 and the Empty/Full bits

(E/F) for all the I/O read ports in the corresponding memory (see Figure 3.3(c), pg. 36).

The E/F Select block simply selects one of the E/F bits based on the address, while the

I/O Detect block signals if the address refers to an I/O port.

In stage 3, the E/F Mask block lets the selected E/F bit pass through if the address

refers to an I/O port. Otherwise, the access refers to memory (which is always ready by

definition) and the block will mask the E/F bit (E/Fm) to the “Full” state, indicating
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available data. Concurrently, the I/O Active block raises the read enable (rden) line

for the accessed I/O port, if any. However, the I/O Ready signal, which indicates if all

accessed I/O ports are ready, will disable the rden signal if not asserted, preventing the

completion of the read transaction.

Stages 4 and 5 proceed as originally designed, using the read address out of stage 3

to both select a Read I/O port and perform the memory read, then select the correct

read value depending if the address refers to an I/O port, signalled by the pipelined I/O

Detect output. Finally, the I/O Ready signal will zero-out the Read Data if not asserted.

Finally, if two threads share an I/O read port connected to a variable latency sender,

the data will indeterminately divide between the two threads, possibly starving one

thread. In the worst case, one thread will always empty the read port before the other,

which will then perpetually hang waiting for read data. Thus, either the various latencies

must be fixed, or each thread must have exclusive use of a port, or we must multiplex a

read port’s data and handshaking state across all accessing threads.

5.2.3 I/O Write Predication

Figure 5.4 shows the block diagram of the I/O Write predication module, with each

pipeline stage labelled with its Octavo pipeline stage number. We require two I/O Write

modules, one for each of the A and B memories, either of which may have their I/O write

ports accessed by the D instruction destination operand.

In stage 2, we receive the operand address from stage 1 and the Empty/Full bits (E/F)

for all the I/O write ports in the corresponding memory (see Figure 3.3(b), pg. 36). The

E/F Select block simply selects one of the E/F bits based on the address, while the I/O

Detect block signals if the address refers to an I/O port.

In stage 3, the E/F Mask block lets the selected E/F bit pass through if the address

refers to an I/O port. Otherwise, the access refers to memory (which is always ready by

definition) and the block will mask the E/F bit (E/Fm) to the “Empty” state, indicating

the previously written data was received.
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Figure 5.4: Block diagram of the I/O Write predication module.

Even though the actual I/O or memory write will not occur until later in the pipeline,

after the ALU, we check the I/O write port status at the same time as the I/O read ports

to keep the predication process simple. In the worst case, we annul an instruction due

to a full I/O write port just before the port empties, costing 8 clock cycles which would

have been saved by checking later in the pipeline, at the time of the write.

However, if we predicated writes at the point where they occur in the pipeline, we

could end up in a situation where we have already performed the I/O reads, potentially

causing side-effects (e.g.: consuming I/O data), and cannot complete the instruction due

to a full I/O write port. We would then need to save the instruction state at the write

port, possibly from up to 8 threads. Also, the next thread instruction will have already

issued by then, and so we must annul it until the previous I/O write completes, requiring

potentially slow immediate signalling across multiple pipeline stages.

Thus, in stages 4 and 5, we mask the I/O Detect signal if I/O Ready is not asserted,

and pass the resulting is I/O signal to the ALU, where it will propagate alongside the

instruction until the ALU writes back its result in stage 4. There, the I/O Active block

uses the ALU Address and the propagated is I/O bit to enable the appropriate write
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Figure 5.5: Block diagram of the All I/O Ready module.

enable (wren) line, while the ALU Result proceeds to both RAM and Write I/O port.

Finally, without special care, two threads should not share a common write port. Two

instructions from different threads can check the I/O write port and find it empty. Later

in the pipeline, the earlier instruction then fills the write port, and the later instruction

then attempts to write to a still-full write port, losing the data. Thus, either the filling

and emptying rates of the port must be fixed and matching, each thread must have

exclusive use of a write port, or we must multiplex the data and handshaking state of

the write port across all accessing threads.

5.2.4 All I/O Ready Coordination

Figure 5.5 shows the origin of the crucial I/O Ready signal. The All I/O Ready block

receives the selected and masked Empty/Full bit (E/Fm) from each I/O Read and I/O

Write module, all generated within pipeline stage 3. It asserts I/O Ready if all the read

E/Fm bits are “Full” and all the write E/Fm bits are “Empty”, indicating that all I/O

performed by the instruction can proceed at once. We treat the Annul bit as the inverse

of I/O Ready for convenience.
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Figure 5.6: Modified Controller PC Memory, with instruction re-issue

5.2.5 Instruction Annulment and Re-Issue

Figure 5.6 shows the changes to the Controller (Figure 3.6), specifically the Program

Counter Memory (PCM), required to re-issue an annulled instruction. A small thread

number counter (not shown) indexes the PCM to read the Program Counter (PC) of

the next thread instruction, as well as that of the current thread instruction (PC-1). As

usual, if asserted, the Jump signal replaces the PC with the branch target address D.

Additionally, if the current instruction was annulled, the Annul signal selects PC-1 as

the final output PC, which will re-fetch the current annulled instruction from I memory.

The PCM then replaces its stored PC-1 with the output PC, and its stored PC with the

output PC+1, becoming ready to fetch the next instruction, or to re-try the current one

if it remains annulled. We must register the path from the output PC back to the PCM

to avoid a critical path, thus we must also delay the value of the thread counter by one

cycle to write back to the correct PCM entry.
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5.3 Programming Model: Synchronization

Synchronization and Mutual Exclusion I/O handshaking allows us to use I/O

ports to implement the inter-thread synchronization primitives that we found missing in

Section 3.13.4.

For example, we can implement producer-consumer synchronization by directly con-

necting one I/O write port to an I/O read port: the producer thread writes data (or a

token representing access to a buffer of data) to the I/O write port, and the consumer

thread reads from the connected I/O read port. If one thread tries to run ahead of the

other, it will “hang” until the other thread has caught up.

Alternatively, if the same thread both reads and writes a token via the same looped

I/O ports, we can implement mutual exclusion: the first thread to read the port gets the

token. Any other threads trying to read the same port will hang. When the first thread

has completed its critical section, it writes the token back, and the first hung thread

encountered will then gain access.

We can easily extend these basic mechanisms with counters, FIFOs, multiplexers,

etc. . . , placed between the read and write I/O ports to implement work queues, multiple

reader/writer locks, barriers, and so on.

SIMD Since each SIMD Lane (Chapter 4) has its own handshaking I/O ports, we can

also create simple hardware mechanisms to handle divergent behaviour between Lanes.

For example, we could contrive to automatically stall all other SIMD Lanes (and the

controlling Scalar Octavo instance) if one Lane experiences a delay from external I/O,

without involving the software.

Multi-Core Finally, we can connect Octavo cores in a mesh (Chapter 4) using hand-

shaking I/O ports to transparently synchronize transfers between them, without having

to explicitly manage any latency from external sources, or from different cores executing

different code paths.
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5.4 Results

Extending the write address space and implementing I/O handshaking reduced Octavo’s

average scalar Fmax (see Chapters 3 and 4) by 4.5%, from 555 MHz to 530 MHz, with the

peak Fmax still reaching 550 MHz. The equivalent ALMs (eALMs) area, which accounts

for RAM and DSP blocks (Chapter 4), rose by 5.5%, from 1027 eALMs to 1083 eALMs.

In exchange for the small loss in speed and increase in area:

• we eliminated useless code and data duplications across the A, B, and I memories,

increasing the scope of programs on Octavo,

• we created 1024 words of “High” memory to contain hardware control registers,

freeing the I/O ports,

• we eliminated the need for I/O busy wait loops, reducing the cycle penalty of testing

for un-ready I/O ports from a minimum of 24 clock cycles down to 0,

• we created the basic framework for instruction annulment and re-issue, which sets

the stage for implementing cancelling branches in Chapter 6.



Chapter 6

Approaching Overhead-Free

Execution

In the von Neumann model, the control flow and dataflow instructions are embedded in the

same program and executed sequentially. In the hardware implementation, the two

“mechanisms” are separate. Instructions such as branches and jumps are not implemented on

the FPGA. Instead, all branches of a control path are implemented and the correct outcome

selected (i.e., “if conversion”).

Zhi Guo et al. [51]

Implementing systems on FPGA soft-processors, rather than as custom HDL hard-

ware, eases and accelerates the development process, but at the cost of a great reduction

in performance. Orthogonal to limitations in parallelism or clock frequency, this re-

duction in performance primarily originates in the intrinsic addressing and flow-control

overheads of scalar microprocessors, which expend a considerable number of cycles inter-

leaving address calculations and branch decisions within the actual useful work.

In this chapter, we present an improved Octavo soft-processor which statically over-

laps “overhead” computations and executes them in parallel with the “useful” computa-

tions, significantly reducing the number of processor cycles needed to execute sequential

97
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programs. The architectural changes reduce the average clock frequency to 0.939x of its

original value, but also reduce the cycle count of all benchmarks, granting speedups from

1.07x for control-heavy code, up to 1.92x for looping code. The optimized benchmarks

never perform worse than the original sequential code, and always better than a totally

unrolled loop. This improved execution efficiency increases the range of FPGA designs

amenable to soft-processors rather than custom hardware.

This work originally appeared at ICFPT 2014, Shanghai [74].

6.1 Introduction

Implementing computations in hardware on FPGAs can offer a significant speedup rel-

ative to computations in software running on a standard processor. Speedups of an

order of magnitude have been reported (e.g.: [33, 85]), despite the FPGA hardware

running at a considerably lower clock speed (Fmax) than the processor. Much of this

speedup arises from exploiting spatial parallelism in the FPGA hardware, but a sig-

nificant portion comes from removing addressing and flow-control overhead (“support

instructions” [38, 51, 52, 55, 110]). Hardware implementations remove such overhead by

computing it in parallel with the actual work using application-specific Finite-State Ma-

chines (FSM) to accept/reject input, count loops, compute memory addresses, and per-

form the equivalent of flow-control by driving multiplexers.

However, implementing a given algorithm in hardware remains a difficult and labori-

ous process, and hardware skills are comparatively rare vs. software skills [118]. Hardware

design traditionally involves the use of hardware description languages (HDLs), which

require specification at the bit level and explicit coordination of computation and commu-

nication, making design and debug challenging. Even higher-level HDLs such as BlueSpec

SV, or compiling from OpenCL to hardware kernels, ultimately generate a low-level cir-

cuit description, which must then be synthesized, placed, and routed, taking hours or

days for the largest designs.
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As an alternative process, a designer can implement a “soft-processor” on the FPGA,

benefiting from the flexibility of the FPGA, while retaining the programmability of soft-

ware (Chapter 2). Unfortunately, soft-processors pay a large performance penalty relative

to what the underlying FPGA hardware can achieve, and also relative to conventional

“hard” CPUs.

More importantly, soft-processors carry the same addressing and flow-control over-

heads as any other processor. In most cases, unrolling loops and vectorizing code can

eliminate addressing and flow-control overheads, but unrolling bloats code and increases

the required instruction memory bandwidth, while vectorizing [105,132] poses program-

ming challenges to use effectively and cannot improve control code. Pipelining and multi-

threading [71,77] will increase raw speed, but still do not eliminate overhead.

Rather than extending FPGA soft-processors with application-specific custom in-

structions or accelerators to avoid overhead, again involving more difficult hardware

design, this chapter proposes an alternative solution: a soft-processor architecture which

enables elimination of control-flow and addressing overheads, yet retains the ease-of-use

of software. The key contribution of our work is to extend the Octavo soft-processor [77]

(Chapter 3) to remove addressing and flow-control overheads:

• We locate the addressing and flow-control overheads in sub-graphs interleaved in a

sequential program, which we can extract and execute in parallel.

• We introduce the Branch Trigger Module (BTM) as a means of executing multiple

branches in parallel with an ALU instruction, based off arbitrary conditions. The

BTM eliminates all the control instructions described in Chapter 3.7, freeing their

opcodes for future use.

• We introduce the Address Offset Module (AOM), which enables per-thread private

data for shared code, implements indirect addressing, and optionally automatically

post-increments indirect addresses after use.
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• We show, using several micro-benchmarks, that the BTM and AOM always reduce

cycle count, without significantly affecting cycle time, and always more so than

loop unrolling.

• We also show an increase in the ratio of useful work done, often approaching the

maximum provided by total loop unrolling, without having to unroll loops.

6.2 Related Work

Previous branch folding approaches dynamically combined together an instruction and a

following branch in the processor’s instruction cache [42, 80] and speculatively executed

conditional branches, flushing the pipeline on a misprediction. In contrast, Octavo’s

multi-threaded design never stalls or flushes its pipeline, avoiding the need to speculate

on branches. Also, the BTM allows us to hoist the definition of a branch outside of loops

– a critical feature in a system with an un-cached, tightly-coupled instruction memory

without time for pre-fetching both branch paths [48,66,122]. Davidson and Whalley [36]

describe a sophisticated system of branch registers similar to the BTM. However, their

approach does not support folding, multi-way, or cancelling branches as the BTM does.

For vector processors, decoupling the scalar and vector components can provide the

appearance of zero-overhead loops [129], but only if the scalar processor has time to

execute loop control operations, while the vector processor operates. Truly eliminating

loop overhead still requires loop counting and operand addressing hardware [31,106,107].

DSPs support zero-overhead loops with a variety of mechanisms: Analog Devices’

TigerSharc [12] has a pair of loop counters and matching branch conditions, while their

Blackfin [13] extends this approach with two sets of Loop Top and Loop Bottom regis-

ters, but only for simple counted loops. Finally, Texas Instruments’ C64x+ [114] uses a

loop buffer and some counter registers to execute compact software-pipelined loops. In

contrast, the BTM provides a simpler and more general mechanism (though we have not
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yet implemented loop counters), and its support for cancelling branches enables useful

branch folding in any flow-control code, not just loop branches.

Prior work on multi-way branches focused on improving ILP in VLIW processors

[28,88]. Our work does not require the same complex CDFG analysis to merge branches,

nor the generation of duplicate code. We use multi-way branches to reduce the number

of consecutive tests on the same data by using multiple fast compares [62,87] in parallel.

6.3 Motivation and Overview

While our work improves the Octavo soft-processor [77] (Chapter 3), it also alters its

programming model sufficiently that we can no longer compare code on both versions.

For example, one of our improvements effectively implements memory indirection and

eliminates the need for self-modifying code to implement pointers and array indexing

(Section 3.12), a peculiarity of Octavo not normally present in microprocessors. We

want to compare our architectural improvements against other architectures, not software

emulations thereof. Thus, we must compare our work against an idealized hardware

model which supersedes the original Octavo.

6.3.1 Baseline: A “Perfect” MIPS-like CPU

We can use the multi-threaded nature of Octavo to create a cycle-accurate emulation

of an ideal “perfect” MIPS-like processor on our improved Octavo processor and then

implement a micro-benchmark on both this emulated ideal model and natively on the

improved Octavo. We do not need to compare against the original Octavo since the ideal

model will always perform better than any actual scalar processor.

We can thus focus on the intrinsic overheads found in a general-purpose scalar pro-

cessor, separate from implementation issues such as pipelining and architectural issues

such as hazards, and show that, despite the absence of stalls and hazards in the ideal
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case, significant control-flow and addressing overheads remain relative to the actual de-

sired computation. We then show how to extract these overheads as separate parallel

sub-programs, and overlap their execution with that of the actual work-producing code

on our improved Octavo processor.

Our baseline ideal MIPS-like system has the following properties:

• No memory access latency.

• Single-cycle instruction and data memory access.

• No load or branch delay slots.

• Branch conditions known at the start of pipeline.

• Result forwarding across pipeline stages.

• No structural hazards across instructions.

• Single-cycle instruction execution.

While we cannot build such an ideal CPU with high performance, each individual

Octavo thread closely approaches this ideal, allowing us to execute a cycle-accurate em-

ulation of the ideal model within a thread.

6.3.2 Benchmark: Hailstone Numbers

To overview our improvements, we calculate hailstone numbers as a simple, manually

tractable example which nonetheless exhibits flow-control and addressing overheads. The

hailstone benchmark iteratively computes a series from a positive seed number (if n is

even: n = n/2, else n = 3n+ 1), presenting many basic forms of computation (addition,

shifting, multiplication, bit-masking, branching, looping). We apply this calculation to

an array of 100 positive integers, terminated by −1, to introduce addressing overhead

and average the time spent in the even/odd cases. We also output each new value as we

compute it. Listing 6.1 shows the pseudo-code.

We directly translate this pseudo-code into MIPS-like assembly in Listing 6.2, with

the instruction format convention of OP dest, src1, src2. This code, running on the
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Listing 6.1: Hailstone Pseudo-Code

1 outer: seed_ptr = ptr_init

2 inner: temp = MEM[seed_ptr]

3 if (temp < 0):

4 goto outer

5 temp2 = temp & 1

6 if (temp2 == 1): // Odd

7 temp = temp * 3

8 temp = temp + 1

9 else:

10 temp = temp / 2 // Even

11 MEM[seed_ptr] = temp

12 seed_ptr += 1

13 OUTPUT = temp

14 goto inner

Listing 6.2: Hailstone MIPS-like Assembly Code

1 outer: ADD seed_ptr , ptr_init , 0

2 inner: LW temp , seed_ptr

3 BLTZ outer , temp

4 AND temp2 , temp , 1

5 BEQZ even , temp2

6 MUL temp , temp , 3 // Odd

7 ADD temp , temp , 1

8 JMP output

9 even: SRA temp , temp , 1 // Even

10 output: SW temp , seed_ptr

11 ADD seed_ptr , seed_ptr , 1

12 SW temp , OUTPUT

13 JMP inner

emulated ideal MIPS-like processor, averages 970 cycles per pass over 100 seed values

with an execution efficiency (see below) of 0.655. Unrolling the same code results in an

average of 769 cycles per pass and an efficiency of 0.824, a 1.26x improvement in both

cycle count and efficiency.

We define execution efficiency, the ratio of “useful” to “not useful” instructions exe-

cuted, as follows: Useful instructions are those which use the ALU and remain after total

loop unrolling. Thus, loads, stores, and ALU operations count as useful. Pointer initial-

ization and incrementing also count as useful if loop unrolling cannot eliminate them.
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Listing 6.3: Hailstone Octavo Assembly Code

1 outer: ADD seed_ptr , ptr_init , 0

2 inner: LW temp , seed_ptr

3 MUL temp , temp , 3 ; BEVNn even ; BLTZn outer // Odd

4 ADD temp , temp , 1 ; JMP output

5 even: SRA temp , temp , 1 // Even

6 output: SW temp , seed_ptr

7 SW temp , OUTPUT ; JMP inner

An unrolled loop will always approach an efficiency of 1.00, minus obligatory non-loop

branches. Branches never count as useful by themselves since the ALU does no work

during their execution.

We can then use our Octavo improvements to optimize the Listing 6.2 code into

Listing 6.3, which shows the resulting optimized Octavo assembly code with the folded

branches placed next to their concurrent ALU instruction. First, we add support for post-

incrementing seed ptr (eliminating line 11 of the MIPS code), add a “fast compare” [62,

87] to the result of the previous instruction to create a Branch on Even (BEVN, eliminating

the Boolean masking on line 4), fold together both branches to outer: and even: (lines

3 and 5) into the start of the odd-number case (line 6) while also setting a “Predict Not

Taken” bit (denoted by a suffix n on the branch instruction) to implement a multi-way

cancelling branch which cancels the MUL instruction if we do not fall through into the odd-

number case, and finally, we fold the unconditional JMPs into their preceding instructions

(eliminating lines 8 and 13).

We later show in the results section that this optimized code, running on the improved

Octavo processor, averages 504 cycles per pass over 100 seed values with an execution

efficiency of 0.863, giving a 1.92x cycle-count speedup and 1.32x execution efficiency

increase over the ideal MIPS-like CPU, exceeding the benefits of loop unrolling, while

only reducing Octavo’s clock frequency to 0.939x of its original value.
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(a) Control-Data Flow Graph (b) Flow-Control Sub-Graph

(c) Addressing Sub-Graph (d) Useful Work Sub-Graph

Figure 6.1: Control-Data Flow Graph (CDFG) of the Hailstone benchmark, along with
Flow-Control, Addressing, and Useful Work sub-graphs.

6.4 Extracting Control and Data Flow Sub-Graphs

Within a single sequential program, we can think of there being three separate “sub-

programs”, each of which is responsible for different tasks:

• The actual computational work.

• The flow-control to realize repetition and decision.

• Computing memory addresses.
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We cannot practically eliminate the flow-control and addressing sub-programs, or

else we would have to scale the actual work program along with its data, explicitly

encoding each memory location into each instruction and duplicating the code for every

repeated or conditional computation, at enormous cost in performance and code size [99].

Interleaving these three sub-programs imposes a sequential ordering to their operations.

The core concept underlying our architectural enhancements to Octavo is to recognize

that portions of these sub-programs are independent from one another and can therefore

be executed in parallel with each other.

Fig. 6.1 illustrates how we can express all three sub-programs as sub-graphs of the

original Control-Data Flow Diagram (CDFG) of the Hailstone benchmark. Figure 6.1(a)

shows the original MIPS-like code broken into basic blocks. If we keep only the branch

and jump instructions and replace the other instructions with a Wait instruction having

an argument to represent the length of the body of the basic block, we end up with

Figure 6.1(b), which describes the flow-control sub-program. Similarly, keeping only in-

structions which relate to addressing gives us the addressing sub-program in Figure 6.1(c),

where we either add a fixed offset to each regular memory address (one per thread), a zero

offset to any shared absolutely-addressed memory (e.g.: memory-mapped hardware), or a

pointer offset to any memory location used as a pointer. We also keep instructions which

alter the state of the addressing sub-program by initializing or incrementing offsets. Fi-

nally, removing any flow-control or state-altering addressing instructions from the initial

CDFG leaves us with the actual useful work program in Figure 6.1(d). We can now vi-

sually find opportunities for executing flow-control and addressing in parallel with useful

work, manifesting as instructions horizontally overlapping with Wait statements across

sub-graphs, so long as no sequential dependency exists with the previous instruction.

Several approaches exist to execute parallel sub-programs such as superscalar pro-

cessing, Very-Long Instruction Word (VLIW) computers, sub-units executing horizontal

microcode, or multiple processors executing separate threads. However, these approaches
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require complex instruction scheduling hardware, larger instruction words and memory

bandwidth, or require synchronization of multiple threads of execution.

Instead, we observe that the Program Counter (PC) suffices to represent the present

location within any of the three sub-graphs, and that the flow-control and addressing

sub-programs contain very little information: the flow-control sub-program spends most

of its time waiting for a branching point, while the addressing sub-program simply adds

a constant offset unless a pointer or I/O access happens. Viewed another way: even

multiply nested loops have only a handful of repeatedly reached branches at any one

time, and only the most memory-bound code would perform loads and stores more often

than internal computations.

Furthermore, from the PC value, it is apparent at any point in the overall program

which branching and addressing operation comes next. It suffices to provide this infor-

mation to some machinery ahead of time (and ideally outside of busy loops), and let the

PC and instruction operands indicate when special flow-control or addressing operations

must happen.

Motivated by the discussion above, in the proposed processor, we reduce the execu-

tion of the flow-control and addressing sub-programs to pattern-matching on the set of

conditions needed to generate the branches and address offsets required at the current

point in the actual work program. This is achieved by using a small memory to encode

the patterns to look for, along with associated matching logic.

Pattern-matching allows the designer to vary the number of entries to easily trade

off area and speed against the need to reload pattern-matching entries as the program

executes. At the limit case of a single entry, the performance simply returns the original

case of sequentially interleaved sub-programs: each cycle saved by performing a flow-

control or addressing operation in parallel with an ALU instruction returns as a cycle

spent loading the entry for the next case. Ideally, the designer only needs to include

enough entries to fully parallelize the branching and addressing operations inside the
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most critical sections of the program. Even matching a partial set of these operations

will still improve performance some amount.

6.5 Implementation

Rather than executing the flow-control and addressing sub-programs on their own sub-

processors, or as Instruction-Level Parallelism (ILP) in a superscalar, VLIW, or micro-

coded processor (any of which would represent a significant departure from Octavo’s

scalar, multi-threaded architecture), we use the FPGA’s capacity for fine-grained paral-

lelism to check all sub-program conditions concurrently with the main instruction fetch.

We use our knowledge of the current PC, the addresses in the instruction operands, and

the result of the previous instruction, to select the desired effect on the flow-control and

addressing of the current instruction as it flows through the pipeline.

6.5.1 Address Offset Module

The Address Offset Module (AOM) executes the addressing sub-program. We need three

instances of the AOM, one for each instruction operand, as any one may access a pointer

or other special memory at any time. The AOM adds a selected offset to the address

contained in its associated instruction operand. The offset added may be 1) constant, 2)

changing dynamically as the program executes (e.g. automatically incremented), or 3)

zero. The ability to add a constant offset to addresses is useful for threads that share

program code but read/write from different regions of memory. Dynamically changing

offsets are useful for operations such as walking through an array. Zero offsets are useful

for addresses that are shared across all threads, for example addresses of memory-mapped

hardware in the system.

Fig. 6.2 shows the block diagram of the main AOM hardware. The numbers at the

top denote the Octavo pipeline stage numbers. The instruction memory read happens at

stage 0, and the data memory read happens at stage 4. Thus the AOM must do all its
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Figure 6.2: Address Offset Module implementation.

work in stages 0 through 4. Each thread running on the processor sees its own private

AOM instances; specifically, the AOM memories are multiplexed using the thread index

(0-7) (not shown).

In stage 0, the AOM reads a number of Programmed Offset (PO) and Programmed

Increment (PI) memories, as well as a single Default Offset (DO) memory, all implemented

using MLAB Block RAMs. Stage 1 serves to pipeline away the latency of the MLABs,

and to receive the address (A) from the instruction operand. We cannot directly use the

address (A) to select from the AOM memories as it is not available yet, and moving the

memories forward in the pipeline leaves too few stages to maintain a high Fmax.

In stage 2, we use the least-significant bits of A to select one of the PO and PI values.

We also combinationally decode A to determine if it refers to a Shared Memory location

(SM?) and/or an Indirect Memory location (IM?). The SM? and IM? logic modules simply

decode part of the processor’s memory map, set at design time, defining fixed ranges of
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memory locations which either act as absolutely-addressed shared resources (i.e.: I/O

ports) or which act as pointers. Since pointers exist at fixed addresses, simply adding

a Programmed Offset can make them point to any other address. Running different

programs does not require resynthesis of the AOM, only agreement on the memory map

of pointers and shared resources.

In stage 3, if A refers to a Shared Memory location, the AOM zeroes-out the DO.

However, if A refers to an Indirect Memory location, the AOM discards the DO and

instead selects the previously selected PO. In parallel, the AOM increments the PO with

the PI and stores it back into its memory1. Finally, at the beginning of stage 4, just

before the read from data memory, we add the final offset to A, yielding the final address

A’. Programmed and Default Offsets have the same width as the instruction operand

they modify: 10 or 12 bits. Programmed Increments currently use only 1 bit, for values

of +1 or 0.

To use the AOM, the program must load DO with the offset for its own thread’s

memory region, and the PO and PI entries with the offset and post-increment values for

the memory locations (set at design-time by the IM? decoder) which act as pointers.

6.5.2 Branch Trigger Module

The Branch Trigger Module (BTM) executes the flow-control sub-program. We need one

BTM instance for each branch we wish to execute in parallel. The BTM monitors the

Program Counter (PC) and some flags based on the result of the previous instruction: if

the PC matches the location of a branch, and the flags match the branch condition, the

BTM generates a destination address and signals the Controller (not depicted) to replace

the current thread’s next PC value with the destination address, performing a jump. The

BTM optionally also outputs a signal to cancel the current instruction if the branch does

not go as statically predicted, which allows us to always place a useful instruction in

1Note that we disable the write to PO if the instruction was anulled (Chapter 5). Also see Appendix E
for a similar concern with BTMs.
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Figure 6.3: Branch Trigger Module implementation.

parallel with the branch. Also, if either the PC or the flags do not match, the BTM

outputs all zeroes, which allows us to simply take the bit-wise OR of the output of

multiple BTMs, rather than using multiplexers. Finally, having multiple BTMs operate

in parallel incidentally enables multi-way branches for free.

Fig. 6.3 shows the block diagram of the main BTM hardware. The numbers at the

top denote the Octavo pipeline stage numbers. The instruction memory read happens

at stage 0, and any instruction annulling happens between stage 3 and 4, so the BTM

must do its work between stages 0 and 4. However, merging the outputs of all the BTM

instances into a single branching decision can happen later in the pipeline. Each thread

running on the processor sees its own private BTM instances; specifically, the BTM

memories are multiplexed using the thread index (0-7) (not shown).

In stage 0, the BTM reads a number of memories describing a branch operation: the

Branch Origin (BO) contains the memory address of the branch, the Branch Destination

(BD) contains the branch target address, the Branch Predict Enable (BPE) bit controls

whether static branch prediction occurs or if the parallel instruction always executes,
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the Branch Predict (BP) bit selects between “Predict Taken” and “Predict Not Taken”

instruction cancelling behaviour, and the Branch Flag (BF) selects one of the flags (F)

derived from the result of the previous instruction as the condition for the branch. Stage

1 serves to pipeline away the latency of these MLABs Block RAMs.

In stage 2, the BTM compares the PC of the current instruction with BO and generates

a match signal. In stage 3, we use this match signal to mask BD. We also select one of

the branch flags (F) and compare it to BP2.

Additionally, also in stage 3, if we enabled branch prediction for this branch (BPE set),

and the selected flag and the branch prediction disagree, and the branch origin matches,

we generate a signal (C) to cancel the current instruction in parallel with the branch. A

cancelled instruction converts to a no-op but, unlike an annulled instruction, does not

re-issue later.

Finally, in stage 4, we use the selected flag to mask BD again, and the BO match signal

to mask the selected flag, resulting in the final branch destination BD’ and jump signal

J. If either the branch flag or the branch origin do not match, both BD’ and J are zero.

Branch Origin and Destination memories have the same width as the Program Counter

(10 bits), while the Branch Predict Enable, Branch Predict, and Branch Flag memories

have 1, 1, and 3 bits respectively.

To use the BTM, the program must load all the memories with the values describing

an upcoming branch. We automatically compute the branch flags (F) from the result

of the previous instruction, using separate dedicated logic instead of the main ALU, in

the manner of Katevenis’ “fast compare” [62, 87]. Currently, we support 8 flags total:

Negative, Positive, Zero, Non-Zero, Always (for JMPs), and Even, with 2 flags still

left unused. Since all BTM instances function concurrently and eventually merge their

decision output, we can easily support multi-way branches so long as all branches with

matching origins have mutually exclusive branch conditions.

2We omit details related to I/O Predication from Chapter 5. See Appendix E.
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Figure 6.4: Octavo Block Diagram with I/O Predication, AOM, and BTM

We can support as many branches in a region of code as there are BTM instances.

For example, two BTM instances would support two simple nested loops without the

need to reload the BTM memories during their execution. Any additional branches

(e.g.: conditionals) would require corresponding BTM instances. We can manage a

limited number of BTM instances in a manner similar to register allocation, keeping

only the “hottest” branches in the BTMs and re-using one BTM for the less-frequently

encountered branches.

6.6 Improved Octavo Processor Configuration

Figure 6.4 shows the block diagram of the improved Octavo soft-processor which inte-

grates the AOM and BTM. Starting from the original design in Figure 3.7 (pg. 42), we

added I/O Predication (PRD) from Figure 5.2 (pg. 89) (present, but not used in the fol-

lowing benchmarks), plus the new Branch Trigger and Address Offset Modules (BTM and

AOM) from Figures 6.2 (pg. 109) and 6.3 (pg. 111).
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6.7 Experimental Methodology

Our experiments target an Altera Stratix IV FPGA of the highest speed grade. We test

our circuits inside a synthesis test harness to ensure an accurate timing analysis. We

average the Quartus synthesis results over 10 random initial seeds, and tune Quartus

to produce the highest-performing circuits possible. Appendices A and B describe the

experimental framework and Quartus settings in detail.

To measure the number of cycles spent in each benchmark, we place our design in

a simple testbench, which provides a clock and required I/O signals, and execute each

benchmark on a delay-free HDL simulation of the Octavo processor using Modelsim 10.1d.

Since we already know the achievable Fmax of the Octavo processors’ HDL description,

the simulation cycle-count accurately reflects the benchmark wall-clock time. Each sim-

ulation runs for 200,000 cycles total, with one Octavo thread running the benchmark,

and the other seven stalled in an infinite loop without any effect on the system.

6.8 Evaluation, Benchmarks, and Results

Octavo has, as one of its major features, the capacity to approach the maximum possi-

ble clock frequency supported by the underlying FPGA. Thus, we evaluate how many

Address Offset Module (AOM) entries and Branch Trigger Modules (BTM) instances

we can include, and in what ratios, before the raw clock frequency begins to suffer too

much. We consider an Fmax of 500 MHz as a realistic goal, still at 0.909x of the limiting

550 MHz absolute maximum rating for simple dual port M9K Block RAMs in Stratix IV

devices of the highest speed grade [10], and more representative of the actual rated limit

of most such devices.

Our implementation aimed for flexibility and generality for design space exploration,

describing each individual memory in the AOM and BTM as separate MLABs, regardless

of depth of width. We have not yet analyzed the synthesis results to determine if Quartus
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Figure 6.5: Average Octavo Fmax, varying the number of entries per AOM instance and
the number of BTM instances.

can automatically merge separate but logically contiguous MLABs. Therefore, we do not

know if the area results will be comparable across design points, and cannot report

detailed area results at this time.

Fig. 6.5 outlines the major features of the design space, charting the Fmax of Octavo

versions with 0 to 8 AOM entries and/or BTM instances, and a few relevant combinations

thereof. All values represent the average achievable clock frequency. All points above

the horizontal dotted line (470 MHz) denote designs which can reach or exceed 500 MHz

after place-and-route. Meaning that for such designs, across 10 place-and-route runs, at

least one produced an implementation whose Fmax reached or exceeded 500 MHz.

The single hexagon in the top-left corner represents the original Octavo at 527 MHz

(averaged across 10 P&R runs). The triangle markers show the improved Octavo with

a minimal set of 3 single-entry AOMs and 1 to 8 BTMs. Since the BTM modules avoid

multiplexing and sit in a long, sparsely used pipeline, the average Fmax scales quite well,

staying above 490 MHz at up to 8 instances, and staying above the dotted line at up to
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16 instances (not shown).

Conversely, the square markers show an improved Octavo with 1 BTM instance, and

AOM instances with 1 to 8 entries each. Note that since each addressing path to memory

requires an AOM instance, we must always have three instances: one to support each

instruction operand. Because of these multiple instances, their use of multiplexing, and

the tighter pipeline between instruction fetch and data read, Fmax scales poorly as the

number of entries increases, falling off quickly for case with more than 4 entries per AOM.

The circle markers show the line through the design space with equal numbers of

BTM instances and entries per AOM, 1 through 8, suggesting that the number of AOM

entries tends to dominate the scaling of the system as a whole.

Finally, given the previous lines through the design space, the star markers point

out some useful configurations: 2 AOM entries with 4 BTM instances (2/4), 2 AOM

entries with 8 BTM instances (2/8), 3 AOM entries with 6 BTM instances (3/6), and

4 AOM entries with 8 BTM instances (4/8), which likely represents the largest useful

configuration which can still reach 500 MHz after place-and-route.

For the remaining results in this section, we used the first point, 2 AOM entries

with 4 BTM instances (2/4), as our benchmarking configuration since some benchmarks

will require more than these resources, demonstrating benefits even without complete

AOM/BTM support and at 0.939x of the original average Fmax (495 MHz, down from

527 MHz). The peak Fmax still reaches 510 MHz – 0.927x of the absolute maximum 550

MHz rating. The total equivalent ALMs (eALMs) area, which accounts for RAM and

DSP blocks (Chapter 4), rose 1.73x from 1087 eALMs to 1878 eALMs3.

6.8.1 Benchmarks

Since no compiler currently supports AOM/BTM functions, we wrote our own set of

micro-benchmarks in assembly. We previously described Hailstone in Section 6.3.2, and

the other benchmarks in Appendix H.

3but see caveat about area near beginning of section.
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These benchmarks represent various kinds of sequential programs, including simple

loops, complex branching, and numerical processing, and sometimes show the behaviour

of our improvements under non-ideal conditions where we cannot eliminate all overhead.

All benchmarks run under an outermost infinite loop, and we base our measurements on

the number of completed benchmark passes over 200,000 simulation cycles.

We wrote the benchmarks in a strict load-compute-store form, emulating a MIPS-like

processor. Normally, Octavo’s register-less, flat memory model combines loads and stores

with ALU operations (Chapter 3.8), which would make the comparison unfair. Specif-

ically, we would be unable to isolate the speedup and efficiency improvement that arise

solely from incorporating the BTM and AOM, as some additional speedup/efficiency

would originate from the elimination of loads/stores to/from registers. Thus, for fair-

ness, we report conservative results, avoiding Octavo-specific advantages and measured

against the emulated ideal MIPS-like CPU, affected only by our use of BTM and AOM.

Furthermore, all processing happens at Octavo’s native word width of 36 bits.

Table 6.1 summarizes the cycle count speedups and execution efficiency improve-

ment of our benchmarks. We measure efficiency as the ratio of “useful” instructions

(Section 6.3.2). We show both looping and unrolled versions, as unrolling reveals the

fundamentally useful instructions. However, unrolling itself impractically increases code

size to nearly fill Octavo’s instruction memory. The “MIPS” entries refer to benchmarks

run on the emulated ideal MIPS-like CPU, and the “Octavo” entries refer to optimized

benchmarks using AOMs and BTMs. Reading across columns shows the impact of the

AOMs and BTMs, while reading down columns shows the impact of loop unrolling.

Hailstone We previously described the hailstone benchmark in Section 6.3.2. Hailstone

exercises various computing and branching operations. When using the AOMs/BTMs,

we see a 1.92x speedup and 1.32x efficiency increase. Using AOMs/BTMs on unrolled

code yields worse results since we must keep re-loading the BTM with branch data for

each unrolled loop instance.
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Table 6.1: Benchmark cycle count speedup and efficiency improvements.
Benchmark Cycles per Pass Execution Efficiency

Hailstone MIPS Octavo Speedup MIPS Octavo Increase
Looping 970 504 1.92x 0.655 0.863 1.32x
Unrolled 769 701 1.10x 0.824 0.899 1.09x

Speed./Incr. 1.26x 0.72x — 1.26x 1.04x —

Increment MIPS Octavo Speedup MIPS Octavo Increase
Looping 716 376 1.90x 0.631 0.907 1.44x
Unrolled 431 331 1.39x 1.000 1.00 1.00x

Speed./Incr. 1.66x 1.14x — 1.58x 1.10x —

Reverse MIPS Octavo Speedup MIPS Octavo Increase
Looping 404 354 1.14x 0.748 0.856 1.14x
Unrolled 309 309 1.00x 1.000 1.000 1.00x

Speed./Incr. 1.31x 1.15x — 1.34x 1.17x —

FIR MIPS Octavo Speedup MIPS Octavo Increase
Looping 2902 2502 1.16x 0.897 0.960 1.07x
Unrolled 2614 2406 1.09x 0.996 0.998 1.00x

Speed./Incr. 1.11x 1.04x — 1.11x 1.04x —

FSM MIPS Octavo Speedup MIPS Octavo Increase
— 807 753 1.07x 0.564 0.467 0.83x

Array Increment We increment an array of 10 elements by 1, repeated 10 times, then

output the entire array, showing a simple iterated calculation with a separate output loop.

This benchmark requires five branches, forcing us to periodically reload one of the four

BTM entries to support it. However, we can hoist that overhead outside of the loop, and

still obtain a significant speedup. Using AOMs/BTMs grants a speedup of 1.90x and an

efficiency improvement of 1.44x. The efficiency suffers, relative to loop unrolling, due to

the overhead of reloading the BTM with data for the fifth branch, associated with the

inner loop. See Appendix H.1 for source code.

Array Reverse We traverse an array of 100 elements using two pointers, top-to-middle

and bottom-to-middle, loading and storing to swap their values without any computation

or other I/O. This memory-bound benchmark forces the bottom-to-middle pointer to

decrement, which our current AOM does not support. Furthermore, due to the write-

only nature of the AOM, we have to keep a copy of the bottom-to-middle pointer, add −1
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to it, then update its AOM entry, all within the main loop. Nonetheless, AOMs/BTMs

enable a speedup and efficiency increase of 1.14x. See Appendix H.2 for source code.

8-Tap FIR Filter We sequentially read a 100-entry input buffer, applying an 8-tap FIR

filter at each step, and output the filtered values to a 100-entry output buffer. We keep

all 8 taps and 8 coefficients in registers, shifting values down the taps then performing

the multiplications and additions, both as unrolled inner loops. Despite the sequential

bulk of the buffering and convolution code, AOMs/BTMs speed up FIR by 1.16x and

improve its efficiency by 1.07x. Note that available memory limited us to unroll 25 times

instead of 100, thus some loop overhead remained in all cases. See Appendix H.3 for

source code.

Floating-Point Number FSM We parse a stream of 100 characters using a Finite

State Machine, looking for simple space-delimited floating point numbers such as 5.5,

−3., +.8, etc. . . , and raise either an Accept or Reject signal. The 100 input characters

contain 25 valid numbers and one invalid one, forcing the FSM to walk through all

its paths. We implement the FSM directly in the program structure, alternating tests

and branches to determine state and action. FSM contains no real loops, no hoistable

computations, no significant addressing, no basic block longer than 2 or 3 instructions,

and has 34 unique branches, greatly exceeding the capacity of the four-entry BTM and

forcing us to continually reload a single BTM entry with the data for the next upcoming

branch. However, we can fold that BTM entry reload (for the next branch) with the

branch set by the previous reload, and we can use the BTM to statically cache three

other branches to save cycles on the most commonly traversed edges, granting a 1.07x

speedup and 0.83x efficiency improvement. We cannot unroll FSM due to its complex

and variable execution, and efficiency suffers due to some BTM re-loads not folding into

branches. See Appendix H.4 for source code and algorithmic details.
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Summary The use of BTMs and AOMs always speeds up sequential code, conserva-

tively measured relative to a “perfect” MIPS-like CPU, and even taking into account the

0.939x change in Fmax from their implementation. Using AOMs/BTMs also improves

execution efficiency of our benchmarks to a minimum of 0.856x of the maximum achiev-

able via loop unrolling, up to a 1.05x (0.863/0.824) improvement for Hailstone, without

the associated code size increase.

6.9 Programming Model: Parallel and Shared Code

Introducing the AOM and BTM improves Octavo’s programming model in two major

ways when exploiting data parallelism with multiple Octavo threads running identical

code on subsets of the entire data: we eliminate the amplification of branching overhead,

and the need to create per-thread private code copies, as we originally described in

Section 3.13.2.

Since branches now effectively execute in zero cycles instead of one, we eliminate long

bubbles of branches from Octavo’s pipeline when all threads reach the same branch when

executing the same code in lock-step. Also, since each thread now has a global private

address offset into memory and private special offsets to implement indirect memory

accesses, all the threads can now share the same code, without self-modifying private

copies as described in Section 3.12. We only need small, thread-private code preambles

to initialize the BTM and AOM entries of each thread before branching to the common,

shared code.
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6.10 Conclusions

In this work, we located intrinsic overheads in sequential programs as separate address-

ing and flow-control sub-graphs interleaved with the actual desired computations. We

extracted these sub-graphs as data describing sets of conditions the processor can pattern-

match against, using Address Offset Modules (AOMs) and Branch Trigger Modules

(BTMs) operating in parallel with the instruction fetch.

We found AOMs and BTMs to scale to useful levels, supporting up to 4 active pointers

per instruction operand and up to 8 active branches before the average Fmax dropped

below 500 MHz on a modified Octavo soft-processor on a Stratix IV FPGA. Furthermore,

benchmarking revealed that using BTMs and AOMs always reduced the cycle count,

speeding up execution by 1.07x for branch-heavy control code, up to 1.92x for looping

code. In all but one case, which had incomplete AOM support, the speed-up of ordinary

looping code always exceeded that granted by total loop unrolling, since AOMs/BTMs

can additionally eliminate pointer increments and fold branches with useful work.

Using AOMs and BTMs also improved the ratio of executed instructions which per-

form the actual desired computations. Versus the best-possible case granted by total loop

unrolling, which often reaches a ratio of 1.00, our benchmarks improved their efficiency

to a minimum of 0.856, reaching up to 1.05x the efficiency of unrolled code, all without

the associated code size increase. Only control-heavy code, impossible to unroll, suffered

a decrease in efficiency from 0.564 to 0.467.



Chapter 7

Benchmarking Overlay, HLS, and

HDL Implementations

The most exciting phrase to hear in science, the one that heralds new discoveries, is not

“Eureka!” (I found it!) but “That’s funny...”

Isaac Asimov (1920 - 1992)

In previous chapters, we defined the Octavo overlay architecture, preserved its per-

formance under tiling, improved its system-level flexibility, and reduced its execution

overhead. We now benchmark Octavo against other FPGA design alternatives to com-

pare their sequential and parallel performance and highlight directions for improvement.

We benchmark the three major FPGA design process alternatives we originally de-

scribed in Chapter 2: Overlays, High-Level Synthesis (HLS), and Hardware Description

Language (HDL). We compare Overlays to uncover sources of overhead and suggest

improvements to Overlay architecture in general. We also create equivalent HDL im-

plementations, implementing the same algorithms and tuned for maximal performance,

to estimate the performance gap and (more importantly) the area penalty of Overlays.

Finally, we compare HLS against both Overlays and HDL since HLS has similar ease of

development as Overlays, with a final area and performance closer to HDL, but without

the fine implementation control of the latter.

122
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Overlays Unfortunately, most overlay architectures (Section 2.2.3) never leave the

lab (e.g.: MARC [79]), leaving only two to compare: our own Octavo [77, 78], and

MXP [105, 107], a vector soft-processor derived from UBC’s VENICE [106] and com-

mercialized by VectorBlox Computing. We compare the performance of Octavo and

MXP implementations with 1 to 32 lanes, denoted as L1 to L32 for Octavo and V1

to V32 for MXP. The notation reminds us that Octavo uses independent SIMD lanes

with private memories, while MXP uses vector lanes accessing a common banked vector

scratchpad. MXP works on 32-bit values, while Octavo uses 36-bit values, matching the

FPGA’s Block RAMs.

High-Level Synthesis There exist multiple HLS systems (Section 2.2.2), but we com-

pare Octavo to LegUp [22] as it synthesizes plain C code, making the benchmarks more

portable to MXP and Octavo than OpenCL kernels which assume a certain memory

model [109], or higher-level Bluespec descriptions which describe parallelism as Guarded

Atomic Actions [95]. We use LegUp 3.0, with some in-progress improvements to pipelin-

ing and local memories [21, 46], in a pure hardware flow without the included Tiger

“MIPS” [89] core normally used to execute code. LegUp uses 32-bit values for synthesis,

automatically optimized by Quartus where possible.

Hardware Description Language Finally, for each benchmark, we manually create a

hand-optimized Verilog-2001 implementation which executes the benchmark in the same

manner as the Overlay and HLS solutions, aiming for the highest performance possible

without changing the underlying algorithm. We report the unrestricted Fmax, to show

that most HDL implementations can exceed the 550 MHz BRAM limit, maximizing the

use of the FPGA for that computation. All HDL implementations work with 32-bit data,

and narrower words as required for addresses, counters, etc. . .
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Figure 7.1: MXP Block Diagram [107]

7.1 MXP

Figure 7.1 shows the block diagram of a 4-lane example configuration (denoted as MXP-

V4) of the MXP soft vector processor [107]. In a nutshell, the MXP vector lanes operate

under the control of a Nios II/f scalar soft-processor which sends vector instructions to

the various MXP units to perform vector DMA transfers to/from main memory, scat-

ter/gather addressing [108], and optional custom vector instructions for specific tasks.

7.1.1 Relevant Architectural Features

Double-pumped Vector Scratchpad MXP’s vector scratchpad operates internally

at twice the system clock frequency to multiplex the two ports of its constituent Block

RAMs into four. This configuration enables multiple simultaneous transfers each cycle:

2 vector reads, 1 vector write, and a DMA transfer to/from main memory. However, the

double-pumped scratchpad ultimately limits MXP’s overall Fmax.
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Vector Alignment Networks The alignment networks are MXP’s most significant

feature, enabling arbitrarily-aligned vector addressing. They operate independently on

reads and writes to the scratchpad, and perform simple rotations, not full cross-bar

permutations. Figure 7.1 illustrates them aligning two source vectors A and B before

reaching the ALUs, and one destination vector C before storage back into the scratchpad.

Vector-to-Scalar Accumulator MXP contains one accumulator, located after the

vector ALUs and taking input from each vector lane, to enable pipelined Multiply-

Accumulate operation.

Vector Conditional Move MXP provides a variety of vector conditional move in-

structions which provide basic conditional execution in the absence of vector branches.

Custom Vector Instructions We can add special-purpose functional units to MXP’s

pipeline to accelerate application-specific code, at the cost of re-synthesizing the entire

processor. In this work, the designers of MXP added custom vector instructions to

support per-vector-lane table lookups to enable the sequential Hailstone-A benchmark.

7.1.2 Programming Model

The MXP programming model strongly depends on vectorizing the target application.

The 8 to 10 stage vector pipeline does not support forwarding nor branching, and the

Nios II/f takes 2 to 4 cycles to issue a complete vector instruction. Thus, the vector

lanes must operate on vectors at least 8× as wide as the number of vector lanes to

avoid consuming vector instructions faster than Nios II/f can supply them, and to avoid

pipeline bubbles. On the other hand, once initiated, MXP’s vector operations proceed

efficiently, with automatic loop counters and 2-D vector addressing, and scale effectively

with the number of vector lanes. Additionally, the same MXP vector program portably

compiles to MXP instances with any number of lanes, hiding the distribution of data and

division of labour from the designer.
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Figure 7.2: Completed Scalar Octavo Block Diagram

7.2 Octavo

Figure 7.2 shows the block diagram of the completed scalar Octavo soft-processor (de-

noted as Octavo-L1). Starting from the original design in Figure 3.7 (pg. 42), we added

I/O Predication (PRD) from Figure 5.2 (pg. 89), plus Branch Trigger and Address Offset

Modules (BTM and AOM) from Figures 6.2 (pg. 109) and 6.3 (pg. 111). Replicating the A/B

memories and the ALU provides SIMD parallelism (Figure 4.1, pg. 62), with each SIMD

lane logically partitioned to improve Fmax (Chapter 6).

7.2.1 Relevant Architectural Features

Strict Round-Robin Multi-Threading Each cycle, one of 8 independent threads,

sharing the I/A/B memories, issues an instruction in turn. The order never varies. This

strict multi-threading, more than any other feature, enables Octavo’s high Fmax and

dictates its programming model.

Unified Scratchpad Memory Octavo does not separate register file and memory,

using scratchpad memories instead and memory-mapping hardware into those address

spaces. Both instruction read operands address separate scratchpad memories (A and

B), and the destination operand can write to any memory (Chapter 5.1).
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Memory-Mapped I/O Ports Instead of loads/stores, Octavo maps I/O port into the

A/B memories, addressing them using the instruction operands like any other memory

location. This external interface allows tight integration of external accelerators for

special functions.

Accelerators To approximate MXP’s vector accumulator and alignment networks, we

attached an Accumulator to the I/O ports of each datapath to provide chained Multiply-

Accumulate operation for the parallel Finite Impulse Response (FIR) benchmark. We

also similarly inter-connected the datapaths with pipelined channels to support the par-

allel Reverse-4 benchmark. We describe these additions below.

Branch Trigger Module The BTM enables multi-way zero-cycle branches based on

the result of the previous thread instruction, possibly cancelling the current instruction

if the branch does not go as statically predicted (Chapter 6.5.2).

Address Offset Module The AOM enables indirect and offset memory addressing to

share code across threads, and can concurrently perform post-incrementing addressing

(Chapter 6.5.1) after an indirect memory read/write.

SIMD Lanes By replicating the datapath (A/B memories and the ALU), and feeding

the copies a common instruction stream, we create optional SIMD lanes. Each lane has

its own A/B memories and memory-mapped I/O ports, and follows the control flow of

the original datapath. All datapaths execute the same code, so we add n− 1 datapaths

to support n-way SIMD parallelism. Contrary to previous SIMD implementations shown

in Figure 4.1 (pg. 62), we do not pipeline the SIMD lanes one instruction behind the

primary datapath. We thus exchange a 2-3% loss in average Fmax for a simpler program-

ming model, especially when SIMD lanes communicate with each other and the primary

datapath.
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7.2.2 Programming Model

The Octavo programming model strongly depends on multi-threading the target appli-

cation. Each of the 8 threads executes an instruction in turn, at an effective 1
8

th
the

actual Fmax. Thus, to use Octavo’s full capacity, parallel software must divide the work

across all threads, each executing the same code on a subset of the data. Adding SIMD

parallelism simply extends this model since each additional datapath executes the same

8 threads, but operating on different data subsets. Once initiated, all threads proceed

efficiently without branching overhead or pipeline hazards. Unfortunately, each parallel

program must be tailored to the particular Octavo configuration that will execute it,

manually distributing data to each thread before computation. We discuss the details of

Octavo’s programming model in Sections 3.13, 4.9, 5.3, and 6.9.

7.2.3 Accelerators

Customizing MXP requires directly altering its datapaths to add custom vector instruc-

tions. However, on Octavo, we can simply attach custom hardware to the I/O ports,

without touching the datapaths or the ISA. Thus, rather than providing general, built-in

solutions for a broad set of problems, we make it simple to add new primitives to Octavo

and to integrate them into its programming model.

The first Accelerator, the Array Reversal Channel, implements a permutation tailored

to array reversals. It was far easier to design a specialized channel than an exact equiv-

alent to MXP’s vector alignment networks. Making changing Accelerators easy favours

creating simpler, specialized solutions. The second Accelerator, the Accumulator, imple-

ments the same Multiply-Accumulate functionality as in MXP. However, we do end up

with multiple Accumulators as a natural extension into SIMD parallelism.

Note that a designer could also add array reversal permutations to the MXP’s align-

ment networks, and also add an accumulator to each vector lane ALU, yielding identical
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Listing 7.1: Pseudo-code to drive Array Reversal Channel

1 ADD I/Ow, Top , 0

2 ADD I/Ow, Bottom , 0

3 ADD Bottom , I/Or, 0

4 ADD Top , I/Or , 0

Figure 7.3: Per-Thread View of Array Reversal Channel

functionality to Octavo’s Accelerators. However, these changes would require consid-

erably more design and implementation effort, and would likely reduce the Fmax, since

they would lie in the datapath. On the other hand, designing, implementing, verifying,

and attaching these Accelerators to Octavo took only about two evenings’ worth of work

each, and had negligible impact on Fmax.

Array Reversal Channel

To enable communication across its vector lanes, MXP has read/write alignment networks

which can offset a vector across lanes as desired. In contrast, Octavo’s SIMD lanes do

not communicate at all, except for receiving a common instruction stream, and could not

execute an equivalent parallel array reversal benchmark.

Listing 7.1 outlines the work of a thread reversing an array possibly spanning multiple

SIMD lanes: a thread reads (by ADDing to 0) from the Top and Bottom array pointers,

writing the data to the write port (I/Ow), then reads from the read port (I/Or) and

writes the received data back to the array in reverse order.

Figure 7.3 shows the communication channel between two such threads: the writing

thread writes the target of the Top and Bottom pointers to a write port (I/Ow), in that
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Figure 7.4: Octavo-L5 Lanes with 8-stage Array Reversal Channels

order, to a 2-stage pipeline which the receiving thread then reads from a read port (I/Or)

and stores in reverse order.

Since Octavo executes 8 threads, and each thread needs to see a 2-stage pipeline,

we need 16 pipeline stages total to contain all the writes before we begin reading them

back. Octavo’s pipelined datapath provides the first 8 stages, as memory and I/O writes

happen 8 cycles after reads, leaving us to add 8 stages between lanes to pipeline the

channels.

Figure 7.4 shows the channel connections for parallel array reversal across the 5 lanes

of an Octavo-L5: if we distribute an array across all 5 lanes, then the first segment

exchanges and reverses itself with the last, and so on in decreasing circles until the centre

lane L3 reverses its own segment. The number of channels scales with the number of

SIMD lanes, thus the number of steps to reverse an array remains constant if the number

of lanes scales with the total size of the array.

SIMD Accumulators

For a Finite Impulse Response (FIR) filter, MXP uses an Accumulator to sum the filter

coefficient products from each vector lane to a final scalar value, resulting in a pipelined

Multiply-Accumulate (MAC) operation. Octavo cannot simply copy this cross-lane vector

reduction, as each SIMD lane runs the same code in lockstep, and would need complicated

memory-mapping tricks to force storing the final scalar sum into one SIMD lane only.

Duplicating the final sum into all lanes would waste too much memory.
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Figure 7.5: Pipelined Per-Lane Accumulator, with 2-stage delays

Instead, we enable each thread to chain multiplications and accumulation sums to-

gether, much like MXP does, by attaching an Accumulator, sufficiently pipelined to

support all threads, to the I/O ports of the datapath.

Figure 7.5 shows the Accumulator implementation. In the centre, we have a copy

of Octavo’s Adder (Chapter 3.9), which takes 2 pipeline stages. We add additional

pipeline registers, in groups of 2 for convenience, to add up to 8 pipeline stages. After

writing to the Accumulator, the new Total sum shows up at the output 8 cycles later,

and circulates back into the Accumulator. Thus, from a thread’s perspective, the new

Total sum becomes available one instruction after the previous write to the Accumulator.

Other operations easily fill this gap to avoid the RAW hazard.

The Accumulator attaches to Octavo via one I/O write port (I/Ow) and one I/O read

port (I/Or). To add a new value to the Total sum, a thread must write it (the Addend)

to I/Ow, which also raises the port’s write enable line (Write). When not asserted, the

Write line zeroes-out the Addend, effectively adding zero to the Total sum. To read out

the Total sum, a thread must read from I/Or, which also raises the port’s read enable

line (Read). When asserted, the Read line zeroes-out the circulating Total sum for that

thread, restarting the accumulation process.

Calculating one output of an n-tap FIR filter now requires only n+ 1 steps, n multi-

plications followed by 1 Accumulator read, instead of 2n− 1 with separate Multiply and
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Accumulate instructions.

Following Octavo’s multi-threaded programming model, as we replicate the datap-

ath for SIMD parallelism, each new SIMD lane also receives an Accumulator. Thus,

although Octavo cannot multiply all the filter coefficients and sum them together in

a single pipelined n-tap MAC operation like MXP, we can efficiently perform chained

MACs for any number of taps and divide the work across any number of SIMD lanes.

7.3 Benchmarks

We use an extended set of the benchmarks used to measure execution overheads in

Chapter 6, further divided into Sequential and Parallel groups. For each benchmark, we

measure the following values and calculate their ratio relative to those of a scalar Octavo

core (Octavo-L1) which forms the baseline for all speed and area comparisons.

• The number of cycles per unit of work (i.e.: computing one result) and the cycle

count speedup. We describe what constitutes a unit of work in the results of each

benchmark (Section 7.4). Typically, the computation of one output value defines

the unit of work.

• The Fmax of the implementation. Contrary to the rest of this work, we choose the

implementation with the highest Fmax out of 10 random seed P&R runs so as to

compare the best possible case of each approach.

• The wall-clock time per unit of work (in nanoseconds) and their speedups.

• The area of the implementation, measured as the count of equivalent Adaptive Logic

Modules (eALMs) in use, which include the equivalent silicon area of hard blocks

such as M9K BRAMs (28.7 ALMs each) and DSP blocks (29.75 ALMs each) as

reported by Wong et al. [125, 126]. We also show the area shrink (or growth, to

keep the ratios simple to read) of each implementation.
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• The Area-Delay product as eALMs·ns (time per unit of work), along with shrink

or growth, which indicates relative implementation efficiency. For parallel bench-

marks, a relatively constant Area-Delay as the parallelism and working set size

increase indicates a scalable implementation, whose amount of work produced per

unit time increases linearly with the area.

Experimental Framework All benchmarks execute entirely from on-chip memory to

avoid the complications of a memory hierarchy, with the exception of some NiosII/f results

which access external memory via a direct-mapped cache. The MXP system uses GCC

4.1.2 to compile code to the NiosII/f controlling processor, and synthesizes the vector

lanes using Altera 13.0sp1. We use Quartus 13.1 to synthesize Octavo (Appendix A),

with an aggressively tuned configuration for maximum Fmax (Appendix B). LegUp uses

Quartus 10.1sp1 for synthesis, while the HDL implementations use Quartus 13.1. Both

also use the same aggressive configuration as the Octavo synthesis. All systems target

the Altera Stratix IV EP4SGX230KF40C2 device on the Terasic DE4-230 board.

Data Types All overlay benchmark implementations operate on word-wide signed

integers: 32 bits for MXP and LegUp, and 36 bits for Octavo. Both also use whole

words for addressing and counting. The HDL implementations use 32 bits words for

data, except for the Finite-State Machine (FSM) benchmarks, which process characters

of 8 bits, and use the minimum word width required for addressing and counting. Note

that the LegUp C-based implementations use 32-bit ints for all data, loop counters, and

other datapath components (except 8-bit chars for the aforementioned FSMs). Quartus

cannot always optimize the unneeded bits, increasing the area.

Working Set Size To present each platform in the best light possible, we scale-up the

working set size of each benchmark as necessary to minimize set-up overheads and avoid

artificial inefficiencies such as pipeline hazards, while still fitting into on-chip memory.
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Listing 7.2: Reverse-2D MXP Pseudo-Code

1 for(i = 0; i < COUNT; i++){

2 temp_vector [(COUNT -1)-i] = data_vector[i];

3 }

4 data_vector = temp_vector;

Therefore, we report benchmarks results per processed working set item (“unit of work”)

to abstract away the different raw working set sizes.

In general, the HDL and LegUp benchmarks work on sets of 100 items, while Octavo

works on sets of 1024 items, evenly divisible into per-thread working sets of 128 elements,

and replicates the working set for each additional SIMD lane.

MXP scales the working sets to the size of its scratchpad, divided by 4 to leave space

for temporary vectors. MXP-V1 and MXP-V2 use an 8 kilobyte scratchpad, with 4 bytes

per word (2 kilowords), further divided by 4 for input, output, and temporaries, yielding

a working set of 512 items. For larger numbers of vector lanes, MXP multiplies this

working set by the number of vector lanes (i.e.: MXP-V4 works on 1024 items, MXP-V8

on 2048, etc. . . ).

7.3.1 Sequential Benchmarks

The Sequential Benchmarks represent tasks which do not parallelize easily or at all, and

often present a worst-case scenario for SIMD/vector processing, as well as stress intrinsic

sources of overhead such as pipeline hazards, memory accesses, and flow-control.

Reverse-3 Reverses an array of word-wide integers using the conventional 3-step ap-

proach which assumes all element are local to the same memory: A→t, B→A, t→B.

MXP cannot implement a 3-step swap directly, but instead fills its pipeline with vec-

tor elements, storing them at the correct computed address to perform the reversal. A

2D addressing mode automatically computes both source and destination addresses in
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parallel. Listing 7.2 outlines the MXP “Reverse-2D” algorithm, which we consider equiv-

alent to Reverse-3 since it can also only move one item at a time. The MXP read/write

alignment networks cannot reverse a vector since they only rotate vector elements.

Hailstone-S Computes one step of a Hailstone sequence: if n is even: n = n/2, else

n = (3n + 1)/2. We apply this function over a large number (100 or more, depending

on the platform) of random positive integer initial seeds to evenly distribute time spent

in the even and odd branches and to fill pipelines with independent calculations. The

Hailstone benchmark performs a variety of bit-level and arithmetic calculations, as well

as unpredictable branching.

Hailstone-A Computes the entire Hailstone sequence of the seed 77, 031, which has the

longest Hailstone sequence (222 terms) of all seeds < 100, 000. However, we accelerate

the calculations via precomputed table lookups which allow each step to calculate the 8th

value after the current seed, rather that the immediately consecutive value. Thus, we can

sequentially pre-compute the first 8 members of the Hailstone sequence then use these

to run 8 interleaved instances of the accelerated table-based calculations to compute the

entire sequence 8 members at a time. Each instance only needs to compute 28 steps out

of a total of 224 steps (28 × 8), producing two extra terminal sequence results (..., 2, 1)

after the 222 terms of the Hailstone sequence. This benchmarks resembles table-lookups

in cryptographic functions, and also allows full usage of the MXP and Octavo pipelines.

See Appendix G for algorithmic details.

FSM-S and FSM-A Executes a Finite State Machine (FSM) which recognizes simple

floating-point numbers (e.g.: 0.5, -9., .3, 4.2, etc. . . ) from a stream of characters1,

reaching either the ACCEPT or REJECT states. The input set of 103 characters contains

25 valid numbers, which each exercise one of all the possible paths to ACCEPT, plus one

1Actually, 32 and 36-bit ints for MXP and Octavo, and 8-bit chars for HDL and LegUp.
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Listing 7.3: Reverse-Recursive MXP Pseudo-Code

1 // Swap individual (even/odd) elements using conditional move

2 // Make CMOV only write every other element in vector

3 cond = set_mask_every_other ();

4
5 // Move odd elements into even element positions

6 CMOV(temp_vector [0:COUNT -2], cond , data_vector [1:COUNT -1]);

7
8 // Move even elements into odd element positions

9 CMOV(temp_vector [1:COUNT -1], cond , data_vector [0:COUNT -2]);

10
11 // <repeat for pairs , quartets , etc...>

invalid number which reaches REJECT to ease verification. Two versions of the source

code exist: FSM-S was written in conventional “structured” C using nested if-statements

and state variables, while FSM-A was written in a more “assembly” style of C with lower

overhead, using goto statements to change state. Both FSM benchmarks present worst-

case data-dependent branching behaviour, with basic blocks of 2-3 instructions only and

no regular loops. See Appendix H.4 for algorithmic details.

7.3.2 Parallel Benchmarks

The Parallel Benchmarks represent tasks which conventionally parallelize well, even if

their implementations have more initial overhead than the equivalent non-parallelizable

Sequential benchmarks. These tasks reveal how the work divides across parallel execution

units, and how well the system scales.

Increment Adds 1 to each of 10 word-wide integer array elements, 10 times, for a

total of 100 iterations designed to test simple independent data operations and loop

overhead. We do not unroll the loops in the source, but allow the LegUp HLS to pipeline

them automatically. Contrary to other benchmarks, Increment focuses on the process of

looping itself, and thus has a small working set size.
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Reverse-4 Reverses an array of word-wide integers using a generalized swap which does

not assume that the elements reside in the same memory: A→t1, B→t2, t1→B, t2→A.

This approach allows dividing the array into two or more memories, enabling parallel

transfers. MXP cannot implement Reverse-4 directly since its alignment networks can

only rotate vector elements, not arbitrarily permute them. Instead, MXP implements a

“Reverse-Recursive” algorithm which uses conditional moves (CMOV) to recursively swap

quadratically-increasing large subsets (even/odd singletons, pairs, quartets, etc. . . ) of a

vector.

Listing 7.3 outlines the core of the algorithm, which completes in approximately 2log2n

vector swaps for a vector of length n. We first set a vector mask which allows CMOV to

only write every other vector element. We then copy all the odd-numbered elements to

the even-numbered locations in a temporary vector, then copy the even-numbered vec-

tor elements into the temporary odd-numbered locations, thus swapping their positions.

We can then adjust the mask and the vector addresses to swap pairs of elements, quar-

tets, etc. . . We consider Reverse-Recursive comparable to Reverse-4 since they both move

multiple items at a time and similarly scale with the number of SIMD/vector lanes.

Hailstone-N Functions identically to the sequential Hailstone-S benchmark, calculat-

ing one step of the Hailstone sequence over a working set of about 100 random positive

integer initial seeds (depending on platform), but implemented as non-branching code

to allow SIMD and vector parallelization. All versions compute both the even and odd

branches, then store the desired result based on the parity of the seed (i.e.: even or

odd). The LegUp and HDL versions use AND-OR Boolean masking ((odd branch &

mask) | (even branch & !mask)) for best synthesis, while Octavo uses a masked XOR

(((odd branch ⊕ even branch) & mask) ⊕ even branch) to save a cycle, and MXP

uses conditional moves.
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Listing 7.4: Pipelined MAC FIR Filter MXP Pseudo-Code

1 for i = 1 to num_samples

2 dotp = 0;

3 for k = 1 to num_coeff

4 dotp = dotp + coeff[k] * in[i+k];

5 end for

6 out[i] = dotp;

7 end for

Listing 7.5: Transposed FIR Filter MXP Pseudo-Code

1 for i = 1 to num_samples

2 out[i] = 0;

3 end for

4 for k = 1 to num_coeff

5 const = coeff[k];

6 for i = 1 to num_samples

7 out[i] = out[i] + const * in[i+k];

8 end for

9 end for

FIR Computes an 8-tap Finite Impulse Response (FIR) filter over an input array of

approximately 100 word-wide integer elements (depending on platform) into a similar and

separate output array. For best performance, the HDL implementation uses a separate

buffer to hold past input values for convolution, while the MXP, Octavo, and LegUp

implementations use a pointer into a sliding window over input memory. The MXP FIR

filter implementation varies, as the final Accumulator (upper right in Figure 7.1) can

only sum up to the number of taps, despite scaling to the number of vector lanes. When

the number of vector lanes exceeds the number of filter taps, we can transpose the FIR

algorithm to support vector parallelism, at the cost of using a separate vector summation

instead of the Accumulator.

For an 8-tap filter, for 16 lanes and fewer, MXP concurrently performs each of the co-

efficient multiplications (one per vector lane), then uses the final Accumulator to sum the

products into a scalar result, implementing an efficient pipelined Multiply-Accumulate

operation (Listing 7.4). For more than 16 lanes, MXP instead successively multiplies
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Figure 7.6: Data and extra headers for a 5-tap FIR filter on an Octavo-L3, over 24 input
data points.

each coefficient over an entire input vector and sums the products into an accumulation

vector (Listing 7.5). This transposed FIR algorithm applies the coefficients over multiple

vector multiplications, followed by a vector sum, but calculates multiple convolutions

at once. Thus, the parallelism scales up to the entire input data set length2, not just

the number of filter coefficients, at the price of some extra overhead. In this case, the

parallelism exceeds the overhead past 16 lanes, so we use the transposed FIR at 32 lanes.

In contrast, Octavo parallelizes an n-tap FIR filter by dividing the input and output

data across all SIMD lanes and having each lane apply the FIR filter sequentially to each

subset. We accelerate each convolution by providing each SIMD lane with an Accumula-

tor to allow chaining multiplications and sums (Section 7.2). To avoid introducing gaps

in the output data, we prepend a header of the last n− 1 input data from the previous

lane, or zeros at the first lane, to allow the sliding window to immediately contain the

necessary data to compute the next consecutive output value. Figure 7.6 illustrates the

headers and data for a hypothetical Octavo-L3 implementing a 5-tap FIR filter over 24

input data points (in the bold boxes).

2MXP’s Direct Memory Access (DMA) controller would transfer data as needed for continuous, un-
windowed filtering.
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Table 7.1: 3-Step Array Reverse (Reverse-3) Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

Reverse-3 Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 3.07 — 525 5.85 — 2203 — 12,888 —
MXP-V1 1.12 2.74 221 5.07 1.15 4429 (2.01) 22,455 (1.74)
LegUp 1.06 2.90 468 2.26 2.59 90 24.5 203.4 63.4
HDL 1.03 2.98 612 1.68 3.48 177.7 12.4 299 43.1

7.4 Results

Here we tabulate the raw measurements of clock speed and cycle count, calculate the

area of each implementation, and discuss differences in execution and scaling between

implementations. Not all implementations are feasible in all cases.

7.4.1 Sequential Benchmarks

For the sequential benchmarks, we compare single HDL and LegUp instances, and Octavo

and MXP instances with 1 or 2 lanes, as instruction-level parallelism allows, showing

how their Fmax and cycle counts per result compare. Because MXP’s vector lanes do

not support branching, some sequential benchmarks must default to running on the

controlling NiosII/f processor (denoted as “MXP-Nios”). Note that the Fmax of Nios

matches that of the MXP vector lanes, and could run somewhat faster (approximately

240 MHz) by itself [11].

Reverse-3

Table 7.1 shows the results of the Reverse-3 benchmark on a scalar Octavo instance

(Octavo-L1), a single-lane MXP instance (MXP-V1), and the LegUp and HDL imple-

mentations. We define the unit of work as swapping 2 array elements.

Octavo executes Reverse-3 sequentially and plainly, executing a 6-instruction loop 64

times to reverse a 128-element array. Of the 6 instructions, 3 perform the swap, and the
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Table 7.2: Sequential Hailstone (Hailstone-S) Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

Hailstone-S Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 4.55 — 525 8.67 — 2203 — 19,100 —
MXP-Nios 7.42 (1.63) 221 33.6 (3.88) 4429 (2.01) 148,814 (7.79)

LegUp 1.05 4.33 331 3.17 2.74 2889 (1.31) 9,158 2.09
HDL 1.04 4.38 600 1.73 5.01 126.7 17.4 219 87.2

other 3 deal with a decrementing a pointer (not supported by the AOM) and the loop

counter (not supported by the BTM). The loop branch folds into the last instruction.

In contrast, MXP automates all the addressing and looping, swapping one array item

every cycle (plus some setup overhead), but its lower Fmax counters the lower cycle count,

resulting in only a 15% speedup over Octavo. With this moderate speedup, MXP’s 2.01×

larger area also contribute to a 74% increase in Area-Delay product. The LegUp and

HDL implementations approach the ideal of 1 cycle per swap and compare similarly to

Octavo: both improve on Area and Area-Delay, but perform less than 3–4× faster.

Hailstone-S

Table 7.2 shows the results of the Hailstone-S benchmark. We define the unit of work

as computing one step of a Hailstone sequence. Octavo-L1 uses 3 folded and cancelling

branches to compact the loop counter decrement and both even/odd branches into 5

instructions. MXP’s vector lanes cannot compute Hailstone-S since they do not support

branches, thus we executed the benchmark on the NiosII/f controlling processor only,

which suffers from a larger cycle count and lower Fmax.

Both LegUp and HDL compute both even and odd branches in parallel then mul-

tiplex the desired output. Surprisingly, the Quartus CAD tool failed to infer a Block

RAM (BRAM) during synthesis of the LegUp implementation, and implemented the

entire benchmark as registers and logic gates, ballooning its area and likely limiting its

performance and Area-Delay improvements over Octavo-L1. In contrast, the HDL uses a
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Table 7.3: Accelerated Hailstone (Hailstone-A) Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

Hailstone-A Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 7.04 — 525 13.4 — 2203 — 29,520 —
MXP-V1 7.02 1.00 221 31.8 (2.37) 4429 (2.01) 140,842 (4.77)
MXP-V2 6.01 1.17 239 25.1 (1.87) 5533 (2.51) 138,878 (4.70)

MXP-Nios 22.3 (3.17) 221 101 (7.54) 4429 (2.01) 447,329 (15.2)
LegUp 1.64 4.29 177 9.27 1.45 896.2 2.46 8308 3.55
HDL 1.04 6.77 510 2.04 6.57 312.6 7.05 638 46.3

single M9K BRAM, reducing its area and maximizing its speed, but still only achieving

a 5× speedup over software running on Octavo.

Hailstone-A

Table 7.3 shows the results of the Hailstone-A benchmark. As with other Hailstone

benchmarks, we define the unit of work as computing one step in a Hailstone sequence.

Both Octavo and MXP distribute over their entire pipeline the computation of each of the

8 independent “slices” of the entire Hailstone sequence. MXP requires only 6 instructions,

but a few hazards cause them to take 7 cycles to execute on MXP-V1. On MXP-V2, the

second lane can execute some non-dependent instructions in parallel, reducing the total

cycle count back to 6, improving performance, but not improving the Area-Delay. Larger

MXP vector lane counts (not shown) only worsen the results due to longer and emptier

pipelines (+1 stage at V4 and V16). Note that MXP requires custom support for vector

lane table lookups, while Octavo simply stores the tables in local lane memory. Both

store a copy of the look-up tables per lane. We also included the NiosII/f results which

highlight the positive impact of having all data in on-chip scratchpads. Most of the 22.3

cycles/unit are spent doing table look-ups from (cached) main memory.

LegUp appears to perform all 8 slices concurrently, as it requires 8 DSP Blocks,

suggesting 8 parallel multiplications, and 6 M9K BRAMs, suggesting concurrent table

look-ups for each of the 8 “slices”. However, LegUp does not seem to fully pipeline the
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Table 7.4: Structured FSM (FSM-S) Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

FSM-S Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 92.0 — 65.6 1402 — 2203 — 3,088,606 —
MXP-Nios 141 (1.53) 221 638 2.20 4429 (2.01) 2,825,702 1.09

LegUp 27.3 3.37 401 68.2 20.6 150 14.7 10,230 302
HDL 3.96 23.2 444 8.92 157 65.7 33.5 586 5271

HDL (pipe’d) 5.04 18.3 530 9.51 147 60.7 36.3 577 5353

Table 7.5: “Assembly” FSM (FSM-A) Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

FSM-A Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 28.9 — 65.6 440.5 — 2203 — 970,422 —
MXP-Nios 55.3 (1.91) 221 250 1.76 4429 (2.01) 1,107,250 (1.14)

LegUp 18.3 1.58 366 50.0 8.81 219 10.06 10,950 88.62

process, resulting in a relatively low Fmax, albeit with a 45% net speedup. In contrast,

the HDL implementation fully pipelines the 8 sets of calculations, using only 3 M9K

BRAMs (2 for tables, 1 for seeds) and re-using Octavo’s high-speed Multiplier (2 DSP

Blocks). The HDL implementation cannot reach maximum speed since we are limited to

8 pipeline stages (one for each sequence “slice”), and the final adder becomes a critical

path. Adding a 9th pipeline stage could conceivably increase Fmax to 600 MHz (+18%),

but at the cost of a pipeline bubble every 9th cycle, subtracting 11 percentage points.

Again, a software implementation on Octavo approaches within an order of magnitude

the performance of custom HDL (6.57×), albeit at a similar increase in area (7.05×).

FMS-S and FSM-A

Tables 7.4 and 7.5 show the results for both the “Structured” and “Assembly” versions of

the floating-point recognizer Finite State Machine (FSM) benchmark. We define the unit

of work as recognizing a number as either valid (ACCEPT state) or invalid (REJECT state),

with the cycle count for each unit taken as the average cycle count for all 26 numbers.
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The FSM-S implementation uses conventionally structured code, but at the cost of

adding a layer of interpretation by storing the FSM state in a variable and updating it

using nested if-statements inside an outer loop. In contrast, the FSM-A implementation

encodes the state in the Program Counter by immediately jumping to code which im-

plements a given state, without having to go through a global outer loop. MXP’s vector

lanes cannot implement FSMs since they do not support branching, so we default to

the NiosII/f controlling processor. Since we cannot distribute the work of the FSM over

multiple Octavo threads3, we list the effective Fmax of a single Octavo-L1 thread: 65.6

MHz. The other 7 threads remain idle.

We can gauge the impact of FSM software implementation by comparing across both

tables: On Octavo-L1, FSM-S requires 3.18× more cycles per result than FSM-A since

the additional work of handling of a state variable in FSM-S prevented folding the setup of

the next branch in with the current branch, increasing cycle count. For LegUp, although

a user would normally write structured code, going from FSM-S to FSM-A reduced Fmax

by 8.7%, but also reduced cycle count by 33%. For HDL, we cannot implement FSM-A

as the HDL implementation does not have a Program Counter. Pipelining the HDL

implementation of FSM-S had little benefit: the cycle count increases to offset the higher

Fmax, without significantly changing the area.

Since we can only use a single Octavo thread, it performs extremely poorly compared

to LegUp and HDL hardware implementations, and still about 2× slower than NiosII/f.

However, with 7 threads remaining, there remains a lot of margin for additional work

“for free” on Octavo.

7.4.2 Parallel Benchmarks

For the parallel benchmarks, we compare single HDL and LegUp instances, and Octavo

and MXP instances with 1 to 32 lanes, showing how their Fmax and cycle counts per

3We do not consider transformations which convert a FSM into multiple concurrent FSMs.
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Table 7.6: Array Increment (Increment) Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

Increment Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 2.35 — 525 4.48 — 2203 — 9,869 —
Octavo-L2 1.17 2.01 514 2.28 1.96 2976 (1.35) 6,785 1.46
Octavo-L4 0.587 4.00 474 1.24 3.61 6004 (2.73) 7,445 1.33
Octavo-L8 0.293 8.02 455 0.644 6.96 11,133 (5.05) 7,170 1.38
Octavo-L16 0.147 16.0 420 0.350 12.8 21,288 (9.66) 7,451 1.33
Octavo-L32 0.0734 32.0 370 0.198 22.6 42,015 (19.1) 8,319 1.19

MXP-V1 1.02 2.30 221 4.62 0.970 4429 (2.01) 20,241 (2.05)
MXP-V2 0.512 4.59 239 2.14 2.09 5533 (2.51) 11,841 (1.20)
MXP-V4 0.256 9.18 242 1.06 4.23 9740 (4.42) 10,324 (1.05)
MXP-V8 0.129 18.2 206 0.626 7.16 14,813 (6.73) 9,273 1.06
MXP-V16 0.0640 36.7 206 0.311 14.4 28,229 (12.8) 8,779 1.12
MXP-V32 0.0320 73.4 168 0.190 23.6 55,310 (25.1) 10,509 (1.07)

LegUp 1.12 2.1 335 3.34 1.34 135 16.32 450.9 21.9
HDL 1.03 2.28 600 1.72 2.60 157.7 13.97 271.2 36.4

result scale. Where we extrapolate parallel HDL and LegUp implementations, we as-

sume multiple individual instances running at the same Fmax. Octavo’s Fmax degrades

gradually and monotonically as the number of lanes increases (See Chapter 4 as to why).

In contrast, MXP’s Fmax first increases due to using fewer and wider BRAMs as the

number of vector lanes increases, but then drops as the routing in the ever-widening

double-pumped vector scratchpad becomes the critical path.

Array Increment

Table 7.6 shows the results of the Increment benchmark, representing the simplest paral-

lel case and showing the best-case speedup as MXP and Octavo scale. We define the unit

of work as incrementing one array location. MXP immediately achieves near-ideal perfor-

mance and scaling (1 increment per cycle per lane) while Octavo, which lacks a hardware

loop counter, must spend more than twice as many cycles to do the same. However,

Octavo’s greater Fmax recoups most of the difference, and approaches the performance

of the LegUp and HDL implementations.
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Table 7.7: Non-Branching Sequential Hailstone (Hailstone-N) Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

Hailstone-N Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 11.0 — 525 21.0 — 2203 — 46,263 —
Octavo-L2 5.49 2.00 514 10.7 1.96 2976 (1.35) 31,843 1.45
Octavo-L4 2.75 4.00 474 5.80 3.62 6004 (2.73) 34,823 1.33
Octavo-L8 1.37 8.03 455 3.01 6.98 11,133 (5.05) 33,510 1.38
Octavo-L16 0.687 16.0 420 1.64 12.8 21,288 (9.66) 34,912 1.33
Octavo-L32 0.343 32.1 370 0.927 22.7 42,015 (19.1) 38,948 1.19

MXP-V1 6.05 1.82 221 27.4 (1.30) 4429 (2.01) 121,355 (2.62)
MXP-V2 3.04 3.62 239 12.7 1.65 5533 (2.51) 70,269 (1.52)
MXP-V4 1.52 7.24 242 6.28 3.43 9740 (4.42) 61,167 (1.32)
MXP-V8 0.762 14.4 206 3.70 5.68 14,813 (6.73) 54,808 (1.19)
MXP-V16 0.380 28.9 206 1.84 11.4 28,229 (12.8) 51,941 (1.12)
MXP-V32 0.190 57.9 168 1.13 18.6 55,310 (25.1) 62,500 (1.35)

LegUp 2.06 5.34 338 6.09 3.45 166.4 13.2 1013 45.7
HDL 1.04 10.6 600 1.73 12.1 131.7 16.7 228 203

Parallel Area-Delay Scaling The Increment benchmark also uncovers a pattern we

see throughout the parallel benchmarks: Octavo’s Area-Delay remains relatively constant

as the number of lanes (and thus the parallelism and working set size) increases, until

Fmax begins to decrease faster at 32 lanes. In contrast, MXP’s Area-Delay reduces as

we scale up, improving efficiency until it also falters on decreasing Fmax at 32 lanes.

This difference in Area-Delay scaling highlights MXP’s emphasis on effective large-scale

parallelism with a uniform vector programming model, while Octavo focuses on efficient

small-scale parallelism and its composition to address larger problems, at the cost of a

lower-level multi-threaded programming model.

Hailstone-N

Table 7.7 shows the results for the Hailstone-N benchmark. We define one unit of work

as computing one step in a Hailstone sequence. All versions compute both even and odd

branches, then select the desired result based on the parity of the seed (i.e.: even or

odd). MXP selects using conditional moves, while all other implementations use Boolean
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Table 7.8: 4-Step Array Reverse (Reverse-4) Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

Reverse-4 Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 3.57 — 525 6.80 — 2203 — 14,980 —
Octavo-L2 1.79 1.99 514 3.48 1.95 2976 (1.35) 10,356 1.45
Octavo-L4 0.893 4.00 474 1.88 3.62 6004 (2.73) 11,287 1.33
Octavo-L8 0.446 8.01 455 0.980 6.94 11,133 (5.05) 10,910 1.37
Octavo-L16 0.223 16.0 420 0.531 12.8 21,288 (9.66) 11,304 1.33
Octavo-L32 0.112 31.9 370 0.303 22.4 42,015 (19.1) 12,731 1.18

MXP-V1 1.78 2.01 221 8.05 (1.18) 4429 (2.01) 35,653 (2.38)
MXP-V2 1.81 1.97 239 7.57 (1.11) 5533 (2.51) 41,885 (2.80)
MXP-V4 1.26 2.83 242 5.21 1.31 9740 (4.42) 50,745 (3.39)
MXP-V8 0.854 4.18 206 4.15 1.64 14,813 (6.73) 61,474 (4.10)
MXP-V16 0.623 5.73 206 3.02 2.25 28,229 (12.8) 85,252 (5.69)
MXP-V32 0.345 10.3 168 2.05 3.32 55,310 (25.1) 113,386 (7.57)

LegUp 0.550 6.49 483 1.14 5.96 896 2.459 1,021 14.7
HDL 0.520 6.87 607 0.857 7.93 157.4 14.00 135 111

operations to mask and merge the results. As in the Array Increment benchmark, MXP

and Octavo scale effectively, with Octavo’s slightly less-than-doubled cycle count and

more-than-doubled Fmax giving it an advantage over MXP. Both MXP and Octavo require

16 lanes to approximate the performance of HDL hardware, at a considerable area cost.

Reverse-4

Table 7.8 shows the results of the Reverse-4 benchmark. We define the unit of work

as swapping 2 array elements. Octavo-L1 requires precisely 0.5 more cycles/unit than

the Reverse-3 benchmark, accounting for the extra fourth step in the swap operation,

operating over the exact same amount of data. As we increase the number of lanes, we

also increase the array size to keep the amount of data per lane constant. Reverse-4 on

Octavo scales as expected, with maximal speedup in all cases.

In contrast, MXP’s “Reverse-Recursive” equivalent has a higher setup cost (no sig-

nificant speedup until MXP-V4) and suffers from the increasing pipeline depth (+1 at

V4 and V16) preventing the expected halving of cycles/unit, greatly limiting its total
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Table 7.9: 8-Tap FIR Measurements
Cycles/Unit Fmax Time/Unit Area Area-Delay

FIR Cycles Speedup MHz ns Speedup eALMs Shrink eALMs·ns Shrink
(Slower) (Slower) (Grow) (Grow)

Octavo-L1 12.1 — 525 23.0 — 2203 — 50,669 —
Octavo-L2 6.05 2.00 514 11.8 1.95 2976 (1.35) 35,117 1.44
Octavo-L4 3.03 3.99 474 6.39 3.60 6004 (2.73) 38,366 1.32
Octavo-L8 1.52 7.96 455 3.34 6.89 11,133 (5.05) 37,184 1.37
Octavo-L16 0.756 16.0 420 1.80 12.8 21,288 (9.66) 38,318 1.32
Octavo-L32 0.378 32.0 370 1.02 22.5 42,015 (19.1) 42,855 1.18

MXP-V1 8.02 1.51 221 36.3 (1.58) 4429 (2.01) 160,773 (3.17)
MXP-V2 4.02 3.01 239 16.8 1.37 5533 (2.51) 92,954 (1.84)
MXP-V4 2.01 6.02 242 8.31 2.77 9740 (4.42) 80,939 (1.60)
MXP-V8 1.01 12.0 206 4.90 4.69 14,813 (6.73) 72,584 (1.43)
MXP-V16 1.01 12.0 206 4.90 4.69 28,229 (12.8) 138,322 (2.73)
MXP-V32 0.537 22.5 168 3.20 7.19 55,310 (25.1) 176,992 (3.49)

LegUp 4.10 2.95 180 22.8 1.01 513 4.29 11,696 4.33
HDL 1.11 10.9 564 1.97 11.7 1164 1.89 1292 39.2

speedup (6.77× slower than Octavo at 32 lanes). We can also see the poor scaling of the

recursive algorithm from the increasing Area-Delay product as the benchmark scales up.

Both the LegUp and HDL implementations uncover the implicit parallelism in the

generalized 4-step swap operation, moving 2 items per cycle instead of 1. Again, Quartus

fails to infer BRAMs in the LegUp implementation and instead implements the entire

storage as registers, increasing its area and possibly slowing down its operation.

FIR

Table 7.9 shows the results of the 8-tap Finite Impulse Response (FIR) filter benchmark.

We define the unit of work as computing one filtered output value. For 1 to 8 lanes, MXP

and Octavo scale as expected, halving the number of cycles/unit when doubling the lane

count, and converging towards 1 cycle/unit with 8 lanes. For a single lane, MXP-V1

requires 8 cycles for 8 pipelined Multiply-Accumulate (MAC) operations (Listing 7.4),

while Octavo-L1 requires 12 as it must also manually re-initialize the post-incrementing

pointer which implements the sliding window, decrement the loop counter, and read out

the per-lane Accumulator values to write into the output arrays.
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MXP-V16 has the same performance as MXP-V8 since it still uses the same Accumu-

lator. MXP-32 switches to the transposed FIR algorithm (Listing 7.5) as the number of

coefficients (8) limits any further increase in parallelism, and the transposed parallelism

exceeds its extra overhead, improving performance. On the other hand, Octavo continues

scaling without interruption.

The LegUp implementation uses the expected 8 DSP blocks to multiply all coefficients

in parallel, but unexpectedly required 5 BRAMs, rather than the expected 2 (input and

output). LegUp also fails to pipeline the multipliers and accumulators, resulting in a

low Fmax. Nonetheless, its lower cycles/unit result in identical performance to an entire

Octavo-L1, at about one quarter the area. In contrast, the HDL implementation uses

2 BRAMs and re-uses Octavo’s double-pipeline Multiplier and pipelined Adder (Chap-

ter 3.9) to implement a fully parallel 10-stage pipelined FIR filter which exceeds the 550

MHz BRAM limit, at twice the area cost of LegUp, but over 11x the performance.

7.5 Summary of Octavo’s Strengths and Weaknesses

From the results of the benchmarks, and their analysis, we can summarize the strengths

and weaknesses of Octavo relative to MXP, HLS, and HDL solutions, and identify oppor-

tunities for improvement. Octavo’s strengths originate in mutually-supporting features

of high operating frequency, fixed multi-threading, and easy extension with hardware

accelerators. Octavo’s weaknesses stem from incomplete hardware support for loops and

pointers, and lack of a conditional move mechanism. We discuss non-benchmark issues

and planned improvements in Chapter 8.

7.5.1 High Operating Frequency

Overall, Octavo benefits most from its raw high Fmax. With all 8 threads busy, fully utiliz-

ing the pipeline, a scalar Octavo performs within an order of magnitude of HLS-generated

and custom HDL hardware, but at an order of magnitude area penalty. Octavo’s strict
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round-robin multi-threading order enables Octavo’s high operating frequency. By con-

straining thread order, we eliminate the need to forward results across pipeline stages,

avoiding costly backwards paths and multiplexers.

7.5.2 Scalable Multi-Threaded Parallelism

Octavo’s multi-threaded programming model works efficiently at a small scale, magni-

fying its benefits at larger scales. Within a scalar pipeline, all threads share the same

physical memory in a fixed access order. The same multi-threaded model naturally ex-

tends to multiple SIMD pipelines, where each SIMD lane runs duplicates of the 8 original

scalar threads, but on a private local memory. Thus, a parallel solution which works on

a scalar Octavo naturally extends to SIMD Octavo configurations.

In contrast, MXP’s vector approach sometimes suffers from poor initial scaling due

to pipeline hazards with short vectors (re: FIR benchmark) or more complex set-up (re:

Reverse-4 benchmark), reducing overall throughput and handicapping performance gains

from larger vector parallelism.

We can see this difference in small-scale and large-scale parallelism focus by comparing

the scaling of the Area-Delay product for Octavo and MXP. Notwithstanding significant

drops in Fmax at 32 lanes, Octavo’s Area-Delay tends to remain constant as the number

of its SIMD lanes increases, while MXP’s Area-Delay starts higher, but decreases as the

number of its vector lanes increases.

7.5.3 Easy Extension with Accelerators

Generally speaking, we call any hardware attached to Octavo for a specific purpose an

“Accelerator”. These include communication channels (re: Array Reversal Channels for

Reverse-4) or functional units (re: Accumulators for FIR).

Contrary to MXP and other soft-processors [52,60,101,105] which place their custom

functional units inside the ALU or directly in the datapath pipeline, Octavo attaches them
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as simple I/O devices. However, since we memory-map I/O onto scratchpad memory

addressed by instruction operands, we keep a tight coupling to the ALU and memory.

We can easily chain the output of the ALU to the input of an Accelerator, or vice-versa,

by simply addressing the Accelerator’s I/O ports as destination or source operands. This

tight coupling, but external interface, simplifies the implementation of Accelerators. We

can control Accelerators in software with little overhead, and we don’t have to alter

Octavo’s datapath to integrate them.

Furthermore, Octavo’s strict round-robin multi-threading ensures that consecutive in-

structions within a given thread always issue every 8th clock cycle, and the interlock-free

pipeline always executes that instruction’s reads 8 cycles before its write to memory or

I/O. These regularities allow us to design regular, pipelined, and high-frequency Accel-

erator implementations. Combined with I/O handshaking and instruction predication

mechanisms (Chapter 5.2) we can support Accelerators with variable latency, such as

DRAM controllers. See Appendix F for a discussion of external memory interfaces.

7.5.4 Incomplete Hardware Support for Loops and Pointers

In several benchmarks (Reverse-3, Hailstone-A, Increment, Hailstone-N), Octavo ap-

proaches or exceeds MXP’s performance only because Octavo’s high Fmax offsets its

greater cycle count. These extra cycles come from manually decrementing counters and

pointers due to lack of support in Octavo’s BTM and AOM (Chapter 6). The BTM does

not yet include a branch condition based on a counter, and the AOM currently applies a

single-bit post-increment of 0 or +1. In contrast, MXP’s address generators and vector

loop counters do not have these limitations. Removing counter and pointer overheads

would significantly improve Octavo’s performance, but we lacked the time to implement

the necessary changes, while these overheads do not obscure the comparisons. For ex-

ample, Octavo’s cycle count for the Reverse-3 benchmark would cut in half, increasing

its performance to within a factor of 2 of custom HDL hardware. We discuss these and

other related improvements in Chapter 8.6.
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7.5.5 Lack of Conditional Move Support

Octavo moderately outperforms MXP at the Hailstone-N benchmark, but only because

Octavo’s greater clock speed offsets the overhead of simulating MXP’s conditional move

(CMOV) instruction as Boolean operations. On Octavo, selecting one of two results with-

out branching requires computing a word-wide mask (all-zeros or all-ones), then using it

to cancel out terms of a Boolean expression of both results, taking a total of 5 instruc-

tions. These 5 cycles represent 45% of the 11 cycles/result of the Octavo Hailstone-N

benchmark. This overhead ratio remains constant with SIMD scaling.

In contrast, MXP can efficiently select one of two results with a single CMOV instruction

based on an implicit or pre-computed flag, in 1 or 2 cycles total. To maintain Octavo’s

high efficiency when making code branch-free for SIMD parallelism, we must include

some form of conditional move. We discuss possible conditional move implementations

in Chapter 8.6.1.



Chapter 8

Summary and Further Work

The answers we have found have only served to raise a whole set of new questions. In some

ways we feel that we are as confused as ever, but we think we are confused on a higher level

and about more important things. [. . . ] And this is a progress report, rendered with humility

because of the unsolved problems we see now which we could not see before.

Earl C. Kelley [63]

8.1 Summary of Contributions

Chapter 3: Self-Loop Characterization We demonstrated the utility of self-loop

characterization, where we connect a component’s outputs to its inputs to take into ac-

count the FPGA interconnect, for reasoning about the pipelining requirements of proces-

sor components on FPGAs. We used self-loop characterization to determine the pipelin-

ing required to achieve the highest possible operating frequency (Fmax) for the memory

and ALU building blocks of a soft-processor. We discovered that minimum clock period

restrictions on the RAM (550 MHz) and DSP Blocks (480 MHz) ultimately limit the

Fmax of pipelines on Altera Stratix IV devices. In response, we designed a dual-pipeline

Multiplier which acts as a single Multiplier with a 600 MHz Fmax.

153
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Chapter 3: Octavo Soft-Processor Architecture We discussed the problem of

adapting overlay architectures to the underlying FPGA and enumerated the properties

of an overlay architecture which maximizes the effective use of the FPGA structures,

which led us to a fine-grained multi-threaded soft-processor architecture. Unlike prior

multi-threaded processors, we used multi-threading to absorb internal circuit delay rather

than external memory latency.

We also restricted ourselves to a strict round-robin thread ordering, where each thread

issues an instruction in turn without variation, to simplify programming and composition

into larger systems. This decision proved crucial to the rest of our work, enabling many

later efficiency improvements, since each thread has the entire length of the pipeline

before requiring the result of a computation.

We decided to use a flattened memory hierarchy, without caches and directly ad-

dressed by the instruction operands, to more efficiently use the on-chip Block RAMs. We

used the available timing slack in Block RAMs, discovered by previous characterization,

to memory-map I/O ports over some memory locations for efficient future expansion.

From these building blocks and design decisions, we built Octavo, a ten-pipeline-stage

eight-threaded soft-processor, which can operate at the Block RAM maximum of 550MHz

on a Stratix IV FPGA. Design space exploration showed that the entire family of Octavo

designs scaled well over word-width, memory depth, and number of supported threads,

presenting a promising foundation for later improvements.

This work was originally published at FPGA 2012, Monterey [77].

Chapter 4: Preserving Multi-Locality with Partitioning We addressed perfor-

mance problems that emerged when scaling Octavo via tiling, which replicated its dat-

apath for SIMD parallelism, or entire Octavo instances for MIMD parallelism. Tiling

introduced multi-localities (multiple instances of equivalent logic), which the CAD tool

optimized down to a single instance, creating artificial critical-path fanouts to physically

distant tiles. Multi-local logic might have nothing more in common than simultaneous
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identical states, without any connection other than a common clock (e.g.: free-running

thread number counters). We discovered that we can use logical netlist partitioning to

preserve multi-locality and improve performance, with lower design effort than CAD tool

options or HDL source annotations, and negligible CAD processing time cost.

Preserving multi-localities improved operating frequency and compute density (i.e.:

work per unit area), with improvements scaling with the amount of tiling. For example,

partitioning a mesh of 102 scalar Octavo cores improved its operating frequency 1.54x,

from 284 MHz up to 437 MHz, but increased its area by only 0.85%.

This work was originally published at ICFPT 2013, Kyoto [78].

Chapter 5: Extended Write Address Space While Octavo exhibited high per-

formance and useful scaling, we still had to address some internal inefficiencies which

limited the size of programs and the amount of future hardware expansion.

We used the two remaining spare bits in Octavo’s instruction format to expand the

Destination operand (D) from 10 to 12 bits. We then consecutively mapped the 10-bit

Instruction, A Data, and B Data read address spaces into this expanded write address

space, rather than overlapping as before. By eliminating overlapping of code and data

address spaces, we doubled the available data memory and removed all non-code data

from instruction memory.

The extended write address space also created a 10-bit, write-only, “High” memory

range to memory-map later hardware additions without consuming precious I/O ports,

which we reserved for data-intensive operations rather than infrequent hardware control.

Chapter 5: I/O Predication Octavo’s minimal I/O ports could only blindly send or

receive single data words, forcing us to use software busy-wait loops for external interfaces

with unpredictable latency, such as DRAM controllers.

An Octavo instruction may address up to 3 I/O ports (1 write and 2 reads) as regular

operands. We added an Empty/Full bit to each I/O port to enable basic request/ac-

knowledge handshaking, and test the readiness of all addressed I/O ports before allowing
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an instruction to continue. If any of the I/O ports are not ready, we annul the instruction

(i.e.: replace it with a NOP) and re-issue it the next time the thread comes around. These

predicated instructions eliminated I/O busy-wait loops and provided a basis for powerful

conditional branches in Chapter 6.

Chapter 6: Reducing Addressing and Branching Overhead Regardless of ap-

parent performance, Octavo, as a CPU, still exhibited intrinsic addressing and flow-

control overheads separate from the actual desired computations. The sequential nature

of programs interleaves addressing, branching, and useful computations, leading to a per-

formance gap relative to custom FPGA implementations doing the same work, regardless

of relative clock speeds.

We extracted concurrent addressing and flow-control sub-graphs out of the Control-

Data Flow Graph (CDFG) of programs, and found that they contained relatively little

information, and spent most of their time waiting for certain conditions to occur. We

reduced the addressing and flow-control sub-graphs to table entries in special-purpose

modules, indexed by the Program Counter and other CPU state, and checked in parallel

with the instruction fetch.

The Address Offset Modules (AOMs) execute the addressing sub-graph and provide:

• shared code across threads by adding a per-thread default address offset to the

instruction operands,

• indirect addressing by adding a programmed offset to instruction operands accessing

pre-defined memory locations,

• post-incrementing addressing by adding, after each access to an indirect memory

location, a programmable increment to the programmed offset.

The Branch Trigger Modules (BTMs) execute the flow-control sub-graph and enable:

• folded branches, which execute in parallel with ALU instructions,
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• cancelling branches, based on the instruction annulling mechanism from Chap-

ter 5, which cancel the parallel ALU instruction based on a Taken/Not-Taken static

branch prediction, allowing us to always place a useful ALU instruction in parallel

with a branch,

• multi-way branches, which fold multiple branches, triggered by mutually exclusive

conditions, with a single ALU instruction.

As a side-effect of implementing branches as BTM entries, we also eliminated the need

for branch instructions, freeing 5 opcodes for other use. We can also create branches on

application-specific conditions, such as “Branch on Even”, without altering the ISA.

A program can hoist addressing and branching work out of loops and into the AOM-

s/BTMs. We compared our optimized micro-benchmark code against an ideal “perfect”

MIPS-like CPU, which has no stalls or delay slots. Against this ideal CPU, using the

AOMs/BTMs achieved speedups ranging from 1.07x for control-heavy code, to 1.92x for

looping code, never performed worse than the original sequential code, and always per-

formed better than a totally unrolled loop. The AOMs/BTMs reduced raw clock speed

by only 6.5%.

This work was originally published at ICFPT 2014, Shanghai [74].

8.2 Programming Support

Currently, we only have assembly language to program Octavo systems. Octavo’s simple

instruction set and strict round-robin multi-threading model simplify assembly program-

ming greatly, but we still lack the productivity of even the simplest programming systems.

Determining the best programming system (compiler, language, libraries, etc. . . ) for Oc-

tavo lies outside the scope of this thesis, but we can point out pitfalls to avoid, challenges

to solve, and desirable properties to favour.
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8.2.1 Avoiding a Brittle Software Stack

Normally, a processor’s instruction set and architecture remain fixed, or change incre-

mentally over several years, and the programming system adapts to application needs1

(e.g.: OpenCL, built atop C). Octavo turns that arrangement around by adapting the

processor to the application via custom hardware Accelerators, new instructions, and

SIMD/MIMD parallelism. To maintain productivity, the programming system must re-

main relatively constant above all that change.

Hence the main pitfall: the productivity gained from programming a tailored overlay

could get eaten up by the increased maintenance to the programming system. Worse yet,

if the programming system cannot consistently generate optimized code, that uncertainty

undoes the hardware design effort spent improving Octavo’s performance. Thus, much

like Octavo’s relationship to the underlying FPGA, the programming system should aim

for initial simplicity, avoid too much up-front specification of how to express computation,

and instead provide primitives for reliable and efficient incremental construction.

8.2.2 Compiling to a Reconfigurable Architecture

Every Octavo instance may contain application-specific features (e.g.: Jump on Even

(Chapter 6) for Hailstone calculations (Chapter 7)). A compiler will have to deal with

several challenges, including:

Accelerators These may range from simple channels with known latencies (e.g.: Ar-

ray Reversal Channels from Chapter 7.2), stateful functional units (e.g.: Accumulators,

ibid.), to entire remote processors. We should define compiler intrinsic functions or pro-

vide inlinable library functions to describe the computations done by the Accelerators

and allow the compiler to infer dependencies and re-order instructions.

1Tensilica’s Xtensa [52] processor architecture is one notable exception.
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Reconfigurable Instructions We will need to infer the lifetimes of AOM and BTM

entries (Chapter 6), manage them via a kind of register allocation, and spill/fill them

as required. For example, when the number of live branches exceeds the number of

BTM entries, we must re-use a less-frequently-triggered entry to prepare for the next

upcoming branch. A similar case exists for proposed reconfigurable Boolean instructions,

(Sections 8.6 and 8.7.3). Since we could alter the meaning of these instructions, we would

have to use compiler intrinsics (i.e.: functions built-in to the compiler) to configure them,

let the compiler infer the lifetimes of each configuration, and load them as required.

Heterogeneous SIMD We introduced a SIMD version of Octavo in Chapter 4, but

did not address an optimization where the additional SIMD lanes have a narrower word

width than the original datapath to save area and increase performance. The original

datapath must remain at full word width to support instructions with the full address

range. The compiler will have to generate code which computes the same results on the

full word width of the original datapath and the narrower word width of the SIMD lanes.

Additionally, we also did not address temporarily disabling SIMD lanes to allow scalar

computations on the same processor. We could disable SIMD lanes by disabling the read

and write enables of their local A/B memories, causing the SIMD pipelines to eventually

empty themselves and remain idle.

8.2.3 Literal Pool Support

Octavo’s ISA (Chapter 3.7) does not include any immediate literals. We needed as many

operand bits as possible as scratchpad address space, and the resulting direct memory

addressing allowed direct use of literals in memory. Without indirect addressing, all

threads could use the same absolute address to refer to a shared literal value.

However, introducing the AOM (Chapter 6) adds per-thread indirection to memory

addresses, which enables sharing code across threads, but now forces each thread to
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maintain a private pool of literal values. With multi-threading parallelism, all the pools

contain identical values, wasting A/B memory.

The AOM does support a limited amount of direct addressing, in the form of Shared

Memory address ranges for I/O ports and High Memory (see the SM? module in Figure 6.2,

pg. 109). We can extend Shared Memory support to include a small region of A/B

memory to contain a single common literal pool for all threads, without preventing per-

thread private pools. We can place the literal pool at the beginning of A/B memory, as

address zero has already been reserved as a “zero register” holding a literal 0.

8.3 Debugging Support

Debugging software on a multi-core FPGA overlay poses some new challenges. On a

CPU or GPU, all work essentially proceeds to/from a single, inspectable, global memory,

or at least a small number of large memories from which we can easily copy to/from. In

contrast, an FPGA overlay keeps its computations local, with each core holding interme-

diate values, and passing around only the required data. In effect, an overlay running an

algorithm presents a black box very similar to the equivalent hardware implementation.

One possible solution to enable debugging the internal state of the Octavo overlay

makes use of the ability to rewrite Instruction memory. We can implement a simple

interpreter which can execute instructions from an external memory, read/write from

local memory, and alter the debugged thread’s control flow. We can also use the BTM

to act as a breakpoint system by jumping to the interpreter as required, without having

to alter the running thread. Finally, if all I/O ports make use of handshaking, stopping

a thread will eventually non-destructively hang all other local threads, Accelerators,

and remote threads the debugged thread communicates with, allowing us to resume it

afterwards without ill effect (except maybe failing at some real-time tasks).
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This approach has likely been reinvented many times over computing history, but the

version explained here derives from Bill Henning’s Large Memory Model for the Parallax

Propeller microcontroller [54]. The core of the interpreter requires only 4 instructions:

Listing 8.1: Debugging Interpreter Core Routine

1 interpreter: ADD first , I/Or , 0 // read from external mem.

2 ADD second , I/Or, 0 // unrolled to avoid RAW

3 first: <empty > // ’first ’ in Instr. mem.

4 second: <empty > ; JMP interpreter

This loop, unrolled once to avoid a 1-cycle RAW hazard when writing to Instruction

memory, reads instructions from an external memory connected to an I/O read port

(I/Or), stores them ahead in Instruction memory, then executes them. We assume the

read enable line of I/Or triggers a post-increment of an address register indexing the

external memory, or other similar device.

This interpreter uses two ADD instructions to load and execute two external instruc-

tions at effectively 50% the rate at which they would execute from local memory, but

without the local memory’s limited space. We can implement flow control by executing

short instruction sequences which alter the aforementioned implicit addressing of the

external memory.

From this interpreter core routine, we can then invoke other small utility functions

to read/write blocks of data and instructions, set a spare BTM entry as a breakpoint

back into the debugger, or simply temporarily pipe the stream of external instructions

to another I/O port connected to another processor in the overlay also running the same

interpreter core routine.

With some care, the initial invocation of the core interpreter can originate from a

folded multi-way branch triggered by a particular input signal or state transition, pro-

viding a resident remote debugger with zero execution overhead in normal circumstances.
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8.4 Overlay Portability via Resource Diversity

We originally tuned Octavo’s design to the Altera Stratix IV family of FPGA devices

(Chapter 3). To properly port Octavo’s design to another FPGA device, we would

have to repeat the process of self-loop characterization on each sub-module to adjust

their pipeline depths, as well as redesign some sub-modules entirely. For example, the

DSP Blocks on Xilinx devices resemble more full ALUs [26, 27] than Altera’s Multiply-

Accumulate DSP Blocks, which would completely alter the design of the Multiplier and

of the entire ALU (Section 3.9).

The number and ratio of various FPGA structures also affect portability. For example,

the Cyclone IV FPGAs have fewer and smaller DSP blocks, possibly limiting the number

of Octavo cores or datapaths, even if enough memory blocks exist to support more. We

already provide multiplier implementation options: single or dual pipeline, each using

DSP blocks or reconfigurable logic, all trading off resource usage and operating speed

(Chapter 3.9). Some other multiplier resource diversity options include:

Conditional Add-and-Shift Replaces a full multiplier with an instruction which com-

putes 1 bit of product per cycle, accelerating software multiplication at little hardware

cost. This option would benefit applications with moderate multiplication needs.

Memory-Mapped Multiplier We could remove the multiplication instructions and

instead attach a multiplier (of any implementation) to I/O ports, freeing opcodes and

optionally allowing multiple processors to share infrequently used multipliers, at the price

of one cycle of result latency.

Exploring resource diversity matters since a given application might benefit from more

numerous Octavo cores, each using fewer instances of a constrained hard block, with a

consequently lower core performance, but nonetheless higher total system performance.

For example, switching to single-pipeline DSP-based multipliers limits Octavo to 480
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Table 8.1: Octavo Fmax on Various Altera Devices
Family Device Average Maximum Avg/Max Limit Max/Lim

(MHz) (MHz) (Ratio) (MHz) (Ratio)
Stratix V 5SGXEA7N2F45C1 508 588 0.864 675 0.871
Stratix IV EP4S100G5H40I1 470 493 0.953 550 0.896
Arria V 5AGXFB5K4F40I3 272 300 0.907 400 0.750

Cyclone V 5CGXFC7D6F31C6 239 267 0.895 315 0.848
Cyclone IV EP4CGX30CF19C6 187 197 0.949 315 0.625

MHz on Stratix IV, but halves the number of DSP blocks required, possibly allowing for

more cores with a greater net total performance.

Alternately, since the overall Fmax decreases when we scale-up an Octavo system

(Chapter 4), we might then deliberately use smaller, slower implementations of sub-

modules not on the critical path to save area and power at little to no cost in perfor-

mance. For example, the 32-lane SIMD Octavo in Chapter 7 reaches 370 MHz even with

dual-pipeline DSP Block-based multipliers, which can reach 600 MHz themselves. If we

assume that the overall Fmax stems more from general FPGA overhead, then perhaps re-

ducing the Multiplier to a single-pipeline DSP Block implementation, itself limited to 480

MHz, might save area without reducing performance, or might even improve performance

slightly from reduced placement and routing difficulty.

Finally, we wrote the AOM/BTM implementations with a very sparse memory im-

plementation: each individual entry (PO, DO, BO, etc...) is implemented as a separate

MLAB RAM module for easy design space exploration, and it is unknown if the CAD

tools can automatically pack multiple separate but logically contiguous memories into a

single MLAB.

8.4.1 Porting Across Altera FPGA Device Families

Despite the portability concerns we mention above, since Altera’s FPGA devices tend

to have similar architectures across device families, we can expect good portability as-is,

without re-design. Table 8.1 shows some measurements of Octavo’s Average, Maximum,
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and absolute upper Limit on performance, measured in MHz, on a variety of Altera

FPGA families. We use some of the same demonstrator devices used to publish Nios II

performance data [11], and with the same Quartus settings and experimental methodol-

ogy used throughout this work (Appendices A and B).

Absolute Fmax Results

In all cases, memory blocks (MLABs or BRAMs) set the upper limit on Fmax. We can

pair DSP Blocks to attain higher speeds (Section 3.9), so they never cause a bottleneck.

For Stratix V, the MLAB memories, used to implement memories in the Controller

(Chapters 3 and 5), and the AOM/BTM (Chapter 6, set an upper limit of 675 MHz [6],

but only when used with depths of 16 words. Greater depths (32 or 64 words) have a

limit of 450 MHz. Several of the Quartus runs resulted in identical Fmax values, which

strongly suggests an artificial limit caused by sub-optimal settings.

For Stratix IV, Arria V, and Cyclone V, the M9K (or M10K for “V” series devices)

BRAMs set a limit of 550 MHz [10], 400 MHz [7], and 315 MHz [9] respectively.

For Cyclone IV, the M9K BRAMs also set a limit of 315 MHz [8], same as Cyclone

V. However, the Cyclone IV devices do not contain MLABs, so all memories instantiate

as M9K BRAMs, bringing their count up from 12 to 26, which will lower Fmax. Also,

contrary to all the other devices here, the Cyclone IV devices use 4-LUTs instead of

6-LUTs, or similarly larger fracturable LUTs, in their ALMs. We would have to either

re-design Octavo, and/or accept smaller instances (e.g.: with less memory), to address

these limitations and improve performance.

Relative Fmax Results

We also compute two ratios from the absolute Fmax values: Maximum/Limit and

Average/Maximum, which together allow us to see if Octavo carries over well from

one device family to another.
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Maximum/Limit Ideally, we want the Maximum (unrestricted) Fmax to equal (or

exceed) the Limit of the FPGA device. Although a maximal Fmax by itself does not

guarantee maximal performance (as shown in Chapter 6), a low one certainly prevents us

from getting all the potential work out of the underlying FPGA (see the Design Goals in

Section 3.1). For example, compare the Max/Lim ratios of the Cyclone IV and Cyclone

V devices, which both have identical Fmax Limits. As-is, Octavo does not make good

use of the Cyclone IV FPGA hardware and needs re-characterization and some different

design choices (e.g.: narrower word width) to improve raw performance.

Average/Maximum A larger variation between the Average and Maximum Fmax

may indicate a greater sensitivity to individual Place-and-Route (P&R) results. This

sensitivity suggests either a revision of the self-loop characterization of the module(s)

within the critical path to alter the number and/or the location of their pipeline stages,

or an adjustment of the CAD tool settings. For example, despite Stratix V’s higher

performance, Octavo’s Fmax varies more over multiple P&R solutions. The observed

repeated identical Fmax results on Stratix V suggest adjusting the CAD tool settings.

However, a smaller variation may also simply indicate a dominant critical path which

manifests in most P&R solutions. For example, the Cyclone IV’s lower Max/Lim ratio

strongly suggests that its lower variation between Average and Maximum Fmax exists

due Octavo not matching the underlying FPGA structures well.

8.5 Automating Partitioning of Tiled Overlays

Although manual partitioning of tiled overlays requires relatively little work from the

designer (Chapter 4), we believe the CAD tool might automatically detect multi-local

logic and take some action other than complete redundancy elimination:

• The CAD tool could detect repeated deduplication of the same logic across multiple

modules and declare that logic multi-local, optionally alerting the designer.



166 Chapter 8. Summary and Further Work

• The CAD tool could “restart” the optimization of multi-local logic after a certain

number of deduplications, ensuring that sufficient copies remain to avoid large

critical paths, while still reducing area.

• The CAD tool could use the location of the multi-local logic to automatically

partition its enclosing modules, automating our manual approach. Some prior work

by Dehkordi, Brown, and Borer [37] has explored this kind of automated modular

partitioning, but only to control incremental recompilation time, with no impact

on frequency.

Power Trade-off Since partitioning can increase the operating frequency more than it

does logic area, the power density and power consumption of the system may also increase.

Alternately, the power consumption may also decrease due to driving fewer device-wide

critical paths when partitioned. For designs under power constraints, the CAD tool could

explore the dynamic and static power trade-offs of full or partial partitioning.

Area Overhead Finally, although the CAD tool preserves the performance of par-

titioned tiles very well as their number increases, it seems to add an unexplained and

consistent area overhead when tiling, causing a drop in compute density. Future CAD

tools should limit this overhead to better enable large-scale tiled overlays.

8.6 Reducing Computation Overhead

Although the BTM and AOM (Chapter 6) can fold a lot of “overhead” addressing and

branching computations into instructions performing useful work, the current implemen-

tations have only the minimal set of features possible as a proof of concept. Some possible

improvements include:
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More Branch Conditions We can add more conditions for the BTM to branch

against:

• a comparison of the result of the previous thread instruction against a loadable

sentinel value (e.g.: zero to detect string termination)

• a counter, stepping either each clock/thread cycle as a cycle counter, or each time

we test a BTM entry as a loop counter

• some custom flag calculation logic (e.g.: accumulator overflow)

These branch conditions, especially loop counters, would further accelerate loops and

tests (see Chapter 7.5.4).

Subroutines and Interrupts We can extend the BTM to support folded subroutine

CALL and RETURN operations, signalling the Controller to push/pop a PC stack. The

BTM could also push/pop an internal stack pointer, providing the low-order bits to the

BTM’s memories, to automatically switch to the subroutines’ pre-set BTM entries. These

changes would eliminate the need to inline code for performance reasons, as well as make

code more compact in the limited Instruction memory. Subroutine support also sets the

stage for adding interrupts as hardware-invoked subroutines.

Greater Address Offsets We need to extend the range of address offsets in the AOM

to support larger strides when operating on data divided across threads, and negative

strides for backward loops. To keep the positive and negative ranges equal, a signed

magnitude representation would work best.

Generalized Sliding Window The AOM could implement sliding window and mod-

ulo addressing access patterns (such as seen in the FIR benchmark) by incrementing by

an offset A for the first N − 1 accesses, followed by a one time increment by an offset B

(likely negative) on the last N th access. DSP processors commonly implement modulo

addressing, to implement circular buffers, by masking the high-order bits of an address.
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Instead, a generalized sliding window approach to modulo addressing would not require

aligning a buffer to a power-of-2 memory location.

Scatter/Gather Memory Access Octavo’s single AOM performs memory indirec-

tion for only the threads on the initial datapath. All SIMD datpaths will see the same

final indirected addresses, preventing these SIMD lanes from performing independent

table lookups and pointer-chasing. This uniformity poses no problems for the regular

memory access patterns of the Parallel Benchmarks shown here (e.g: FIR). However,

some types of parallel computations require scatter/gather memory accesses (e.g.: sparse

arrays, unstructured grids [15]), and could parallelize to more than the 8 threads of a

single Octavo datapath. Adding an AOM to each SIMD lane would enable each lane

to work on independent, but irregular, parallel (sub-)problems. For example, we could

run multiple Hailstone-A benchmarks on SIMD lanes, parallelized in the same manner

as Hailstone-N, but taking 7 cycles/result rather than 11, for a 1.57x speedup.

8.6.1 Conditional Move

Adapting non-trivial code to SIMD parallelism requires converting branches to non-

branching code (“if-conversion”), where we compute both alternatives then select one at

the end with a conditional move (CMOV) instruction. While Octavo can emulate CMOV using

Boolean operations (e.g.: the Hailstone-N benchmark in Chapters 7.3.2, 7.4.2, and 7.5.5),

this approach takes 5 instructions rather than the 1 or 2 of a conventional CMOV. This

overhead remains proportionally constant with SIMD scaling, thus Octavo requires a

faster CMOV implementation to maintain efficiency. A few design alternatives present

themselves (see Figure 7.2, pg. 126, for reference), with different trade-offs:

Single-Source CMOV Instruction A common form of conditional move tests the first

source operand (test) for a given condition (cond), and if met, moves the second source

operand (src) to the destination operand (dest): CMOV cond dest,test,src. This



8.6. Reducing Computation Overhead 169

form has the advantage that we can freely (re-)use test at any time. On Octavo, the

single-source form would mean calculating cond from test inside the ALU, passing src

through, and setting a write-enable signal to dest.

However, calculating cond puts yet another functional unit in the ALU, and the

additional result multiplexing might become a critical path. Also, we cannot add opcodes

for all possible CMOV conditions (see Table 3.2), so we must either implement a subset and

sometimes pay a little overhead to compute the desired test, or reconfigure cond in the

functional unit via a write to High memory (Chapter 5) each time we change condition.

Dual-Source CMOV Instruction Another form of conditional move tests an implicit

condition (cond) (e.g.: from the previous instruction) and uses it to selectively move one

of the two source operands (src1 and src2) to the destination operand (dest), acting

like a multiplexer: CMOV cond dest,src1,src2. This form has the disadvantage that

we must compute the implicit condition immediately before CMOV. On the other hand,

the dual-source form does not require potentially writing to dest twice, which can avoid

side-effects (e.g.: if dest is an I/O port).

On Octavo, the dual-source form matches the form of branch operations (Chapter 6),

which use the result of the previous thread instruction to determine one of several flags,

and thus spreads the work over the entire pipeline. We would pipeline the selected

flag bit to the ALU, which then simply passes one of src1 or src2 to dest. This

approach matches Octavo’s multi-threaded pipeline, and might even re-use some of the

“fast compare” [62, 87] flag generation and selection hardware developed for the Branch

Trigger Modules (BTMs) in Chapter 6. However, we still cannot assign opcodes for all

possible conditions, leading to the same compromises as the single-source form.

Improved Boolean CMOV Emulation Alternatively, we could continue to emulate

CMOV using Boolean operations, but apply the suggested bit-level parallelism improve-

ments from Section 8.7.3 to improve their efficiency. For example, given a mask bit
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(selected by hardware or software) and some ALU support for reconfigurable 3-term

Boolean operations, we could emulate CMOV in a single cycle instead of 3: ((src1 ⊕

src2) & mask) ⊕ src2. This approach depends on the feasibility of the ALU modifi-

cations, but would not permanently consume opcodes.

8.7 Approaching the FPGA’s Native Performance

Despite Octavo’s performance improvements, a CPU-based approach to FPGA over-

lay architecture still forces us to think in terms of conventional CPU processing, which

ignores the fundamental properties of FPGAs which benefit custom hardware implemen-

tations. These FPGA properties include: a high internal memory bandwidth, bit-level

parallelism, more numerous and better-utilized functional units, all of which also con-

tribute to reduced power. Thus, some changes to Octavo’s architecture and instruction

set motivate themselves to better utilize the underlying FPGA hardware.

8.7.1 Increasing Internal Memory Bandwidth

Octavo performs its scratchpad memory accesses before the ALU, opposite to typical

MIPS-like pipelines, which perform a memory load or store after computing the address

in the ALU. By memory-mapping the I/O ports into the scratchpad, rather than using

load/store instructions, placing the memory before the ALU grants Octavo significantly

more external memory bandwidth. A scalar MIPS-like pipeline can, at best, write or

read one value to/from the outside world every other cycle, before or after an internal

computation instruction which generates or consumes the data. In contrast, in Octavo’s

best case, any one instruction may read up to two external values from I/O ports and

write back the result to a third.

And yet, this approach still leaves potential memory bandwidth unused. When mov-

ing data, we must use the usual “ADD to 0” idiom, wasting half of the memory read

bandwidth [64]. Furthermore, the A and B memories have independent write ports, yet
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we only ever use one at a time when writing the result of an instruction. The memory-

mapped I/O ports also remain underused for these reasons, presenting a potentially

serious bottleneck between Octavo cores within a larger overlay. In theory, Octavo could

perform two reads and two writes to memory or I/O ports every clock cycle.

For an instruction to perform two writes at once, it would need two Destination (D)

fields (Chapter 3.7). We can create an instruction which splits the 12-bit D field into two

6-bit D fields, one each for the A and B memories. This “double-move” instruction can

then read from A and B as usual, pass the values unaltered through the ALU, possibly

swapping them, and then write one of each back into 64-word windows in A and B. We

could make the 64-word windows movable by creating some additional hardware, similar

to the AOM, to add an offset to their memory-mapped locations, if the impact on Fmax

is not too great. Lastly, the AOM and BTM would have to be altered to handle the dual

D fields.

A double-move instruction would improve Octavo’s operation in several ways:

Better Accelerator Utilization We can move two values at once to an Accelerator

attached to the I/O ports, or feed two Accelerators at once. Similarly, we can move

two values at once between the A and B memories to accelerate swaps and other data

transformations by movement.

Greater Bisection Bandwidth We can move twice as much data per cycle over I/O

ports, enough for one Octavo core to supply both source arguments for an instruction on

another Octavo core, or move data to/from two other Octavo cores in a point-to-point

mesh overlay architecture, potentially doubling the bisection bandwidth.

Reduced Overhead A double-move amplifies the overhead reduction of the AOM and

BTM: we can now post-increment up to 4 indirect memory accesses at once (2 reads and

2 writes), and further shorten the body of loops by combining data movements.
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Figure 8.1: The Empty/Full bit, with support for back-to-back transfer.

8.7.2 Improving I/O Handshaking Throughput

If we improve Octavo’s memory bandwidth, we must also ensure that the I/O ports do

not become the new bottleneck. When connecting read and write I/O ports together to

transfer data, a direct link suffices to synchronize both ends: feed the write or read enable

signal to the Empty/Full port on the other side, and the first of the reader or writer to

access the link will hang until the other arrives to complete the transfer (Chapter 5.2).

However, a direct synchronized link prevents overlapping communication and compu-

tation, suggesting a FIFO buffer between sender and receiver. Unfortunately, by itself,

buffering halves the peak transfer rate by preventing back-to-back transfers: after writing

into the first FIFO stage, the sender cannot immediately write again on the next cycle,

as the FIFO’s first Empty/Full bit will still read as “Full” at the beginning of the clock

cycle, even though the associated data register could send off the previous data as it

receives the new ones.

In the spirit of Octavo’s focus on small-scale, fine-grained efficiency, we need to enable

simultaneous reads and writes through an Empty/Full bit so as to both allow overlapped

communication and computation while not penalizing already synchronized transfers by

making them stall every other cycle.

Figure 8.1, Table 8.2, and Equations 8.1, 8.2, and 8.3 show the schematic, the truth

table, and the Boolean equations of an enhanced Empty/Full bit. Normally, asserting

write enable (wren) sets the Empty/Full bit (E/F) to “Full” (1) if “Empty” (0), while
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Table 8.2: Truth table for Empty/Full bit with back-to-back transfers.
rden wren E/F next E/F E/Fr E/Fw

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 1 0

nextE/F = wren+ (rden · E/F ) (8.1)

E/Fr = E/F (8.2)

E/Fw = (rden+ wren) · E/F (8.3)

asserting read enable (rden) does the opposite. The read and write E/F ports each receive

a copy of the current E/F bit (E/Fr and E/Fw).

The only deviation from this behaviour, described by the last line of the truth table,

occurs in the case of a simultaneous read and write on a “Full” E/F bit: the read port

will see a “Full” E/Fr, but the write port will see an “Empty” E/Fw, allowing both to

proceed. The E/F bit remains unchanged, while the associated data register gets loaded

with new data. Thus the sender and receiver can synchronize as usual, and still transfer

without interruption if already synchronized.

8.7.3 Improving Bit-Level Parallelism

NVIDIA’s Maxwell GPU architecture introduced a LOP3 instruction [96] which imple-

ments a word-wide 3-LUT using 3 source operands and an 8-bit literal representing a

Boolean truth table2. The instruction then computes the bit-wise result of all the source

bits, based off the truth table, collapsing multiple Boolean operations on three inputs

down to a single instruction:

2The VPTERNLOG instruction will do the same in upcoming Intel Xeon processors with Advanced
Vector Extensions (AVX-512) support.
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LOP3.LUT dest, src1, src2, src3, TruthTableByte

Even with Octavo’s two source operands, we could construct similar LUT instructions

to collapse any of the 16 possible 2-input Boolean functions [34] into a single step.

Properly configured, such instructions would reduce any sequence of Boolean opera-

tions on N inputs to N − 1 steps by effectively eliminating all explicit negations which

could not be optimized away via DeMorgan’s Law transformations at compile-time. For

example, we could perform ¬A ∧ B in one instruction instead of two, or (¬A ∧ B) ∨ C

in two instructions instead of three, etc. . . We could extend the LUT instructions to 3

inputs if we also include the result of the previous thread instruction, which may itself be

a 3-input LUT instruction, rapidly collapsing arbitrary sequences of Boolean operations

into few instructions.

We could implement LUT instructions by loading small memories in the ALU, mapped

into High Memory, with the 4 or 8-bit truth tables of each function. Several truth tables

easily fit in one memory word, with a few bits left-over for extra functionality such as

input selection. Some possible extra inputs could include word-wide masks constructed

from replicated single bits (e.g.: sign bit, least-significant bit, all-zero condition) allowing

fast bit-masks, conditional moves, etc. . .

Furthermore, by placing (or chaining, in the case of 3-input versions) these config-

urable Boolean instructions in series with the adder/subtractor in the ALU (Figure 3.5,

pg. 40), we can compose many sophisticated branch-free parallel bit manipulation and

mathematical operations built up from atoms of the form (A+B)�C, where � signifies

a Boolean operation [123]. Finally, new kinds of bit-manipulation functional units (as at-

tached accelerators) could also improve many applications in the domains of compression,

cryptology, image processing, bioinformatics, and communications [57].

8.7.4 Keeping Functional Units Fully-Utilized

Even if all Octavo threads work fully and use the ALU every single instruction, the

individual functional units within the ALU cannot reach full utilization, possibly limiting
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the maximum computational density (work per unit area) of the overlay.

Each functional unit is fully pipelined, but each thread can only have one ALU opera-

tion in flight at a time, thus some functional units in the ALU must remain either totally

idle, or have some idle stages at any time. For example, three consecutive threads each

issuing a multiply instruction will fill the multiplier’s pipeline, but leave the adder/sub-

tractor and logic units completely idle for the duration (Figure 3.5, pg. 40). Issuing any

one ALU operation guarantees an idle stage in all other functional units.

Octavo’s strict round-robin multi-threading works against solutions using multi-cycle

functional units. All but one of multiple threads trying to use a multi-cycle unit will find

themselves stalled while the unit computes, creating a bottleneck which we cannot avoid

by re-scheduling threads.

A simpler solution than superscalar issue or complex instructions would be to re-

design the ALU to combine functional units together (e.g.: by using the adder/subtractor

inside the DSP blocks for ADD instructions) to increase their utilization.

8.7.5 Reducing Power

Currently, Octavo’s entire pipeline runs without pause, even if executing NOPs, reading

from all memories each cycle and latching new values at each pipeline stage even if

they will never be used, all wasting power. When scaled up via SIMD/MIMD tiling

(Chapter 4), Octavo’s high Fmax makes it likely that the overlay will approach or exceed

the FPGAs thermal design limits. Furthermore, the overlay will definitely consume more

power than the equivalent custom hardware (see area benchmarks in Chapter 7), limiting

its use in embedded and high-performance computing, both sensitive to power.

We might reduce power usage by adding a little decoding logic to disable the write

to registers at various stages of the CPU pipeline when unused, and/or explicitly disable

the read/write ports of memories during NOPs, or in unused SIMD lanes. Also, the I/O

write ports currently update all data registers in parallel, using the write enable signal to
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signal the intended port. Using the write enable signal to mask the data register writes

would eliminate this wasteful switching activity.

8.8 Emulating Reconfigurable Hardware

Listing 8.2: Emulated Reconfigurable Hardware Loops

1 loop1: XOR I/Ow, I/Or , key1 ; JMP loop1

2 loop2: XOR I/Ow, I/Or , key2 ; JMP loop2

3 loop3: XOR I/Ow, I/Or , key3 ; JMP loop3

4 ...

Listing 8.2 outlines an idea for an Octavo thread to temporarily behave as a single

fragment of hardware, using a (very!) contrived encryption system as an example. Each

line describes an infinite loop composed of a single instruction and a BTM entry. In this

case, each loop reads in a value from an I/O read port (I/Or), XORs it with a unique key,

then outputs the cyphertext to an I/O write port (I/Ow), and instantly loops back to

itself via JMP. We can increase the effective “clock speed” of this logic function by having

multiple threads run the same loop.

Although useless as-is, if another thread or external event could cause the JMP to

fall through to the next loop, then we can sequence this thread through a series of

basic functions. Chaining multiple such threads in one or more Octavo cores could thus

construct a reconfigurable functional unit, not unlike conventional FPGA dynamic partial

reconfiguration.
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Appendix A

Experimental Framework

We evaluate Octavo and its components on Altera Stratix IV FPGAs, although we expect

proportionate results on other FPGA devices given suitable tuning of the pipeline.

Test Harness We place our circuits inside a synthesis test harness designed to both:

(i) register all inputs and outputs to ensure an accurate timing analysis, and (ii) to

reduce the number of I/O pins to a minimum as larger circuits will not otherwise fit

on the FPGA. The test harness also avoids any loss of circuitry caused by Boolean

optimization. Shift registers expand single-pin inputs (Figure A.1(a)), while registered

AND-reducers compact word-wide signals to a single output pin (Figure A.1(b)).

Synthesis We use Altera’s Quartus1 to target a Stratix IV EP4SE230F29C22 FPGA

device of the highest available speed grade. For maximum portability, we implement the

design in generic Verilog-2001, with some LPM3 components. We configure the synthesis

process to favour speed over area and enable all relevant optimizations. To confirm

the intrinsic performance of a circuit without interference from optimizations—such as

register retiming, which can blur the distinction between the circuit under test and the

1Version 10.1 for Chapter 3, 12.1 for Chapter 4, and 13.1 for Chapters 6 and 7.
2Except for Chapter 7, where we target the EP4SGX230KF40C2 device on a Terasic DE4-230 board.
3Library of Parametrized Modules (LPM) are used to describe hardware that is too complex to infer

automatically from behavioural code.
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(a) Test Harness Shift Register (b) Test Harness Registered AND-reducer

Figure A.1: Test Harness for Device Under Test (DUT)

test harness—we constrain a circuit to its own logical design partition, excluding the test

harness. Any test harness circuitry remains logically separate from the actual circuit

under test.

In Chapter 3, we needed to avoid getting optimistic results from spatial proximity of

the test harness to a small design. Thus, we also restricted placement to within a single

rectangular floorplan (LogicLock area) containing only the circuit under test, excluding

the test harness. Any test harness circuitry remained spatially and logically separate

from the actual circuit under test. Quartus automatically determined the floorplan.

In Chapter 4, we generally did not automatically separate the test harness with a

floorplan (only a partition), as the initial experiments explicitly dealt with floorplans.

We did not floorplan larger and later designs (Chapters 5 through 7) as a result of our

floorplanning and partitioning experiments in Chapter 4..

Place and Route We configure the place and route process to exert maximal effort at

fitting with only two constraints: (i) to avoid using I/O pin registers to prevent artificially

long paths that would affect the clock frequency, and (ii) to set the target clock frequency

to 550MHz, which is the maximum clock frequency specified for M9K BRAMs. Setting a

target frequency higher than 550MHz does not improve results and could in fact degrade

them: for example, we use a half-speed derived clock in our designs, which would then

aim towards an unnecessarily high target frequency, competing for fast routing paths.
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Frequency We report the unrestricted maximum operating frequency (Fmax) by av-

eraging the results of ten place and route runs, each starting with a different random

seed for initial placement. We construct the average Fmax from the slow-corner timing

reports which assume a die temperature of 85◦ and a supply voltage of 900mV. Note

that minimum clock pulse width limitations in the BRAMs restrict the actual operating

frequency to 550MHz, regardless of actual propagation delay. Reported Fmax in excess

of this limit indicates timing slack available to the designer.

Area In Chapter 3, we measure area as the count of Adaptive Lookup Tables (ALUTs)

in use. We also measure the area efficiency as the percentage of ALUTs actually in

use relative to the total number of ALUTs within the rectangular LogicLock area which

contains the circuit under test, including any BRAMs or DSP Blocks. We allow Quartus

to automatically place and size the LogicLock area. Area does not vary significantly

between place and route runs, so we report the first computed result.

In later chapters (4–7), we measure area as the count of equivalent Adaptive Logic

Modules (eALMs) in use, which include the equivalent silicon area of hard blocks such

as M9K BRAMs (28.7 ALMs each) and DSP blocks (29.75 ALMs each) as reported by

Wong et al. [125, 126]4. By itself, a Stratix IV ALM roughly contains two 6-LUTs, two

flip-flops, and two full-adders with carry-chain logic. These later designs have larger and

more variable area, so we also average the area over the ten random initial seeds.

We count the number of ALMs and DSPs pessimistically from Quartus’ Fitter report.

We take the total count of used or partially-used ALMs, and the total count of entire

DSP blocks used. Since we only use 36-bit words in Chapters 4–7, each Octavo instance

always uses an integral number of DSP blocks: a 36 × 36 multiplier requires an entire

Stratix IV DSP block.

4We had already performed the experiments of Chapter 3 before those area results appeared in
publication.
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Quartus Configuration

Listing B.1 contains the essential elements of the Quartus configuration used throughout

this work, aimed at synthesizing fast hardware at the expense of area and CAD time.

These settings originate from Quartus II 64-Bit, Version 13.1.0 (Build 162 10/23/2013

SJ Full Version), but have remained unchanged since we began with Quartus 10.1.

Some significant points:

• We disable multi-corner timing analysis, reporting only the worst-case slow process

corner at 85◦C and 900mV.

• We disable all shift register inference, as they operate too slowly and interfere with

proper pipelining.

• We disable RAM to logic conversion (LCELL), as RAM results in denser, faster

circuits in most cases.

• We disable IOC register placement, otherwise the test harness registers get placed

in I/O registers along the edge of the device, introducing artificially long paths.

• We increase the placement and routing effort multipliers to 4, resulting in a small

increase in CAD time, and ensuring best effort.
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Listing B.1: Significant Quartus Configuration Details
1 # Project -Wide Assignments

2 # ========================

3 set_global_assignment -name LAST_QUARTUS_VERSION 13.1

4 set_global_assignment -name FLOW_DISABLE_ASSEMBLER ON

5 set_global_assignment -name SMART_RECOMPILE ON

6 set_global_assignment -name NUM_PARALLEL_PROCESSORS 2

7 <source and constraint file entries removed for brevity >

8 set_global_assignment -name FLOW_ENABLE_RTL_VIEWER OFF

9
10 # Classic Timing Assignments

11 # ==========================

12 set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0

13 set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85

14 set_global_assignment -name TIMEQUEST_MULTICORNER_ANALYSIS OFF

15 set_global_assignment -name TIMEQUEST_DO_REPORT_TIMING ON

16
17 # Analysis & Synthesis Assignments

18 # ================================

19 set_global_assignment -name FAMILY "Stratix IV"

20 set_global_assignment -name DEVICE_FILTER_SPEED_GRADE FASTEST

21 set_global_assignment -name OPTIMIZATION_TECHNIQUE SPEED

22 set_global_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON

23 set_global_assignment -name AUTO_SHIFT_REGISTER_RECOGNITION OFF

24 set_global_assignment -name REMOVE_REDUNDANT_LOGIC_CELLS ON

25 set_global_assignment -name MUX_RESTRUCTURE ON

26 set_global_assignment -name ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION ON

27 set_global_assignment -name ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION ON

28 set_global_assignment -name ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_RECOGNITION OFF

29 set_global_assignment -name AUTO_RAM_RECOGNITION ON

30 set_global_assignment -name AUTO_RAM_TO_LCELL_CONVERSION OFF

31 set_global_assignment -name SYNTH_TIMING_DRIVEN_SYNTHESIS ON

32 set_global_assignment -name USE_LOGICLOCK_CONSTRAINTS_IN_BALANCING ON

33 set_global_assignment -name SAVE_DISK_SPACE OFF

34 set_global_assignment -name REMOVE_DUPLICATE_REGISTERS ON

35
36 # Fitter Assignments

37 # ==================

38 set_global_assignment -name DEVICE EP4SGX230KF40C2

39 set_global_assignment -name FITTER_EFFORT "STANDARD FIT"

40 set_global_assignment -name OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING OFF

41 set_global_assignment -name PHYSICAL_SYNTHESIS_COMBO_LOGIC ON

42 set_global_assignment -name PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON

43 set_global_assignment -name PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON

44 set_global_assignment -name PHYSICAL_SYNTHESIS_EFFORT EXTRA

45 set_global_assignment -name ROUTER_LCELL_INSERTION_AND_LOGIC_DUPLICATION ON

46 set_global_assignment -name ROUTER_TIMING_OPTIMIZATION_LEVEL MAXIMUM

47 set_global_assignment -name PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA OFF

48 set_global_assignment -name AUTO_PACKED_REGISTERS_STRATIXII AUTO

49 set_global_assignment -name ROUTER_CLOCKING_TOPOLOGY_ANALYSIS ON

50 set_global_assignment -name PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR_AREA OFF

51 set_global_assignment -name BLOCK_RAM_TO_MLAB_CELL_CONVERSION OFF

52 set_global_assignment -name SEED 1

53 set_global_assignment -name PLACEMENT_EFFORT_MULTIPLIER 4

54 set_global_assignment -name ROUTER_EFFORT_MULTIPLIER 4

55 set_global_assignment -name AUTO_DELAY_CHAINS OFF

56 set_global_assignment -name OPTIMIZE_HOLD_TIMING "ALL PATHS"

57
58 # Power Estimation Assignments

59 # ============================

60 set_global_assignment -name POWER_PRESET_COOLING_SOLUTION "23 MM HEAT SINK WITH 200 LFPM AIRFLOW"

61 set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE )"

62
63 # Incremental Compilation Assignments

64 # ===================================

65 set_global_assignment -name RAPID_RECOMPILE_MODE OFF

66
67 # Netlist Viewer Assignments

68 # ==========================

69 set_global_assignment -name RTLV_GROUP_COMB_LOGIC_IN_CLOUD_TMV OFF

70
71 <partitioning assignments removed for brevity >
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Suggested FPGA and CAD Changes

Throughout this work, we constantly strove to maximize the raw Fmax of the Octavo

architecture. Without a maximized operating speed, within the limitations of the under-

lying FPGA and its CAD tools, any efficiency or performance improvement rings hollow

as the hardware still spends much time idle, waiting for the next clock edge.

We spent much of our efforts measuring and working around properties of the FPGA

which normally don’t manifest at lower speeds. In a nutshell, various hard blocks (DSP,

BRAM) cannot operate as quickly as the reconfigurable logic, and the CAD tool prevents

proper pipelining in some cases.

Often, overlays and soft-processors do not even reach 300 MHz on a Stratix IV de-

vice, beyond which we begin to observe difficulties maintaining speed. We outline these

difficulties and suggest some changes to avoid them, with the understanding that the un-

derlying causes may necessarily exist due to engineering and/or commercial constraints.

BRAM Clock Pulse Width Early self-loop characterization experiments (Chapter 3)

showed that, based on propagation delay alone, a suitably pipelined M9K Block RAM

could operate at over 700 MHz (out of a clock tree maximum rating of 800 MHz). How-

ever, limitations to the minimum clock pulse width prevent any operation past 550 MHz

at best [10], or more typically 500 MHz based on a real device (Terasic DE4 using a
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EP4SGX230KF40C2 Stratix IV device). This single limitation currently defines the abso-

lute ceiling Fmax of Octavo.

BRAM Interconnections The same aforementioned self-loop characterization ex-

periments revealed that when passing data from one BRAM to another, we must always

include some pipelining to maximize Fmax. This constraint creates the unusual offset

between the Control Path and Data Path in Octavo (Figure 3.7), where we must place

3 pipeline stages between the Instruction memory and the A/B Data Memories. In this

case, we suspect the first pipeline stage retimes into the Instruction memory output to

offset a long tco (Clock-to-Output Time) of the SRAM proper, while the second seems

to offset the FPGA interconnect delay between BRAMs, regardless of actual distance.

Adding a third stage improved Fmax for wider-word designs (e.g.: 64 or 72 bits), and

brought the Control Path pipeline depth up to 8, matching that of the Data Path. We

don’t have a clear picture of the causes, but some optimizations to reduce the need to

pipeline between BRAMs would shorten overall processing system pipelines.

BRAM Forwarding Logic Quartus can automatically implement write-forwarding

logic around BRAMs, so that a read coinciding with a write to the same address returns

the newly written value rather than the original memory contents. This logic also enables

the higher 500 MHz operating frequency, since the BRAM can internally perform both

the read and write on the same clock edge, relying on the forwarding logic to discard any

read data potentially corrupted by a simultaneous write to the same SRAM cells. With-

out forwarding, the reads and writes must internally occur on different edges, limiting

operating frequency to 375 MHz. We have always found it advantageous to implement

write forwarding to obtain the higher speed, then register the read or write data and

address lines to emulate the original behaviour if necessary [76]. Thus, we suggest re-

versing the process: integrate the forwarding logic into the BRAM ASIC, defaulting to
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a higher Fmax, and let Quartus auto-generate the required registering to undo its effect

in the FPGA fabric if desired.

DSP Clock Pulse Width The DSP Blocks also suffer a minimum clock pulse width

limitation similar to that of BRAMs, restricting their full-word (36 bits) operation to

480 MHz. Unlike BRAMs however, we can use two DSP Blocks in a ping-pong fashion

(Chapter 3.9) to act as a single DSP Block operating at up to 600 MHz. Altering the

DSP Blocks to run at higher speeds, even if this required using the full 3 stages of internal

pipelining, would halve the number of DSP Blocks required in Octavo.

Register Retiming At the time of writing, Quartus did not allow retiming registers

into auto-generated modules, which artificially limits Fmax. In our case, we use a vendor-

supplied Verilog module definition to specify the exact operation we required of the DSP

block, leaving Quartus to synthesize the proper logic required for various word widths

not equal to the native 36 bits. For larger word widths (e.g.: 72 bits), Quartus correctly

infers multiple 36-bit multipliers with extra adders to combine their partial results. How-

ever, since this inferred hardware lies within the vendor-supplied module definition, and

since the definition does not provide means to specify additional pipelining (at the time

of writing), those unpipelined extra adders become the critical path. Manually added

pipeline registers at the output do not get retimed into the adder tree, ultimately (and ar-

tificially) limiting the performance of wider-word versions of Octavo. Thus, we need some

means of controlling register retiming into vendor-generated logic, or manually inserting

registers after generation.
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Vendor Module Pipelining Related to the register retiming issue above, we have to

rely on a retiming trick to specify the pipelining we need in the DSP Blocks. We use the

DSP Block purely as a multiplier, ignoring the final adder meant for Multiply-Accumulate

functionality. However, the vendor-supplied module definition only allows enabling the

3 internal pipeline stages in sequence from input towards output, whereas we need only

the first and last pipeline stages to absorb the delay of the unused MAC adder. We solve

the problem by enabling the first DSP Block pipeline stage, then manually adding a

pipeline register after the module output. Later post-synthesis optimizations in Quartus

will retime that final register into the DSP Block’s internal third pipeline stage, despite

the lack of register retiming seen for larger multipliers above.
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Limitations Of The Verilog HDL

Engineers often criticize HDLs as too low-level for large-scale system development, akin

to assembly language or plain C. Instead, this work claims the unsuitability of HDLs

stems from how they hamper disciplined and sophisticated development techniques and

tools, and not from the usual low-level concerns of signed arithmetic [117]1, blocking

vs. non-blocking assignments and race conditions across processes [58], memory block

inference [4], etc. . . none of which caused significant difficulties in this work.

However, the creation of this work suffered from the following limitations in Verilog-

2001, which generally prevented constructing abstractions to support large-system de-

velopment. At the time of writing, SystemVerilog, an updated version of Verilog, fixed

many of these limitations, but support for it was relatively new and porting Octavo was

too risky at the time.

1Even though the proposed signed addition solution does not work on our FPGA CAD tool (Quartus).
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Macros Verilog macros only perform simple text substitution with no possible pro-

cessing, making it impossible to generate file names, variable names, or module names.

The only method for concatenation treats strings as arrays of literal ASCII bytes, so

appending the number ‘20’ to a string requires an explicit manual translation of the

integer ‘20’ to the bytes representing the characters ‘2’ and ‘0’. SystemVerilog’s macros

have new system functions to concatenate strings and convert to/from integer, hex, and

floating-point numbers.

Parameters Module parameters can only hold integers or strings, preventing program-

matic generation of similar but not identical modules (e.g. different memory contents for

each instance), and also increasing the number of parameters to manage. Under Sys-

temVerilog, parameters can hold any data type.

Introspection We cannot peer inside the data structures of the HDL to locally obtain

relevant data. For example, one module cannot access the parameters of another, forcing

large, hierarchical designs to manually pass all possible parameters top-down. Further-

more, since we cannot store parameters in a structure or variable, we must pass them

manually one-by-one: the number of parameters in module definitions and instantiations

rapidly exceeds the number of actual lines of code. So far, SystemVerilog does not sup-

port introspection across modules, but can create “packages” of global data containing

parameters and functions accesible to all modules, which would avoid having to pass all

paramters down the module hierarchy.

Connecting Ports Similarly, we cannot directly refer to the ports of another module

to express connections (e.g.: moduleA.portB(moduleB.portC)). Instead, the upper-level

encapsulating module must create vectors of (arbitrarily named) wires for each of the

sub-module ports (again, without being able to query the sub-modules themselves), and

create assign statements to connect the wires together. Furthermore, assign state-

ments have a different precedence than the usual non-blocking assignments in the Verilog
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simulation model, potentially causing simulation/synthesis mismatches. It is unclear if

SystemVerilog can address this problem.

Passing Vectors Through Ports Multi-dimensional vectors (e.g.: a 10x10 array of

8-bit bytes) cannot pass through module ports, forcing difficult and error prone use

of macros and functions to pack/unpack vectors at each module boundary. Also, the

number of ports in a module cannot be parameterized, only their bit-width, also forcing

the packing and unpacking of related ports into a single port passing a flat bit vector.

SystemVerilog can pass vectors through ports, and can parameterize the number of ports

via interface definitions, which place the ports into a data structure rather than manually

listing them in the source code.

Module Instance Arrays We can only instantiate unidimensional arrays of identical

modules. Combined with the above limitations on ports and parameters, this limitation

makes the creation of systolic arrays, meshes, networks, and other non-trivial parallel

processing systems nearly impossible. The equivalent difficulty in C would resemble

processing multi-dimensional data with only linear arrays and without the use of point-

ers, forcing the designer to manually implement every single array address calculation.

SystemVerilog can instantiate multi-dimensional arrays of module instances.

Vector Reduction Verilog only supplies vector-to-bit reductions (e.g.: ^foo, which

XORs all the bits of foo to a single bit). Expressing vector reduction as multiple parallel

bit reductions failed to synthesize. The only synthesizable way to express a vector-to-

vector reduction requires an iterated reduction over each array index i, where � refers

to any 2-input operator:
result = result� array[i] (D.1)

which corresponds to a left fold operation:

result = ((((nil � array[0])� array[1])� array[2])� . . .) (D.2)
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where nil refers to an initial value of result, usually one which makes � act as the

identity function (e.g.: 0 for XOR). This approach may fail if � does not have a constant

nil value, or may return inaccurate results if � represents a non-associative operation

(e.g.: floating-point), requiring a careful selection of the iteration order or more complex

code to express a tree reduction. Compounding the problem, no mechanism exists for

defining new operators, and we cannot use functions which could serve that purpose

outside of their defining module. In SystemVerilog, we could place an appropriate vector

reduction function inside a global package, accessible to all modules.

Lack of Abstraction While SystemVerilog addresses most of these issues, we wanted

to outline the overall problem which generally plagues HDL development: we can straight-

forwardly describe any one instance of a system, but we find describing kinds of systems

nearly impossible. Without a capacity to transparently compose larger systems from

smaller ones, we must tailor each system to fit and cannot create a common system

architecture upon which we can make incremental progress.

Summary This work does not significantly suffer from the low-level, register-and-logic

hardware descriptions of Verilog. We can easily describe each module in a flexible, pa-

rameterized manner for design space exploration, and we need that fine control to opti-

mize our logic to the underlying FPGA. However, as we compose modules together and

increase the scale of the design, we find that the above limitations prevent us from in-

creasing Verilog’s level of abstraction by the same amount, forcing a low-level description

of high-level designs.
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I/O Predication Of Branches

We introduced the Branch Trigger Module (BTM) in Chapter 6 to fold branches, exe-

cuting them in parallel with other instructions. However, in the interest of simplicity,

we presented the BTM mostly independently of Octavo’s pipeline. This simplification

ignores the impact of the I/O Predication mechanism we introduced in Chapter 5.

If an instruction accesses an un-ready I/O port, the I/O Ready signal (Figure 5.5,

pg. 93) will not assert, which annuls the instruction into a NOP and causes the Controller

(Figure 5.6, pg. 94) to re-issue that instruction’s Program Counter value. However, since

a folded branch may depend on the result of the previous thread instruction, and a re-

issued instruction always has a NOP as its previous instruction, we have lost the original

previous instruction result. The folded branch might then proceed incorrectly.

Figure E.1 shows the actual Octavo BTM, which preserve the flag used by a folded

branch across instruction annullment and re-issue(s). Figure 6.3 (pg. 111) shows the sim-

plified BTM for comparison. In the lower right, we preserve copies of the original Jump

(J) and I/O Ready flags out of Stage 3, and pipeline them 6 and 7 stages respectively

to synchronize them with the next thread instruction. When the next thread instruction

reaches Stage 3, we use the delayed I/O Ready to determine if the current instruction is

a re-issue of the previous one. If so (i.e.: I/O Ready not asserted), then we re-use the de-

layed Jump flag instead of the current selected flag F, re-creating the original conditions

for the folded branch.
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Figure E.1: Branch Trigger Module Altered for I/O Predication



Appendix F

External Memory Interfaces

Octavo’s original design premises (Chapter 3) state that we should avoid the associa-

tive structure overhead of caches on FPGAs (see Severance and Lemieux [108] for an

overview), and instead collapse the on-chip memory hierarchy into simpler, faster scratch-

pad memories. Thus, Octavo’s address spaces do not extend beyond its scratchpads and

internal memory-mapped hardware. Any data from outside must come in through the

A/B memory I/O read ports, while outgoing data must go through I/O write ports or

through hardware mapped into High memory (Chapter 5).

If we assume an external DRAM memory attached via a simple controller to handle

basic row/column access and refresh protocols, reading and writing to memory requires

sending an address, then either sending or receiving data, both via handshaking I/O

ports. Each step requires an instruction, which can also fold some or all of the address

and data calculations with the I/O transfers, as well as allow the programming system

to mitigate memory latency.

Listings F.1 and F.2 show the Octavo equivalents of the MIPS IV “Load Word” and

“Store Word” instructions [98]. For both loads and stores, the first instruction adds the

address base and offset together and writes them, via an I/O write port (I/Ow), to the

memory controller. A load will then read the data from an I/O read port (I/Or) and

store it into data. A store does the opposite, writing data to I/Ow.
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Listing F.1: External Memory Load

1 // data <-- MEM[base+offset]

2 ADD I/Ow, base , offset

3 ADD data , I/Or, 0

Listing F.2: External Memory Store

1 // MEM[base+offset] <-- data

2 ADD I/Ow, base , offset

3 ADD I/Ow, data , 0

However, unlike MIPS IV, we have avenues to optimize load/store performance with-

out additional hardware. We can replace the initial address write with arbitrary calcula-

tions writing to the same I/O write port. We can also replace the data read/write with

the calculation which generates or consumes data in the first place. If the programming

system knows the expected memory latency, it can insert other instructions between the

address write and the data read/write. Finally, in all cases, if the memory controller

cannot yet receive an address or send/receive data the relevant instruction will “hang”,

via the I/O Predication mechanism (Chapter 5), until the operation completes.

Additionally, if the application has connected (e.g.: graph traversal) or highly-local

(e.g.: array sub-tiles) memory access patterns, we can design and attach an Accelera-

tor to programmatically interact with memory, while the main processor proceeds with

computation1.

Finally, some thought will have to go into the design of the memory controller, its

memory channels, and the software’s access patterns, as Octavo’s multiple threads could

end up interleaving memory requests with little relative locality. Without some plan-

ning, we would end up wasting most of the potential memory bandwidth waiting for the

controller to open/close unrelated rows in DRAM. We can base ourselves on the prior

work of Labrecque et al. [73], which explored memory hierarchies for multi-threaded

multi-processors.

1The process of designing a memory Accelerator strikingly resembles that of designing a Display
Processor [94].
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Accelerated Hailstone Algorithm

This appendix describes the construction of the Accelerated Hailstone algorithm used in

Chapter 7. We lifted much of the text verbatim1 from the “Collatz conjecture” Wikipedia

article [124], as it extracts the algorithm out of far less tractable mathematical publi-

cations, primarily a 2007 paper by Scollo [103], with some deeper details buried in a

(difficult!) 1976 article by Riho [113].

G.1 Introduction

The Collatz conjecture is a conjecture in mathematics named after Lothar Collatz, who

first proposed it in 1937. Take any natural number n. If n is even, divide it by 2 to get

n/2. If n is odd, multiply it by 3 and add 1 to obtain 3n+ 1:

f(n) =


n/2 if n ≡ 0

3n+ 1 if n ≡ 1

(mod 2)

If we apply the formula indefinitely, the conjecture states that no matter the initial

value of n, you will always eventually reach 1. Any further iteration remains within a

1The Wikimedia Foundation publishes under the Creative Commons Attribution-ShareAlike License,
which allows creating new derived works, so long as they cite the source and fall under the same license,
which this Appendix thus does.
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1, 4, 2, 1 . . . cycle. We refer to the sequence of numbers involved as the Hailstone sequence

or Hailstone numbers, because the sequence values usually rise and fall like hailstones in

a cloud, before ultimately falling to 1.

G.2 As a parity sequence

For this section, consider the Collatz function in the slightly modified form

f(n) =


n/2 if n ≡ 0

(3n+ 1)/2 if n ≡ 1

(mod 2)

This modification works because when n is odd, 3n + 1 is always even, keeping n in

the natural numbers. Also, as a consequence, we step through the sequence of numbers

faster, a presumably useful property to mathematicians trying to disprove the conjecture

by finding cycles in Hailstone sequences.

If P (. . .) is the parity of a number, that is P (2n) = 0 and P (2n + 1) = 1, then we

can define the Hailstone parity sequence (or parity vector) for a number n as pi = P (ai),

where a0 = n, and ai + 1 = f(ai). What operation is performed ((3n + 1)/2 or n/2)

depends on the parity. The parity sequence is the same as the sequence of operations.

Using this form for f(n), it can be shown that the parity sequences for two numbers

m and n will agree in the first k terms if and only if m and n are equivalent modulo 2k.

This implies that every number is uniquely identified by its parity sequence, and moreover

that if there are multiple Hailstone cycles, then their corresponding parity cycles must

be different.

Applying the f function k times to the number a · 2k + b will give the result a · 3c+ d,

where d is the result of applying the f function k times to b, and c is how many odd

numbers were encountered during that sequence.
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G.3 Space-time Trade-Off

The calculation of parity sequences gives a way to speed up the calculation of Hailstone

sequences. To jump ahead k steps on each Hailstone iteration (using the aforementioned

f function), break up the current number into two parts, b (the k least significant bits,

interpreted as an integer), and a (the rest of the bits as an integer). The result of jumping

ahead k steps can be found as:

fk(a · 2k + b) = a · 3c[b] + d[b]

The c and d arrays are precalculated for all possible k-bit numbers b, where d[b] is

the result of applying the f function k times to b, and c[b] is the number of odd numbers

encountered on the way [103]. For example, if k = 5, you can jump ahead 5 steps on

each iteration by separating out the 5 least significant bits of a number and using:

c = [0, 3, 2, 2, 2, 2, 2, 4, 1, 4, 1, 3, 2, 2, 3, 4, 1, 2, 3, 3, 1, 1, 3, 3, 2, 3, 2, 4, 3, 3, 4, 5]

d = [0, 2, 1, 1, 2, 2, 2, 20, 1, 26, 1, 10, 4, 4, 13, 40, 2, 5, 17, 17, 2, 2, 20, 20, 8, 22, 8, 71, 26, 26, 80, 242]

Creating each of c and d requires 2k precomputations and storage elements to speed

up the resulting calculation by a factor of k, a space-time trade-off.

Since the Octavo and MXP systems in this work use limited on-chip scratchpad

memory, and compute over pipeline depths of at or near 8, precomputing tables for

k = 8 presented a natural choice. We can then conventionally pre-compute the first k

values of a Hailstone sequence, then interleave k accelerated computations, each starting

with one of the k initial values, to fill the pipeline and compute the entire Hailstone

sequence k steps at a time.
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Benchmark Code From Chapter 6

This appendix gives the pseudo-code, MIPS-like assembly, and optimized Octavo as-

sembly code for the benchmarks we use in Chapter 6, except for Hailstone, whose code

we describe in Chapter 6.3.2 (pg. 102). These benchmarks test the execution overhead

reductions of the Address Offset Module (AOM) and Branch Trigger Module (BTM).

We omit some details for clarity, such as the memory mapping and data format of

the AOM/BTM entries. The MIPS-like code resembles the MIPS IV ISA [98], while

Table 3.2 (pg. 35) describes the Octavo ISA.
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Some notation details:

• All names refer to values held in registers. We implement moves with the “ADD To

Zero” idiom.

• We describe I/O ports as simple pointers in the pseudo-code, or addresses (e.g.:

“out”) in the MIPS-like and Octavo assembly. Most Octavo pointer addresses

shown here post-increment after use.

• We omit initialization code, such as BTM and AOM entries which do not change

during execution.

• We denote updating a BTM entry by writing the kind of branch to the BTM

(e.g.: ADD BTM, JNEn, 0), configuring the BTM to implement the next branch of

that kind seen in the source code.

• We similarly denote updates to the AOM (e.g.: ADD AOM, 0, ptr init), implying

that the written value contains the offsets, increments, etc. . . of an AOM entry.

• Both AOM and BTM updates have a 1-cycle RAW hazard before they take effect.

A useful instruction almost always fills the delay slot, though you will see the

occasional NOP opcode as shorthand for XOR, 0, 0, 0 (the all-zero instruction).

• In Octavo code, we place folded branches on the same line as the regular instruction,

separated by a semi-colon. The branch executes concurrently, with conditionals

based on the result of the previous instruction. We denote “Predict Taken” and

“Predict Not Taken” cancelling branches by appending “t” or “n” to the branch

opcode. An absent letter suffix denotes a non-cancelling branch, which makes no

prediction and never cancels the concurrent instruction. Note that the branch

opcode acts as a source notation only: the BTM eliminates all branch instructions,

and the equivalent functionality now resides in BTM entries.
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H.1 Array Increment

The Array Increment benchmark increments by 1 a negative-terminated array of 10

elements (in inner loop), repeated 10 times (out outer loop), then outputs the entire

array (oput loop), showing a simple iterated calculation with a separate output loop. On

Octavo, this benchmark requires five branches, forcing us to periodically reload one of

the four BTM entries to support it. Listings H.1, H.2, and H.3 contain the pseudo-code,

MIPS-like assembly, and optimized Octavo assembly code.

Listing H.1: Array Increment Pseudo-Code

1 // out is an I/O write port

2 // array = [..., -1];

3
4 init: cnt = 10;

5 out: ptr = &array; // outer loop

6 in: tmp = *ptr; // inner loop , incr. array

7 if (tmp < 0) goto brk;

8 tmp += 1;

9 *ptr = tmp

10 ptr += 1;

11 goto in;

12 brk: cnt -= 1; // Repeat inner cnt times

13 if (cnt > 0) goto out;

14 ptr = &array;

15 oput: tmp = *ptr // Output array and re -start

16 if (tmp < 0) goto init;

17 *out = tmp;

18 ptr += 1;

19 goto oput;



H.1. Array Increment 201

Listing H.2: Array Increment MIPS-like Code

1 // out is an I/O write port

2 // array = [... ,-1];

3 // cnt_init = 10

4
5 init: ADD cnt , cnt_init , 0

6 out: ADD ptr , &array , 0 // outer loop

7 in: LW tmp , ptr // inner loop , incr. array

8 BLTZ brk , tmp

9 ADD tmp , tmp , 1

10 SW tmp , ptr

11 ADD ptr , ptr , 1

12 JMP in

13 brk: SUB cnt , cnt , 1 // Repeat inner cnt times

14 BGTZ out , cnt

15 ADD ptr , &array , 0

16 oput: LW tmp , ptr

17 BLTZ init , tmp // Output array and re -start

18 SW tmp , out

19 ADD ptr , ptr , 1

20 JMP oput

Listing H.3: Array Increment Octavo Code

1 // out is an I/O write port

2 // array = [..., -1];

3 // cnt_init = 10

4 // ptr_init contains &array offset and increment values

5 // one = 1

6 // m_one = -1

7
8 init: ADD BTM , JNEn , 0 // setup branch

9 ADD cnt , 0, cnt_init

10 ADD AOM , 0, ptr_init

11 out: NOP // outer loop

12 in: ADD tmp , 0, ptr // inner loop

13 ADD tmp , one , tmp ; JNEn break

14 ADD ptr , 0, tmp ; JMP in

15 brk: ADD cnt , m_one , cnt // do cnt times

16 ADD AOM , 0, ptr_init ; JNZ out

17 ADD BTM , JPO , 0 // re-use entry

18 oput: ADD tmp , 0, ptr // output array

19 ADD out , 0, tmp ; JNEn init ; JPO oput
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H.2 Array Reverse

The Array Reverse benchmark traverses an array of 100 elements using two pointers,

top-to-middle (top) and bottom-to-middle (bot), loading and storing to swap their val-

ues without any computation or other I/O. The bottom-to-middle pointer decrements,

which (on Octavo) our current AOM does not support and thus we must do manually.

Furthermore, due to the write-only nature of the AOM, we have to keep a copy of the

bottom-to-middle pointer (bot tmp)), add −1 to it (bot decr), then update its AOM

entry, all within the main loop. Listings H.4, H.5, and H.6 contain the pseudo-code,

MIPS-like assembly, and optimized Octavo assembly code.

Listing H.4: Array Reverse Pseudo-Code

1 // array = [ ... ];

2 // len = length(array)

3 // half_len = len / 2;

4 // top_init = &array;

5 // bot_init = &array + len - 1;

6
7 init: top = top_init;

8 bot = bot_init;

9 cnt = half_len;

10 next: tmp_top = *top; // reverse values

11 tmp_bot = *bot;

12 *top = tmp_bot;

13 *bot = tmp_top;

14 top += 1; // incr/decr pointers

15 bot -= 1;

16 cnt -= 1;

17 if (cnt > 0) goto next;

18 goto init // reverse again
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Listing H.5: Array Reverse MIPS-like Code

1 // array = [ ... ];

2 // len = length(array)

3 // half_len = len / 2;

4 // top_init = &array;

5 // bot_init = &array + len - 1;

6
7 init: ADD top , 0, top_init

8 ADD bot , 0, bot_init

9 ADD cnt , 0, half_len

10 next: LW tmp_top , top // reverse values

11 LW tmp_bot , bot

12 SW tmp_bot , top

13 SW tmp_top , bot

14 ADD top , 1, top // incr/decr pointers

15 ADD bot , -1, bot

16 ADD cnt , -1, cnt

17 BGTZ next , cnt

18 JMP init // reverse again

Listing H.6: Array Reverse Octavo Code

1 // array = [ ... ];

2 // len = length(array)

3 // half_len = len / 2;

4 // top_init = &array; (plus other AOM data)

5 // bot_init = &array + len - 1; (plus other AOM data)

6 // bot_decr = -1 (formatted for bot_init)

7 // m_one = -1

8
9 ADD bot_tmp , 0, bot_init // local copy

10 init: ADD AOM , 0, top_init

11 ADD AOM , 0, bot_init

12 ADD cnt , 0, half_len

13 next: ADD tmp_top , 0, top // reverse values

14 ADD tmp_bot , 0, bot

15 ADD bot , 0, tmp_top

16 ADD top , 0, tmp_bot

17 ADD bot_tmp , bot_decr , bot_tmp // decr. bot manually

18 ADD cnt , m_one , cnt

19 ADD AOM , 0, bot_tmp ; JNZ next

20 ADD bot_tmp , 0, bot_init ; JMP init
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H.3 8-Tap FIR Filter

We sequentially read a 100-entry input buffer (in), applying an 8-tap FIR filter at each

step, and output the filtered values to a 100-entry output buffer (out). We keep all 8

taps and 8 coefficients in registers, shifting values down a taps buffer (buf0--buf7) then

performing the multiplications and additions (acc tmp and mul tmp), both as unrolled

inner loops. Listings H.7, H.8, and H.9 contain the pseudo-code, MIPS-like assembly,

and optimized Octavo assembly code.
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Listing H.7: FIR Filter Pseudo-Code

1 // input_array = [ ... ];

2 // output_array = [ ... ];

3 // in_init = &input_array;

4 // out_init = &output_array;

5 // cnt_init = length(input_array );

6 // buf0 to buf7 are buffer registers

7 // cft0 to cft7 are coefficient registers

8
9 init: in = in_init;

10 out = out_init;

11 cnt = cnt_init;

12 loop: buf7 = buf6; // shift buffer

13 buf6 = buf5;

14 buf5 = buf4;

15 buf4 = buf3;

16 buf3 = buf2;

17 buf2 = buf1;

18 buf1 = buf0;

19 buf0 = *in; // load new input

20 acc_tmp = buf7 * cft7; // multiply -accumulate

21 mul_tmp = buf6 * cft6;

22 acc_tmp += mul_tmp;

23 mul_tmp = buf5 * cft5;

24 acc_tmp += mul_tmp;

25 mul_tmp = buf4 * cft4;

26 acc_tmp += mul_tmp;

27 mul_tmp = buf3 * cft3;

28 acc_tmp += mul_tmp;

29 mul_tmp = buf2 * cft2;

30 acc_tmp += mul_tmp;

31 mul_tmp = buf1 * cft1;

32 acc_tmp += mul_tmp;

33 mul_tmp = buf0 * cft0;

34 acc_tmp += mul_tmp;

35 *out = acc_tmp; // store output

36 in += 1; // update pointers

37 out += 1;

38 cnt -= 1;

39 if (cnt == 0) goto init;

40 goto loop;
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Listing H.8: FIR Filter MIPS-like Code

1 // input_array = [ ... ];

2 // output_array = [ ... ];

3 // in_init = &input_array;

4 // out_init = &output_array;

5 // cnt_init = length(input_array );

6 // buf0 to buf7 are buffer registers

7 // cft0 to cft7 are coefficient registers

8
9 init: ADD in , in_init , 0

10 ADD out , out_init , 0

11 ADD cnt , cnt_init , 0

12 loop: ADD buf7 , buf6 , 0 // shift buffer

13 ADD buf6 , buf5 , 0

14 ADD buf5 , buf4 , 0

15 ADD buf4 , buf3 , 0

16 ADD buf3 , buf2 , 0

17 ADD buf2 , buf1 , 0

18 ADD buf1 , buf0 , 0

19 LW buf0 , in // load new input

20 MUL acc_tmp , buf7 , cft7 // multiply -accum.

21 MUL mul_tmp , buf6 , cft6

22 ADD acc_tmp , acc_tmp , mul_tmp

23 MUL mul_tmp , buf5 , cft5

24 ADD acc_tmp , acc_tmp , mul_tmp

25 MUL mul_tmp , buf4 , cft4

26 ADD acc_tmp , acc_tmp , mul_tmp

27 MUL mul_tmp , buf3 , cft3

28 ADD acc_tmp , acc_tmp , mul_tmp

29 MUL mul_tmp , buf2 , cft2

30 ADD acc_tmp , acc_tmp , mul_tmp

31 MUL mul_tmp , buf1 , cft1

32 ADD acc_tmp , acc_tmp , mul_tmp

33 MUL mul_tmp , buf0 , cft0

34 ADD acc_tmp , acc_tmp , mul_tmp

35 SW acc_tmp , out // store output

36 ADD in , in , 1 // update pointers

37 ADD out , out , 1

38 ADD cnt , cnt , -1

39 BEQZ init , cnt

40 JMP loop
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Listing H.9: FIR Filter Octavo Code

1 // input_array = [ ... ];

2 // output_array = [ ... ];

3 // in_init = &input_array;

4 // out_init = &output_array;

5 // cnt_init = length(input_array );

6 // ptr_init contains AOM data for both in_init and out_init

7 // buf0 to buf7 are buffer registers

8 // cft0 to cft7 are coefficient registers

9 // m_one = -1

10
11 init: ADD AOM , 0, ptr_init

12 ADD cnt , 0, cnt_init

13 loop: ADD buf7 , 0, buf6 // shift buffer

14 ADD buf6 , 0, buf5

15 ADD buf5 , 0, buf4

16 ADD buf4 , 0, buf3

17 ADD buf3 , 0, buf2

18 ADD buf2 , 0, buf1

19 ADD buf1 , 0, buf0

20 ADD buf0 , 0, in // load new input

21 MLS acc_tmp , cft7 , buf7 // multiply -accum.

22 MLS mul_tmp , cft6 , buf6

23 ADD acc_tmp , acc_tmp , mul_tmp

24 MLS mul_tmp , cft5 , buf5

25 ADD acc_tmp , acc_tmp , mul_tmp

26 MLS mul_tmp , cft4 , buf4

27 ADD acc_tmp , acc_tmp , mul_tmp

28 MLS mul_tmp , cft3 , buf3

29 ADD acc_tmp , acc_tmp , mul_tmp

30 MLS mul_tmp , cft2 , buf2

31 ADD acc_tmp , acc_tmp , mul_tmp

32 MLS mul_tmp , cft1 , buf1

33 ADD acc_tmp , acc_tmp , mul_tmp

34 MLS mul_tmp , cft0 , buf0

35 ADD acc_tmp , acc_tmp , mul_tmp

36 ADD cnt , m_one , cnt

37 ADD out , acc_tmp , 0, ; JZE init ; JNZ loop
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Figure H.1: Simple Floating-Point Number Recognizer

H.4 Floating-Point FSM

The Floating-Point Number FSM (Chapter 6), FSM-S, and FSM-A benchmarks (Chap-

ter 7) all implement a Finite-State Machine (FSM) which recognizes simple floating-point

numbers without exponent notation (e.g.: 5.,−.5, .5,−5.,−5.5, 5.5). Figure H.1 shows the

state diagram for the associated regular expression [+-]?(\.[0-9]+|[0-9]+\.[0-9]*),

with the input alphabet 0 to 9, +, -, ., sp (space), ε (empty), and the output

alphabet ACCEPT, REJECT. Any other transitions enter the REJECT state.

The following code examples show the FSM-A version, where we implement the FSM

directly into the program structure, alternating tests and branches to determine state

and action. FSM-A contains no real loops, no hoistable computations, no significant

addressing, no basic block longer than 2 or 3 instructions, and has 34 unique branches,

greatly exceeding the capacity of Octavo’s four-entry BTM and forcing us to continually

reload a single BTM entry with the data for the next upcoming branch. However, we can

fold that BTM entry reload (for the next branch) with the branch set by the previous

reload, and we can use the BTM to statically cache three other branches to save cycles on

the most commonly traversed edges (denoted by a “// BTM” comment). Listings H.10,

H.11, and H.12 contain the pseudo-code, MIPS-like assembly, and optimized Octavo

assembly code.
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Listing H.10: FSM-A Pseudo-Code

1 // array = [ ..., -1 ]

2 // ptr_init = &array

3 // accept and reject are I/O ports

4
5 init: ptr = ptr_init;

6
7 state0: tmp = *ptr;

8 if (tmp < 0) goto init;

9 ptr += 1;

10 if (tmp == ’ ’) goto state0;

11 if (tmp == ’+’) goto state1;

12 if (tmp == ’-’) goto state1;

13 if (tmp == ’.’) goto state2;

14 if (tmp < ’0’) goto state7;

15 if (tmp <= ’9’) goto state4;

16 goto state7;

17
18 state1: tmp = *ptr;

19 if (tmp < 0) goto init;

20 ptr += 1;

21 if (tmp == ’.’) goto state2;

22 if (tmp < ’0’) goto state7;

23 if (tmp <= ’9’) goto state4;

24 goto state7;

25
26 state2: tmp = *ptr;

27 if (tmp < 0) goto init;

28 ptr ++;

29 if (tmp < ’0’) goto state7;

30 if (tmp <= ’9’) goto state3;

31 goto state7;

32
33 state3: tmp = *ptr;

34 if (tmp < 0) goto init;

35 ptr += 1;

36 if (tmp == ’ ’) goto state6;

37 if (tmp < ’0’) goto state7;

38 if (tmp <= ’9’) goto state3;

39 goto state7;

40
41 state4: tmp = *ptr;

42 if (tmp < 0) goto init;

43 ptr += 1;
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44 if (tmp == ’.’) goto state5;

45 if (tmp < ’0’) goto state7;

46 if (tmp <= ’9’) goto state4;

47 goto state7;

48
49 state5: tmp = *ptr;

50 if (tmp < 0) goto init;

51 ptr += 1;

52 if (tmp == ’ ’) goto state6;

53 if (tmp < ’0’) goto state7;

54 if (tmp <= ’9’) goto state3;

55 goto state7;

56
57 state6: *accept = 1;

58 goto state0;

59
60 state7: *reject = 1;

61 goto state0;

Listing H.11: FSM-A MIPS-like Code

1 // array = [ ..., -1 ]

2 // ptr_init = &array

3 // space = ’ ’

4 // plus = ’+’

5 // minus = ’-’

6 // dot = ’.’

7 // char0 = ’0’ (decimal 48)

8 // accept and reject are I/O ports

9
10 init: ADD ptr , 0, ptr_init

11
12 state0: LW tmp , ptr // load next char

13 BLTZ init , tmp

14 ADD ptr , 1, ptr

15 XOR tmp2 , tmp , space // is it a space?

16 BEQZ state0 , tmp2 // new state

17 XOR tmp2 , tmp , plus

18 BEQZ state1 , tmp2

19 XOR tmp2 , tmp , minus

20 BEQZ state1 , tmp2

21 XOR tmp2 , tmp , dot

22 BEQZ state2 , tmp2

23 SUB tmp2 , tmp , char0 // range check [0-9]

24 BLTZ state7 , tmp2
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25 SUB tmp2 , 10, tmp2

26 BGEZ state4 , tmp2

27 JMP state7 // else: reject!

28
29 state1: LW tmp , ptr

30 BLTZ init , tmp

31 ADD ptr , 1, ptr

32 XOR tmp2 , tmp , dot

33 BEQZ state2 , tmp2

34 SUB tmp2 , tmp , char0

35 BLTZ state7 , tmp2

36 SUB tmp2 , 10, tmp2

37 BGEZ state4 , tmp2

38 JMP state7

39
40 state2: LW tmp , ptr

41 BLTZ init , tmp

42 ADD ptr , 1, ptr

43 SUB tmp2 , tmp , char0

44 BLTZ state7 , tmp2

45 SUB tmp2 , 10, tmp2

46 BGEZ state3 , tmp2

47 JMP state7

48
49 state3: LW tmp , ptr

50 BLTZ init , tmp

51 ADD ptr , 1, ptr

52 XOR tmp2 , tmp , space

53 BEQZ state6 , tmp2

54 SUB tmp2 , tmp , char0

55 BLTZ state7 , tmp2

56 SUB tmp2 , 10, tmp2

57 BGEZ state3 , tmp2

58 JMP state7

59
60 state4: LW tmp , ptr

61 BLTZ init , tmp

62 ADD ptr , 1, ptr

63 XOR tmp2 , tmp , dot

64 BEQZ state5 , tmp2

65 SUB tmp2 , tmp , char0

66 BLTZ state7 , tmp2

67 SUB tmp2 , 10, tmp2

68 BGEZ state4 , tmp2

69 JMP state7
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70
71 state5: LW tmp , ptr

72 BLTZ init , tmp

73 ADD ptr , 1, ptr

74 XOR tmp2 , tmp , space

75 BEQZ state6 , tmp2

76 SUB tmp2 , tmp , char0

77 BLTZ state7 , tmp2

78 SUB tmp2 , 10, tmp2

79 BGEZ state3 , tmp2

80 JMP state7

81
82 state6: SW 1, accept

83 JMP state0

84
85 state7: SW 1, reject

86 JMP state0

Listing H.12: FSM-A Octavo Code

1 // array = [ ..., -1 ]

2 // ptr_init = &array (and other AOM data such as increment)

3 // space = ’ ’

4 // plus = ’+’

5 // minus = ’-’

6 // dot = ’.’

7 // char0 = ’0’ (decimal 48)

8 // m_char0 = -’0’ (decimal -48)

9 // ten = 10

10 // one = 1

11 // accept and reject are I/O ports

12
13 init: ADD AOM , 0, ptr_init

14 NOP // RAW haz.

15
16 state0: ADD tmp , 0, ptr // load char

17 ADD BTM , JZEn , 0 ; JNEn init // BTM

18 XOR tmp2 , space , tmp // is space?

19 ADD BTM , JZEn , 0 ; JZEn state0 // new state

20 XOR tmp2 , plus , tmp

21 ADD BTM , JZEn , 0 ; JZEn state1

22 XOR tmp2 , minus , tmp

23 ADD BTM , JZEn , 0 ; JZEn state1

24 XOR tmp2 , dot , tmp

25 ADD BTM , JZEn , 0 ; JZEn state2
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26 ADD tmp2 , m_char0 , tmp // range chk

27 ADD BTM , JPOn , 0 ; JNEn state7

28 SUB tmp2 , ten , tmp2

29 ADD BTM , JMP , 0 ; JPOn state4

30 ADD reject , one , 0 // reject!

31 NOP ; JMP state0 // RAW haz.

32
33 state1: ADD BTM , JNEn , 0

34 ADD tmp , 0, ptr

35 ADD BTM , JZEn , 0 ; JNEn init

36 XOR tmp2 , dot , tmp

37 ADD BTM , JNEn , 0 ; JZEn state2

38 ADD tmp2 , m_char0 , tmp

39 ADD BTM , JPOn , 0 ; JNEn state7

40 SUB tmp2 , ten , tmp2

41 ADD BTM , JMP , 0 ; JPOn state4

42 ADD reject , one , 0

43 NOP ; JMP state0

44
45 state2: ADD BTM , JNEn , 0

46 ADD tmp , 0, ptr

47 ADD BTM , JNEn , 0 ; JNEn init

48 ADD tmp2 , m_char0 , tmp

49 ADD BTM , JPOn , 0 ; JNEn state7

50 SUB tmp2 , ten , tmp2

51 ADD BTM , JMP , 0 ; JPOn state3

52 ADD reject , one , 0

53 NOP ; JMP state0

54
55 state3: ADD BTM , JNEn , 0

56 ADD tmp , 0, ptr

57 ADD BTM , JZEn , 0 ; JNEn init

58 XOR tmp2 , space , tmp

59 ADD BTM , JNEn , 0 ; JZEn state6

60 ADD tmp2 , m_char0 , tmp

61 ADD BTM , JPOn , 0 ; JNEn state7

62 SUB tmp2 , ten , tmp2

63 ADD BTM , JMP , 0 ; JPOn state3

64 ADD reject , one , 0

65 NOP ; JMP state0

66
67 state4: ADD BTM , JNEn , 0

68 ADD tmp , 0, ptr

69 ADD BTM , JZEn , 0 ; JNEn init

70 XOR tmp2 , dot , tmp



214 Appendix H. Benchmark Code From Chapter 6

71 ADD BTM , JNEn , 0 ; JZEn state5

72 ADD tmp2 , m_char0 , tmp

73 ADD BTM , JPOn , 0 ; JNEn state7

74 SUB tmp2 , ten , tmp2

75 ADD BTM , JMP , 0 ; JPOn state4

76 ADD reject , one , 0

77 NOP ; JMP state0

78
79 state5: ADD BTM , JNEn , 0

80 ADD tmp , 0, ptr

81 ADD BTM , JZEn , 0 ; JNEn init

82 XOR tmp2 , space , tmp

83 ADD BTM , JNEn , 0 ; JZEn state6

84 ADD tmp2 , m_char0 , tmp

85 ADD BTM , JPOn , 0 ; JNEn state7

86 SUB tmp2 , ten , tmp2

87 ADD BTM , JMP , 0 ; JPOn state3

88 ADD reject , one , 0

89 NOP ; JMP state0

90
91 state6: ADD accept , one , 0 ; JMP state0 // BTM

92
93 state7: ADD reject , one , 0 ; JMP state0 // BTM

The End.
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