EFFICIENT MULTI-PORTED MEMORIES FORFPGAS

Charles Eric LaForest

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engingerin

University of Toronto

Copyright(©) 2009 by Charles Eric LaForest



Abstract

Efficient Multi-Ported Memories for FPGAS

Charles Eric LaForest
Master of Applied Science
Graduate Department of Electrical and Computer Engingerin
University of Toronto

2009

Multi-ported memories are challenging to implement on FRGhice the provided block
RAMs typically have only two ports. In this dissertation weegent a thorough exploration
of the design space of FPGA multi-ported memories by evialgatonventional solutions to
this problem, and introduce a new design that efficiently loimes block RAMs into multi-
ported memories with arbitrary numbers of read and writéspamd true random access to any
memory location, while achieving significantly higher ogtamg frequencies than conventional
approaches. For example we build a 256-location, 32-bipdréed (4-write, 8-read) memory
that operates at 281 MHz on Altera Stratix Il FPGAs while smming an area equivalent to
3679 ALMs: a 43% speed improvement and 84% area reductianagvere ALM implemen-
tation, and a 61% speed improvement over a pure “multipufhipeolementation, although

the pure multipumped implementation is 7.2-fold smaller.



Dedication

to Joy



Acknowledgements

Firstly, I want to thank Prof. Greg Steffan for his supportiaupervision. | still had (and
have) a lot to learn about writing and researching effettive

| also want to thank Dr. Peter Yiannacouras, who answered uegtipns and gave me
essential bits of information as | learnt to work with FPGAs.

And most importantly, all of this would not have been wereat for the support and

patience of my wife. | love you, Joy.



Contents

1 Introduction 1
1.1 Conventional Approaches . . . . . . . . . . . . .. 1
1.2 A More Efficient Approach . . . . . . .. .. ... ... ... 4
1.3 ResearchGoals . . . .. ... . . . . ... . . 5
1.4 Organization. . . . . . . . . . e 6
2 Background 7
2.1 Related FPGAWork . . . . . .. .. . . 7
2.2 Related CMOSWork . . . . . . . . . . . 9
2.3 Stratix lll Architecture . . . . . . . ... e 10
2.3.1 Adaptive Logic Modules (ALMs) . . . . . ... ... ... .. ... 11
2.3.2 M9K and M144K Block RAMs (BRAMS) . . . . . .. ... ... ... 12
2.3.3 Memory Logic Array Blocks (MLABS) . . . .. ... ... ..... 12

2.3.4 Phase and Delay Locked Loops (PLLsand DLLs) ... ... ...12

3 Experimental Framework 13
3.1 MemoryDesigns . . . . . . . . e 13
3.2 CADFLOW . . . . . e e e 14
3.3 MeasuringArea . . . . . . . o i e 41

4 Conventional Multi-Porting 15
4.1 Conventional Implementations . . . . .. .. ... .. ... ... 0.a... 15



4.2
4.3

411 PureALMs . . . . . ..
4.1.2 Replication . . .. .. ... ...
4.1.3 Banking . . . . . .. . .. e
4.1.4 Multipumping . . . . . . ..

Multipumping Implementations . . . . . . ... .. ... . L.

SUMMANY . . . . e e e e e e e e

5 LVT-Based Multi-Ported Memories

5.1
5.2
5.3
5.4
5.5

TheBasicldea . . ... ... .. . . . ... .. ..
Implementingthe LVT . . . . . . . . .. ..
LVT Operation . . . . . . . . . . . e e

Block RAM Requirements . . . . . . .. ... .. ... .. .. ...

Recursive LVT Implementation. . . . . . . ... .. ... ... ......

6 LVT Performance

6.1
6.2

SpeedVs. Area . . . . . ..

Area Breakdown . . . . . ..

7 Multipumping Performance

7.1
7.2

8.1
8.2

SpeedVvs. Area . . . . .. e e

Area Breakdown . . . . . ..

Conclusions

Contributions . . . . . . . e

Future Work . . . . . . . . . .
8.2.1 LVT-Based Memory Based on Pure Multipumped Banks . .. .. .. .
8.2.2 Relaxed Read/Write Ordering . . . . .. ... ... ........

Bibliography

Vi



List of Figures

11
1.2

2.1

4.1

5.1
5.2
5.3

6.1
6.2

7.1
7.2

A multi-ported memory implemented with FPGA logicbleck . . . . . . .. 2
Replication, Banking, and Multipumping . . . . . . .. . ... ... ... 3
Stratix lll Floorplan . . . . . . . . . . . . . 11

Comparison of the speed and area of ALM, M9K, and MLAB 1R/f@emories 16

A generalized mW/nR memory implemented using a Live &dlable . . . . . 22
Live Value Table Operation . . . . . . ... ... ... ... ........ 23
Live Value Table Memory OperationExample . . . . . . ... ....... 25

Speed and area for Pure-ALM, LVT-MLAB, and LVT-M9K 2W/4Remories . 29
Speed and area for Pure-ALM, LVT-MLAB, and LVT-M9K 4W/8Remories . 30

Speed and area for M9K-based 2W/4R multipumped memories. . . . . . 34

Speed and area for M9K-based 4W/8R multipumped memories. . . . . . 35

vii



Chapter 1

Introduction

As FPGAs (Field-Programmable Gate Arrays) continue toease in transistor density, de-
signers are using them to build larger and more complex sysstan-chip that require frequent
sharing, communication, queueing, and synchronizationrgndistributed functional units
and compute nodes—for example, applications that includiéipte FIFO buffers for moving
data between clock domains. These mechanisms are ofteimpdsmented withmulti-ported
memories—memories that allow multiple reads and writes to occur siameously—since they
can avoid serialization and contention.

As another example, processors normally require a muttedaegister file, where more
register file ports allows the processor to exploit a greataount ofinstruction-level par-
allelism (ILP) where multiple instructions are being executed atghme time. However,
FPGA-basedoft processorlave so far exploited little ILP, limited mainly to simplesinuc-
tion pipelines. This is partly due to the fact that multi4@al memories (register files, in this

case) are particularly inefficient to implement on FPGAs.

1.1 Conventional Approaches

It is possible to implement a multi-ported memory using athig basic logic elements of an

FPGA, as illustrated in Figure 1.1, which show®docation memory withn write ports and



CHAPTER 1. INTRODUCTION 2

Wo — E}SO_ ;:Ro

Figure 1.1: A multi-ported memory implemented with FPGA logic blocks, having D
single-word storage locations §), m write (W) ports, and n read (R) ports (encoded as
mW /nR), and n temporary registers . Only read and write data lines are shown (i.e.,

not address lines).

n read ports. As shown, we requife m-to-one decoders to steer writes to the appropriate
memory locations, and D-to-one multiplexers to allow each read to access any memory
location. Note also that the read outputs are registefgd (mplement a synchronous memory
where the output is held stable between clock edges. Thdgmois that this circuit scales
very poorly, with area increasing rapidly with memory demthd the decoding/multiplexing
severely limiting the maximum operating frequency.

It is normally more efficient to implement memories on FPGAsg the provided block
RAMs, each of which can be quite large (e.g., 9Kbits) whilpmarting high operating fre-
guencies (e.g., 580MHz). However, FPGA block RAMs curremtiiovide only two ports
for reading and/or writing. Note that Altera’s Mercury liné Programmable Logic Devices
(PLDs) [2] previously provided quad-port RAMs to supportyait telecom applications—
however, this feature has not been supported in any otheraAdtevice, likely due to the high

hardware cost.



CHAPTER 1. INTRODUCTION 3

(c) Multipumping

Figure 1.2:Three conventional techniques for providing more ports gien a 1W/1R mem-
ory (read and write address values are not depicted, only dat values): Replication (a)
maintains an extra copy of the memory to support each additinal read port, but is lim-
ited to supporting only one write port; Banking (b) divides data across multiple memo-
ries, but each read or write port can only access one specificeamory; Multipumping (c)
multiplies the number of read/write ports of a memory by adding internal data and ad-
dress multiplexers and temporary registers {), and internally clocking the memory at a
multiple of the external clock (which quickly degrades the naximum external operating

frequency).



CHAPTER 1. INTRODUCTION 4

System designers have hence used one or a combination efdhngentional techniques
for increasing the effective number of ports of FPGA blockN® as shown in Figure 1.2.
The first isreplication, which can increase the number of read ports by maintainieglkca
of the memory for each additional read port. However, thihitéque alone cannot support
more than one write port, since the one external write postrba routed to each block RAM
to keep it up-to-date. The secondEnking, which divides memory locations among multiple
block RAMs (banks), allowing each additional bank to supor additional read and write
port. However, with this approach each read or write port@aly access its corresponding
memory division—hence a pure banked design does not trypati sharing across ports.
The third we calFmultipumping” , where any memory design is clocked at a multiple of the
external clock, providing the illusion of a multiple of thember of ports. For example, a
1W/1R memory can be internally clocked at 2X the externajdency to give the illusion of
being a 2W/2R memory. A multipumped design must also incladéiplexers and registers
to temporarily hold the addresses and data of pending reatisvates, and must carefully
define the semantics of the ordering of reads and writes. aVadsonably straight-forward,
the drawback of a multipumped design is that each increabe imumber of ports dramatically

reduces the maximum external operating frequency of theangem

1.2 A More Efficient Approach

In this dissertation we propose a new design for true multtggl memories that capitalizes
on FPGA block RAMs while providing (i) substantially bettrea scaling than a pure logic-
based approach, and (ii) higher frequencies than the roatiging approach. The key to our
approach is a form of indirection through a structure callexl_ive Value TabléLVT), which

is itself a small multi-ported memory implemented in recguafable logic similar to Figure 1.1.
Essentiallythe LVT allows a banked design to behave like a true multi-poted design by
directing reads to appropriate banks based on which bank hals the most recent or “live”

write value.



CHAPTER 1. INTRODUCTION 5

The intuition for why an LVT-based design is more efficien¢ethough the LVT is imple-
mented in reconfigurable logic is because the LVT is muchomaar than the actual memory
banks since it only holds bank numbers rather than full dakaes—thus the lines that are de-
coded/multiplexed are also much narrower and hence morgeetfiy placed and routed. An
LVT-based design also leverages block RAMs, which implemsmory more efficiently, and
has an operating frequency closer to that of the block RAMBelves. Additionally, an LVT-
based design and multipumping are complementary, and wehaiv that with multipumping
we can reduce the area of an LVT-based design by halving ixsnmogn operating frequency.
With these techniques we can support soft solutions for irpolted memories without the

need for expensive hardware block RAMs with more than twaspor

1.3 Research Goals

This research focuses on the implementation of efficientirmpolted memories for FPGAs.

We accomplish this through the following goals:

1. To explore the design space of multi-ported memories dd@A<Pand evaluate the found

designs points in terms of speed and area.

2. To expand this design space by finding and evaluating newge that are faster and

smaller than conventional approaches.



CHAPTER 1. INTRODUCTION 6
1.4 Organization

This dissertation is organized as follows: Chapter 2 residve existing work on FPGA and
CMOS implementations of multi-ported memories. Chaptev@waews the system we cre-
ated to generate ranges of designs. Chapter 4 describesnth@nfiental building blocks we
use in our implementations. Chapter 5 describes the themlpperation of Live Value Tables
and the multi-ported memories they enable. Chapter 6 cagshe performance of different
implementations of Live Value Table-based memories. Ghraptcompares the performance
of multipumping as implemented natively and as applied telValue Table-based memo-
ries. Chapter 8 summarizes our findings and design selsctéomd suggests potential future

directions for improvement.



Chapter 2

Background

Designers use Field Programmable Gate Arrays (FPGAS) tteimgmt custom logic in cases
where it would cost too much or take too long to do so in AppiaaSpecific Integrated Cir-
cuits (ASICs). Such cases include device prototyping, iownedium volume production, and
field-upgradable systems. As the size of the commerciakylave FPGAs have increased,
so have the size and complexity of the designs implementedvelsely, as applications be-
came more demanding, FPGAs began including special-perdpasiware, such as RAM and
multiplier blocks, as part of their architecture. As a cangnce, at some point it became cost-
effective in terms of hardware and development to implensatite processors on FPGAs to
execute complex applications. Supporting Instructiomdléarallelism (ILP) in soft proces-
sors, which requires simultaneously feeding multiple exea units, was one of the original
impulses for the work in this dissertation. In this chaptex,review past work on multi-ported
memories on FPGA, compare our work to similar efforts foteosCMOS multi-ported mem-

ories, and discuss the FPGA architectural features relévayur work.

2.1 Related FPGA Work

There are several prior attempts to implement multi-pomedhories in the context of FPGAS,

mainly for the purpose of soft processor register files. Themotivation is Instruction-Level



CHAPTER 2. BACKGROUND 8

Parallelism (ILP), where simultaneously executing migtipstructions requires multiple con-
current accesses to the contents of a register file.

Most soft uniprocessors without ILP or multithreading siynpse replication to provide
the 1W/2R register file required to support a typical thrperand Instruction Set Architec-
ture (ISA). For example, Yiannacouras explores many cuigtions to the datapath of soft
processors [26] and compares them to the Altera’s Nioslilfaof soft processors [6].

Even soft processors with some ILP may only require a simgydicated 1W/2R regis-
ter file: Carli [9] describes a soft processor that uses Tomasalgorithm to avoid stalls
due to dependencies between instructions and also enalnhesparallel execution of instruc-
tions on multiple execution units. However, the inputs aatpats of the instructions are still
read/written one-at-a-time, and thus no extra memory astexfile ports are required.

One case where multiple instruction operands need to bdtsin@ously read and written
is a form of ILP known as Very Long Instruction Word (VLIW). ADMW processor receives
instructions in contiguous groups stored in a single longdyoence the name. Each execution
unit is connected to one slot in the instruction word, andesithe compiler has already sched-
uled the instructions to avoid dependencies, the execuinits can all proceed in parallel.
One such VLIW soft processor is from Joretsal. [13], where some of the execution units are
custom hardware designed to accelerate a specific apphcadince the custom hardware is
accessible as just another instruction that can executarallel, the interfacing overhead with
the rest of the processor is effectively zero. This is onergta of multi-ported memories en-
abling efficient communication between multiple functibuaits. However, their multi-ported
register file is implemented entirely using the FPGA's rdpurable logic and thus limits the
operating frequency of their soft processor.

On the other hand, Saghet al. [21, 22] implement a fast multi-ported register file for a
VLIW soft processor by exploiting both replication and bartgkof block RAMs. However,
the banked architecture requires that the compiler scheghgjister accesses such that there

are no two simultaneous writes to the same bank, nor readsd@ame data originating from



CHAPTER 2. BACKGROUND 9

execution units connected to different banks. Nonethgllessapproach is sufficient to support
multithreading [11, 14, 17, 18], which is a rapid contextteWwibetween execution threads to
hide instructions with long latencies, since each threairanly read/write its own division
of the register file and only one thread is active at any one.tim

To avoid such access conflicts, Manjikian describes a tn@ama-access multi-ported reg-
ister file that exploits an aggressive form of multipumpiygderforming reads and writes on
consecutive rising and falling clock edges within a prooesycle [16]. His approach avoids
Write-After-Read (WAR) violations by performing all wrgebefore reads. Unfortunately this

design requires that the entire system use multiple-pHasking.

2.2 Related CMOS Work

Although much prior work on multi-ported memories exists éastom CMOS implementa-
tions, most of it focuses on reducing the area of processgstes files to control their power
consumption and delay. Contrary to the previously outlimedk with FPGAS, research on
custom CMOS multi-ported memories tries to find waysdducethe number of ports and
does so using techniques that take advantage of processamanthitectural features, such as
dynamic instruction scheduling, which are not usually fdimsoft processors due to the area
cost.

Built-in memories in FPGAs run at the same intrinsic speaah thie surrounding reconfig-
urable logic, but since they do not suffer from interconmiay, they generally do not become
the bottleneck as on-chip memories do in custom CMOS systé&is®, the area density of
block RAMs is much higher than that of the surrounding systemilt-up from the FPGA's re-
configurable logic. Thus, even seemingly profligate dupliceand partial use of block RAM
resources still have a moderate impact on the total area gétara. This difference from

custom CMOS frees us from having to primarily focus on sawres.



CHAPTER 2. BACKGROUND 10

The techniques used for custom CMOS multi-ported memornielside stream-oriented
hierarchical register file organization [20], storing slwalues directly in the register renaming
map entries [15], applying register renaming to entire lsatkegisters [8,19,25] or arbitrating
between several smaller multi-ported register files 2d5ing multiple banks to reduce the
number of ports per bank along with a second-level “victinmhel register file [7, 10], or
taking advantage of the fact that most register values ame-8ted to buffer a reduced number
of registers [12].

Virtually all of these approaches also make use of the pipdibrwarding paths to reuse
recently calculated values without having to read them déuhe register file, reducing the
number of read ports required. They also take advantageeofefatively low frequency of
instruction result writes to reduce the number of write paittthe expense of infrequent stalls
costing only a few percent in performance. Overall, all ghapproaches depend on exploit-
ing the properties of the processor datapath in which thisteagfiles find themselves, which
reduces their generality. In contrast, our multi-portecdhmges behave in an ideal manner,

without restriction on port selection or access patterns.

2.3 Stratix lll Architecture

Although initially regular arrays of Boolean look-up tab)dip-flops, and programmable rout-
ing interconnect, FPGAs have evolved under performancsspre towards the inclusion of
“hard blocks” that implement particular functions dirgath CMOS logic. In this dissertation,
we focus on the Altera Stratix Ill family and how these harddbis affect which multi-ported
memories are practical. The concepts generally transbatieet devices of other FPGA ven-
dors. For example, other than the different capacitiesptbek RAMs in Xilinx’s Virtex-6
FPGAs would function identically for our purposes. Figurg [3] points out the main features
of the architecture of the Altera Stratix 11l devices and wesctibe the features relevant to

multi-ported memories:

These approaches resemble ours, but target dynamicadigsteil processors. Our approach does not depend
on instruction scheduling.



CHAPTER 2. BACKGROUND

11

Stratix Il E EP3SE50 floorplan

DLLs

I/0 banks

MO9K blocks

DSP blocks

PLLs

M144K blocks

ALMs

DED:D]]:D:D:IIIIIII [T ] MM (T T TTTT T @ITTIT]

EEEEEEEEEEEEEEEEE NSNS

T T T T *IIIIII T T T T T T Il

DIIIIIIIIIIIIIIIIIIIIIIII-IIIIIIIIIIIIIIIIIIIIIIIID

Figure 2.1:Floorplan of Stratix 11l FPGA

2.3.1 Adaptive Logic Modules (ALMSs)

The Stratix Il ALMs each contain two registers, some adaegid, and Look-Up Tables

(LUTs). Memory built using ALMs has virtually no constrasnbn capacity, configuration,

and number of ports, but pays a large area and speed penagity§R.1). The CAD tools may

also require a prohibitive amount of time (over an hour) tcpland route such a memory.



CHAPTER 2. BACKGROUND 12

2.3.2 MO9K and M144K Block RAMs (BRAMS)

Block RAMs are implemented directly in CMOS logic and have fworts that can each func-
tion either as a read or a write port. These memories usereasad run at a higher frequency
than ones created from ALMs, but do so at the expense of haviixgd storage capacity and
number of ports. The Stratix 11l FPGA devices mostly confdi®K block RAMs, which hold
nine kilobits of information in various widths and depthd.a2Awidth of 32 bits, an M9K holds
256 elements. Stratix Il FPGASs also contain larger M144&ckk, which each hold 144 kilo-
bits (as 4k« 32 for example), but exist in much fewer numbers than M9Kshatfastest speed

grade (C2), block RAMs can operate at up to 580MHz [4].

2.3.3 Memory Logic Array Blocks (MLABS)

The Stratix Il FPGA architecture clusters its ALMs into LiocArray Blocks (LABs), each
containing ten ALMs. Some of the LABs can function either agreup of ALMs or as a
single small block of memory, or Memory LAB (MLAB). MLABs prade a halfway point
between ALM and BRAM implementations: they are small, nurasr and widely distributed
like ALMs, but implement memory in a denser, constrained nearike BRAMs. A single
MLAB holds up to 20 words of 16 bits. Unlike other forms of mempowhich perform all
operations on the rising edge of the clock, MLABs read on itbieg edge and write on the
falling edge. MLABs best implement small shift registersl &iFO buffers and not arbitrarily

deep memories.

2.3.4 Phase and Delay Locked Loops (PLLs and DLLS)

Although not directly used to implement memory, DLLs cohtiock skew while PLLs can
multiply the frequency of a clock signal. In later chaptexg will use multiplied clocks to

expand the number of ports to a memory via “multipumping”.



Chapter 3

Experimental Framework

3.1 Memory Designs

In this dissertation we consider only memories of 32-bitredat width, as this is common in
many computing systems and processors. We consider a rimgdteported memory designs
that have at least one write port and two read ports (1W/2&) that all ports are usable simul-
taneously within a single cycle. We do not consider oneeaoite-read (1W/1W) memories as
they are trivial to implement with a single FPGA block RAM. \&so do not consider mem-
ories that may stall (eg., take multiple cycles to returrdrealues should they conflict with
concurrent writes), although such designs would be conmgeiiiture work. Additionally, we
assume that multiple writes to the same address do not onduhat their result is undefined
(similar to block RAMs). Each design is wrapped in a test kasnsuch that all paths origi-
nate and terminate at registers, allowing us to ensure ptopag analysis and to test each
design for correctness. The Verilog sources are genericlamsbt contain any Altera-specific

modules or annotations.

13



CHAPTER 3. EXPERIMENTAL FRAMEWORK 14
3.2 CAD FLow

We use Altera’s Quartus 9.0 to target the Altera StrathEPBSL340F1760C2, a large and
fast device that allows us to compare with published resaitthe Nios Il soft processor [5].
We do not bias the synthesis process to favour area or speidizgiions, nor perform any
circuit transformations such as retiming. We configuredglaee and route process to make
a standard effort at fitting the design with only two consttsi (i) to avoid 1/0O pin regis-
ters to prevent artificially long paths that would affect ttheck frequency, and (ii) to set the
target clock frequency to 1Ghz—an impossibly-high valueciarrent Stratix Il devices—to
optimize circuit layout for speéd We report maximum operating frequency by averaging the

result of place/routes across ten different random seeds.

3.3 Measuring Area

We report area as thetal equivalent areawhich estimates the actual silicon area of a design
point: we calculate the sum of all the Adaptive Logic Modula&Ms) plus the area of the
Block RAMs counted as their equivalent area in ALMs. Alteragously provided the confi-
dential area equivalence of BRAMs for Stratix II. We extrigped the unavailable Stratix 11l

area numbers from the Stratix |l data and other confidenétl.d

1This approach was recommended by an experienced user di/@aarmore practical than iterated guessing.



Chapter 4

Conventional Multi-Porting

In this chapter, we discuss the existing approaches usetttease the number of ports on
memories on FPGAs. We describe, evaluate, and comparertdamna implementations using

a single clock, as well as multipumping implementationshwibth a system clock and an
internal multiplied clock, and outline their respectiveesisand limitations as a prelude to the

discussion of our new approach.

4.1 Conventional Implementations

A simple two-ported memory, with one read and one write pbW{1R) defines the basic con-
ceptual and physical unit of storage from which we build mpdtrted memories. We assume
that each port may access any one location per cycle, andaiband write to the same location
occur in the same cycle, the read port obtains the currenéntmof the location and the write
port overwrites the contents at the end of the cycle (“WAfter-Read” (WAR) operation).

The simplest multi-ported memory that we consider is a 1\Wi28nory. This memory
is interesting because it is not naturally supported by FR®éctures but is commonly used,
for example for soft processor register files. Figure 4.1gllbe area and operating frequency
of 1W/2R memories of varying depth (where the depth is indidey the number next to
each point), and of varying implementation. We use theseltseto discuss the following

conventional techniques for building multi-ported meresron FPGAs:

15



CHAPTER 4. CONVENTIONAL MULTI-PORTING 16

600

. =—=a Repl-M9K
550} 32t02s6 e—e Repl-MLAB
4&—4 Pure-ALM
500l +—¢ MP-M9K 2X
+—+ MP-MLAB 2X
N 450
2
é 400} A
L 32
L 350¢ \
© 64
2 500l
b 300
3210256
250
200
A
15084

0 1000 2000 3000 4000 5000 6000 7000
Equivalent Area (ALMs)

Figure 4.1: Comparison of the speed and area of various ALM, M9K, and MLAB im-
plementations of 32-bit 1W/2R memories of varying depth (asndicated by the number
at each data point). The prefix denotes the implementation tehnique: “Pure” for re-

configurable logic, “Repl” for replication, and “MP” for mul tipumping. The smallest
possible M9K designs have a capacity of 256 elements, henbe two M9K designs are all

overlapping. Placement/routing fail for MLAB designs of depth greater than 64.
4.1.1 Pure ALMs

A straightforward method for constructing a multi-porte@mory on an FPGA is to do so
directly in ALMs—i.e., a design like that shown in Figure 1XlVe evaluate such designs in
Figure 4.1, shown as the Pure-ALM series of points. From therd we see that even a 32-
entry 1W/2R memory requires 864 ALMs for this design. As war@ase depth, area increases
rapidly and operating frequency drops significantly. Thestl obviates the need to use FPGA

memory structures for more efficient multi-ported memaries



CHAPTER 4. CONVENTIONAL MULTI-PORTING 17

4.1.2 Replication

Replication (Figure 1.2(a)) is an easy way to increase thebau of read ports of a simple
memory (i.e., to 1W/nR): simply provide as many copies ofrtemory as you require read
ports, and route the write port to all copies to keep themadgdte. We evaluate replication
in Figure 4.1 for both M9Ks (Repl-M9K) and MLABs (Repl-MLABAII of the Repl-M9K
designs fit into two MO9K BRAMS, such that those points are all@cated in the figure. Repli-
cation requires no additional control logic, hence theseghes are very efficient. For 1W/2R
memories with a depth greater than 256 elements, anotheop®9Ks would be added at
every depth increment of 256 elements—resulting in a redbtislow increase in area as mem-
ory depth increases. We also consider replicated designpased of MLABs (Repl-MLAB).
Unfortunately, Quartus could not place and route any MLAEdd memory with more than 64
elements. Since each MLAB stores the equivalent of 160 AliNsRepl-MLAB implementa-
tion requires much less interconnect than the Pure-ALM @m@ntation but considerably more
than the Repl-M9K implementation. For example, the 32yeRepl-MLAB 1W/2R memory
requires only 198 equivalent ALMs, but still suffers a lovegerating speed of 376 MHz. The
replicated M9K designs (Repl-M9K) are evidently far supeto the alternatives, with an area
of 90 equivalent ALMs and maximum operating frequency of M4z. However, the draw-
back to this approach is that there is no way to provide aatthdiwrite ports with replication

alone—we must pursue other techniques to provide more poites.

4.1.3 Banking

Banking (Figure 1.2(b)) is similar to replication, excepat the memory copies are not kept
coherent; this way, each additional memory supports artiaddl read and write port, provid-
ing an easy way to increase ports arbitrarily (mW/mR). Theveational way to use banking is
to divide memory locations evenly among the banks, suchethett read and write port are tied

to a certain memory division. However, a memory with onlykiag is not truly multi-ported,



CHAPTER 4. CONVENTIONAL MULTI-PORTING 18

since only one read from a certain division is possible ini@gicycle. For this reason we do
not evaluate banked-only memories, although a close e#tioidhe Fmax/area of a mW/mR

banked memory is the corresponding 1W/mR replicated design

4.1.4 Multipumping

Multipumping (Figure 1.2(c)) internally uses an integerltiple of the external system clock
to multiplex a multi-ported memory with fewer ports, givitige external appearance of a larger
number of ports (MW/nR). This requires the addition of nulétkers and registers to hold tem-
porary states, as well as the generation of an internal chouk careful management of the tim-
ing of read-write operations. We further describe the detiimplementing a multipumped

design in the next section.

4.2 Multipumping Implementations

Since multipumped memories multiplex ports over time, theothat read/write operations
are performed must be carefully managed: violating thegqutence of reads and writes would
break the external appearance of them occurring at the seme In particular, writes must
be performed at the end to avoid Write-After-Read (WAR) &imns where an earlier internal
write updates a value before it has been read by a subseaquemntal read. Controlling the
sequence of internal reads and writes requires a Multipagy@ontroller (MPC), a small cir-
cuit that forcibly synchronizes two clock domains: one dn\by a system clock and another
driven by a multiple of the system clock, with both clock donsain-phase and synchronous
to each other. One of the on-chip PLLs can easily generate auelationship. The MPC
generates phase and write-enable signals alongside thgplnedl clock to force the internal
operations controlled by the multiplied clock to occur wathertain phase relationship relative
to the external operations controlled by the system cloak:(d-2-3 1-2-3 ... and not 2-3-1
2-3-1...).



CHAPTER 4. CONVENTIONAL MULTI-PORTING 19

For non-multipumped designs, each block RAM port suppdtteeea read or a write,
hence we use the block RAMs in “simple dual-port” mode, wheport is statically defined
to be for reading or writing. Since multipumped designs timatiplex the block RAM ports
we can potentially exploit “true dual-port” mode, where add RAM port can be dynamically
configured for reading or writing. In particular, we can usis feature to multipump a banked
design: use all of the ports of a banked design to performsreatll all of the reads are com-
plete, then use all the ports to perform writes such thatal©bbRAMSs are updated together. In
other words, the block RAMs are read like a banked memory amevétten like a replicated
memory. Similar techniques have been published by Xilir®§ ghd Actel [1] but only for cer-
tain forms of quad-port memories, whereas our implemesriaupports arbitrary numbers of
read and write ports. True dual-port mode is not free: foatstill FPGAs [4] an M9K block
RAM in simple dual-port mode has 256 locations of 32 bits,levim true dual-port mode it has
512 locations of 16 bits since the RAM output drivers aret$plsupport two reads. Therefore
true dual-port mode requires two M9K block RAMs to create eb82vide memory. Despite
this doubling, the number of block RAMs required remainscpcal since it never needs to
exceed twice the number of read ports: one block RAM pair ¥ergread port, as explained
below. Even an 8W/16R purely multipumped memory would nedy 82 block RAMs.

The following summarizes the design of a pure multi-porteshmary using true dual-port
mode for the block RAMs. Given an arbitrary mW/nR memory,thenber of cycles required
to perform all them writes andn reads follows|m/2 + n/2x], wherez counts the number
of block RAMs. Them /2 term stems from each write being replicated to all the bloAWR
to avoid data fragmentation, making the whole memory apfehave only two write ports.
Then/2z term comes from each block RAM being able to service any twdset once since
the writes replicate their data to all block RAMs. The cglifunction handles cases where
there are either more internal ports than there are exteeadl or write ports, or the number
of internal ports does not evenly divide the number of exdeports. A fractional number

of cycles in a term implies that, for one of the cycles, somesp@main free and some writes



CHAPTER 4. CONVENTIONAL MULTI-PORTING 20

might be done simultaneously with the last reads. The typase is when the number of block
RAMs equals the number of read ports, allowing all reads tpéy&rmed in one cycle while
leaving half the ports available for one of the writes, whichy save one cycle in certain port
configurations. Larger numbers of block RAMs cannot furttegtuce the number of cycles,
which may become impractical for large numbers of ports duth¢ resulting low external
operating frequency.

As a simple example, in Figure 4.1 we implement 1W/2R mensdrsiedouble-pumping
M9Ks (MP-M9K 2X) and MLABs (MP-MLAB 2X)!. While 2X multipumping does halve the
number of M9Ks or MLABs used, the additional overhead of thguired control circuitry
negates any area savings for memories with so few ports. Ebénmm external operating
frequencies of the double-pumped designs are also a littieruhalf those of the replicated
designs (186 MHz for MP-MLAB 2x, and 279 MHz for MP-M9K 2X). Age will demonstrate
later, multipumping can be an important technique to reduea when building memories with

larger numbers of ports.

4.3 Summary

A 1W/2R memory can easily be extended to have more read pypiitsckeasing the amount
of replication, but this technique cannot be used to add mwie ports. A multi-ported
memory implemented purely in ALMs scales poorly. While bagkeasily allows multiple
write ports, such designs must map reads and writes to dngsof the memory, and do not
allow true sharing. Multipumping by itself causes a largepdin operating frequency. In the
next chapter, we introduce a method for transparently magamd keeping coherent banked

memories to effectively allow multiple reahdwrite ports.

1Again, due to Quartus’ difficulty with MLABs, the multipumpg implementation uses simptiual-port
MLABSs only. For 1W/2R only, this does not affect the area dieemal operation.



Chapter 5

LVT-Based Multi-Ported Memories

We propose a new approach to implementing multi-ported memon FPGASs that can exploit
the strengths of all three conventional techniques forraglgorts.Our approach comprises
banks of replicated block RAMs, where a mechanism of indiretion steers reads to read
from the bank holding the most-recent value for a given locabn. Multipumping is orthog-
onal to our approach, and can be applied to reduce the areaneh#ory in cases where a
slower operating frequency can be tolerated, as we denadvadaiter in Chapter 7. We name
our indirection mechanism tHave Value Tabl€LVT), since it tracks which bank contains the

“live” or most-recently updated value for each memory |omat

5.1 The Basic ldea

Figure 5.1 illustrates the basic idea of an LVT-based npdtited memory. The memory is
composed ofn banks {\/, to M,,_1), each of which contains H1'/n R memory (constructed
via replication of block RAMSs) such that is equal to the desired number of read porks (
to R,,_1). Each write port writes to its own bank, and each read partread from any of all
the banks via its multiplexer. The banked memory allows fbiteary concurrent writes, while
the replication within each bank supports arbitrary corenirreads. The LVT is a mW/nR

memory implemented using ALMs.

21



CHAPTER 5. LVT-BASED MULTI-PORTED MEMORIES 22

Read
Addr.

Write
Addr.

Figure 5.1:A generalized mW/nR memory implemented using a Live Value Tale (LVT).
Each write updates its own replicated memory bank (/), and for each read the LVT
selects the memory bank that holds the most up-to-date valufer the requested memory

location.

At a high level, the design operates as follows. During aentota given address, the write
port updates that location in its block RAM bank with the nealue, and the LVT simultane-
ously updates its corresponding location with the bank remitto m — 1). During a read, the
read port sends the address to every bank and to the LVT. @lbéimks return their value for
that location and the LVT returns the number of the write pdrich last updated that location,

driving the multiplexer of the read port to select the outpitthe proper block RAM bank.



CHAPTER 5. LVT-BASED MULTI-PORTED MEMORIES

23

mW/nR mW/nR
x Add x Bank #
Addresses | Bank ” resses | Ban k # b an
W 9. Bank #|| Ro d. Bank #|| = Rg
w, -9.p|Bank#| R, 9-D|[Bank#| 2-R,
: . : : .

Wm_lg—’ Bank # Rn-lﬁd—’ Bank #|| 7= R,_1

\ \

~—pb—

<—b—>

(a) Write Operation (b) Read Operation

Figure 5.2: A Live Value Table (LVT) for a multi-ported memory of depth D with m
write ports (W) and n read ports (R). Each LVT location corresponds to a memory
location, and tracks the bank number of the memory bank that lolds the most recent
write value. Every write updates the corresponding location with the destination bank
number, and every read is directed to the appropriate bank bythe bank number stored
in the corresponding LVT location. The width (b) of the bank numbers islog,(m). The

width (d) of the addresses i$og, (D).

5.2 Implementing the LVT

Figure 5.2 illustrates the overall structure and operatiba LVT for a multi-ported memory
of depthD with m write ports (/') andn read ports R). Each LVT location corresponds to

a memory location, and tracks the bank number of the memory bak that holds the most
recent write value for that memory location. Despite being implemented in ALMs, the area
of a LVT remains tractable due to its narrow width= logs(m). For example, compared to
the 864 ALMs of the 32-element 1W/2R Pure-ALM memory in Figdrl, a LVT of the same
depth with 2R/2W ports uses only 75 ALMsEven with 8W/16R ports, the corresponding
LVT consumes only 649 ALMs.

1A 2W/2R LVT is the smallest meaningful case here, as a memdtyavsingle write port does not need an
LVT.



CHAPTER 5. LVT-BASED MULTI-PORTED MEMORIES 24

During writes, the LVT uses the memory write addresses to update its corresponding
locations with the numbers of the ports performing the writes. These numbers identify the
block RAM banks that hold the most recently written values for those addresses. During
reads, the LVT uses the read addresses to fetch the bank numbers that in turn steer the

outputs of those banksto the read ports. All addresses are of width d = logs(D).

5.3 LVT Operation

As an example of the operation of a Live Value Table, FiguBedgpicts two writes and two
reads to a multi-ported memory similar to the one depictdeégare 5.1. The memory contains
one memory bank for each write poity, and;). Each memory bank is a replicated block
RAM memory with enough ports for each read paof, (and R;). The LVT at the top is
implemented using ALMs only, has the same depth as each nydraok, but stores the much
narrower bank numbers. The write ports place their bank munbthe LVT at the same
address at which they write their data to the banks. The L\Mifrots the output multiplexer of
each read port. The memory begins empty or otherwise ualiaid.

Figure 5.3(a) shows the state of the memory banks and the BT @ort 1, writes the
value 42 to address 3 and poit’; writes 23 to address 2. The values are stored into the
separate memory banks of poltg and 1V, while the LVT stores their bank numbers at the
same addresses.

An access from any read port will simultaneously send theess$dto the LVT and to each
memory bank. The bank number returned by the LVT directs thput multiplexer to select
the output of the block RAM memory bank containing the mostent value for the second
memory element. In Figure 5.3(b), pdti reads from address 3 and thus g&tsrom banko,

while port R, reads from address 2 and gessfrom bankl.



CHAPTERS5. LVT-BASED MULTI-PORTED MEMORIES 25

2WRR 1 2WP2R

I 2W/2R LVT | 2: 2W/2R LVT !

Read —-[F— | Read 22 .[— !
Addr. —~— | Addr. @3 — |
| I | 0 I

Write @3 1 | Write —1~| 1 |
Addr. @%..{| O | Addr. —-|L0 |
1W/2R : 1W/2R :

3 l
W @ T I
042 | — Vo=
T 142 |42
| 1WRR | 1WRR
2. | — =
w, @2 W,
123 1] 23 23
(a) Write Operation (b) Read Operation

Figure 5.3: Example operation of a 2W/2R LVT-based multi-ported memory. during
write operation, W, writes 42 to address @3 and/; writes 23 to address @2, and the
LVT records for each address the block RAM bank that was last witten; during read
operation, R, reads address @2 and?; reads address @3, and the LVT selects the ap-

propriate bank for each read address.



CHAPTER 5. LVT-BASED MULTI-PORTED MEMORIES 26
5.4 Block RAM Requirements

Having memory banks which can hold the entire memory costéamteach write port and
having each of these banks internally replicated once foh e@ad port means that the total
number of block RAMs within all the banks equals the produddhe number of write ports
and read ports, times the number of block RAMs necessaryitbthe entire memory contents
in a single bank. This potentially cubic growth does not pasensurmountable problem
since the number of ports should remain modest in practice. ekample, the rather large
case of a 32-bit 8W/16R multi-ported memory requires 12&bIBAMs for depths of up
to 256 elements. Even the smallest Stratix 11l FPG®3SL50) contains 108 M9K block
RAMs, while mid-range devices contain 275 to 355. The “Ermleali (EP3SE) versions of
these FPGASs contain at least 400 M9K block RAMs. Also, thalidepthe M9K block RAMs
greatly slows down their increase in numbers as the mema@thdecreases. For memories
holding several thousands of elements, deeper block RANIs as the Stratix M144K might
be required. In Chapter 7, we will examine multipumping noethto reduce the number of

required block RAMs.

5.5 Recursive LVT Implementation

An LVT implements a multi-ported memory using ALMs and tHfere grows proportionately
with depth—however, since each location stores only thebigswequired to encode a memory
bank number, the size of this memory remains practical. lld/@eem desirable to repeat
the area-saving process and implement the LVT itself usiogkbRAMSs, managed by a still
smaller, inner LVT. However, we cannot avoid implementingyd using ALMs since FPGAs
do not provide any suitable multi-ported block RAMs with egb write ports and the narrow
width to match the structure of a LVT. Ideally, a number ofroar mW/1r block RAMs could
be used together as a replicated memory to create a mW/nR mema thus a LVT without

the use of ALM-based storage, but no such block RAMs exist@GAs. Additionally, any



CHAPTER 5. LVT-BASED MULTI-PORTED MEMORIES 27

inner LVT used to coordinate block RAMs implementing a largeter LVT would necessarily
be implemented using ALMs and would have the same depth amdotthe same number of
banks and ports as the outer LVT it sought to replace. ThisrihW'T would thus have the

same area as the outer LVT, and hence is not worth it.



Chapter 6

LVT Performance

While an LVT does solve the problem of adding write ports to emmry, it also introduces
additional delay due to the bank number look-up and the reahpultiplexers, and increases
the area due to internal replication of each memory bank.hik ¢hapter and the next we

demonstrate that, despite this overhead, the LVT-baseapip:

1. provides substantially better area scaling than a pgie-lmased approach;

2. operates at higher frequencies than multipumping ajgpesa

6.1 Speedvs. Area

Figure 6.1(a) and Figure 6.2(a) plot the average maximumeatipg frequency (Fmax) versus
area for 2W/4R and 4W/8R memories of increasing depth (eehoy the number next to the
data point). Itis apparent that the pure ALM implementa(idare-ALM) is inefficient: for the
4W/8R memory, 32 elements requires 3213 ALMs and 256 elesmequires 23767 ALMs.
The larger of these pure ALM designs are likely too large tptaetical for most applications.
Looking at the MLAB-based LVT implementations (LVT-MLABYf 2W/4R, the designs
are smaller but achieve a slower Fmax than the correspopdiredALM designs due to inter-

connect delays between the multiple MLABs required to imp#at the full width and depth

28



CHAPTER 6. LVT PERFORMANCE

450 T
=—a | VT-M9K
o e—e | VT-MLAB
+—4 Pure-ALM
400} 128 |
— 256
N
T
E 350 32 32 1
X
©
€
[N
)
6
© 300} 64 4 |
(U]
>
<
250} 128 i
256
200 L L L L L L
0 2000 4000 6000 8000 10000 12000 14000
Equivalent Area (ALMs)
(a) Fmax vs Area
3501 6472 13092
2000 - —— —
1 Memory Banks
Il Live Value Table
[ Output Multiplexers
1500 J
m
=
1
<
©
(O]
—
© 1000} 1
]
C
9
©
2
>
O
L
500} 1
0 PLjre L\‘/T L\‘/T PLjre LVT L\‘/T PL;re L\‘/T PL;re L\‘/T
ALM MLAB M9K ALM MLAB M9K ALM M9OK ALM M9OK
32 elements 64 elements 128 elements 256 elements

(b) Area Breakdown

29

Figure 6.1:Speed and area for Pure-ALM, LVT-MLAB, and LVT-M9K implemen tations

of a 2W/4R memory with an increasing number of memory elemers.



CHAPTER 6. LVT PERFORMANCE

400 T
=—a | VT-M9K
e—e | VT-MLAB
+—4 Pure-ALM
350}
~N
T
= 300}
X
©
€
[N
(0]
[@)]
© 250f
(U]
>
<
200
1500 5000 10000 15000 20000
Equivalent Area (ALMs)
(a) Fmax vs Area
7000 11456 23767
1 Memory Banks
Il Live Value Table
6000} [ Output Multiplexers
7 5000F
=
-
<
© 4000}
(O]
f—
©
)
C
D 3000
©
2
>
O
W 2000}
1000
0 PLjre L\‘/T L\‘/T PLjre L\‘/T L\‘/T PL;re L\‘/T PL;re L\‘/T
ALM MLAB M9K ALM MLAB M9K ALM M9OK ALM M9OK
32 elements 64 elements 128 elements 256 elements

(b) Area Breakdown

30

Figure 6.2:Speed and area for Pure-ALM, LVT-MLAB, and LVT-M9K implemen tations

of a 4W/8R memory with an increasing number of memory elemers.



CHAPTER 6. LVT PERFORMANCE 31

of a memory (see Section 2.3). For the 4W/8R designs, the MbA&:d LVT implementa-
tions are both larger and slower than the corresponding Auké designs. Furthermore, the
MLAB-based designs cannot support memories deeper thatef#erts since Quartus can-
not place and route them. Overall the MLAB-based designsatecompelling, except for
providing an area-Fmax trade-off relative to the pure ALMidas for 2W/4R memories.
From the figures it is evident that the M9K-based impleméwnatare superior. The area
of the 2W/4R and 4W/8R LVT-M9K implementations increasesmmore slowly with depth
than the pure ALM implementation. The 2W/4R 32 and 64 elenmplementations are nearly
co-located probably because the only change is the widthechdldresses from five to six bits,
and each ALM can calculate two Boolean functions of up to sputs, matching the two
addresses from the write ports. Furthermore, as an indicafi their usability, these designs
achieve a clock frequency close-to or better than the 290Mbtk frequency of a NioslI/f soft
processor on the same Stratix Il device [5]. For exampke 4¥/8R version has an operating
frequency ranging from 361 MHz at 32 elements, down to 281 N256 elements, with

enough ports to suppdidur such soft processors.

6.2 Area Breakdown

Figure 6.1(b) and Figure 6.2(b) display the total equivedéeaa of various implementations of
the same 2W/4R and 4W/8R memories, broken down into theipoments. The Pure-ALM
implementation is a single multi-ported memory without @apgcified sub-components: the
synthesis process implements all of the multiplexers, dexsy and storage implicitly. These
all increase in proportion with the depth of the memory aridig become impractically large.
The LVT-MLAB implementation, despite using denser memsuyfers from higher inter-
connect area overhead. The area of the LVT-MLAB memory bamk®ases quickly along
with the memory depth since each MLAB can only store 20 woirfdsoobits. Also, Quartus

could not place and route MLAB-based memories deeper thagleédents. The absence of



CHAPTER 6. LVT PERFORMANCE 32

output multiplexers for the 64-element 2W/4R memory is dua fortuitous optimization by
Quartus: each register in an ALM has two load lines, which relayinate the multiplexer
when there are only two sources.

The LVT-M9K block RAM Memory Banks have the lowest area duér higher density
and lower interconnect requirements. Most of the multiplg>and decoding overhead in the
Pure-ALM and LVT-MLAB implementations becomes implicit ihe CMOS circuitry of the
M9K block RAMs. The area of the LVT-M9K 4W/8R Memory Banks rams constant at 1446
equivalent ALMs since all of the memory depths fit into the samumber of block RAMSs.
Even with the non-trivial overhead of the LVT, the LVT-M9K ptementations consume much
less total area than the alternatives.

The LVTs of the LVT-MLAB and LVT-M9K implementations havedtexact same internal
structure and the same depth as the corresponding Pure-AeMany implementation and
thus also scale proportionately with the depth of the mefnd#pwever, the LVTs only store
the one or two bits required to identify a memory bank, redgdheir growth to tractable
levels. As an example, the area of the LVT of the LVT-M9K 4W/8Rmory ranges from 280
ALMs up to 1977 ALMs: approximately one-tenth the area of tberesponding Pure-ALM
memory. The area of the 4W/8R output multiplexers, whengrggemains constant at 256
ALMs since the number of banks in the LVT-MLAB and LVT-M9K memes also remains
constant. For the 2W/4R memory, the multiplexer area flietibetween 77 and 93 ALMs,
likely due to optimizations made possible when an ALM hag/awo inputs (one from each

bank).

1Slight area variations between the LVTs of comparable LV@kvand LVT-MLAB implementations are
likely due to place/route variations.



Chapter 7

Multipumping Performance

In the previous chapter we observed that MOK implementatminLVT-based multi-ported
memories are faster and smaller than the alternatives-eifidasome applications the achiev-
able Fmax is potentially overkill. In such cases we coulceptially applymultipumping(as
introduced earlier in Section 4.1) to trade Fmax for reduarea as the application allows. In
this chapter we describe and measure multipumping as applie/T-based designs, and also

compare with pure multipumping-based multi-ported menu®yigns.

7.1 Speedyvs. Area

Multipumping can bring about a useful reduction in areadf speed of the original memory is
significantly higher than required by the surrounding systé&igure 7.1(a) and Figure 7.2(a)
compare the maximurexternaloperating frequency (Fmax) and the total area of M9K-based
LVT 2W/4R and 4W/8R memories with 2X and 4X multipumping, radowith the equivalent
pure multipumping (MP) implementations. For all cases,itiernal operating frequency re-
mains approximately equal to the Fmax of the original basaliemory prior to multipumping,
which ranges for the LVT 4W/8R memory from 361 MHz to 281 MHzlas depth increases,
and 523 MHz for all depths of the MP 3X 4W/8R memory. The MP iempéntations are
very nearly all co-located since all the memory depths fi the same number of M9K block

RAMs. The small differences are due to the increasing wifléddressing.

33



CHAPTER 7. MULTIPUMPING PERFORMANCE 34

450 :
=—a VT 1X
o—e | VT 2X 32 64
400f | &—a LVT 4X hn
*+— MP 2X
256
350
~
T
= 300
= 32t~0256
£
£ 250
(]
(o)
©
@ 200t 32 64
é 128 256
150}
100} 32 64 128 256
59 ‘ ‘ ‘ s s ‘ s
00 300 400 500 600 700 800 900 1000
Equivalent Area (ALMs)
(a) Fmax vs Area
1000

1 Memory Banks _
Il Live Value Table
[ Output Multiplexers
800 | [ Multi-Pumping Overhead | _ 1

600 T

4001

Equivalent area (ALMs)

200

. . . . . . . . . . . . . . . .
LVT LVT LVT MP LVT LVT LVT MP LVT LVT LVT MP LVT LVT LVT MP

11X 2X 4X 2X 1X 2X 4X 2X 1X 2X 4X 2X 1X 2X 4X 2X
32 elements 64 elements 128 elements 256 elements

(b) Area Breakdown

Figure 7.1:Speed and area for M9K-based 2W/4R multipumped memories: ahVT mem-
ory with multipumping factors of 1X (a 2W/4R memory with no mu ltipumping), 2X (a
2W/2R memory with two internal cycles), and 4X (a 2W/1R memoy with four internal

cycles), and a pure multipumping memory (MP 2X).



CHAPTER 7. MULTIPUMPING PERFORMANCE 35

400

=—a | VT 1X

350

300F

250

2001
32 t‘ZSG 32 64

Average Fmax (MHz)

150} 256

yau 128

256

0 500 1000 1500 2000 2500 3000 3500 4000
Equivalent Area (ALMs)

(a) Fmax vs Area
4000

1 Memory Banks
Il Live Value Table

3500F | = output Multiplexers 1

[ Multi-Pumping Overhead
3000f i

25001

2000 —

1500

Equivalent area (ALMs)

1000}

500

L L L L L L L L L L L L L L L

LVT LVT LVT MP LVT LVT LVT MP LVT LVT LVT MP LVT LVT LVT MP

1X 2X 4X 3X 1X 2X 4X 3X 1X 2X 4X 3X 1X 2X 4X 3X
32 elements 64 elements 128 elements 256 elements

(b) Area Breakdown

Figure 7.2:Speed and area for M9K-based 4W/8R multipumped memories: ahVT mem-
ory with multipumping factors of 1X (a 4W/8R memory with no mu ltipumping), 2X (a
4W/4R memory with two internal cycles), and 4X (a 4W/2R memoy with four internal

cycles), and a pure multipumping memory (MP 3X).



CHAPTER 7. MULTIPUMPING PERFORMANCE 36

Despite the high internal operating frequencies, dividimgm by a multipumping factor
does bring about a harsh external speed penalty. For exathelélW/8R LVT 2X multi-
pumped implementations in Figure 7.2(a) operate extgriaalfrequencies ranging from 176
MHz to 149 MHz, which may still be practical speeds. The MP B¥lementations also hold
at 174 MHz. For either implementation, it is evident thatyostinall multipumping factors can
be used before the drop in Fmax becomes too great to be @ladhithough we have tested
multipumping factors of up to eight, we expect that most giesiwill use a factor of two or
three at most.

Furthermore, although the pure multipumping (MP) impletagans seem to have better
performance and a greatly reduced area, a multipumpingrfaéttwo is only possible for
1WI/2R (Figure 4.1) and 2W/4R memories (Figure 7.1(a)) beedlne underlying block RAMs
have only two ports. Pure multipumping memories with morgpwill always require a mul-
tipumping factor of at least three or four, which will quigldirop the Fmax. By comparison,
a multipumping factor of two is always possible for any LVT may with an even number
of read ports. The slower drop in speed of an LVT memory as timeber of ports increases
(Figure 7.1(a) vs. Figure 7.2(a)) is a consequence of iatgrenternal parallelism, instead of

the mostly sequential operation of a pure multipumping ngmo

7.2 Area Breakdown

The primary benefit of multipumping is reducing the area efitiemory banks at the expense
of external clock frequency. Although the area of the menf@nyks reduces proportionally to
the amount of multipumping, the LVT does not scale down asmaunl limits the overall area
reduction.

As discussed in Section 5.4, the number of block RAMs in a ipaited LVT memory
is proportional to the product of the number of read and wpitets. Since multipumping

divides the number of internal read ports, the number ofloR&Ms per bank is reduced by



CHAPTER 7. MULTIPUMPING PERFORMANCE 37

the same factor. This assumes the multipumping factor canlgdivide the number of read
ports. For example, a 4W/8R LVT memory supports factors af, tiwur, or eight only. The
number of read ports on the Live Value Table reduces to maghkpes the number of output
multiplexers. Figure 7.1(b) and Figure 7.2(b) show how ipulihping affects the area of each
of these components for the same LVT 2W/4R and 4W/8R memuite using factors of
two (2X) and four (4X), compared to a factor of one (1X) as tlhsdline non-multipumped
case, which is identical to the LVT-M9K bars of Figure 6.18md Figure 6.2(b). The figures
also show the area breakdown of the equivalent pure muligog(MP) memories.

For LVT memories, the multipumping factor exactly dividbs area of the memory banks
by itself since now only one-half or one-quarter the numbiénternal read ports exists, which
also reduces the area of the output multiplexers by the satie For the 4W/8R memory,
the area of the Live Value Table shrinks by only 24% for 2X a6#éc¥or 4X on average since
its number of write ports remains unchanged. This fact ssigg®at the narrower but more
numerous write port multiplexers and decoders have thesargipact on the area of memories
implemented using ALMs. The “Multipumping Overhead” fract contains the additional
overhead of multipumping such as the Multipumping Congmlinternal multiplexers, and
temporary registers. Regardless of the depth of the memmiyipumping introduces a small,
nearly constant overhead: 145 ALMs for 4W/8R LVT 2X multippimg, and 219 ALMs for
4AW/8R LVT 4X on average. Summed together, these individhahges to the 4W/8R LVT
memories reduce the total area by an average of 36% for 2Xpuniping, and 54% for 4X.
The unchanged number of write ports in the LVT primarily listhow much we can reduce the
area. In Section 8.2.2, we will propose a relaxation of neate ordering to allow the number
of LVT and memory bank write ports to be reduced.

The pure multipumping memories (MP) use much less area s$iregedo not require a
Live Value Table or Output Multiplexers, nor use as many bIB&AMs since their banks are
not replicated. For example, the 4W/8R MP 3X memory in Figiu&(b) uses only eight
MOK block RAMs inside a total equivalent area of 511 ALMs, diiieh 105 are multipumping



CHAPTER 7. MULTIPUMPING PERFORMANCE 38

overhead. Unfortunately, pure multipumping memories tendave higher minimum multi-
pumping factors and thus slower Fmax than LVT memories astinaer of ports increases.
In Section 8.2.1, we will explore the idea of using pure nmuithping memories with a small

number of ports to potentially improve the efficiency of L\d&sed memories.



Chapter 8

Conclusions

FPGA systems provide efficient block RAMs, but with only twor{s. Conventional ap-
proaches to building memories on FPGAs with a larger numbeods are either very area
inefficient, slow, or both. We introduced a smaller and fastglementation for multi-ported
memories based on the Live Value Table (LVT)—a small, naymowilti-ported memory im-
plemented in logic elements that coordinates read and acitesses such that a block RAM
banked memory appears like a true multi-ported memory. &gelting multi-ported memories
provide true Write-After-Read (WAR) random access to anye/afrom an arbitrary number
of ports, without the need to schedule reads and writes.

For example, using a LVT controlling 32 M9K block RAMs, we wable to implement a
256-element 12-ported (4W/8R) multi-ported memory whigemtes at 281 MHz on Altera
Stratix Il FPGAs while consuming an area equivalent to 38E91s: a 43% speed improve-
ment and 84% area reduction over the equivalent pure ALMempintation, and a 61% speed
improvement over a pure multipumping implementation, dedgeing 7.2x larger. The higher
speeds of our LVT-based designs presented the possilfiyolmanging speed for area by ap-
plying multipumping. On average, 2X multipumping reduclked total area by 36%, while 4X
did so by 54%. Our designs also allowed for lower and moretjmaanultipumping factors

than pure multipumping implementations as the number daspocreased.

39



CHAPTER 8. CONCLUSIONS 40
In summary, our exploration of the design space led us tetiman conclusions:

1. LVT-based multi-ported memories are superior to lodevent-based designs in both

area and speed,;

2. LVT-based implementations are faster than pure multgogimplementations although

with an area cost;

3. pure multipumping implementations can be sufficienté ttumber of required ports or

external operating frequency are modest.

8.1 Contributions

In this dissertation, we make the following contributions:

1. we present the first thorough exploration of the designespadFPGA multi-ported mem-

ories;

2. we evaluate conventional methods of building FPGA-basetti-ported memories and

confirm that they do not scale well;

3. we introduce thd.ive Value Table(LVT), an efficient mechanism for implementing
multi-ported memories with an arbitrary number of read andeaports without im-

posing any constraints on the order or location of reads artdsy

4. we demonstrate that LVT-based designs are smaller atet tasn pure reconfigurable
logic implementations, as well as faster and more scal&iale pure multipumping im-

plementations as the number of ports increases;

5. we evaluate the impact of multipumping on LVT-based desig provide a complemen-

tary area/speed trade-off.



CHAPTER 8. CONCLUSIONS 41
8.2 Future Work

In this section we describe potential design avenues thahare aggressive than those we have
presented so far: a way to build an even more efficient LVedatesign using multipumping,

and relaxing read/write ordering to ease constraints od&iseyn of the multi-ported memory.

8.2.1 LVT-Based Memory Based on Pure Multipumped Banks

If even moderately multi-ported block RAMs became ava#airh FPGAS, some very signif-
icant area improvements to LVT-based multi-ported mensoweuld follow. For example,
doubling the number of read and write ports on a block RAM wiaukan needing only half
as many memory banks to support the write ports of an LVT-dbasemory, with each bank
containing only half as many replicated memories to sertheeread ports, resulting in need-
ing only a quarter of the number of block RAMs necessary tostroct a given LVT-based
multi-ported memory. Furthermore, halving the number ofdsareduces the width of the LVT
by one bit. Given that a typical LVT has a width of only thretshar less, eliminating one will
significantly reduce its area.

Although most FPGAs do not provide block RAMs with more thao fports, some of
the smaller pure multipumping memories might provide usabibstitutes. This speculation
is supported by the interesting performance of the ‘MP 2X'/2R/pure multipumping de-
sign from Figure 7.1: 255 equivalent ALMs at 279 MHz, usingrfé19K block RAMs. If
we used this memory to construct the banks of the ‘LVT 1X’ 4R/8/T-based memory in
Figure 7.2, two banks would be required instead of four, walh bank internally replicated
once to support the read ports, for a total of four 2W/4R meesoiThis sums to only 16 M9K
block RAMs instead of 32 for a conventional LVT-based impéstation, and even including

the additional area overhead of multipumplinige area of the memory banks would decrease

1This is the pessimistic case. For example, all of the muftiped memories could share a single multipump-
ing controller.



CHAPTER 8. CONCLUSIONS 42

by 29%, while the area of the LVT would be halved. It is easyde Bom Figure 7.2(b) that
these changes would significantly reduce the area of theesient 4W/8R ‘LVT 1X’ imple-
mentation. The impact on speed is harder to predict due tiathe changes in the structure of
the memory banks, but it is conceivable that the operatieguency would remain near that of

the underlying 2W/4R pure multipumping memory.

8.2.2 Relaxed Read/Write Ordering

The primary obstacle to getting the most area benefit frontipurhping is the relatively small
area reduction of the LVT since the number of write ports carte divided. The writes must
all occur together after the reads to prevent WAR violatidhae relax the read/write ordering
and allow writes to occur before all of the reads have coredlethen time-multiplexing the
internal write ports becomes possible. The multipumpimgoiacan now divide both the num-
ber of internal memory banks and the number of write portshernLive Value Table, further
improving the area reduction of multipumping.

For example, with a multipumping factor of two and the read&vorderingpreserved
our 4W/8R multi-ported memory example internally becomd®&44R memory. Halving the
number of read ports only halves tszeof the memory banks and reduces the size of the
LVT to a lesser degree. By comparison, if we allow relaxedifwate ordering, then the
multipumping factor can also divide the number of write pgnivhich will in turn divide the
numberof memory banks in addition to their size and further redinedrea of the LVT. In
effect, except for the small overhead of the multipumpingtod circuitry, the entire 4W/8R
memory would internally reduce to a 2W/4R instance whiclsusaout 75% less hardware.
This quadratic area reduction is immediately visible whemparing the 2W/4R and 4W/8R
LVT entries in Figure 7.1(b) and Figure 7.2(b), as well aslV&-M9K entries in Figure 6.1(b)
and Figure 6.2(b).

Relaxing the read/write ordering requires the designerctedule the reads and writes

2This assumes that the multipumping factor can evenly dithéenumber of write ports.



CHAPTER 8. CONCLUSIONS 43

to the multi-ported memory to avoid WAR violations which Wdweorrupt data. For example,
given our 4W/8R example multi-ported memory with a multigaing factor of two and relaxed
read/write ordering, the reads and writes will internatkgeeute as two consecutive 2W/4R
sets, each using one half of the external ports. If the desigants to simultaneously read and
write to the same location within a system cycle, both openatmust be grouped in the same
read/write set by performing them on the appropriate ezigrarts. If the designer cannot do
this rearrangement, then the write operations must exlglieccur after the conflicting reads,
either by placing them in the following read/write set, otthee next system cycle altogether.
Fortunately, this type of problem is identical to that of degence analysis for optimizing

software loops, and should require no new techniques.



Bibliography

[1] Implementing Multi-Port Memories in ProASREYS Devices.ht t p: / / ww. act el .
com docunent s/ APA Mul ti Port AN. pdf ,July 2003. Application Note AC176,
Accessed Sept. 20009.

[2] Mercury Programmable Logic Device Family Data Sheét.t p: // ww. al t er a.
com | iterature/ds/dsnercury. pdf, Jan 2003. Version 2.2, Accessed Sept.
2009.

[3] Stratix Il  FPGAs. http://ww. altera.confliterature/br/
br-stratixIIIl.pdf, August 2007. Version 1.2, Altera brochure, Accessed
Sept. 2009.

[4] Stratix Il Device Handbook Volume 1, Chapter 4: TriMatrEmbedded Memory
Blocks in Stratix Ill Devices. http://wwv. al tera.com |iterature/hb/

st x3/ st x3_siii51004. pdf, May 2008. Version 1.8, Accessed Sept. 2009.

[5] Nios Il Performance Benchmarkist t p: / / www. al tera. com | i t er at ur e/ ds/

ds_ni os2_perf. pdf,June 2009. Version 4.0, Accessed Sept. 2009.

[6] Nios Il Processor Reference Handbook. http://ww. altera.con
| iterature/ hb/nios2/ n2cpu_nii5vl. pdf, March 2009. Version 9.0,
Accessed Sept. 2009.

44



BIBLIOGRAPHY 45

[7]

[8]

[9]

[10]

[11]

[12]

[13]

BALASUBRAMONIAN, R., DWARKADAS, S., AND ALBONESI, D. H. Reducing the
complexity of the register file in dynamic superscalar pssces. InMICRO 34: Pro-
ceedings of the 34th annual ACM/IEEE international sympmson Microarchitecture
(Washington, DC, USA, 2001), IEEE Computer Society, pp-23tB.

BREACH, S. E., MJAYKUMAR, T. N., AND SOHI, G. S. The anatomy of the register file
in a multiscalar processor. MICRO 27: Proceedings of the 27th annual international

symposium on Microarchitectu(®ew York, NY, USA, 1994), ACM, pp. 181-190.

CARLI, R. Flexible MIPS Soft Processor Architecture. Tech. rfassachusetts Insti-

tute of Technology, Computer Science and Artificial Inggince Laboratory, June 2008.

Cruz, J.-L., GONZALEZ, A., VALERO, M., AND ToPHAM, N. P. Multiple-banked
register file architectures. IISCA '00: Proceedings of the 27th Annual International

Symposium on Computer Architectiew York, NY, USA, 2000), ACM, pp. 316—-325.

FORT, B., CAPALIJA, D., VRANESIC, Z., AND BROWN, S. A Multithreaded Soft Pro-
cessor for SoOPC Area Reduction.A&CM '06: 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machiriagril 2006), pp. 131-142.

FRANKLIN, M., AND SOHI, G. S. Register traffic analysis for streamlining inter-
operation communication in fine-grain parallel processiorMICRO 25: Proceedings of
the 25th annual international symposium on Microarchitee{Los Alamitos, CA, USA,

1992), IEEE Computer Society Press, pp. 236—245.

JONES, A. K., HOARE, R., Kusic, D., FAZEKAS, J.,AND FOSTER J. An FPGA-based
VLIW processor with custom hardware executionFRRGA '05: Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-Prograeihe Gate ArraygNew
York, NY, USA, 2005), ACM, pp. 107-117.



BIBLIOGRAPHY 46

[14]

[15]

[16]

[17]

[18]

[19]

[20]

LABRECQUE, M., AND STEFFAN, J. Improving Pipelined Soft Processors with Multi-
threading. InFPL 2007: International Conference on Field Programmabtagic and
Applications(Aug. 2007), pp. 210-215.

LIPASTI, M. H., MESTAN, B. R.,AND GUNADI, E. Physical Register Inlining. I'6CA
'04: Proceedings of the 31st annual International Sympwesan Computer Architecture

(Washington, DC, USA, 2004), IEEE Computer Society, p. 325.

MANJIKIAN, N. Design Issues for Prototype Implementation of a PigeliSuperscalar
Processor in Programmable Logic. PACRIM 2003: IEEE Pacific Rim Conference on
Communications, Computers and Signal Proces$fugg. 2003), vol. 1, pp. 155-158

vol.1.

MoussALI, R., GHANEM, N., AND SAGHIR, M. Microarchitectural Enhancements for
Configurable Multi-Threaded Soft Processors.FRL 2007: International Conference

on Field Programmable Logic and Applicatiof®ug. 2007), pp. 782—785.

MoussALI, R., GHANEM, N., AND SAGHIR, M. A. R. Supporting multithreading in
configurable soft processor cores.GASES '07: Proceedings of the 2007 international
conference on Compilers, Architecture, and Synthesisiiadoétided Systeniidew York,
NY, USA, 2007), ACM, pp. 155-159.

PALACHARLA, S., bupPPl, N. P.,AND SMITH, J. E. Complexity-effective superscalar
processors. INSCA '97: Proceedings of the 24th annual International Sgsipm on
Computer ArchitecturéNew York, NY, USA, 1997), ACM, pp. 206-218.

RIXNER, S., DaLLY, W., KHAILANY, B., MATTSON, P., KaPAsI, U., AND OWENS, J.
Register organization for media processing.HRCA-6: Proceedings of Sixth Interna-

tional Symposium on High-Performance Computer Architegf2000), pp. 375—386.



BIBLIOGRAPHY 47

[21]

[22]

[23]

[24]

[25]

[26]

SAGHIR, M., AND NAouUS, R. A Configurable Multi-ported Register File Architecture
for Soft Processor Cores. ARC 2007: Proceedings of the 2007 International Workshop
on Applied Reconfigurable Computifigarch 2007), Springer-Verlag, pp. 14-25.

SAGHIR, M. A. R., EL-MAJzouB, M., AND AKL, P. Datapath and ISA Customiza-
tion for Soft VLIW Processors. IiReConFig 2006: IEEE International Conference on

Reconfigurable Computing and FPGE&ept. 2006), pp. 1-10.

SAWYER, N., AND DEFOssez M. Quad-Port Memories in Virtex Devices.
http://ww. xi | i nx.conl support/docunentation/application_

not es/ xapp228. pdf , September 2002. XAPP228 (v1.0), Accessed Sept. 2009.

TSENG, J. H.,AND AsANOVIC, K. Banked multiported register files for high-frequency
superscalar microprocessors.I8CA '03: Proceedings of the 30th annual International

Symposium on Computer Architectidew York, NY, USA, 2003), ACM, pp. 62-71.

WALLACE, S.,AND BAGHERZADEH, N. A Scalable Register File Architecture for Dy-
namically Scheduled Processors.RACT '96: Proceedings of the 1996 Conference on
Parallel Architectures and Compilation Technigu#gashington, DC, USA, 1996), IEEE

Computer Society, p. 179.

YIANNACOURAS, P., STEFFAN, J. G.,AND RoSE, J. Application-specific customiza-
tion of soft processor microarchitecture. HKFPGA '06: Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field PrograrblaaGate ArraygNew
York, NY, USA, 2006), ACM, pp. 201-210.



