Multi-ported Memories for FPGAs via XOR

Eric LaForest, Ming Liu, Emma Rapati, and Greg Steffan ECE, University of Toronto

Multi-Ported Memories (MPM)

- MPM: Memory with more than 2 ports
- Many uses:
 - register files
 - queues/buffers
- FPGA BRAMs:
 - have only 2 ports
- Building MPMs:
 - multiple BRAMs
 - logic elements (ALMs/LEs)
 - clever combinations

Example: 2W/2R MPM

How can we build this?

2W/2R: Pure-ALMs/LEs

Scales very poorly with memory depth

1W/2R: Replicated BRAMS

2W/2R Banked BRAMs

Multiple write ports **H** Fragmented data

2W/2R "Multipumping"

No fragmentation **4** Divides clock speed

Review: The Live Value Table (LVT) Approach (FPGA'10)

Efficient Multi-Ported Memories for FPGAs, Eric LaForest and J. Gregory Steffan, International Symposium on Field-Programmable Gate Arrays, Monterey, CA, February, 2010.

LVT-Based MPM

LVT-Based MPM

Punchline: LVT is a big freq win, but...

An XOR Approach

XOR

- XOR basics:
 - $A \oplus 0 = A$
 - B ⊕ B = 0
- Implication:
 - $A \oplus B \oplus B = A$

Can we exploit XOR to build better MPMs?

Intuition: avoid LVT-table, multiplexing

Goal: a read is only an XOR operation

Focus on one location for now

XOR new value with old value

Most-recently-written bank holds new value XOR old(s)

Add support for second read port---done! (almost) 18

2W/2R XOR Design

Solution: need pipelining to avoid stalling

Generalized XOR Design

Generalized XOR Design

LVT vs XOR

Methodology

Use Quartus 10.0 to target Stratix IV

- Favor speed over area, optimize
- Average over 10 seeds to get Fmax

Measure area as Total Equivalent Area (TEA)

- Expresses area in a single unit (ALMs)
- 1 M9K == 28.7ALMs **

Measure a large design space

- Depth: 32-8192 memory locations
- Ports: 2W/4R, 4W/8R, 8W/16R

Example Layout: 8192-deep 2W/4R

2W/4R

Navigating the Design Space (2W/4R)

	Design that minimizes:		
Depth	Delay	ALMs	BRAMs
32	Equal	LVT	LVT
64	LVT	LVT	LVT
128	LVT	XOR	LVT
256	Equal	XOR	LVT
512	XOR	XOR	LVT
1024	Equal	XOR	LVT
2048	XOR	XOR	LVT
4096	XOR	XOR	LVT
8192	XOR	XOR	LVT

Which is best? That depends...

Summary

2W/4R

	Design that minimizes:		
Depth	Delay	ALMs	BKAMS
32	Equal	LVT	LVT
64	LVT	LVT	LVT
128	LVT	XOR	LVT
256	Equal	XOR	LVT
512	XOR	XOR	LVT
1024	Equal	XOR	LVT
2048	XOR	XOR	LVT
4096	XOR	XOR	LVT
8192	XOR	XOR	LVT

Use LVT when:

- want to minimize BRAMs
 - building <= 128 depth
 - else use XOR, i.e. when:
 - >= 256 & spare BRAMS

4W/8R

	Design that minimizes:		
Depth	Delay	ALMs	BRAMs
32	LVT	LVT	LVT
64	LVT	LVT	LVT
128	LVT	Equal	LVT
256	Equal	XOR	LVT
512	Equal	XOR	LVT
1024	XOR	XOR	LVT
2048	XOR	XOR	LVT
4096	XOR	XOR	LVT

8W/16R

	Design that minimizes:		
Depth	Delay	ALMs	BRAMs
32	LVT	LVT	LVT
64	LVT	LVT	LVT
128	LVT	Equal	LVT
256	Equal	XOR	LVT
512	LVT	XOR	LVT
1024	XOR	XOR	LVT

Conclusions

• Use LVT when

- building up to 128-entry designs
- you want to minimize BRAM usage

• Use XOR when

- building 256-entry or larger designs
- you want to minimize ALM usage
- Interesting Library/Generator?
 - help the designer automatically navigate this space

• Further work

- Exploring "true-dual-port" mode, stalls, power
- Results on other vendor's FPGAs