
Approaching Overhead-Free Execution on FPGA
Soft-Processors

Charles Eric LaForest Jason Anderson
Department of Electrical and Computer Engineering

University of Toronto, Canada
{laforest, janders}@eecg.toronto.edu

J. Gregory Steffan

Abstract—Implementing systems on FPGA soft-processors,
rather than as custom hardware, eases and accelerates the develop-
ment process, but at the cost of a great reduction in performance.
Orthogonal to limitations in parallelism or clock frequency, this
reduction in performance primarily originates in the intrinsic
addressing and flow-control overheads of scalar microprocessors,
which expend a considerable number of cycles interleaving address
calculations and branch decisions within the actual useful work.
We present an improved FPGA soft-processor architecture which
statically overlaps “overhead” computations and executes them in
parallel with the “useful” computations, significantly reducing the
number of processor cycles needed to execute sequential programs,
while reducing maximum clock frequency to 0.939x of its original
value. In addition to eliminating almost all overhead computations,
the proposed soft-processor can operate at 500 MHz on the Al-
tera Stratix IV FPGA – 0.909x of the absolute maximum rating.
Combined, the high speed and execution efficiency increase the
range of FPGA designs amenable to soft-processors rather than
custom hardware. We evaluate our cycle count improvements with
multiple benchmarks, achieving speedups ranging from 1.07x for
control-heavy code, to 1.92x for looping code, never performing
worse than the original sequential code, and always performing
better than a totally unrolled loop.

I. INTRODUCTION

Implementing computations in hardware on FPGAs can
offer a significant speedup relative to computations in software
running on a standard processor. Speedups of an order of magni-
tude have been reported (e.g.: [1]), despite the FPGA hardware
running at a considerably lower clock speed (Fmax) than the
processor. Much of this speedup arises from exploiting spatial
parallelism in the FPGA hardware, but a significant portion
comes from removing addressing and flow-control overhead
(“support instructions” [2]–[6]). Hardware implementations re-
move such overhead by computing it in parallel with the actual
work using application-specific Finite-State Machines (FSM) to
accept/reject input, count loops, compute memory addresses,
and perform the equivalent of flow-control by driving multi-
plexers. However, implementing a given algorithm in hardware
remains a difficult and laborious process, and hardware skills
are comparatively rare vs. software skills. Hardware design
traditionally involves the use of hardware description languages
(HDLs), which require specification at the bit level and explicit
coordination of computation and communication, making de-
sign and debug challenging. Even High-Level Synthesis (HLS)
systems such as BlueSpec, LegUp, or compiling from OpenCL
to hardware kernels, ultimately generate an HDL circuit de-
scription, which must then be synthesized, placed, and routed,
taking hours or days for the largest designs.

As an alternative process, a designer can implement a “soft-
processor” on the FPGA, benefiting from the flexibility of
the FPGA, while retaining the programmability of software.
Unfortunately, soft-processors pay a large performance penalty
relative to what the underlying FPGA hardware can achieve,
and also relative to conventional “hard” CPUs. Furthermore,
soft-processors carry the same addressing and flow-control
overheads as any other processor. In most cases, unrolling loops
and vectorizing code can eliminate addressing and flow-control
overheads, but unrolling bloats code and increases the required
instruction memory bandwidth, while vectorizing [7], [8] can
prove challenging to use effectively and cannot improve control
code. Pipelining and multi-threading [9], [10] will increase raw
speed, but still do not eliminate overhead.

While we can extend FPGA soft-processors with
application-specific custom instructions and/or accelerators to
avoid overhead, this again involves more difficult hardware
design. This paper proposes an alternative: a soft-processor
architecture which can eliminate control-flow and addressing
overheads, increasing the range of applications amenable to
soft-processors, and retaining the ease-of-use of software. Our
key contribution extends the Octavo soft-processor [10] to
remove addressing and flow-control overheads:

1) We locate the addressing and flow-control overheads
in sub-graphs interleaved within a sequential program,
which we can extract and execute in parallel.

2) We introduce the Branch Trigger Module (BTM) as a
means of folding multiple branches in parallel with an
ALU instruction, based off arbitrary conditions.

3) We introduce the Address Offset Module (AOM),
which enables per-thread private data for shared code,
implements indirect addressing, and optionally auto-
matically post-increments indirect addresses after use.

4) We show, using several micro-benchmarks, that the
BTM and AOM always reduce cycle count, always
more so than loop unrolling, and without significantly
affecting cycle time.

5) We also show an increase in the ratio of useful work
done, often approaching the maximum provided by
total loop unrolling, without having to unroll loops.

II. RELATED WORK

Previous branch folding approaches dynamically combined
together an instruction and a following branch in the processor’s
instruction cache [11], [12] and speculatively executed condi-
tional branches, flushing the pipeline on a misprediction. In

contrast, Octavo’s multi-threaded design never stalls or flushes
its pipeline, and avoids the need to speculate on branches. Also,
the BTM allows us to hoist the definition of a branch outside
of loops – a critical feature for Octavo’s un-cached, tightly-
coupled instruction memory, without spare time for pre-fetching
both branch paths [13]–[15]. Davidson and Whalley [16] de-
scribe a sophisticated system of branch registers similar to the
BTM. However, their approach does not support folding, multi-
way, or cancelling branches as the BTM does.

For vector processors, decoupling the scalar and vector
components can provide the appearance of zero-overhead
loops [17], but only if the scalar processor has time to execute
loop control operations, while the vector processor operates.
Truly eliminating loop overhead still requires loop counting and
operand addressing hardware [18]–[20].

Digital Signal Processors (DSPs) support zero-overhead
loops with a variety of mechanisms: Analog Devices’ Tiger-
Sharc [21] has a pair of loop counters and matching branch
conditions, while their Blackfin [22] extends this approach with
two sets of Loop Top and Loop Bottom registers, but only for
simple counted loops. Finally, Texas Instruments’ C64x+ [23]
uses a loop buffer and some counter registers to execute com-
pact software-pipelined loops. In contrast, the BTM provides
a simpler and more general mechanism (though we have not
yet implemented loop counters), and its support for cancelling
branches enables useful branch folding in any flow-control
code, not just loop branches.

Prior work on multi-way branches focused on improving
ILP in VLIW processors [24], [25]. Our work does not require
the same complex Control-Data Flow Graph (CDFG) analysis
to merge branches, nor the generation of duplicate code. Our
multi-way branches reduce the number of consecutive tests on
the same data by using parallel “fast compares” [26], [27].

III. MOTIVATION AND OVERVIEW

Before delving into the details our proposed processor, we
briefly review the Octavo soft-processor [10] as it forms the
basis of our work. The intent of Octavo was to create a processor
that could operate at the maximum allowable speed of the un-
derlying FPGA fabric which, in Stratix IV devices, is limited to
550MHz by the M9K Block RAMs. To reach this limit, Octavo
has 10 pipeline stages and 36-bit instructions, comprising a 4-bit
opcode and three 10-bit addresses: two source, one destination,
with 2 (of 36) bits unused. The original Octavo has no regis-
ter file; rather, it reads/writes 36-bit integer operands directly
from Block RAM memory. It supports only direct addressing,
which with 10-bit operands implies 1024 words of addressable
memory space per operand. A key implication of the lack
of indirect addressing is that, to implement pointers, Octavo
requires self-modifying code. For example, to implement an
Octavo program that walks through the elements of an array,
the program itself must overwrite the locations of operands
specified in the instructions. Finally, Octavo multi-threads its
pipeline with 8 independent threads, with thread instructions
issued in fixed round-robin order to avoid any RAW hazards
or branch penalties within each thread. In effect, each thread
instruction completely finishes before the next one begins.

While our work improves the Octavo soft-processor, it also
alters its programming model sufficiently that we can no longer

compare code on both versions. One of our improvements
effectively implements memory indirection, eliminating the
need for self-modifying code, making comparison difficult and
clouding our results. Thus, we must compare our work against
an idealized model which supersedes the original Octavo.

A. Baseline: A “Perfect” MIPS-like CPU

We can use the multi-threaded nature of Octavo to create a
cycle-accurate emulation of an ideal “perfect” MIPS-like pro-
cessor on our improved Octavo processor and then implement
a micro-benchmark on both this emulated ideal model and
natively on the improved Octavo. We do not need to compare
against the original Octavo since the ideal model will always
perform better than any actual scalar processor.

We can thus focus on the intrinsic overheads found in a
general-purpose scalar processor, separate from implementa-
tion issues such as pipelining, and architectural issues such as
hazards. We can show that, despite the absence of stalls and
hazards in the ideal case, significant control-flow and addressing
overheads remain relative to the actual desired computation. We
then show how to extract these overheads as separate parallel
sub-programs, and overlap their execution with that of the actual
work-producing code on our improved Octavo processor.

Our baseline ideal MIPS-like CPU has these properties:

• No memory access latency.
• Single-cycle instruction and data memory access.
• No load or branch delay slots.
• Branch conditions known at the start of pipeline.
• Result forwarding across pipeline stages.
• No structural hazards across instructions.
• Single-cycle instruction execution.

While we cannot build such an ideal CPU with high perfor-
mance, each individual Octavo thread closely approaches this
ideal, allowing us to execute a cycle-accurate emulation of the
ideal model within a thread.

B. Benchmark: Hailstone Numbers

To overview our improvements, we calculate hailstone num-
bers as a simple, manually tractable example which nonetheless
exhibits flow-control and addressing overheads. The hailstone
benchmark iteratively computes a series from a positive seed
number (if n is even: n = n/2, else n = 3n + 1), pre-
senting many basic forms of computation (addition, shifting,
multiplication, bit-masking, branching, looping). We apply this
calculation to an array of 100 positive integers, terminated by
−1, to introduce addressing overhead and average the time
spent in the even/odd cases. We also output each new value as
we compute it. Listing 1 shows the pseudo-code.

The pseudo-code of Listing 1 directly translates into MIPS-
like assembly in Listing 2, with the instruction format conven-
tion of OP dest, src1, src2. This code, running on the
emulated ideal MIPS-like processor, averages 970 cycles per
pass over 100 seed values with an execution efficiency of 0.655.
Unrolling the same code results in an average of 769 cycles per
pass and an efficiency of 0.824, a 1.26x improvement in both
cycle count and efficiency.

Listing 1. Hailstone Pseudo-Code
1 outer: seed_ptr = ptr_init
2 inner: temp = MEM[seed_ptr]
3 if (temp < 0):
4 goto outer
5 temp2 = temp & 1
6 if (temp2 == 1):
7 temp = temp * 3
8 temp = temp + 1
9 else:

10 temp = temp / 2
11 MEM[seed_ptr] = temp
12 seed_ptr += 1
13 OUTPUT = temp
14 goto inner

Listing 2. Hailstone MIPS-like Assembly Code
1 outer: ADD seed_ptr, ptr_init, 0
2 inner: LW temp, seed_ptr
3 BLTZ outer, temp
4 AND temp2, temp, 1
5 BEQZ even, temp2
6 MUL temp, temp, 3
7 ADD temp, temp, 1
8 JMP output
9 even: SRA temp, temp, 1

10 output: SW temp, seed_ptr
11 ADD seed_ptr, seed_ptr, 1
12 SW temp, OUTPUT
13 JMP inner

Listing 3. Hailstone Octavo Assembly Code
1 outer: ADD seed_ptr, ptr_init, 0
2 inner: LW temp, seed_ptr
3 MUL temp, temp, 3 ; BEVNn even
4 (continued) ; BLTZn outer
5 ADD temp, temp, 1 ; JMP output
6 even: SRA temp, temp, 1
7 output: SW temp, seed_ptr
8 SW temp, OUTPUT ; JMP inner

We define execution efficiency, the ratio of “useful” to “not
useful” instructions executed, as follows: Useful instructions
are those which use the ALU and remain after total loop un-
rolling. Thus, loads, stores, and ALU operations count as useful.
Pointer initialization and incrementing also count as useful if
loop unrolling cannot eliminate them. An unrolled loop will
always approach an efficiency of 1.00, minus obligatory non-
loop branches. Branches never count as useful by themselves
since the ALU does no work during their execution.

We can then use our Octavo improvements to optimize the
Listing 2 code into Listing 3, which shows the resulting opti-
mized Octavo assembly code with the folded branches placed
next to their concurrent ALU instruction. First, we add support
for post-incrementing seed_ptr (eliminating line 11 of the
MIPS code), add a “fast compare” [26], [27] to the result of
the previous instruction to create a Branch on Even (BEVN),
eliminating the Boolean masking on MIPS line 4. We also fold
together both branches to outer: and even: (MIPS lines
3 and 5) into the start of the odd-number case (MIPS line
6) while also setting a “Predict Not Taken” bit (denoted by
a suffix n on the branch instruction) to implement a multi-
way cancelling branch which cancels the MUL instruction if
we do not fall through into the odd-number case. Finally, we
fold the unconditional JMPs into their preceding instructions
(eliminating MIPS lines 8 and 13).

We later show in the results section that this optimized code,
running on the improved Octavo processor, averages 504 cycles
per pass over 100 seed values with an execution efficiency of
0.863, giving a 1.92x cycle-count speedup and 1.32x execution
efficiency increase over the ideal MIPS-like CPU, exceeding the
benefits of loop unrolling, while only reducing Octavo’s clock
frequency to 0.939x of its original value.

IV. EXTRACTING CONTROL AND DATA FLOW
SUB-GRAPHS

We can think of a single sequential program as containing
three separate “sub-programs”, each responsible for different
tasks:

1) The actual computational work.
2) The flow-control to realize repetition and decision.
3) Computing memory addresses.

We cannot practically eliminate the flow-control and ad-
dressing sub-programs, else we would have to scale the actual
work program along with its data by explicitly encoding each
memory location into each instruction and duplicating the code

for every repeated or conditional computation, at enormous cost
in performance and code size [28]. Interleaving these three sub-
programs imposes a sequential ordering to their operations.
The core concept underlying our architectural enhancements
to Octavo recognizes that portions of these sub-programs are
independent from one another and can therefore be executed in
parallel with each other.

Fig. 1 illustrates how we can express all three sub-programs
as sub-graphs of the original Control-Data Flow Graph (CDFG)
of the Hailstone benchmark. Figure 1(a) shows the original
MIPS-like code broken into basic blocks. If we keep only the
branch and jump instructions and replace the other instruc-
tions with a Wait instruction having an argument to represent
the length of the body of the basic block, we end up with
Figure 1(b), which describes the flow-control sub-program.
Similarly, keeping only instructions which relate to addressing
gives us the addressing sub-program in Figure 1(c), where we
either add a fixed offset to any regular memory address (one
per thread), a zero offset to any shared absolutely-addressed
memory (e.g.: memory-mapped hardware), or a pointer offset
to any memory location used as a pointer. We also keep in-
structions which alter the state of the addressing sub-program
by initializing or incrementing offsets. Finally, removing any
flow-control or state-altering addressing instructions from the
initial CDFG leaves us with the actual useful work program
in Figure 1(d). We can now visually find opportunities for
executing flow-control and addressing in parallel with useful
work, manifesting as instructions horizontally overlapping with
Wait statements across sub-graphs, so long as no sequential
dependency exists with the previous instruction.

Several approaches exist to execute parallel sub-programs:
superscalar processing, Very-Long Instruction Word (VLIW)
computers, sub-units executing horizontal microcode, or mul-
tiple processors executing separate threads. However, these
approaches require complex instruction scheduling hardware,
larger instruction words and memory bandwidth, or require
synchronization of multiple threads of execution.

Instead, we observe that the Program Counter (PC) suffices
to represent the current location within any of the three sub-
graphs, and that the flow-control and addressing sub-programs
contain very little information: the flow-control sub-program
spends most of its time waiting for a branching point, while
the addressing sub-program simply adds a constant offset unless
a pointer or I/O access happens. Viewed another way: even
nested loops have only a few repeatedly reached branches at
any one time, and only the most memory-bound code performs
loads/stores more often than internal computations.

LW temp, seed_ptr

BLTZ outer, temp

MUL temp, temp, 3

ADD temp, temp, 1

JMP output

AND temp2, temp, 1

BEQZ even, temp2

ADD seed_ptr, ptr_init, 0

SRA temp, temp, 1

SW temp, seed_ptr

ADD seed_ptr, seed_ptr, 1

SW temp, OUTPUT_PORT

JMP inner

(a) Control-Data Flow Graph

BLTZ outer, temp

JMP output

JMP inner

BEQZ even, temp2

Wait 1

Wait 2

Wait 1

Wait 1

Wait 3

Wait 1

(b) Flow-Control Sub-Graph

Wait 1

Wait 1

Wait 1

Wait 1

Initialize pointer offset

Add default offset

Add default offset

Add pointer offset

Add pointer offset
Increment pointer offset
Add zero offset

Add default offset

Add default offset

(c) Addressing Sub-Graph

SRA temp, temp, 1

MUL temp, temp, 3

ADD temp, temp, 1

SW temp, seed_ptr

SW temp, OUTPUT_PORT

LW temp, seed_ptr

Wait 1

Wait 1

Wait 1

Wait 1

Wait 1

Wait 1

AND temp2, temp, 1

(d) Useful Work Sub-Graph

Fig. 1. We can extract multiple concurrent and coordinated sub-graphs from the Control-Data Flow Graph (CDFG) of the Hailstone benchmark.
Opportunities for folding addressing and flow-control with useful work manifest as instructions horizontally overlapping “Wait” statements in other
sub-graphs, so long as no sequential dependency exists with the previous instruction.

Furthermore, from the PC value, it is apparent at any point in
the overall program which branching and addressing operation
comes next. It suffices to provide this information to some
machinery ahead of time (and ideally outside of busy loops),
and let the PC and instruction operands indicate when special
flow-control or addressing operations must happen.

Motivated by the discussion above, in the Octavo processor,
we reduce the execution of the flow-control and addressing sub-
programs to pattern-matching on the set of conditions needed to
generate the branches and address offsets required at the current
point in the actual work program. We achieve this by using a
small memory to encode the patterns to look for, along with
simple selection and comparison matching logic.

Pattern-matching allows the designer to vary the number of
entries to easily trade off area and speed against the need to
reload pattern-matching entries as the program executes. At the
limit case of a single entry, the mechanism returns to the original
case of sequentially interleaved sub-programs: each cycle saved
by performing a flow-control or addressing operation in parallel
with an ALU instruction returns as a cycle spent loading the
entry for the next branch or address. Ideally, the designer
only needs to include enough entries to fully parallelize the
branching and addressing operations inside the most critical
sections of the program. Even matching a partial set of these
operations will still improve performance some amount.

V. IMPLEMENTATION

Rather than executing the flow-control and addressing sub-
programs on their own sub-processors, or as Instruction-Level
Parallelism (ILP) in a superscalar, VLIW, or micro-coded pro-
cessor (any of which would represent a departure from Oc-
tavo’s scalar, multi-threaded architecture), we use the FPGA’s
capacity for fine-grained parallelism to check all sub-program
conditions concurrently with the instruction fetch. We use our
knowledge of the current PC, the addresses in the instruction
operands, and the result of the previous instruction, to select the
desired effect on the flow-control and addressing of the current
instruction as it flows through the pipeline.

A. Address Offset Module

The Address Offset Module (AOM) executes the addressing
sub-program. We need three instances of the AOM, one for each

.

.

.

.

.

.

PO

.

.

.

PO

PI

.

.

.

PI

DO

2

SM?

IM?

10

A

3

A’

+

+

Fig. 2. Address Offset Module implementation.

instruction operand, as any one may access a pointer or other
special memory at any time. The AOM adds a selected offset to
the address contained in its associated instruction operand. The
offset added may be 1) constant, 2) changing dynamically as the
program executes (e.g.: automatically incremented), or 3) zero.
The ability to add a constant offset to addresses is useful for
threads that share program code but read/write from different
regions of memory. Dynamically changing offsets are useful
for operations such as walking through an array. Zero offsets
are useful for addresses that are shared across all threads, for
example addresses of memory-mapped hardware in the system.

Fig. 2 shows the block diagram of the AOM hardware. The
numbers at the top denote the Octavo pipeline stage numbers.
The instruction memory read happens at stage 0, and the data
memory read happens at stage 4. Thus the AOM must do all its
work in stages 0–4. Each thread running on the processor sees
its own private AOM instances; specifically, the AOM memories
are multiplexed using the thread index (0-7) (not shown).

In stage 0, the AOM reads a number of Programmed Offset
(PO) and Programmed Increment (PI) memories, as well as

BO

BD

PC

BF

BP

BPE

=

0 1 2 3

F

4

BD’

J

C

Fig. 3. Branch Trigger Module implementation.

a single Default Offset (DO) memory, all implemented using
MLAB Block RAMs. Stage 1 serves to pipeline away the
latency of the MLABs, and to receive the address (A) from the
instruction operand. We cannot use A to address a single, deeper
PO and PI memory to select the desired PO and PI values, as
A is not available yet, and moving the PO and PI memories
forward in the pipeline leaves too few stages to maintain a high
Fmax. Thus we must read multiple memories and select the
desired values in the next stage.

In stage 2, we use the least-significant bits of A to select one
of the PO and PI values. We also combinationally decode A to
determine if it refers to a Shared Memory location (SM?) and/or
an Indirect Memory location (IM?). The SM? and IM? logic
modules simply decode part of the processor’s memory map,
set at design time, defining fixed ranges of memory locations
which either act as absolutely-addressed shared resources (i.e.:
I/O ports) or which act as pointers. Since pointers exist at fixed
addresses, simply adding a Programmed Offset (PO) can make
them point to any other address. Running different programs
does not require resynthesis of the AOM, only agreement on
the memory map of pointers and shared resources.

In stage 3, if A refers to a Shared Memory location, the AOM
zeroes-out the DO. However, if A refers to an Indirect Memory
location, the AOM discards the DO and instead propagates the
previously selected PO. In parallel, the AOM increments the PO
with the PI and stores it back into its memory. Finally, at the
beginning of stage 4, just before the read from data memory,
we add the final offset to A, yielding the final address A’.
Programmed and Default Offsets have the same width as the
instruction operand they modify: 10 or 12 bits. Programmed
Increments currently use only 1 bit, for values of +1 or 0.

To use the AOM, the program must load DO with the offset
for its own thread’s memory region, and the PO and PI entries
with the offset and post-increment values for the pre-defined
memory locations (set at design-time by the IM? decoder)
which act as pointers.

B. Branch Trigger Module

The Branch Trigger Module (BTM) executes the flow-
control sub-program. We need one BTM instance for each

branch we wish to execute in parallel. The BTM monitors the
Program Counter (PC) and some flags based on the result of the
previous instruction: if the PC matches the location of a branch,
and the flags match the branch condition, the BTM generates a
destination address and signals the PC controller (not shown) to
replace the current thread’s next PC value with the destination
address, performing a jump. The BTM optionally also outputs
a signal to cancel the current instruction if the branch does not
go as statically predicted, which allows us to always place a
useful instruction in parallel with the branch. Also, if either
the PC or the flags do not match, the BTM outputs all zeroes,
which allows us to more efficiently take the bit-wise OR of
the output of multiple BTMs, rather than using multiplexers.
Finally, having multiple BTMs operate in parallel incidentally
enables multi-way branches for free.

Fig. 3 shows the block diagram of the main BTM hard-
ware. The numbers at the top denote the Octavo pipeline stage
numbers. The instruction memory read happens at stage 0, and
any instruction cancelling happens between stages 3 and 4, so
the BTM must do its work between stages 0 and 4. However,
merging the outputs of all the BTM instances into a single
branching decision can happen later in the pipeline. Each thread
running on the processor sees its own private BTM instances;
specifically, the BTM memories are multiplexed using the
thread index (0-7) (not shown).

In stage 0, the BTM reads a number of memories describ-
ing a branch operation: the Branch Origin (BO) contains the
memory address of the branch, the Branch Destination (BD)
contains the branch target address, the Branch Predict Enable
(BPE) bit controls whether static branch prediction occurs or
if the parallel ALU instruction always executes, the Branch
Predict (BP) bit selects between “Predict Taken” and “Predict
Not Taken” instruction cancelling behavior, and the Branch Flag
(BF) selects one of the flags (F) derived from the result of the
previous instruction as the condition for the branch. Stage 1
pipelines away the latency of these MLAB Block RAMs.

In stage 2, the BTM compares the PC of the current instruc-
tion with BO and generates a match signal. In stage 3, we use
this match signal to mask BD. We also select one of the branch
flags (F) and compare it to BP. In stage 4, we use the selected
flag to mask BD again, and the BO match signal to mask the
selected flag, resulting in the final branch destination BD’ and
jump signal J. If either the branch flag or the branch origin
do not match, both BD’ and J are zero. Finally, also in stage
4, if we enabled branch prediction for this branch (BPE set),
and the selected flag and the branch prediction disagree, and
the branch origin matches, we generate a signal (C) to cancel
the current instruction in parallel with the branch, converting it
to a no-op. Branch Origin and Destination memories have the
same width as the Program Counter (10 bits), while the Branch
Predict Enable, Branch Predict, and Branch Flag memories have
1, 1, and 3 bits respectively.

To use the BTM, the program must load all the memories
with the values describing an upcoming branch. We automat-
ically compute the branch flags (F) from the result of the
previous instruction, using separate dedicated logic instead of
the main ALU, in the manner of Katevenis’ “fast compare” [26],
[27]. Currently, we support 8 flags total: Negative, Positive,
Zero, Non-Zero, Always (for JMPs), and Even, with 2 flags still
left unused. Since all BTM instances function concurrently and

0 1 2 3 4 5 6 7 8
Number of entries per AOM and/or BTM instances

420

440

460

480

500

520

A
v
e
ra

g
e
 F

m
a
x
 (

M
H

z
)

2/4

2/8
3/6

4/8

Original Octavo

1 entry/AOM, 1-8 BTM instances

1 BTM instance, 1-8 entries/AOM

1-8 entries per AOM and BTM instances

2/4, 2/8, 3/6, 4/8 entries per AOM/BTM instances

Design points above this line can reach 500 MHz

Fig. 4. The average Fmax of configurations varying the number of entries
per AOM instance and the number of BTM instances. We always require 3
AOM instances, multiplying the actual total number of implemented AOM
entries. We ran our benchmarks on point 2/4: 2 entries per AOM and 4
BTM instances.

eventually merge their decision output, we can easily support
multi-way branches so long as all branches with matching
origins have mutually exclusive branch conditions.

VI. EXPERIMENTAL METHODOLOGY

For each Octavo instance considered in this study, we instan-
tiate it inside a synthesis test harness that registers all inputs and
outputs to ensure an accurate timing analysis. We use Altera’s
Quartus 13.1 to target a Stratix IV EP4SE230F29C2 FPGA
device of the highest available speed grade. We configure the
synthesis process to strongly favor speed over area and enable
all relevant optimizations. To confirm the intrinsic performance
of a design without interference from optimizations which can
blur together the netlists of the design and of the test harness, we
constrain the whole design under test to its own design partition,
excluding the test harness.

Place and Route (P&R) are configured for maximum effort
with two constraints: (i) to avoid using I/O pin registers to pre-
vent artificially long paths that would affect the clock frequency,
and (ii) to set the target clock frequency to 550MHz, which
is the maximum clock frequency specified for M9K BRAMs.
Setting a target frequency higher than 550MHz does not im-
prove results. We report the unrestricted maximum operating
frequency (Fmax) by averaging the results of 10 place and route
runs, each starting with a different random seed, on the slow
process corner at 85◦C and 900mV. We compute the number
of cycles needed for a program’s execution by using ModelSim
10.1d to simulate the processor’s HDL implementation.

VII. EVALUATION, BENCHMARKS, AND RESULTS

Octavo has, as one of its major features, the capacity to
approach the maximum possible clock frequency supported by
the underlying FPGA. Thus, we evaluate how many Address
Offset Module (AOM) entries and Branch Trigger Modules
(BTM) instances we can include, and in what ratios, before the
raw clock frequency begins to suffer too much. We consider
an Fmax of 500 MHz as a realistic goal, still at 0.909x of the

limiting 550 MHz absolute maximum rating for simple dual
port M9K Block RAMs in Stratix IV devices [29], and more
representative of the actual rated limit of most such devices.

Our implementation aimed for flexibility and generality for
design space exploration, describing each individual memory in
the AOM and BTM as separate MLABs, regardless of depth
or width. We have not yet analyzed the synthesis results to
determine if Quartus can automatically merge separate but
logically contiguous MLABs. Therefore, we do not know if the
area results will be representative or comparable across design
points, and cannot report detailed area results at this time.

Fig. 4 outlines the major features of the design space,
charting the Fmax of Octavo versions with 0 to 8 AOM entries
and/or BTM instances, and a few relevant combinations thereof.
All values represent the average achievable clock frequency.
All points above the horizontal dotted line (470 MHz) denote
designs which can reach or exceed 500 MHz after place-and-
route (P&R). Meaning that for such designs, across 10 P&R
runs, at least one produced an implementation whose Fmax

reached or exceeded 500 MHz.

The single hexagon in the top-left corner represents the
original Octavo at 527 MHz (averaged across 10 P&R runs).
The triangle markers show the improved Octavo with a minimal
set of 3 single-entry AOMs and 1 to 8 BTMs. Since the BTM
modules avoid multiplexing and sit in a long pipeline ending at
the PC controller, the average Fmax scales quite well, staying
above 490 MHz at up to 8 instances, and staying above the
dotted line at up to 16 instances (not shown).

Conversely, the square markers show an improved Octavo
with 1 BTM instance, and AOM instances with 1 to 8 entries
each. Note that since each addressing path to memory requires
an AOM instance, we must always have three instances: one
to support each instruction operand. Because of these multiple
instances, their use of multiplexing, and the shorter pipeline
between instruction fetch and data read, Fmax scales poorly as
the number of entries increases, falling off quickly for case with
more than 4 entries per AOM.

The circle markers show the line through the design space
with equal numbers of BTM instances and entries per AOM, 1
through 8, suggesting that the number of AOM entries tends to
dominate the scaling of the system as a whole.

Finally, given the previous lines through the design space,
the star markers point out some useful configurations: 2 AOM
entries with 4 BTM instances (2/4), 2 AOM entries with 8 BTM
instances (2/8), 3 AOM entries with 6 BTM instances (3/6),
and 4 AOM entries with 8 BTM instances (4/8), which likely
represents the largest useful configuration which can still reach
500 MHz after place-and-route.

For the remaining results in this section, we used the first
point, 2 AOM entries with 4 BTM instances (2/4), as our
benchmarking configuration since some benchmarks will re-
quire more than these resources, demonstrating benefits even
without complete AOM/BTM support and at 0.939x of the
original average Fmax (495 MHz, down from 527 MHz). The
peak Fmax of the 2/4 configuration still reaches 510 MHz –
0.927x of the absolute maximum 550 MHz rating.

TABLE I. BENCHMARK CYCLE COUNT SPEEDUP AND EFFICIENCY
IMPROVEMENTS. ROWS SHOW THE IMPACT OF AOMS AND BTMS.

COLUMNS SHOW THE IMPACT OF LOOP UNROLLING.

Benchmark Cycles per Pass Execution Efficiency
Hailstone MIPS Octavo Speedup MIPS Octavo Increase
Looping 970 504 1.92x 0.655 0.863 1.32x
Unrolled 769 701 1.10x 0.824 0.899 1.09x

Speed./Incr. 1.26x 0.72x — 1.26x 1.04x —
Increment MIPS Octavo Speedup MIPS Octavo Increase

Looping 716 376 1.90x 0.631 0.907 1.44x
Unrolled 431 331 1.39x 1.000 1.00 1.00x

Speed./Incr. 1.66x 1.14x — 1.58x 1.10x —
Reverse MIPS Octavo Speedup MIPS Octavo Increase
Looping 404 354 1.14x 0.748 0.856 1.14x
Unrolled 309 309 1.00x 1.000 1.000 1.00x

Speed./Incr. 1.31x 1.15x — 1.34x 1.17x —
FIR MIPS Octavo Speedup MIPS Octavo Increase

Looping 2902 2502 1.16x 0.897 0.960 1.07x
Unrolled 2614 2406 1.09x 0.996 0.998 1.00x

Speed./Incr. 1.11x 1.04x — 1.11x 1.04x —
FSM MIPS Octavo Speedup MIPS Octavo Increase

— 807 753 1.07x 0.564 0.467 0.83x

A. Benchmarks

Since no compiler currently supports AOM/BTM functions,
we wrote our own set of micro-benchmarks in assembly. These
benchmarks represent various points in the general structure of
sequential programs, including simple loops, complex branch-
ing, and numerical processing, and sometimes show the be-
haviour of our improvements under non-ideal conditions where
we cannot eliminate all overhead. All benchmarks run under an
outermost infinite loop, and we base our measurements on the
number of completed passes over 200,000 simulation cycles.

We wrote the benchmarks in a strict load-compute-store
form, emulating a MIPS-like processor. Normally, Octavo’s
register-less, flat memory model combines loads and stores with
ALU operations, which would make the comparison unfair.
Specifically, we would be unable to isolate the speedup and
efficiency improvement that arise solely from incorporating the
BTM and AOM, as some additional speedup/efficiency would
originate from the elimination of loads/stores to/from registers.
Thus, for fairness, we report conservative results, avoiding
Octavo-specific advantages and measured against the emulated
ideal MIPS-like CPU, affected only by our use of the BTM and
AOM. Furthermore, all processing happens at Octavo’s native
word width of 36 bits.

Table I summarizes the cycle count speedups and execution
efficiency improvement of our benchmarks. We measure effi-
ciency using the notion of “useful” instructions introduced in
Section III. We show both looping and unrolled versions since
unrolling reveals which instructions are fundamentally useful
to a benchmark. However, unrolling itself is impractical, as the
code size increases to nearly fill Octavo’s instruction memory.
The “MIPS” entries refer to benchmarks run on the emulated
ideal MIPS-like CPU, and the “Octavo” entries refer to op-
timized benchmarks using AOMs and BTMs. Reading across
columns shows the impact of the AOMs and BTMs, while
reading down columns shows the impact of loop unrolling.

Hailstone We previously described the hailstone benchmark,
which exercises various computing and branching operations,

in Section III. When using the AOMs/BTMs, we see a 1.92x
speedup and 1.32x efficiency increase. Using AOMs/BTMs
on unrolled code yields worse results since we must keep re-
loading the BTM with branch data for each unrolled loop.

Array Increment We increment an array of 10 elements by 1,
repeated 10 times, then output the entire array, showing a simple
iterated calculation with a separate output loop. This benchmark
requires five branches, forcing us to periodically reload one
of the four BTM entries to support it. However, we can hoist
that overhead outside of the loop, and still obtain a significant
speedup. Using AOMs/BTMs grants a speedup of 1.90x and
an efficiency improvement of 1.44x. The efficiency suffers due
to the overhead of reloading the BTM with data for the fifth
branch, associated with the inner loop.

Array Reverse We traverse an array of 100 elements using
two pointers, top-to-middle and bottom-to-middle, loading and
storing to swap their values without any computation or I/O.
This memory-bound benchmark forces the bottom-to-middle
pointer to decrement, which our current AOM does not support.
Furthermore, due to the write-only nature of the AOM, we
have to keep a copy of the bottom-to-middle pointer, add −1
to it, then update its AOM entry, all within the main loop.
Nonetheless, AOMs/BTMs give us a speedup and efficiency
increase of 1.14x.

8-Tap FIR Filter We sequentially read a 100-entry input
buffer, applying an 8-tap FIR filter at each step, and output the
filtered values to a 100-entry output buffer. We keep all 8 taps
and 8 coefficients in registers, shifting values down the taps then
performing the multiplications and additions, both as unrolled
inner loops. Despite the sequential bulk of the buffering and
convolution code, AOMs/BTMs speed up the FIR filter by 1.16x
and improve its efficiency by 1.07x. Note that available memory
limited us to unroll 25 times instead of 100, thus some loop
overhead remained in all cases.

Floating-Point Number FSM We parse a stream of 100
characters using a Finite State Machine, looking for simple
space-delimited floating point numbers such as 5.5, −3., +.8,
etc. . . , and raise either an Accept or Reject signal. The 100
input characters contain 25 valid numbers and one invalid one,
forcing the FSM to walk through all its paths. We implement
the FSM directly in the program structure, alternating tests and
branches to determine state and action. FSM contains no real
loops, no hoistable computations, no significant addressing, no
basic block longer than 2 or 3 instructions, and has 34 unique
branches, greatly exceeding the capacity of the four-entry BTM
and forcing us to continually reload a BTM entry with the
data for the next upcoming branch. Nonetheless, we can use
the BTM to cache three other branches to save cycles on the
most commonly traversed edges, granting a 1.07x speedup and
0.83x efficiency improvement. We cannot unroll FSM due to its
complex and variable execution, and efficiency suffers due to
some BTM re-loads not folding into branches.

In summary, the use of BTMs and AOMs always speeds
up sequential code, conservatively measured relative to a “per-
fect” MIPS-like CPU, and even taking into account the 0.939x
change in Fmax from their implementation. Using AOM-
s/BTMs also improves execution efficiency of our benchmarks
to a minimum of 0.856 of the maximum (1.00) achievable via

loop unrolling, up to a 1.05x (0.863/0.824) improvement for
Hailstone, without the associated code size increase.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we located intrinsic overheads in sequential
programs as separate addressing and flow-control sub-graphs
interleaved with the actual desired computations. We extracted
these sub-graphs as data describing sets of conditions the
processor can pattern-match against, implemented as Address
Offset Modules (AOMs) and Branch Trigger Modules (BTMs)
operating in parallel with the instruction fetch.

We found AOMs and BTMs to scale to useful levels, sup-
porting up to 4 active pointers per instruction operand and up
to 8 active branches before Fmax dropped below 500 MHz on
a modified Octavo soft-processor on a Stratix IV FPGA. Fur-
thermore, benchmarking revealed that using BTMs and AOMs
always reduced the cycle count, speeding up execution by 1.07x
for branch-heavy control code, up to 1.92x for looping code. In
all but one case, which had incomplete AOM support, the speed-
up of ordinary looping code always exceeded that granted by
total loop unrolling, since AOMs/BTMs can additionally elim-
inate pointer increments and fold branches with useful work.
Using AOMs and BTMs also improved execution efficiency,
defined as the ratio of executed instructions which perform the
actual desired computations. While total loop unrolling often
reaches an execution efficiency ratio of 1.00, our benchmarks
improved their efficiency to a minimum of 0.856, reaching up to
1.05x the efficiency of unrolled code, all without the associated
code size increase. Only control-heavy code, impossible to
unroll, suffered a decrease in efficiency from 0.564 to 0.467
(0.828x).

For future work, we plan to add support for additional
branch conditions (e.g.: loop counters) in the BTM, to extend
the AOM’s post-incrementing to negative numbers to avoid the
overhead seen in the Array Reverse benchmark, as well as
extend the increment range and optionally mask it to enable
strided and modulo addressing. Finally, we plan to investigate
if our implementation uses MLABs effectively, and thus can
provide meaningful area results.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge funding from the Wal-
ter C. Sumner Foundation, Altera, and NSERC. The authors
also thank Altera for generously providing Quartus licenses.

REFERENCES

[1] J. Cong and Y. Zou, “FPGA-Based Hardware Acceleration of Litho-
graphic Aerial Image Simulation,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 2, no. 3, pp. 1–29, 2009.

[2] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative analysis of
the speedup factors of FPGAs over processors,” International Symposium
on Field-Programmable Gate Arrays (FPGA), pp. 162–170, 2004.

[3] S. Sirowy and A. Forin, “Where’s the beef? Why FPGAs are so fast,”
Microsoft Research, Tech. Rep. September, 2008.

[4] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources
of inefficiency in general-purpose chips,” International Symposium on
Computer Architecture (ISCA), pp. 37–47, 2010.

[5] A. Dehon, “Advantage of Configurable Computing,” IEEE Computer,
pp. 41–49, April 2000.

[6] M. C. Herbordt, Y. Gu, T. Vancourt, J. Model, B. Sukhwani, and M. Chiu,
“Computing Models for FPGA-Based Accelerators.” Computing in Sci-
ence & Engineering, vol. 10, no. 6, pp. 35–45, Oct. 2008.

[7] A. Severance, J. Edwards, H. Omidian, and G. Lemieux, “Soft Vector
Processors with Streaming Pipelines,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2014, pp. 117–126.

[8] P. Yiannacouras, J. G. Steffan, and J. Rose, “Portable, Flexible, and
Scalable Soft Vector Processors,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 20, no. 8, pp. 1429–1442, Aug. 2012.

[9] M. Labrecque and J. Steffan, “Improving Pipelined Soft Processors with
Multithreading,” in International Conference on Field-Programmable
Logic and Applications (FPL), Aug 2007, pp. 210–215.

[10] C. E. LaForest and J. G. Steffan, “OCTAVO: An FPGA-Centric Proces-
sor Family,” in International Symposium on Field-Programmable Gate
Arrays (FPGA), Feb. 2012, pp. 219–228.

[11] D. R. Ditzel and H. R. McLellan, “Branch Folding in the CRISP Micro-
processor: Reducing Branch Delay to Zero,” in International Symposium
on Computer Architecture (ISCA), 1987, pp. 2–8.

[12] L. H. Lee, J. Scott, B. Moyer, and J. Arends, “Low-cost branch folding
for embedded applications with small tight loops,” in International
Symposium on Microarchitecture (MICRO-32), 1999, pp. 103–111.

[13] M. J. Knieser and C. A. Papachristou, “Y-Pipe: A Conditional Branch-
ing Scheme Without Pipeline Delays,” in International Symposium on
Microarchitecture (MICRO-25), 1992, pp. 125–128.

[14] A. Gonzalez and J. Llaberia, “Reducing branch delay to zero in pipelined
processors,” IEEE Transactions on Computers, vol. 42, no. 3, pp. 363–
371, Mar 1993.

[15] S. Wang and J. Provence, “Branch-skipped pipelined microprocessor,”
Electronics Letters, vol. 30, no. 14, pp. 1122–1123, Jul 1994.

[16] J. W. Davidson and D. B. Whalley, “Reducing the Cost of Branches by
Using Registers,” in International Symposium on Computer Architecture
(ISCA), 1990, pp. 182–191.

[17] P. Yiannacouras, J. Steffan, and J. Rose, “Data parallel FPGA work-
loads: Software versus hardware,” in International Conference on Field-
Programmable Logic and Applications (FPL), Aug 2009, pp. 51–58.

[18] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G.
Lemieux, “VEGAS: soft vector processor with scratchpad memory,” in
International Symposium on Field Programmable Gate Arrays (FPGA),
2011, pp. 15–24.

[19] A. Severance and G. Lemieux, “VENICE: A compact vector pro-
cessor for FPGA applications,” in International Conference on Field-
Programmable Technology (FPT), Dec 2012, pp. 261–268.

[20] ——, “Embedded supercomputing in FPGAs with the VectorBlox MXP
Matrix Processor,” in International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Sept 2013, pp. 1–10.

[21] Analog Devices, “ADSP-TS101 TigerSHARC DSP Programming Ref-
erence,” 2005.

[22] ——, “Blackfin Processor Programming Reference,” no. 82, 2008.
[23] Texas Instruments, TMS320C64x/C64x+ DSP CPU and Instruction Set,

2010, no. July, No. SPRU732J.
[24] C.-M. Chen, Y.-Y. Chen, and C.-T. King, “Branch Merging for Effective

Exploitation of Instruction-level Parallelism,” in International Sympo-
sium on Microarchitecture (MICRO-25), 1992, pp. 37–40.

[25] S.-M. Moon, S. D. Carson, and A. K. Agrawala, “Hardware Imple-
mentation of a General Multi-way Jump Mechanism,” in Workshop and
Symposium on Microprogramming and Microarchitecture (MICRO-23),
1990, pp. 38–45.

[26] M. G. H. Katevenis, Reduced Instruction Set: Computer Architectures for
VLSI. MIT Press, 1985, ACM doctoral dissertation awards.

[27] S. McFarling and J. Hennesey, “Reducing the Cost of Branches,” in
International Symposium on Computer Architecture (ISCA), 1986, pp.
396–403.

[28] R. Rojas, “How to Make Zuse’s Z3 a Universal Computer,” IEEE Ann.
Hist. Comput., vol. 20, no. 3, pp. 51–54, Jul. 1998.

[29] Altera, “DC and Switching Characteristics for Stratix IV Devices,” Mar
2014. [Online]. Available: http://www.altera.com/literature/hb/stratix-iv/

stx4_siv54001.pdf

