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Microarchitectural Comparison of the MXP and Octavo
Soft-Processor FPGA Overlays
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Field-Programmable Gate Arrays (FPGAs) can yield higher performance and lower power than software
solutions on CPUs or GPUs. However, designing with FPGAs requires specialized hardware design skills
and hours-long CAD processing times. To reduce and accelerate the design effort, we can implement an
overlay architecture on the FPGA, on which we then more easily construct the desired system but at a
large cost in performance and area relative to a direct FPGA implementation. In this work, we compare
the micro-architecture, performance, and area of two soft-processor overlays: the Octavo multi-threaded
soft-processor and the MXP soft vector processor. To measure the area and performance penalties of these
overlays relative to the underlying FPGA hardware, we compare direct FPGA implementations of the micro-
benchmarks written in C synthesized with the LegUp HLS tool and also written in the Verilog HDL. Overall,
Octavo’s higher operating frequency and MXP’s more efficient code execution results in similar performance
from both, within an order of magnitude of direct FPGA implementations, but with a penalty of an order of
magnitude greater area.
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1. DESIGNING WITH FPGAS

Despite being easier to design with than ASICs, having a higher performance than
CPUs, and using less power than GPUs (for a given performance level), implementing
designs on FPGAs remains difficult: Only a minority of engineers (about 1-in-16) pos-
sess the specialized skills necessary to do hardware-level design work [United States
Bureau of Labor Statistics 2012]1 Furthermore, as the size of the FPGA devices keeps
increasing but without corresponding speedup from the Computer-Aided Design (CAD)
tools [Choong et al. 2010], compiling ever-larger designs takes many hours or days (e.g.,

1In the US: roughly 1,361,700 computer software engineers/programmers vs. 83,300 computer hardware
engineers.
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3–30 hours [Krasnov and Schultz 2007], 5h [Tsoi and Luk 2010], “one or more CPU
hours” [Ludwin and Betz 2011], “over 35 hours” [Kindratenko et al. 2007], and so on
[Wu and McElvain 2012]). Detailed CAD time breakdowns can be found in Murray
et al. [2013]. These growing design cycles also strain our efforts at simulation and ver-
ification. The lengthening design cycle, sometimes dubbed the productivity gap [ITRS
2011], eats away at the two main advantages of FPGAs: a fast time-to-market and
lower non-recurring engineering design costs.

1.1. The FPGA Overlay Design Process

FPGA overlays primarily differ from Hardware Description Languages (HDLs) such
as VHDL and Verilog and High-Level Synthesis (HLS) from C or other programming
languages by providing a persistent layer of abstraction between the implementation
of a system and the underlying FPGA hardware. Implementing a system on an FPGA
overlay does not require using FPGA CAD tools, avoiding their long design cycles and
hardware-specific details. By analogy, an interpreted language (e.g., Python) provides
an overlay over the CPU hardware, and the CPU itself acts as an overlay over VLSI
logic, with the same costs and benefits:

—We can use higher-level abstractions to describe the system.
—The design cycle reduces to a rapid re-compilation to the overlay.
—A system design becomes mostly portable across different implementations of the

same overlay.
—We pay a performance and size penalty relative to the system underlying the overlay.
—We can incrementally augment the overlay with custom “accelerators” to improve

application-specific performance.

Because overlays provide a layer of abstraction, multiple approaches exist with
varying programming models. Briefly, existing overlays include scalar soft-processors
(e.g., Nios II/f [Altera 2014], iDEA [Cheah et al. 2014], and GRVI [Gray 2016]), vec-
tor processors (e.g., VectorBlox’ MXP [Severance and Lemieux 2013b; Severance et al.
2014]), multi-threaded soft-processors (e.g., Octavo [LaForest and Steffan 2012, 2013;
LaForest et al. 2014], CUSTARD [Dimond et al. 2005], UTMT II [Fort et al. 2006],
and others [Labrecque and Steffan 2007; Labrecque et al. 2008; Labrecque and Steffan
2009]), “virtual” FPGA fabrics (e.g., ZUMA [Brant and Lemieux 2012]), and Coarse-
Grain Reconfigurable Arrays (CGRAs) (e.g., QuickDough [Liu et al. 2015] and [Capalija
and Abdelrahman 2013]).

In this work, we compare the MXP and Octavo soft-processor overlays, with some
results presented on a Nios II/f soft-processor where necessary, since they can all be
implemented on the same Altera FPGA platform (see Section 3). The other multi-
threaded soft-processors pre-date our FPGA platform and would have required re-
design work. We did not compare the “virtual” FPGA fabrics and CGRAs, as we wanted
to compare soft-processors specifically. Finally, the remaining scalar soft-processors,
while having high performance, are limited to Xilinx FPGA devices: iDEA [Cheah
et al. 2014] is built around the unique features of the DSP48E1 block, while GRVI
[Gray 2016] is carefully technology-mapped and floorplanned for a Xilinx FPGA.

Overlay Design Cycle. In a nutshell, the overlay design cycle moves most of the
iterations to software development instead of hardware development, avoiding the
time-consuming Place-and-Route (P&R) of circuits onto the FPGA after each design
change. P&R consumes the majority of FPGA CAD processing time. Instead, the target
application drives the selection of a particular instance of an overlay architecture,
which gets synthesized and P&R’ed onto the FPGA. The designer then implements
the application as software on the overlay, with rapid design cycles. If the overlay
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lacks a necessary feature for functionality, performance, or ease-of-use, only then does
the design process go through a hardware iteration to produce a new overlay. Given
that each P&R run can take several hours, on top of the actual hardware design
effort, using overlays leads to a faster and easier overall design cycle as both the
software and hardware cycles progress more incrementally, with feedback between
them: The software designer can write simpler software on overlay hardware tailored
to the application domain, and the hardware designer is freed from implementing
and verifying an entire application in hardware, providing only the “heavy lifting”
components required to meet performance constraints, leaving complicated state and
coordination to software.

1.2. Contributions

This work evaluates micro-architectural benchmarks on the MXP and Octavo soft-
processors, with the area and performance penalties relative to the underlying FPGA
hardware provided by HLS and HDL hardware implementations of the same micro-
benchmarks.

—We describe Octavo, a multi-threaded soft-processor architecture for constructing
FPGA overlays, summarizing previous works [LaForest and Steffan 2012, 2013;
LaForest et al. 2014] and further describing an extended address space and an
instruction predication mechanism that improves Octavo’s high performance and
flexibility.

—We compare the micro-architectural performance of a SIMD-extended Octavo and
the MXP soft vector processor via sequential and parallel micro-benchmarks. For
reference, we also evaluate hardware implementations from the LegUp HLS platform
and manually written Verilog.

1.3. Organization

Section 2 briefly overviews the Octavo and MXP soft-processor micro-architectures.
Section 3 describes the sequential and parallel benchmarks we use to compare imple-
mentations. Section 4 describes adaptations to Octavo to support specific benchmarks.
Section 5 presents and analyzes the benchmark results. Section 6 summarizes the
significant micro-architectural differences between the soft-processors, and Section 7
points out salient design guidelines for soft-processor overlays. Appendix A details the
current micro-architecture of the Octavo soft-processor, with improvements since its
original publication.

2. THE OCTAVO AND MXP OVERLAYS

As overlays, we compare two soft-processors: our own Octavo [LaForest and Steffan
2012, 2013; LaForest et al. 2014], MXP [Severance and Lemieux 2013a; Severance et al.
2014], a vector soft-processor derived from UBC’s VENICE [Severance and Lemieux
2012], and commercialized by VectorBlox Computing. We compare the performance
of Octavo and MXP implementations with 1 to 32 lanes, denoted as L1 to L32 for
Octavo and V1 to V32 for MXP. The notation reminds us that Octavo uses independent
SIMD lanes with private memories, while MXP uses vector lanes accessing a common
banked vector scratchpad. MXP works on 32-bit values, while Octavo uses 36-bit values,
matching the FPGA’s Block RAMs.

2.1. The MXP Soft Vector Processor

Figure 1 [Severance and Lemieux 2013a] shows the block diagram of a four-lane ex-
ample configuration (denoted as MXP-V4) of the MXP soft vector processor. The MXP
vector lanes operate under the control of a Nios II/f scalar soft-processor, which sends
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Fig. 1. MXP block diagram.

vector instructions to the various MXP units to perform vector DMA transfers to/from
main memory, scatter/gather addressing [Severance and Lemieux 2013b], and optional
custom vector instructions for specific tasks.

For benchmarking purposes, MXP’s most relevant architectural features include the
following.

Double-pumped Vector Scratchpad. MXP’s vector scratchpad operates internally at
twice the system clock frequency to multiplex the two ports of its constituent Block
RAMs into four. This configuration enables multiple simultaneous transfers each
cycle: two vector reads, one vector write, and a DMA transfer to/from main memory.
However, the double-pumped scratchpad ultimately limits MXP’s overall maximum
operating frequency (Fmax).

Vector Alignment Networks. The alignment networks are MXP’s most significant fea-
ture, enabling arbitrarily aligned vector addressing. They operate independently on
reads and writes to the scratchpad and perform simple rotations, not full cross-bar
permutations. Figure 1 illustrates them aligning two source vectors A and B before
reaching the ALUs, and one destination vector C before storage back into the scratch-
pad.

Vector-to-Scalar Accumulator. MXP contains one accumulator, located after the
vector ALUs and taking input from each vector lane to enable pipelined Multiply-
Accumulate operation.

Vector Conditional Move. MXP provides a variety of vector conditional move instruc-
tions that provide basic conditional execution in the absence of vector branches.

2.1.1. Programming Model. The MXP programming model strongly depends on vector-
izing the target application. The 8- to 10-stage vector pipeline does not support for-
warding nor branching, and the Nios II/f takes 2 to 4 cycles to issue a complete vector
instruction. Thus, the vector lanes must operate on vectors at least 8× as wide as
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Fig. 2. Octavo block diagram.

the number of vector lanes to avoid consuming vector instructions faster than Nios
II/f can supply them and to avoid pipeline bubbles. On the other hand, once initiated,
MXP’s vector operations proceed efficiently, with automatic loop counters and two-
dimensional (2D) vector addressing, and scale effectively with the number of vector
lanes. Additionally, the same MXP vector program portably compiles to MXP instances
with any number of lanes, hiding the distribution of data and division of labour from
the designer.

2.2. The Octavo Multi-Threaded Soft-Processor

Figure 2 shows the block diagram of a scalar (one-lane) Octavo soft-processor (denoted
as Octavo-L1). At a high level, Octavo divides its 10-stage pipeline among 8 round-robin
hardware threads, with instructions moving left to right. The output of the Instruction
Memory (I) addresses the Data Memories (A/B), which also contain memory-mapped
I/O ports (I/Or and I/Ow). In parallel, the Branch Trigger Module (BTM) enables multi-
way zero-cycle branches based on the result of the previous instruction of the current
thread, possibly cancelling the current instruction if the branch does not go as statically
predicted. It provides its output to the Controller (CTL), which issues the next Program
Counter (PC) value for each thread. Also in parallel, the Address Offset Module (AOM)
modifies the instruction operands to enable indirect and offset memory addressing to
share code across threads and can post-increment addresses after an indirect mem-
ory read/write. The I/O Predication Module (PRD) automatically annuls and replays
instructions which attempt to access I/O ports that are not ready. We discuss Octavo’s
architecture in detail in Appendix A.

For benchmarking purposes, Octavo’s relevant architectural features include the
following.

SIMD Lanes. By replicating the datapath (A/B data memories and the ALU), and
feeding the copies a common instruction stream, we create optional SIMD lanes. Each
lane has private A/B memories with memory-mapped I/O ports and follows the control
flow of the original datapath. All datapaths execute the same code, so we add n − 1
datapaths to support n-way SIMD parallelism. We logically partition each additional
SIMD lane to preserve maximum operating frequency (Fmax) [LaForest and Steffan
2013].

Memory-Mapped I/O Ports. Instead of loads/stores, Octavo maps I/O ports into the
A/B data memories, addressing them using the instruction operands like any other
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memory location. This tightly-coupled external interface simplifies the implementation
of custom functional units. We can control these units in software with little overhead,
and we do not have to alter Octavo’s datapath to integrate them.

2.2.1. Programming Model. The Octavo programming model strongly depends on multi-
threading the target application. Each of the eight threads executes an instruction in
turn, at an effective 1

8 th of the actual Fmax. Thus, to use Octavo’s full capacity, all eight
threads must do useful work, and the division of labor depends on the nature of the
workload. For example, we can divide the code of sequentially dependent calculations
into multiple functions, with each thread executing a different function, implementing
pipeline parallelism. Alternately, we can divide the data of data-parallel operations
among all threads, all running the same shared code. Adding SIMD parallelism simply
extends this model, since each additional datapath executes the same eight threads
but operating on different data memories. Once initiated, all threads proceed efficiently
without branching and addressing overhead or pipeline hazards. Each program must
be tailored to the particular Octavo configuration that will execute it, manually dis-
tributing data to each thread before computation.

2.3. Hardware Reference Implementations

To measure the performance and area penalties of the Octavo and MXP soft-processor
overlays relative to the underlying FPGA hardware, we also implement the micro-
benchmarks directly on the FPGA, both manually written and automatically synthe-
sized.

Hardware Description Language. For each benchmark, we manually create a hand-
optimized Verilog-2001 implementation that aims for the highest performance possible
without changing the underlying algorithm. All HDL implementations work with 32-
bit data and narrower words as required for addresses, counters, and so on. All data are
stored in Block RAMs (BRAMs) and accessed in the same sequence and with the same
amount of parallelism as the algorithm describes. Loops are not unrolled but pipelined
as needed to maximize operating frequency (Fmax).

High-Level Synthesis. There exist multiple HLS systems, but we chose the LegUp
[Canis et al. 2013] platform as it synthesizes plain C code, making the benchmarks
more portable from MXP and Octavo than the alternatives. We use LegUp 3.0, with
some in-progress improvements to pipelining and local memories [Canis et al. 2014;
Fort et al. 2014]. LegUp uses 32-bit values for synthesis, automatically optimized to
narrower widths by the FPGA CAD tool (Quartus) where possible.

3. BENCHMARK DESCRIPTIONS

In this section, we describe the MXP, Octavo, LegUp, and HDL implementations of
sequential and parallel micro-benchmarks.

Experimental Framework. All systems target the Altera Stratix IV EP4SGX230KF40C2
device on the Terasic DE4-230 board. All benchmarks execute entirely from on-chip
memory to avoid the complications of a memory hierarchy, with the exception of some
Nios II/f results which access external memory via a direct-mapped cache. The MXP
system uses GCC 4.1.2 to compile code to the Nios II/f controlling processor, and synthe-
sizes the vector lanes using Altera 13.0sp1. We use Quartus 13.1 to synthesize Octavo,
with an aggressively tuned configuration for maximum Fmax.2 LegUp uses Quartus

2We report the unrestricted Fmax , which ignores the speed limitation on the FPGA BRAMs (the slowest block
type in Stratix IV), as some HDL implementations are able to exceed that limit.
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10.1sp1 for synthesis, while the HDL implementations use Quartus 13.1. Both also use
the same aggressive configuration as the Octavo synthesis.

Data Types. All soft-processor benchmark implementations operate on wordwide
signed integers: 32 bits for MXP and 36 bits for Octavo. The soft-processors also use
whole words for addressing and counting. The HDL implementations use 32 bit words
for data, except for the Finite-State Machine (FSM) benchmarks, which process char-
acters of 8 bits and use the minimum word width required for addressing and counting.
Note that the LegUp C-based implementations use 32-bit ints for all data, loop coun-
ters, and other datapath components (except 8-bit chars for the aforementioned FSMs).
Quartus cannot always optimize the unneeded bits, increasing the area of LegUp
circuits.

Working Set Size. To present each platform in the best light possible, we scale up
the working set size of each benchmark as necessary to minimize setup overheads and
avoid artificial inefficiencies such as pipeline hazards, while still fitting into on-chip
memory. Therefore, we report benchmark results per processed working set item (“unit
of work”) to abstract away the different raw working set sizes. In general, the HDL and
LegUp implementations work on sets of 100 items, while Octavo works on sets of 1,024
items, evenly divisible into per-thread working sets of 128 elements, and replicates the
working set for each additional SIMD lane. MXP makes the working set equal to the
size of its scratchpad divided by 4 to leave space for all input, output, and temporary
vectors. For example, MXP-V1 and MXP-V2 use an 8kB scratchpad, with 4 bytes per
word (2 kilowords), yielding a working set of 512 items. For larger numbers of vector
lanes, MXP multiplies this working set by the number of vector lanes (i.e., MXP-V4
works on 1,024 items, MXP-V8 on 2,048, and so on...). All working set data is stored
in Block RAMs (BRAMs), except for some LegUp cases where the CAD tool inferred
distributed LUT-based memory instead. We address these cases individually.

3.1. Sequential Benchmarks

The Sequential Benchmarks represent tasks that do not parallelize easily or at all,
and often present a worst-case scenario for SIMD/vector processing, as well as stress
intrinsic sources of overhead such as pipeline hazards, memory accesses, and flow-
control.

Listing 1. Reverse-2D MXP Pseudo-Code.

Reverse-3. Reverses an array of wordwide integers using the conventional three-step
approach, which assumes all elements are local to the same memory: A→t, B→A, t→B.
MXP cannot implement a three-step swap directly but instead fills its pipeline with vec-
tor elements, storing them at the correct computed address to perform the reversal. A
2D addressing mode automatically computes both source and destination addresses in
parallel. Listing 1 outlines the MXP “Reverse-2D” algorithm, which we consider equiv-
alent to Reverse-3, since it can also only move one item at a time. The MXP read/write
alignment networks cannot reverse a vector, since they only rotate vector elements. The
HDL implementation sequentially reads the A and B elements from a single BRAM,
places them in a short pipeline, and then stores them back in reverse order.

Hailstone-S. Computes one step of a Hailstone sequence: If n is even: n = n/2,
else n = (3n + 1)/2. We apply this function over many (100 or more, depending on
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the platform) random positive integer initial seeds to evenly distribute time spent in
the even and odd branches and to fill pipelines with independent calculations. The
Hailstone benchmark performs a variety of bit-level and arithmetic calculations, as
well as unpredictable branching. The HDL implementation sequentially reads seeds
from a BRAM, computes both even and odd branches in parallel, and then writes the
correct result back into memory.

Hailstone-A. Computes the entire Hailstone sequence of the seed 77, 031, which has
the longest Hailstone sequence (222 terms) of all seeds <100,000. However, we acceler-
ate the calculations via pre-computed table lookups, which allows each step to calculate
the 8th value after the current seed rather than the immediately consecutive value.
Thus, we can sequentially pre-compute the first 8 members of the Hailstone sequence
then use these to seed 8 interleaved instances of the accelerated table-based calcula-
tions to compute the entire sequence 8 members at a time. Each instance only needs to
compute 28 steps of a total of 224 steps (28×8), producing two extra terminal sequence
results (..., 2, 1) after the 222 terms of the Hailstone sequence. This benchmarks re-
sembles table lookups in cryptographic functions and also allows full usage of the MXP
and Octavo pipelines. The HDL implementation sequentially reads one of eight seed
values from a BRAM, and performs two parallel table lookups based on the seed (two
BRAMs) and a multiplication to generate the next value and then stores it back to seed
memory. This HDL implementation requires two DSP blocks and three BRAMs.

FSM-S and FSM-A. Executes a Finite-State Machine (FSM) that recognizes simple
floating-point numbers (e.g., 0.5, -9., .3, 4.2, and so on...) from a stream of characters,3
reaching either the ACCEPT or REJECT states. The input set of 103 characters contains 25
valid numbers, which each exercise one of all the possible paths to ACCEPT, plus one in-
valid number that reaches REJECT to ease verification. Two versions of the source code
exist: FSM-S was written in conventional “structured” C using nested if-statements
and state variables, while FSM-A was written in a more “assembly” style of C with
lower overhead, using goto statements to change state. Both FSM benchmarks present
worst-case data-dependent branching behaviour, with basic blocks of only two or three
instructions and no regular loops. The HDL implementation uses the “structured” ver-
sion, reading a character from a BRAM each cycle and raising ACCEPT or REJECT signals
when the state machine (implemented as nested if-statements) reaches those states.

3.2. Parallel Benchmarks

The Parallel Benchmarks represent tasks that conventionally parallelize well, even
if their implementations have more initial overhead than the equivalent non-
parallelizable Sequential benchmarks. These tasks reveal how the work divides across
parallel execution units and how well the implementation scales.

Increment. Adds 1 to each of 10 wordwide integer array elements, 10 times, for a
total of 100 iterations designed to test simple independent data operations and loop
overhead. We do not unroll the loops in the source but allow the LegUp HLS to pipeline
them automatically. The HDL implementation sequentially reads each of the 10 values
from a BRAM, increments them by 1, and then stores them back. These steps are
sufficiently pipelined to allow them to run concurrently. Contrary to other benchmarks,
Increment focuses on looping itself and thus has a small working set size.

Reverse-4. Reverses an array of wordwide integers using a generalized swap that does
not assume that the elements reside in the same memory: A→t1, B→t2, t1→B, t2→A.

3Actually, 32 and 36-bit ints for MXP and Octavo, and 8-bit chars for HDL and LegUp.
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This approach allows dividing the array into two or more memories, enabling paral-
lel transfers. MXP cannot implement Reverse-4 directly, since its alignment networks
can only rotate vector elements, not arbitrarily permute them. Instead, MXP imple-
ments a “Reverse-Recursive” algorithm that uses conditional moves (CMOV) to recur-
sively swap quadratically increasing large subsets of a vector. This algorithm performs
approximately 2log2n vector swaps for a vector of length n. We first set a vector mask
that allows CMOV to only write every other vector element. We then copy all the odd-
numbered elements to the even-numbered locations in a temporary vector and then
copy the even-numbered vector elements into the temporary odd-numbered locations,
thus swapping their positions. We can then adjust the mask and the vector addresses
to swap pairs of elements, quartets, and so on. We consider Reverse-Recursive compa-
rable to Reverse-4, since they both move multiple items at a time and similarly scale
with the number of SIMD/vector lanes. The HDL implementation evenly divides the
array across two BRAMs for parallel operation. Each cycle, we read and write to both
BRAMs, exchanging array values until the entire array is reversed.

Hailstone-N. Functions identically to the sequential Hailstone-S benchmark, cal-
culating one step of the Hailstone sequence over a working set of about 100 ran-
dom positive integer initial seeds (depending on platform) but implemented as non-
branching code to allow SIMD and vector parallelization. All versions compute both
the even and odd branches and then store the desired result based on the parity of the
seed (i.e., even or odd). The LegUp and HDL versions use AND-OR Boolean masking
((odd_branch & mask)|(even_branch & !mask)) for best synthesis, while Octavo uses
a masked XOR (((odd_branch ⊕ even_branch) & mask)⊕ even_branch) to save a cy-
cle, and MXP uses conditional moves (CMOV). The HDL implementation is identical to
the Hailstone-S HDL implementation, except it selects the even or odd result using
explicit Boolean AND-OR masking instead of a multiplexer inferred from a conditional
statement.

Listing 2. Conventional FIR Filter MXP Pseudo-Code.

Listing 3. Transposed FIR Filter MXP Pseudo-Code.

FIR. Computes an eight-tap Finite Impulse Response (FIR) filter over an input
array of approximately 100 wordwide integer elements (depending on platform) into
a similar and separate output array. For best performance, the HDL implementation
uses a separate register buffer to hold past input values for convolution, while the MXP,
Octavo, and LegUp implementations use a pointer into a sliding window over input
memory. The HDL implementation separates input and output data into two distinct
BRAMs to simplify implementation, performs all 8 multiplications in parallel, and
sums the products via a pipelined tree of adders. The MXP FIR filter implementation
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Fig. 3. Accelerators attached to Octavo.

depends on the number of lanes and filter taps. The final Accumulator (upper right in
Figure 1) can only validly sum up to the number of taps, despite receiving values from
all vector lanes. When the number of vector lanes exceeds the number of filter taps,
we can transpose the FIR algorithm to support vector parallelism at the cost of using
a separate vector summation instead of the Accumulator.

For an eight-tap filter, for 16 lanes and fewer, MXP concurrently performs each of the
coefficient multiplications (one per vector lane) and then uses the final Accumulator
to sum the products into a scalar result, implementing an efficient pipelined Multiply-
Accumulate operation (Listing 2). For more than 16 lanes, MXP instead successively
multiplies each coefficient over an entire input vector and sums the products into an
accumulation vector (Listing 3). This transposed FIR algorithm applies the coefficients
over multiple vector multiplications, followed by a vector sum, but calculates multiple
convolutions at once. Thus, the parallelism scales up to the entire input data set length,4
not just the number of filter coefficients, at the price of some extra overhead. In this
case, the parallelism exceeds the overhead past 16 lanes, so we use the transposed FIR
at 32 lanes.

In contrast, Octavo parallelizes an n-tap FIR filter by dividing the input and output
data across all SIMD lanes and having each lane apply the FIR filter to each subset.
We accelerate each convolution by providing each SIMD lane with an Accumulator to
allow chaining multiplications and sums (Section 2.2). To avoid introducing gaps in the
output data, we prepend a header of the last n − 1 input data items from the previous
lane, or zeros at the first lane, to allow the sliding window to immediately contain the
necessary data to compute the next consecutive output value. Figure 3(c) illustrates
the headers and data for a hypothetical Octavo-L3 implementing a five-tap FIR filter
over 24 input data points (in the bold boxes).

4. ADAPTING OCTAVO TO SPECIFIC BENCHMARKS

In this section, we discuss how to adapt Octavo to particular benchmarks by augment-
ing it with small, custom hardware accelerators without sacrificing programmability.
Contrary to MXP and other soft-processors [Jones et al. 2005; Saghir et al. 2006;
Hameed et al. 2010; Severance et al. 2014] that place their custom functional units

4MXP’s Direct Memory Access (DMA) controller would transfer data as needed for continuous, un-windowed
filtering.
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inside the ALU or directly in the datapath pipeline, Octavo attaches them as simple
memory-mapped I/O devices, directly addressable by instruction operands (Section 2).
We added Octavo accelerators that implement functionality present in MXP but absent
in Octavo. These accelerators enable new data movements (for Reverse-4) or pull some
operations out of a loop and execute them in parallel (for FIR). Octavo implicitly sup-
ports table lookups, required by the sequential Hailstone-A benchmark, via its per-lane
data memories. Conversely, the designers of MXP added Custom Vector Instructions in
the datapath to support per-vector-lane table lookups (Figure 1). To approximate MXP’s
vector accumulator and alignment networks on Octavo, we attached an Accumulator
to the I/O ports of each datapath to provide a chained Multiply-Accumulate operation
for the parallel FIR benchmark. We also similarly inter-connected the datapaths with
pipelined Array Reversal Channels to support the parallel Reverse-4 benchmark. We
describe these accelerators below.

4.1. Array Reversal Channel

When reversing an array, the element with the lowest index is exchanged with the
element with the highest index, the next-lowest element is exchanged with the next-
highest element, and so on, towards the center of the array. We can distribute an array
across communicating vector or SIMD lanes to parallelize this process. MXP connects
its vector lanes via read/write alignment networks that can offset a vector across lanes
as desired. In contrast, Octavo’s SIMD lanes have no interconnections and could not
execute an equivalent parallel array reversal benchmark. Therefore, we implemented
an accelerator to specifically support the required communication pattern.

Figure 3(a) shows the eight-stage channel connections for parallel array reversal
across the five lanes of an Octavo-L5: If we distribute an array across all five lanes,
then the first array segment exchanges and reverses itself with the last, and so on, in
decreasing circles until the centre lane L3 reverses its own segment. The number of
channels scales with the number of SIMD lanes, thus the number of steps to reverse
an array remains constant if the number of lanes scales with the total size of the array.
We need 16 pipeline stages total to contain all the writes from Octavo’s 8 threads before
we begin reading them back (in reverse order). Octavo’s pipelined datapath provides
the first 8 stages as memory and I/O writes happen 8 cycles after reads, leaving us to
add 8 stages between lanes to pipeline the channels.

4.2. Accumulator

For a FIR filter, MXP uses an Accumulator to sum the filter coefficient products from
each vector lane to a final scalar value, resulting in a pipelined Multiply-Accumulate
(MAC) operation. Octavo cannot simply copy this cross-lane vector reduction, as each
SIMD lane runs the same code in lockstep and would need complicated memory-
mapping tricks to force storing the final scalar sum into one SIMD lane only. Dupli-
cating the final sum into all lanes would waste too much memory. Instead, we enable
each thread to chain multiplications and accumulation sums together, much like MXP
does, by attaching an Accumulator, sufficiently pipelined to support all threads, to the
I/O ports of the datapath.

Figure 3(b) shows the Accumulator implementation. In the centre, we have a copy
of Octavo’s Adder taken from its ALU, which takes two pipeline stages. We add
additional pipeline registers, in groups of two for convenience, to add up to eight
pipeline stages. After writing to the Accumulator, the new Total sum shows up at
the output eight cycles later and circulates back into the Accumulator. Thus, from a
thread’s perspective, the new Total sum becomes available one instruction after the
previous write to the Accumulator. Other operations easily fill this gap to avoid the
Read-After-Write (RAW) hazard.
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The Accumulator attaches to Octavo via one I/O write port (I/Ow) and one I/O read
port (I/Or). To add a new value to the Total sum, a thread must write it (the Addend)
to I/Ow, which also raises the port’s write enable line (Write). When not asserted, the
Write line zeroes-out the Addend, effectively adding zero to the Total sum. To read out
the Total sum, a thread must read from I/Or, which also raises the port’s read enable
line (Read). When asserted, the Read line zeroes-out the circulating Total sum for that
thread, restarting the accumulation process. Calculating one output of an n-tap FIR
filter now requires only n + 1 steps, n multiplications followed by 1 Accumulator read,
instead of 2n − 1 with separate Multiply and Accumulate instructions.

Following Octavo’s multi-threaded programming model, as we replicate the datap-
ath for SIMD parallelism, each new SIMD lane also receives an Accumulator. Thus,
although Octavo cannot multiply all the filter coefficients and sum them together in
a single pipelined n-tap MAC operation like MXP, we can efficiently perform chained
MACs for any number of taps and divide the work across any number of SIMD lanes.

5. BENCHMARK RESULTS

For each benchmark, we measure the following values and calculate their ratio relative
to those of a scalar Octavo core (Octavo-L1) as the baseline for all speed and area
comparisons. Not all implementations are feasible in all cases.

—The number of cycles per unit of work (i.e., computing one result) and the cycle
count speedup. We describe what constitutes a unit of work with the results of each
benchmark. Typically, the computation of one output value defines one unit of work.

—The maximum operating frequency (Fmax) of the implementation. We choose the
instance with the highest Fmax of 10 random seed P&R runs to compare the best
possible case of each implementation.

—The wall-clock time per unit of work (in nanoseconds) and their speedups.
—The area of the implementation, measured as the count of equivalent Adaptive Logic

Modules (eALMs) in use, which include the equivalent silicon area of hard blocks such
as M9K BRAMs (28.7 ALMs each) and DSP blocks (29.75 ALMs each) as reported by
Wong et al. [2014, 2011]. We also show the area shrink (or growth, to keep the ratios
simple to read) of each implementation.

—The Area-Delay product as eALMs·ns (time per unit of work), along with shrink or
growth, which indicates relative implementation efficiency. For parallel benchmarks,
a relatively constant Area-Delay as the parallelism and working set size increase
indicates a scalable implementation, whose amount of work produced per unit time
increases linearly with the area.

5.1. Sequential Benchmarks

For the sequential benchmarks, we compare single HDL and LegUp instances, and
Octavo and MXP instances with 1 or 2 lanes, as instruction-level parallelism allows,
showing how their Fmax and cycle counts per result compare. Because MXP’s vector
lanes do not support branching, some sequential benchmarks must default to running
on the controlling Nios II/f processor (denoted as “MXP-Nios”). Note that the Fmax of
Nios matches that of the MXP vector lanes and could run somewhat faster (approxi-
mately 240MHz) by itself [Altera 2014].

5.1.1. Reverse-3. Table I shows the results of the Reverse-3 benchmark on a scalar
Octavo instance (Octavo-L1), a single-lane MXP instance (MXP-V1), and the LegUp
and HDL implementations. We define the unit of work as swapping two array elements.

Octavo executes Reverse-3 sequentially, executing a six-instruction loop 64 times
to reverse a 128-element array. Of the six instructions, three perform the swap, and
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Table I. 3-Step Array Reverse (Reverse-3) Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay
Speedup Speedup Shrink Shrink

Reverse-3 Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 3.07 — 525 5.85 — 2203 — 12,888 —
MXP-V1 1.12 2.74 221 5.07 1.15 4429 (2.01) 22,455 (1.74)
LegUp 1.06 2.90 468 2.26 2.59 90 24.5 203.4 63.4
HDL 1.03 2.98 612 1.68 3.48 177.7 12.4 299 43.1

Table II. Sequential Hailstone (Hailstone-S) Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay
Speedup Speedup Shrink Shrink

Hailstone-S Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 4.55 — 525 8.67 — 2203 — 19,100 —
MXP-Nios 7.42 (1.63) 221 33.6 (3.88) 4429 (2.01) 148,814 (7.79)

LegUp 1.05 4.33 331 3.17 2.74 2889 (1.31) 9,158 2.09
HDL 1.04 4.38 600 1.73 5.01 126.7 17.4 219 87.2

the other 3 deal with a decrementing pointer (not supported by the AOM) and the
loop counter (not supported by the BTM). The loop branch overlaps with the last ALU
instruction.

In contrast, MXP automates all the addressing and looping, swapping one array
item every cycle (plus some setup overhead), but its lower Fmax counters the lower
cycle count, resulting in only a 15% speedup over Octavo. With this moderate speedup,
MXP’s 2.01× larger area also contribute to a 74% increase in Area-Delay product.

The LegUp and HDL implementations approach the ideal of 1 cycle per swap, improve
on Area and Area-Delay, but perform less than 3–4× faster than Octavo. The LegUp
implementation performs at 0.74× the rate of the HDL implementation but uses only
half as much Area due to lack of pipelining, yielding a lower net Area-Delay product.

5.1.2. Hailstone-S. Table II shows the results of the Hailstone-S benchmark. We define
the unit of work as computing one step of a Hailstone sequence. Octavo-L1 uses three
overlapping and cancelling branches to compact the loop counter decrement and both
even/odd branches into five instructions. MXP’s vector lanes cannot compute Hailstone-
S, since they do not support branches, and thus we executed the benchmark on the Nios
II/f controlling processor only, which suffers from a larger cycle count and lower Fmax.

Both LegUp and HDL compute both even and odd branches in parallel and then
multiplex the desired output. Surprisingly, the Quartus CAD tool failed to infer a
Block RAM (BRAM) during synthesis of the LegUp implementation and implemented
the entire benchmark as registers and logic gates, ballooning its area and likely limiting
its performance and Area-Delay improvements over Octavo-L1. In contrast, the HDL
uses a single M9K BRAM, reducing its area and maximizing its speed but still only
achieving a 5× speedup over software running on Octavo.

5.1.3. Hailstone-A. Table III shows the results of the Hailstone-A benchmark. As with
other Hailstone benchmarks, we define the unit of work as computing one step in a
Hailstone sequence. Both Octavo and MXP distribute over their entire pipeline the
computation of each of the eight independent “slices” of the entire Hailstone sequence.
MXP requires only six instructions, but a few hazards cause them to take seven cycles
to execute on MXP-V1. On MXP-V2, the second lane can execute some non-dependent
instructions in parallel, reducing the total cycle count back to 6, improving performance
but not improving the Area-Delay. Larger MXP vector lane counts (not shown) only
worsen the results due to longer and emptier pipelines (+1 stage at V4 and V16). Note
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Table III. Accelerated Hailstone (Hailstone-A) Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay
Speedup Speedup Shrink Shrink

Hailstone-A Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 7.04 — 525 13.4 — 2203 — 29,520 —
MXP-V1 7.02 1.00 221 31.8 (2.37) 4429 (2.01) 140,842 (4.77)
MXP-V2 6.01 1.17 239 25.1 (1.87) 5533 (2.51) 138,878 (4.70)

MXP-Nios 22.3 (3.17) 221 101 (7.54) 4429 (2.01) 447,329 (15.2)
LegUp 1.64 4.29 177 9.27 1.45 896.2 2.46 8308 3.55
HDL 1.04 6.77 510 2.04 6.57 312.6 7.05 638 46.3

Table IV. Structured FSM (FSM-S) Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay
Speedup Speedup Shrink Shrink

FSM-S Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 92.0 — 65.6 1402 — 2203 — 3,088,606 —
MXP-Nios 141 (1.53) 221 638 2.20 4429 (2.01) 2,825,702 1.09

LegUp 27.3 3.37 401 68.2 20.6 150 14.7 10,230 302
HDL 3.96 23.2 444 8.92 157 65.7 33.5 586 5271

HDL (pipe’d) 5.04 18.3 530 9.51 147 60.7 36.3 577 5353

Table V. “Assembly” FSM (FSM-A) Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay
Speedup Speedup Shrink Shrink

FSM-A Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 28.9 — 65.6 440.5 — 2203 — 970,422 —
MXP-Nios 55.3 (1.91) 221 250 1.76 4429 (2.01) 1,107,250 (1.14)

LegUp 18.3 1.58 366 50.0 8.81 219 10.06 10,950 88.62

that MXP requires custom support for vector lane table lookups, while Octavo simply
stores the tables in local lane memory. Both store a copy of the lookup tables per lane.
We also included the Nios II/f results that highlight the positive impact of having all
data in on-chip scratchpads. Most of the 22.3 cycles/unit are spent doing table lookups
from (cached) main memory.

LegUp appears to perform all eight slices concurrently, as it requires eight DSP
Blocks, suggesting eight parallel multiplications, and six M9K BRAMs, suggesting
concurrent table lookups for each of the eight “slices.” However, LegUp does not seem
to fully pipeline the process, resulting in a relatively low Fmax, albeit with a 45%
net speedup. In contrast, the HDL implementation fully pipelines the eight sets of
calculations, using only three M9K BRAMs (two for tables and one for seeds) and
re-using Octavo’s high-speed Multiplier (two DSP Blocks). The HDL implementation
cannot reach maximum speed, since we are limited to eight pipeline stages (one for
each sequence “slice”), and the final adder becomes a critical path. Adding a ninth
pipeline stage could conceivably increase Fmax to 600MHz (+18%), but at the cost of a
pipeline bubble every ninth cycle, subtracting 11 percentage points. Again, a software
implementation on Octavo approaches within an order of magnitude the performance
of custom HDL (6.57×), albeit at a similar increase in area (7.05×).

5.1.4. FMS-S and FSM-A. Tables IV and V show the results for both the “Structured”
and “Assembly” versions of the floating-point recognizer FSM benchmark. We define
the unit of work as recognizing a number as either valid (ACCEPT state) or invalid
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(REJECT state), with the cycle count for each unit taken as the average cycle count for
all 26 numbers.

The FSM-S implementation uses conventionally structured code but at the cost of
adding a layer of interpretation by storing the FSM state in a variable and updating
it using nested if-statements inside an outer loop. In contrast, the FSM-A implemen-
tation encodes the state in the Program Counter by immediately jumping to code that
implements a given state without having to go through a global outer loop. MXP’s vec-
tor lanes cannot implement FSMs, since they do not support branching, so we default
to the Nios II/f controlling processor. Since we cannot distribute the work of the FSM
over multiple Octavo threads,5 we list the effective Fmax of a single Octavo-L1 thread:
65.6MHz. The other seven threads remain idle.

We can gauge the impact of FSM software implementation by comparing across both
tables: On Octavo-L1, FSM-S requires 3.18× more cycles per result than FSM-A, since
the additional work of handling of a state variable in FSM-S prevented executing the
setup of the next branch in parallel with the current branch, increasing cycle count.
For LegUp, although a user would normally write structured code, going from FSM-
S to FSM-A reduced Fmax by 8.7% but also reduced cycle count by 33%. For HDL,
we cannot implement FSM-A as the HDL implementation does not have a Program
Counter. Pipelining the HDL implementation of FSM-S had little benefit: The cycle
count increases to offset the higher Fmax, without significantly changing the area.

Since we can only use a single Octavo thread, it performs extremely poorly compared
to LegUp and HDL hardware implementations and still about 2× slower than Nios II/f.
However, with seven threads remaining, there remains a lot of margin for additional
work “for free” on Octavo.

5.2. Parallel Benchmarks

For the parallel benchmarks, we compare single HDL and LegUp instances, and Octavo
and MXP instances with 1 to 32 lanes, showing how their Fmax and cycle counts per
result scale. Where we extrapolate parallel HDL and LegUp implementations, we
assume multiple individual instances running at the same Fmax. Octavo’s Fmax degrades
gradually and monotonically, due to partitioning [LaForest and Steffan 2013], as the
number of lanes increases. In contrast, MXP’s Fmax first increases but then drops as the
routing in the widening double-pumped vector scratchpad becomes the critical path.

5.2.1. Array Increment. Table VI shows the results of the Increment benchmark, rep-
resenting the simplest parallel case and showing the best-case speedup as MXP and
Octavo scale. We define the unit of work as incrementing one array location. MXP
achieves near-ideal performance and scaling (1 increment per cycle per lane) while
Octavo, which lacks a hardware loop counter, must spend more than twice as many
cycles to do the same. However, Octavo’s greater Fmax recoups most of the difference
and approaches the performance of the LegUp and HDL implementations.

Parallel Area-Delay Scaling. The Increment benchmark also uncovers a pattern we
see throughout the parallel benchmarks: Octavo’s Area-Delay remains relatively con-
stant as the number of lanes (and thus the parallelism and working set size) increases,
until Fmax begins to decrease faster at 32 lanes. In contrast, MXP’s Area-Delay reduces
as we scale up, improving efficiency until it also falters on decreasing Fmax at 32 lanes.
This difference in Area-Delay scaling highlights MXP’s emphasis on effective large-
scale parallelism with a uniform vector programming model, while Octavo focuses on
efficient small-scale parallelism and its composition to address larger problems at the
cost of a lower-level multi-threaded programming model.

5We do not consider transformations which convert a FSM into multiple concurrent FSMs.
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Table VI. Array Increment (Increment) Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay

Speedup Speedup Shrink Shrink
Increment Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 2.35 — 525 4.48 — 2203 — 9,869 —
Octavo-L2 1.17 2.01 514 2.28 1.96 2976 (1.35) 6,785 1.46
Octavo-L4 0.587 4.00 474 1.24 3.61 6004 (2.73) 7,445 1.33
Octavo-L8 0.293 8.02 455 0.644 6.96 11,133 (5.05) 7,170 1.38
Octavo-L16 0.147 16.0 420 0.350 12.8 21,288 (9.66) 7,451 1.33
Octavo-L32 0.0734 32.0 370 0.198 22.6 42,015 (19.1) 8,319 1.19

MXP-V1 1.02 2.30 221 4.62 0.970 4429 (2.01) 20,241 (2.05)
MXP-V2 0.512 4.59 239 2.14 2.09 5533 (2.51) 11,841 (1.20)
MXP-V4 0.256 9.18 242 1.06 4.23 9740 (4.42) 10,324 (1.05)
MXP-V8 0.129 18.2 206 0.626 7.16 14,813 (6.73) 9,273 1.06

MXP-V16 0.0640 36.7 206 0.311 14.4 28,229 (12.8) 8,779 1.12
MXP-V32 0.0320 73.4 168 0.190 23.6 55,310 (25.1) 10,509 (1.07)

LegUp 1.12 2.1 335 3.34 1.34 135 16.32 450.9 21.9
HDL 1.03 2.28 600 1.72 2.60 157.7 13.97 271.2 36.4

Table VII. Non-Branching Sequential Hailstone (Hailstone-N) Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay
Speedup Speedup Shrink Shrink

Hailstone-N Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 11.0 — 525 21.0 — 2203 — 46,263 —
Octavo-L2 5.49 2.00 514 10.7 1.96 2976 (1.35) 31,843 1.45
Octavo-L4 2.75 4.00 474 5.80 3.62 6004 (2.73) 34,823 1.33
Octavo-L8 1.37 8.03 455 3.01 6.98 11,133 (5.05) 33,510 1.38
Octavo-L16 0.687 16.0 420 1.64 12.8 21,288 (9.66) 34,912 1.33
Octavo-L32 0.343 32.1 370 0.927 22.7 42,015 (19.1) 38,948 1.19

MXP-V1 6.05 1.82 221 27.4 (1.30) 4429 (2.01) 121,355 (2.62)
MXP-V2 3.04 3.62 239 12.7 1.65 5533 (2.51) 70,269 (1.52)
MXP-V4 1.52 7.24 242 6.28 3.43 9740 (4.42) 61,167 (1.32)
MXP-V8 0.762 14.4 206 3.70 5.68 14,813 (6.73) 54,808 (1.19)
MXP-V16 0.380 28.9 206 1.84 11.4 28,229 (12.8) 51,941 (1.12)
MXP-V32 0.190 57.9 168 1.13 18.6 55,310 (25.1) 62,500 (1.35)

LegUp 2.06 5.34 338 6.09 3.45 166.4 13.2 1013 45.7
HDL 1.04 10.6 600 1.73 12.1 131.7 16.7 228 203

5.2.2. Hailstone-N. Table VII shows the results for the Hailstone-N benchmark. We
define one unit of work as computing one step in a Hailstone sequence. All versions
compute both even and odd branches and then select the desired result based on the
parity of the seed (i.e., even or odd). MXP selects using conditional moves, while all
other implementations use Boolean operations to mask and merge the results. As in the
Array Increment benchmark, MXP, and Octavo scale effectively, with Octavo’s slightly
less-than-doubled cycle count and more-than-doubled Fmax giving it an advantage over
MXP. Both MXP and Octavo require 16 lanes to approximately match the performance
of HDL hardware, and 4 lanes to match that of LegUp, at a considerable area cost.

5.2.3. Reverse-4. Table VIII shows the results of the Reverse-4 benchmark. We define
the unit of work as swapping two array elements. Octavo-L1 requires precisely 0.5
more cycles/unit than the Reverse-3 benchmark, accounting for the extra fourth step
in the swap operation, operating over the exact same amount of data. As we increase
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Table VIII. Four-Step Array Reverse (Reverse-4) Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay
Speedup Speedup Shrink Shrink

Reverse-4 Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 3.57 — 525 6.80 — 2203 — 14,980 —
Octavo-L2 1.79 1.99 514 3.48 1.95 2976 (1.35) 10,356 1.45
Octavo-L4 0.893 4.00 474 1.88 3.62 6004 (2.73) 11,287 1.33
Octavo-L8 0.446 8.01 455 0.980 6.94 11,133 (5.05) 10,910 1.37

Octavo-L16 0.223 16.0 420 0.531 12.8 21,288 (9.66) 11,304 1.33
Octavo-L32 0.112 31.9 370 0.303 22.4 42,015 (19.1) 12,731 1.18

MXP-V1 1.78 2.01 221 8.05 (1.18) 4429 (2.01) 35,653 (2.38)
MXP-V2 1.81 1.97 239 7.57 (1.11) 5533 (2.51) 41,885 (2.80)
MXP-V4 1.26 2.83 242 5.21 1.31 9740 (4.42) 50,745 (3.39)
MXP-V8 0.854 4.18 206 4.15 1.64 14,813 (6.73) 61,474 (4.10)
MXP-V16 0.623 5.73 206 3.02 2.25 28,229 (12.8) 85,252 (5.69)
MXP-V32 0.345 10.3 168 2.05 3.32 55,310 (25.1) 113,386 (7.57)

LegUp 0.550 6.49 483 1.14 5.96 896 2.459 1,021 14.7
HDL 0.520 6.87 607 0.857 7.93 157.4 14.00 135 111

the number of lanes, we also increase the array size to keep the amount of data per
lane constant. Reverse-4 on Octavo scales as expected, with maximal speedup in all
cases.

In contrast, MXP’s “Reverse-Recursive” equivalent has a higher setup cost (no sig-
nificant speedup until MXP-V4) and suffers from the increasing pipeline depth (+1 at
V4 and V16) preventing the expected halving of cycles/unit, greatly limiting its total
speedup (6.77× slower than Octavo at 32 lanes). We can also see the poor scaling of the
recursive algorithm from the increasing Area-Delay product as the benchmark scales
up.

Both the LegUp and HDL implementations uncover the implicit parallelism in the
generalized four-step swap operation, moving two items per cycle instead of one. Again,
Quartus fails to infer BRAMs in the LegUp implementation and instead implements
the entire storage as registers, increasing its area and likely slowing down its operation.

5.2.4. FIR. Table IX shows the results of the eight-tap FIR filter benchmark. We define
the unit of work as computing one filtered output value. For 1 to 8 lanes, MXP and
Octavo scale as expected, halving the number of cycles/unit when doubling the lane
count and converging towards 1 cycle/unit with 8 lanes. For a single lane, MXP-V1
requires 8 cycles for 8 pipelined MAC operations (Listing 2), while Octavo-L1 requires
12 as it must also manually re-initialize the post-incrementing pointer for the sliding
window, decrement the loop counter, and read out the per-lane Accumulator values to
write into the output arrays.

MXP-V16 has the same performance as MXP-V8, since it still uses the same Accu-
mulator. MXP-32 switches to the transposed FIR algorithm (Listing 3) as the number
of coefficients (8) limits any further increase in parallelism, and the transposed paral-
lelism exceeds its extra overhead, improving performance. On the other hand, Octavo
continues scaling without interruption.

The LegUp implementation uses the expected eight DSP blocks to multiply all co-
efficients in parallel but unexpectedly required five BRAMs rather than the expected
two (input and output). LegUp also fails to pipeline the multipliers and accumulators,
resulting in a low Fmax. Nonetheless, its lower cycles/unit result in identical perfor-
mance to an entire Octavo-L1, at less than one quarter the area. In contrast, the HDL
implementation uses two BRAMs and re-uses Octavo’s double-pipeline Multiplier and
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Table IX. Eight-Tap FIR Measurements

Cycles/Unit Fmax Time/Unit Area Area-Delay
Speedup Speedup Shrink Shrink

FIR Cycles (Slower) MHz ns (Slower) eALMs (Grow) eALMs·ns (Grow)
Octavo-L1 12.1 — 525 23.0 — 2203 — 50,669 —
Octavo-L2 6.05 2.00 514 11.8 1.95 2976 (1.35) 35,117 1.44
Octavo-L4 3.03 3.99 474 6.39 3.60 6004 (2.73) 38,366 1.32
Octavo-L8 1.52 7.96 455 3.34 6.89 11,133 (5.05) 37,184 1.37
Octavo-L16 0.756 16.0 420 1.80 12.8 21,288 (9.66) 38,318 1.32
Octavo-L32 0.378 32.0 370 1.02 22.5 42,015 (19.1) 42,855 1.18

MXP-V1 8.02 1.51 221 36.3 (1.58) 4429 (2.01) 160,773 (3.17)
MXP-V2 4.02 3.01 239 16.8 1.37 5533 (2.51) 92,954 (1.84)
MXP-V4 2.01 6.02 242 8.31 2.77 9740 (4.42) 80,939 (1.60)
MXP-V8 1.01 12.0 206 4.90 4.69 14,813 (6.73) 72,584 (1.43)
MXP-V16 1.01 12.0 206 4.90 4.69 28,229 (12.8) 138,322 (2.73)
MXP-V32 0.537 22.5 168 3.20 7.19 55,310 (25.1) 176,992 (3.49)

LegUp 4.10 2.95 180 22.8 1.01 513 4.29 11,696 4.33
HDL 1.11 10.9 564 1.97 11.7 1164 1.89 1292 39.2

pipelined Adder to implement a fully parallel 10-stage pipelined FIR filter at twice the
area cost of LegUp but over 11× the performance.

6. OCTAVO AND MXP MICRO-ARCHITECTURAL COMPARISON

From the benchmark results, we can make some micro-architectural comparisons
between the MXP and Octavo soft-processor overlays and identify opportunities for
improvement.

6.1. MXP

MXP’s vector processing provides a scalable and portable programming model. How-
ever, MXP sometimes suffers from poor initial scaling due to pipeline hazards with
short vectors (re: FIR benchmark) or more complex setup (re: Reverse-4 benchmark),
reducing overall throughput and reducing later performance gains under larger vector
parallelism. However, MXP’s address generators and vector loop counters significantly
improve its per-cycle performance relative to Octavo. Additionally, MXP can efficiently
select one of two results with a single conditional move (CMOV) instruction based on an
implicit or pre-computed flag in one or two cycles total.

We can see a difference in small-scale and large-scale parallelism focus by comparing
the scaling of the Area-Delay product for Octavo and MXP. Notwithstanding significant
drops in Fmax at 32 lanes, Octavo’s Area-Delay tends to remain constant as the number
of its SIMD lanes increases, while MXP’s Area-Delay starts higher but decreases as
the number of its vector lanes increases.

6.2. Octavo

Overall, Octavo benefits most from its raw high Fmax enabled by constraining its threads
to a strict round-robin order, which eliminates the need to forward results across
pipeline stage with costly backwards paths and multiplexers. Octavo’s multi-threaded
programming model works efficiently at a small scale and remains efficient on larger
problems.

In several benchmarks (Reverse-3, Hailstone-A, Increment, Hailstone-N), Octavo
approaches or exceeds MXP’s performance only because Octavo’s high Fmax offsets its
greater cycle count. These extra cycles come from manually decrementing counters and
pointers due to lack of support in Octavo’s Branch Trigger Module (BTM) and Address
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Offset Module (AOM). The BTM does not yet include a branch condition based on a
counter, and the AOM currently applies a single-bit post-increment of 0 or +1.

Similarly, without a CMOV instruction, selecting one of two results without branching
requires computing a wordwide mask (all-zeros or all-ones) to cancel out terms of a
Boolean expression of both results, taking a total of 5 instructions. These 5 cycles rep-
resent 45% of the 11 cycles/result of the Octavo Hailstone-N benchmark. This overhead
ratio remains constant with SIMD scaling.

7. FPGA OVERLAY DESIGN THEMES

From our MXP and Octavo benchmarking, we can draw two general design themes for
soft-processor overlays: ease of modification and separation of flow-control, addressing,
and arithmetic.

To increase the performance of soft-processors for given types of tasks, we only need to
implement in hardware simpler, control-free custom operation pipelines representing
costly or repetitive computations. We can quickly check the initial correctness and
performance of these simple pipelines and complete their verification by using the
benchmark software itself. This hybrid design process reduces both hardware and
software design efforts and suggests that future soft-processor overlays be augmented
via HLS-generated accelerators, which is essentially LegUp’s approach.

The high performance of HLS/HDL benchmark implementations comes from paral-
lelizing many computations executed sequentially as software on soft-processors. These
computations include array indexing, loop counting, calculating branch conditions, and
acting on them. Both MXP and Octavo have special hardware modules for these com-
putations that are essential to approaching hardware-like performance, as they free
the ALU to do useful work. These modules do come at a cost in generality and more
complicated software support.

When fully utilized, both MXP and Octavo execute the benchmarks within an order
of magnitude of the performance of HLS and HDL solutions but with a corresponding
order of magnitude area increase. This area increase affects energy efficiency, depend-
ing on the particular soft-processor architecture, and is another dimension along which
soft-processors overlays should be compared in the future.

APPENDIX

A. THE OCTAVO SOFT-PROCESSOR MICRO-ARCHITECTURE

In this appendix, we detail an updated Octavo soft-processor [LaForest and Steffan
2012] to place previously published work in context [LaForest et al. 2014], fix some
minor errors, and to describe previously unpublished improvements to its address
space and instruction predication.

Figure 2 (Section 2) shows Octavo’s overall architecture split into 10 pipeline stages
(0–9). In stage 0, at the far left, the Instruction Memory (I) issues 36-bit instructions,
composed of a 4-bit opcode (OP), a 12-bit destination operand (D), and two 10-bit
source operands (A/B). In parallel, the BTM computes branches, the AOM generates the
final operands (D′/A′/B′), and the I/O Predication Module (PRD) checks the read/write
Empty/Full bits (E/Fr and E/Fw) of the I/O ports and asserts the I/O Ready (IOR) signal
if all ports used by the instruction are ready. If IOR is not set, then the instruction is
annulled into a no-op and will re-issue later.

Starting at stage 4, in the middle, the A′/B′ operands read into the 36-bit word-wide
Data Memories (A/B), which also contain the I/O ports, and feed their data to the ALU,
which then writes its result (R) to the destination address (D′) in all memories and
modules. The ALU computes basic integer functions: addition/subtraction, full-word

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 3, Article 19, Publication date: May 2017.



19:20 C. E. LaForest and J. H. Anderson

multiplication, and bitwise Boolean operators. Replicating this datapath enables SIMD
operation.

At the end of the control path, at top-right, the Controller (CTL) receives the BTM’s
Branch Destination (BD′) and Jump decision (J) and either issues the appropriate next
PC value or, if IOR is not set, re-issues the same PC value again. It takes two cycles to
read A/B (RD0 and RD1), four cycles for the ALU to produce a result, and two cycles to
write the result back to A/B (WR0 and WR1). Thus, to avoid pipeline hazards, we issue
instructions from eight separate hardware threads in strict round-robin order, without
variation. Within each thread, each instruction completes before the next in the same
thread. However, writes to the Instruction Memory and BTM/AOM take effect after
one thread instruction of latency, since these write destinations are more than eight
stages away from the ALU output and do not complete before the next instruction in
that thread issues.

AOM. Figure 4(a) shows the AOM, which automates addressing calculations. We need
three instances of the AOM, one for each instruction operand (D/A/B), as any one may
access a pointer or other special memory at any time. The AOM adds a selected offset
to the address (A) contained in its associated instruction operand. The offset added
may be a constant Default Offset (DO), a Programmed Offset (PO) with automatic
Programmed Increment (PI), or zero. The ability to add a constant offset to addresses
is useful for threads that share program code but read/write from different regions of
memory. Post-incrementing offsets are useful for operations such as walking through
an array. Zero offsets are useful for addresses that are shared across all threads, such
as addresses of memory-mapped hardware.

The Shared Memory (SM?) and Indirect Memory (IM?) logic modules decode part
of the processor’s address space, set at design time, defining fixed ranges of memory
that either act as absolutely addressed shared resources (i.e., I/O ports) or act as
pointers. Accessing shared memory gates the DO to zero, while accessing indirect
memory overrides the DO to use one of the PO, selected by a subset of the address (A).
Since pointers exist at fixed addresses, simply adding a PO can make them point to any
other address. Running different programs does not require resynthesis of the AOM,
only agreement on the memory map of pointers and shared resources. In this instance
of Octavo, the three AOMs, one for each instruction operand, each implement two PO
and PI entries, for a total of six pointers per thread.

BTM. Figure 4(b) shows the BTM, which executes branches in parallel with instruc-
tions. The BTM monitors the PC and some flags (F) based on the result of the previous
thread instruction: If the PC matches the Branch Origin (BO) address, and the flags (F)
match the desired Branch Flag (BF) condition (e.g., greater-than-zero), then the BTM
generates a Branch Destination (BD′) address and signals the Controller (Figure 4(f))
to perform a jump (J).

Additionally, we can also statically predict the outcome of the branch by setting the
Branch Predict Enable (BPE) bit and also the Branch Predict bit to Taken/Not-Taken.
Then, if the branch does not go as predicted, the BTM raises the Cancel (C) signal,
which gets used by other parts of Octavo to convert to a no-op the ALU instruction
in parallel with the branch (which still proceeds). Since the BTM can both optionally
and statically predict branches either way, we can always place a useful instruction in
parallel with a branch, never requiring an explicit no-op.

Otherwise, if either the PC does not match BO, or F does not match BF, then all
BTM outputs remain at zero, which allows us to take the bitwise OR of the output of
multiple BTMs. This design both avoids slower multiplexers and enables concurrent
BTMs to implement multi-way branches, with necessarily mutually exclusive branch
conditions, in parallel with a single instruction.
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Fig. 4. Major blocks of the Octavo soft-processor.

However, a branch depends on the result of the previous thread instruction, and the
current instruction may get annulled (along with any parallel branches) and re-issued
for other reasons. Since a re-issued instruction always has itself (as a no-op) as its
previous instruction, we have lost the original previous instruction result. A branch
in parallel with the re-issued instruction might then proceed incorrectly. Our solution,
seen in the lower-right of Figure 4(b), preserves copies of the original Jump (J) and I/O
Ready flags out of Stage 3 and delays them to synchronize them with the next thread
instruction. When the next thread instruction reaches Stage 3, we use the delayed I/O
Ready to determine if this instruction is a re-issue of the previous one. If so (i.e., I/O
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Ready is not asserted), then we re-use the delayed Jump flag instead of the current
selected flag, re-creating the original conditions for the parallel branch.

We need one BTM instance for each branch we wish to execute in parallel. If the
number of branches in a program exceeds the number of BTM instances, then we can
manage the BTMs in a manner similar to register allocation, keeping only the “hottest”
branches (e.g., inner loops) in the BTMs and re-loading one BTM for the less-frequently
encountered branches. In this instance of Octavo, we implement four BTMs to support
up to four parallel branches per thread.

PRD (Read). Figure 4(c) shows the I/O Read Predication module connected to one of
the A/B Data Memories in stages 4 and 5. In stage 2, we receive the operand address
from stage 1 and the Empty/Full bits (E/F) for all the I/O read ports in the corresponding
A/B memory. The E/F Select block simply selects one of the E/F bits based on the
address, while the I/O Detect block signals if the address refers to an I/O port.

In stage 3, the E/F Mask block lets the selected E/F bit pass through if the address
refers to an I/O port. Otherwise, the access refers to memory (which is always ready
by definition) and the block will mask the E/F bit (E/Fm) to the “Full” state, indicating
available data. Concurrently, the I/O Active block raises the read enable (rden) line
for the accessed I/O port, if any. However, the I/O Ready signal, which indicates if all
accessed read/write I/O ports are ready, will disable the rden signal if not asserted,
preventing the completion of the read transaction.

Stages 4 and 5 use the post-AOM read address out of stage 3 to both select Read I/O
port data and perform the memory read, then select the correct read value depending if
the address refers to an I/O port, signalled by the pipelined I/O Detect output. Finally,
the I/O Ready signal will zero-out the Read Data if not asserted. We require two I/O
Read Predication modules, one for each of the A and B memories, each addressed by
their corresponding A/B instruction source operand.

PRD (Write). Figure 4(d) shows the I/O Write Predication module, connected to one
of the A/B Data Memories in stages 4 and 5. In stage 2, we receive the operand ad-
dress from stage 1 and the Empty/Full bits (E/F) for all the I/O write ports in the
corresponding memory. The E/F Select block simply selects one of the E/F bits based
on the address, while the I/O Detect block signals if the address refers to an I/O port.
In stage 3, the E/F Mask block lets the selected E/F bit pass through if the address
refers to an I/O port. Otherwise, the access refers to memory (which is always ready by
definition) and the block will mask the E/F bit (E/Fm) to the “Empty” state, indicating
the previously written data was received.

Even though the actual I/O or memory write will not occur until later in the pipeline,
after the ALU, we check the I/O write port status at the same time as the I/O read
ports to keep the predication process simple. If we predicated writes at the point where
they occur later in the pipeline, then we could end up in a situation where we have
already performed the I/O reads, potentially causing side effects (e.g., consuming I/O
data), and cannot complete the instruction due to a full I/O write port. We would then
need to save the instruction state at the write port, possibly from up to eight threads.
Also, the next thread instruction will have issued before then, and we would have to
annul it until the previous I/O write completes, with potentially slow signalling across
multiple pipeline stages.

Thus, in stages 4 and 5, we mask the I/O Detect signal if I/O Ready is not asserted
and pass the resulting is_I/O signal to the ALU, where it will propagate alongside the
instruction until the ALU writes back its result in stage 4. There, the I/O Active block
uses the ALU Address (D′ in Figure 4) and the propagated is_I/O bit to enable the ap-
propriate write enable (wren) line, while the ALU Result proceeds to both the RAM and
Write I/O port. We require two I/O Write modules, one for each of the A and B memories,
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either of which may have their I/O write ports accessed by the D instruction destina-
tion operand. As originally published [LaForest and Steffan 2012], the Write I/O port
output was at stage 4 instead of 5. This decision seemed to save a cycle on I/O, but each
thread issues an instruction every eight clock cycles, while the I/O Reads and Writes
within a thread instruction were only seven cycles apart. This difference sometimes
made the design of accelerator pipelines awkward, particularly if they contained loops.

PRD (Ready/Annul). Figure 4(e) shows the origin of the crucial I/O Ready (IOR)
signal. The All I/O Ready block receives the selected and masked Empty/Full bit (E/Fm)
from each I/O Read and Write Predication (PRD) module, all generated within pipeline
stage 3. It asserts I/O Ready if all the read E/Fm bits are “Full” and all the write E/Fm
bits are “Empty,” indicating that all I/O performed by the instruction can proceed at
once. We express the Annul bit as the inverse of I/O Ready.

CTL. Figure 4(f) shows the Controller, which issues instruction addresses. A small
thread number counter (not shown) indexes the Program Counter Memory (PCM)
to read the PC of the next instruction in the thread, as well as that of the current
instruction (PC-1). The Jump signal from the BTM replaces the PC with the branch
target address BD′. Additionally, if the current instruction was annulled, the Annul
signal selects PC-1 as the final output PC, which will re-fetch the current annulled
instruction from I Memory. The PCM then replaces its stored PC-1 with the output PC,
and its stored PC with the output PC+1, becoming ready to fetch the next instruction
or to re-try the current one if it remains annulled. We must register the path from the
output PC back to the PCM to avoid a critical path, and thus we must also delay the
value of the thread counter by one cycle to write back to the correct PCM entry.

Memory Map. Figure 4(g) illustrates Octavo’s memory map, which treats the 4 kilo-
word write address space of the D operand as four 1 kiloword pages: one for each of the
A, B, and I memories, and a new “High” memory area (H) within which we can map
new hardware extensions (e.g., the AOM and BTM) without requiring I/O ports but at
the price of being “write-only.” The A/B read operands index into their corresponding
A/B data memories and the PC indexes into I memory (not readable by A/B). We decode
writes from the ALU over a single contiguous write address space, enabling writes to
only the necessary memories.
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