
Maximizing Speed and Density of Tiled FPGA

Overlays via Partitioning
Charles Eric LaForest

Department of Electrical and Computer Engineering

University of Toronto, Canada

laforest@eecg.toronto.edu

J. Gregory Steffan

Department of Electrical and Computer Engineering

University of Toronto, Canada

steffan@eecg.toronto.edu

Abstract—Common practice for large FPGA design projects is
to divide sub-projects into separate synthesis partitions to allow
incremental recompilation as each sub-project evolves. In contrast,
smaller design projects avoid partitioning to give the CAD tool
the freedom to perform as many global optimizations as possible,
knowing that the optimizations normally improve performance
and possibly area. In this paper, we show that for high-speed
tiled designs composed of duplicated components and hence having
multi-localities (multiple instances of equivalent logic), a designer
can use partitioning to preserve multi-locality and improve per-
formance. In particular, we focus on the lanes of SIMD soft
processors and multicore meshes composed of them, as compiled
by Quartus 12.1 targeting a Stratix IV EP4SE230F29C2 device.
We demonstrate that, with negligible impact on compile time (less
than ±10%): (i) we can use partitioning to provide high-level
information to the CAD tool about preserving multi-localities in a
design, without low-level micro-managing of the design description
or CAD tool settings; (ii) by preserving multi-localities within
SIMD soft processors, we can increase both frequency (by up
to 31%) and compute density (by up to 15%); (iii) partitioning
improves the density and speed (by up to 51 and 54%) of a mesh
of soft processors, across many building block configurations and
mesh geometries; (iv) the improvements from partitioning increase
as the number of tiled computing elements (SIMD lanes or mesh
nodes) increases. As an example of the benefits of partitioning,
a mesh of 102 scalar soft processors improves its operating fre-
quency from 284 up to 437 MHz, its peak performance from 28,968
up to 44,574 MIPS, while increasing its logic area by only 0.85%.

I. INTRODUCTION

Soft overlay architectures can ease design challenges on
FPGAs by making them more software-programmable. Ex-
amples of such systems include VESPA [1], VEGAS [2],
VENICE [3], iDEA [4], [5], Octavo [6], and others [7]–[11]. In
general, overlays provide parallelism through “tiling” (duplicat-
ing in two dimensions) computing elements such as datapaths
and soft processors. Our goals for this work are to discover the
best practices for achieving (i) maximum operating frequency,
and (ii) maximum compute density (the amount of possible
work per unit area) for tiled soft overlays. Notably we explore
tiled designs that operate at much higher than normal clock
frequencies (400 to 500 MHz), exacerbating critical paths.

Tiled designs necessarily contain logically equivalent, du-
plicated circuitry across each tiled element. We refer to this cir-
cuitry as “multi-local” since it operates locally and identically
in multiple instances across a design. Normally, to reduce logic
usage, a CAD tool performs redundancy elimination to optimize
multi-localities down to a single instance (“deduplication”) and
then fans-out its output to all the original locations. While gen-
erally beneficial on a small scale, deduplication may introduce
new critical paths on a larger scale or in higher-speed circuits,

for only a modest reduction in logic usage. Current methods
to control deduplication involve manually micro-managing the
design description or the CAD tool settings on a per-logic-node
basis [12].

A. Partitioning

Partitioning refers to the logical division of a design into
one or more sub-sections, usually at module boundaries, which
then synthesize as separate netlists. The total design remains the
same except for certain optimizations such as register retiming
or (de)duplication, and boolean simplifications, which do not
cross partition boundaries. In this study we find that partitioning
provides a simple and effective method to provide high-level
information to the CAD tool to preserve multi-localities during
synthesis and thus avoid deleterious deduplication. Merely par-
titioning the major datapaths of a tiled system suffices to prevent
harmful global deduplication, while preserving beneficial local
optimizations, for little cost in area. Furthermore, this use of
partitioning causes no significant changes in total CAD time,
granting improved performance “for free” without increasing
the design cycle time.

Rather than focus entirely on maximum operating fre-
quency, we also consider the overall efficiency of the resulting
designs in terms of computation per unit FPGA area per cycle—
in other words, the compute density. A denser implementation
is more desirable to replicate and tile into multicores. We
demonstrate that partitioning improves density by increasing
speed more so than area.

B. Floorplanning

Floorplanning describes the process of spatially pre-
allocating areas on the FPGA device to sub-modules of a larger
project, allowing them to evolve independently as sub-projects
without encroaching on the placement (and thus, the timing)
of other sub-modules. We find that floorplanning has no clear
or predictable benefit to compute density, and always lowers
compute density relative to the same design without a floorplan.
However, these results also show that a designer can tile an
overlay without concern for the placement, proximity, or shape
of each tile, letting the CAD tool find a good solution itself.

Designers do currently use floorplanning and partitioning
as project management techniques to enable incremental re-
compilation in larger, multi-part projects [13]–[15], but solely
to preserve past CAD results, without any focus on improving
performance directly. Similarly, designers leave smaller projects
unpartitioned and free-form to give the CAD tool the freedom to
perform as many global optimizations as possible, knowing that
those optimizations normally improve performance and area.



Core

Core Core

Core

(a) Mesh

Scalar

Lane

Lane

...

(b) Core

Instr.

Mem.

Control

ALU Data
Mem.

Lane
I/O

(c) Scalar
Fig. 1: The major modules used for experiments. Meshes (a) directly

connect the I/O of Cores in a bidirectional North/South/East/West manner.
Each Core (b) contains a Scalar processor with zero or more SIMD

Lanes, all pipelined one instruction behind the Scalar processor for best

performance. When Layered, each SIMD Lane may further pipeline the

instructions to the next Lane. Each Scalar (c) processor contains a simple
Control path and Data path with I/O memory-mapped into the Data

Memory. Each SIMD Lane contains a single Data path.

In this paper, we focus on tiled designs composed of SIMD
lanes of soft processors, and multicore meshes built up from
these. We construct these designs as extensions to the openly
available Octavo1 soft processor [6] whose operating frequency
can reach up to the BRAM limit of 550MHz on Stratix IV
FPGAs, and thus a good candidate for exploring the effects of
tiled scaling and partitioning.

We explore the speed, area, and density of SIMD processors
with 0 to 32 lanes, with and without partitioning, and find
that partitioning preserves multi-locality, increasing speed and
density significantly, and increasing area moderately. We try
and extend these SIMD results by adding instruction pipeline
stages between each SIMD lane to force a sequential depen-
dency between each lane to prevent deduplication. Pipelining
does provide some benefits, but can only crudely approximate
the effects of partitioning and staggers the execution across
SIMD lanes. Finally, we create rectangular meshes (with North,
South, East, and West point-to-point bidirectional links) of
soft processors, with and without SIMD lanes. We find that
constructing high-speed meshes exposes different unconnected
multi-localities, preserved with different partitioning, despite
having the same underlying hardware as in the SIMD study.
Partitioning meshes also increases their speed and density, with
little area increase.

C. Contributions

Our main contribution is demonstrating that partitioning can
preserve the multi-locality of tiled designs, without requiring
detailed per-node micro-management, and without interfering
with other beneficial optimizations or the place-and-route pro-
cess. Partitioning also gives better results than having the CAD
tool indiscriminately either globally remove duplicate logic or
not remove any. In addition, we demonstrate that: floorplanning
provides no predictable benefits to compute density, and gen-
erally lowers it; partitioning the major datapaths of SIMD and
Mesh tiled soft processors improves speed and compute density,
with the improvement increasing with the number of tiles and
without increasing the total CAD time; and that we can force
the CAD tool to preserve multi-locality by pipelining the paths
between connected multiply-local logic instances, albeit also at
the cost of staggered execution, and with no improvement to
unconnected multi-localities.

1Available on GitHub at https://github.com/laforest/Octavo

II. EXPERIMENTAL FRAMEWORK

Test Harness We place our designs inside a synthesis test
harness designed to both: (i) register all inputs and outputs to
ensure an accurate timing analysis, and (ii) to reduce the number
of I/O pins to a minimum as larger designs will not otherwise fit
on the FPGA. The test harness also avoids any loss of circuitry
caused by I/O optimization. Shift registers expand single-pin
inputs, while registered AND-reducers compact word-wide
signals to a single output pin.

Synthesis We use Altera’s Quartus 12.1 to target a Stratix IV
EP4SE230F29C2 FPGA device of the highest available speed
grade. For maximum portability, we implement our designs
in generic Verilog-2001, with some LPM2 components. We
configure the synthesis process to strongly favor speed over
area and enable all relevant optimizations. To confirm the
intrinsic performance of a design without interference from
optimizations—such as register retiming, which can blur the
distinction between the design under test and the test harness—
we constrain the whole design under test to its own design
partition, excluding the test harness. To explore the effects of
duplicate register removal, we sometimes disable this specific
optimization, denoted throughout as “nrdr” (No Removal of
Duplicate Registers).

Place and Route We configure the place and route process
to exert maximal effort at fitting and routing with only two
constraints: (i) to avoid using I/O pin registers to prevent
artificially long paths that would affect the clock frequency, and
(ii) to set the target clock frequency to 550MHz, which is the
maximum clock frequency specified for M9K BRAMs. Setting
a target frequency higher than 550MHz does not improve
results and could in fact degrade them: for example, a slower
derived clock would aim towards an unnecessarily high target
frequency, causing competition for fast routing paths.

Frequency We report the unrestricted maximum operating
frequency (Fmax) by averaging the results of ten place and
route runs, each starting with a different random seed for initial
placement. We construct the average from the slow-corner
timing reports which assume a die temperature of 85◦ and a
supply voltage of 900mV. Note that minimum clock pulse width
limitations in the M9K BRAMs restrict the actual operating
frequency to 550MHz, regardless of actual propagation delay.
Reported Fmax in excess of this limit indicates timing slack
available to the designer.

Area and Density We also average the area over the ten
random initial seeds. We measure area as the count of equivalent
Adaptive Logic Modules (eALMs) in use, which include the
equivalent silicon area of hard blocks such as M9K BRAMs
(28.7 ALMs each) and DSP blocks (29.75 ALMs each) as
reported by Wong et al. [16]. We calculate compute density as
total Peak MIPS (over all datapaths) per 100 eALMs. By itself,
a Stratix IV ALM roughly contains two 6-LUTs, two flip-flops,
and two full-adders with carry-chain logic.

III. FLOORPLANNING A SCALAR CORE

We initially explored floorplanning multiple tiles in sepa-
rate and adjacent floorplans to preserve their multi-localities,

2Library of Parametrized Modules (LPM) describes hardware as modules
instead of inferring it automatically from behavioral code.



4 6 8 10 12 14 16 18 20
Number of columns (LABs)

4

6

8

10

12

14

16

18

20
Nu

m
be

r o
f r

ow
s 

(L
AB

s)

43

44

45

46

47

48

49

50

Av
g.

 D
en

si
ty

 (P
ea

k 
M

IP
S 

pe
r 1

00
 A

LM
)

Fig. 2: Heat map of average density of a Scalar Core over the range of 4x4

to 20x20 LAB floorplans. (A Logic Array Block contains a column of 10

ALMs with local interconnect.) White squares indicate where the design
did not fit in the floorplan.

contain their critical paths, and thus improve performance.
However, this approach gives the CAD tool a harder place-
and-route problem to solve for otherwise identical hardware,
and thus always gave worse results. Knowing this limitation,
our new goal was to find a floorplan layout that would act
as a hint to the CAD tool to enable the logic of a single
tile to fit better into the structure of the FPGA hardware
and improve performance, prior to any tiling. The Stratix
FPGA architecture [17] places each logic resource type (ALMs,
BRAMs, DSPs, etc...) into columns which span the height
of the device and contain only one resource type each. Each
cell in these columns has a relatively tall, narrow rectangular
shape, and thus has more horizontal routing passing over it
than vertical. We hypothesized that some floorplan shapes might
take advantage of the cell aspect ratio and routing directional
bias to improve logic usage and performance. We could then
preserve the post-placement layout inside the floorplan, and
simply “rubberstamp” the optimized tile across the FPGA.

Figure 2 shows a heatmap of the density of a Scalar Core
when floorplanned into rectangular areas ranging from 4x4
to 20x20 LABs (Logic Array Blocks), with DSP and BRAM
block excluded: The CAD tool may use DSP and BRAMs from
outside the floorplan if necessary, and may move the floorplan
anywhere on the FGPA to get good access to resources. A LAB
contains a column of 10 ALMs with local interconnect. A Scalar
Core requires over 64 LABs of logic area within the floorplan
to successfully fit. The coordinates of a point on the heatmap
denote a floorplan of the same rectangular shape, with the origin
as the opposite corner. White squares indicate where the design
did not fit in the floorplan.

As expected, forcing a tight fit (e.g.: less than 10x10) gen-
erally reduces Fmax, and thus density, due to difficult routing.
Any looser fit results in a middling density since the floorplan
poses fewer constraints on placement and routing. Thus, even
having a mostly full floorplan (or entire FPGA device) will
not negatively affect density, regardless of geometry, but will
also not improve it. A “sweet spot” at the 6x12 and 12x6
points, where the density jumps up by about 10% from about

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
SIMD Lane Count

360

380

400

420

440

460

480

500

520

540

560

A
v
g
. 

F
m

a
x
 (

M
H

z
)

Flat (nrdr)

Per-Lane

Flat

Fig. 3: Average Fmax of soft processor Cores with 0 to 32 SIMD lanes,
partitioned as one unit (“Flat”), one unit but with no removal of duplicate

registers (“nrdr”), and with the Scalar processor and each SIMD Lane

placed in their own partitions (“Per-Lane”). The “Flat” Fmax decreases
due to excessive deduplication of multi-local logic. The “Per-Lane” and

“nrdr” partitioning schemes preserve multi-local logic, thus a higher

Fmax.

47 to almost 52 Peak MIPS per 100 eALMs, suggests that an
optimum floorplan shape does exist: the 8x9 and 9x8 points
enclose the same area, but have lower density.

However, if we compare the floorplanned density results
with the density of the same unfloorplanned Scalar Core in
the next section, we see that even an ample floorplan has
a noticeable negative impact on density: with no floorplan
constraint, the Scalar Core reaches a density of 54 Peak MIPS
per 100 eALMs: 4% higher than the 6x12 and 12x6 sweet spots,
and about 14% higher than most other floorplan geometries.

Overall, floorplanning generally reduces density, re-
gardless of shape and size, and provides no predictable
benefit. Thus, barring project management concerns, a
designer should tile an overlay without floorplanning,
letting the CAD tool find a good placement solution itself.

IV. PARTITIONING SCHEME DEFINITIONS

Throughout the remainder of this paper, we refer to various
partitioning schemes with shorthand labels. In increasingly fine-
grained order: “Flat”, which places the entire design inside one
partition; “nrdr”, identical to “Flat” except with no removal
of duplicate registers; “Per-Core”, which places each soft
processor into separate partitions; and “Per-Lane”, which places
each scalar processor and each of its SIMD lanes into their own
separate partitions. We implement these schemes by declaring
one or more modules as separate design partitions in the CAD
tool. We do not consider schemes combining “nrdr” with “Per-
Lane” or “Per-Core” as they always yielded worse results
since not only would we prevent inter-module optimizations,
we would also prevent any internal and usually beneficial
optimizations.



(a) Flat (373 MHz) (b) nrdr (456 MHz) (c) Per-Lane (489 MHz)
Fig. 4: Fanout of the source nodes of the top 100 critical paths for a

“Flat”, “nrdr”, and “Per-Lane” partitioned 32-lane SIMD Core. The
“Flat” critical paths (a) reach 373 MHz, and originate from 21 centrally

placed nodes, resulting from deduplication optimizations, fanning out over

the entire design. The “nrdr” critical paths (b) originate from 43 nodes,
distributed (and duplicated) more evenly over the design, and reach 456

MHz. Finally, the “Per-Lane” critical paths (c) originate from 64 nodes,

further spread out over the design, reaching 489 MHz.

V. PARTITIONING A SIMD CORE

Many overlays increase parallelism by tiling datapaths in a
SIMD manner. We extended the Octavo soft processor [6] to
support SIMD processing and observed the same logic in each
SIMD lane consistently appearing in the worst critical paths,
with their propagation delay increasing with the number of
SIMD lanes. This multiply-local logic included the instruction
distribution pipelines within each SIMD lane, as well as any
common instruction decoding logic, such as the I/O address
decoders. The CAD tool deduplicated all instances across all
SIMD lanes, worsening the fanout distance of the remaining
instance as the number of lanes increased. Using partitioning
to preserve the multi-local logic avoids these artificial critical
paths.

Our Scalar Core supports SIMD operations by duplicating
its datapath once for each SIMD Lane and feeding instructions
to all Lanes in lock-step, but lagging one instruction behind the
Scalar Core (Figure 1(b)). Using fewer pipeline stages lowers
Fmax, while more pipeline stages do not significantly improve
it. Each SIMD Lane contains its own copy of the instruction
pipeline registers to scale them with the number of SIMD Lanes.
We must explicitly duplicate the registers in the Verilog source
itself since the CAD tool will not automatically do so to control
longer paths caused by increasing fanout [12].

Figure 3 shows the average maximum operating frequency
(Fmax) of a soft processor Core with 0 to 32 SIMD lanes when
partitioned as a whole unit (“Flat”), or same with no removal
of duplicate registers (“nrdr”), and with the Scalar processor
and each SIMD Lane placed in their own partitions (“Per-
Lane”). Under “Flat”, Fmax decreases from 555 to 372 MHz
due to excessive logic optimization: the CAD tool deduplicates
equivalent local logic in each Lane down to a single instance
which fans out to all SIMD Lanes, introducing critical paths
which worsen as the number of Lanes increases. Both the
“nrdr” and “Per-Lane” partitioning schemes preserve the
multiply-local logic in each Lane, thus limiting fanout distance
and preserving Fmax to up to 482 MHz, a 30% gain over
“Flat”.

Figure 4 illustrates the preservation of multi-locality when
we partition SIMD Lanes, or simply disable duplicate register
removal, by spatially plotting on the FPGA device the fanout

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
SIMD Lane Count

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
v
g
. 

A
re

a
 I
n
c
re

a
s
e
 (

e
A

L
M

s
)

Flat (nrdr)

Per-Lane

Fig. 5: Average area increase (eALMs) of “Per-Lane” and “nrdr”
partitioning schemes, for Cores with 0 to 32 SIMD Lanes, relative to the

“Flat” area. For reference, the “Flat” area ranges linearly from 1,027 to

25,779 eALMs, over 0 to 32 SIMD Lanes.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
SIMD Lane Count

47

49

51

53

55

57

59

61

63

A
v
g
. 

D
e
n
s
it

y
 (

P
e
a
k
 M

IP
S
 p

e
r 

1
0

0
 e

A
L
M

)

Per-Lane

Flat (nrdr)

Flat

Fig. 6: Average compute density (Peak MIPS per 100 eALMs) for “Per-
Lane”, “nrdr”, and “Flat” partitioned Cores with 0 to 32 SIMD Lanes.

of each source node in the top 100 critical paths of a 32-lane
SIMD Core. The “Flat” critical paths (4(a)) reach 373 MHz and
originate from 21 centrally placed nodes resulting from a dedu-
plicated instruction pipeline fanning out over the entire design.
The “nrdr” critical paths (4(b)) originate from 43 instruction
pipeline nodes, distributed (and duplicated) more evenly over
the design, and reach 456 MHz. Finally, the “Per-Lane” critical
paths (4(c)) originate from 64 nodes (mostly I/O port address
decoders) further spread out over the design, reaching 489 MHz
because we both preserved multi-locality across partitions and
allowed optimizations within each partition.

Figure 5 shows the increase of the average area (in eALMs)
of Cores with 0 to 32 SIMD Lanes, under the “nrdr” and “Per-
Lane” partitioning schemes, relative to the “Flat” area. While
“nrdr” and “Per-Lane” use more area than “Flat” since they
prevents logic deduplication, the “nrdr” scheme does so in-
discriminately, preventing optimizations which would normally
occur inside “Per-Lane” partitions, resulting in a consistently
larger total area. For reference, the “Flat” area ranges linearly
from 1,027 to 25,779 eALMs, over 0 to 32 SIMD Lanes.

Figure 6 combines the results of Figures 3 and 5 into a
chart of the compute density, measured in Peak MIPS per
100 eALMs, of the “Per-Lane”, “nrdr”, and “Flat” partitioning
schemes for Cores with 0 to 32 SIMD Lanes. Partitioning
“Per-Lane” improves density once a design grows to the point
of introducing new critical paths if multiply-local logic gets
globally optimized into a single instance. Thus, the “Flat”



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
SIMD Lane Count

−10

−5

0

5

10

15

20

25

30
A

v
g
. 

%
 D

if
fe

re
n
c
e

Fmax
Fmax (nrdr)
eALMs
eALMs (nrdr)
Density
Density (nrdr)

Fig. 7: Average percent difference in Fmax, area (eALMs), and compute

density (Peak MIPS per 100 eALMs) of Cores with 0 to 32 SIMD Lanes,

under “Per-Lane” and “nrdr” partitioning schemes, relative to “Flat”
partitioning. The solid lines compare “Per-Lane” over “Flat”, while the

dashed lines compare “nrdr” over “Flat”. A greater positive difference

denotes a greater increase relative to “Flat”.

scheme provides the best density with 4 SIMD Lanes or fewer
(almost 63 at 3 Lanes, a roughly 5% increase over “Per-Lane”
and “nrdr”), while the multi-locality preservation of “Per-Lane”
improves density for larger number of SIMD Lanes (approx.
54.5 at 32 Lanes, a roughly 14% increase over “Flat”). The
“nrdr” scheme’s consistently larger area reduces its density to
below that of “Per-Lane”, despite having similar Fmax.

Figure 7 compares the results from Figures 3, 5, and 6 as
the average percent differences in Fmax, area (eALMs), and
compute density (Peak MIPS per 100 eALMs) of Cores with
0 to 32 SIMD Lanes, under “Per-Lane” and “nrdr” partitioning
schemes, relative to “Flat” partitioning. The solid lines compare
“Per-Lane” over “Flat”, while the dashed lines compare “nrdr”
over “Flat”. A greater positive difference denotes a greater
increase relative to “Flat”. “Per-Lane” and “nrdr” always in-
crease Fmax, by as much as 31%, with a corresponding 15%
in compute density. However, the consistently 5% larger area
of “nrdr” lowers its density to below that of “Per-Lane”, thus
we do not consider “nrdr” in later experiments. Finally, for 4
SIMD Lanes or fewer, “Flat” has 5 to 10% better density due to
its greater logic optimizations and smaller fanout distances.

For SIMD Cores, partitioning “Per-lane” results in
the greatest increase in Fmax and density compared to
keeping the entire Core within a single partition (“Flat”),
even when also disabling removal of duplicate registers
(“nrdr”). “Per-Lane” partitioning preserves the multi-
locality within each SIMD Lane, avoiding the excessive
fanout of instruction pipelines and I/O port address
decoders otherwise optimized to a single instance by the
CAD tool, while allowing beneficial local optimizations
within each partition. The improvement from partitioning
increases with the number of SIMD Lanes, reflecting the
increasing multi-locality.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
SIMD Lane Count

360

380

400

420

440

460

480

500

520

540

560

A
v
g
. 

F
m

a
x
 (

M
H

z
)

Partitioned (16 Layers)
Partitioned (8 Layers)
Partitioned (32 Layers)
Partitioned (4 Layers)
Partitioned (1 Layer)
Partitioned (2 Layers)

Flat (32 Layers)
Flat (16 Layers)
Flat (8 Layers)
Flat (4 Layers)
Flat (2 Layers)
Flat (1 Layer)

Fig. 8: Average Fmax (MHz) of “Flat” and “Per-Lane” partitioning of
layered SIMD Cores, for 2, 4, 8, 16, and 32 layers, over the same total

number of Lanes. The solid lines repeat the original single-layer SIMD

results. The greatest increases happen at the limit cases where each layer
contains a single SIMD Lane.

VI. LAYERING A SIMD CORE

From Section V, we know that a SIMD Core implemen-
tation with fewer SIMD Lanes reaches a higher Fmax due to
lower instruction fanout, with or without deduplication of multi-
local logic. Thus, we could divide N SIMD Lanes into M
“layers” each containing N/M SIMD Lanes, with one Lane
also acting as an instruction distribution pipeline stage to the
next layer. Each successive layer lags the previous one by
one instruction. Also, as the number of layers increases, we
also effectively re-introduce the instruction distribution pipeline
registers which the “Flat” variant optimizes away. However,
these new registers sequentially depend on each other, thus
the CAD tool cannot deduplicate them and increase their
fanout. We explore all layering combinations for soft processor
configurations with [1, 2, 4, 8, 16, 32] SIMD lanes placed in the
same increasing sequence of layers, up to N layers containing
1 SIMD Lane each.

Figure 8 shows the impact on the average Fmax (MHz) of
“Flat” and “Per-Lane” partitioning of layered SIMD Cores, for
[1, 2, 4, 8, 16, 32] layers, over the same total numbers of Lanes.
The greatest increases happen at the limit cases where each
layer contains a single SIMD Lane. For 32 lanes, the Fmax of
“Per-Lane” increases by only 30 MHz (+6%), compared to 65
MHz (+17%) for “Flat”, which also benefits more throughout.
Overall, “Per-Lane” partitioning of a single-layer SIMD Core
always performs better than any layered “Flat” version, and
without necessarily staggering execution across layers. Layer-
ing SIMD Lanes has little effect on total area (less than a 2%
increase at most).

Sequentially pipelining SIMD Lanes into layers pre-
serves their multi-locality in a way the CAD tool cannot
optimize away, coarsely reproducing the effects of “Per-
Lane” partitioning of each SIMD Lane. If a designer
cannot use partitioning, then pipelining provides the next
best alternative. However, partitioning by itself avoids the



TABLE I: Partitioned Meshes with 32 Datapaths

Shape SIMD Datapaths Scheme Fmax Area Density
(WxH) Lanes (Total) (MHz) (eALMs)

Scalar Core

1x1 0 1 Flat 555 1,027 54.0

4x8 0 32 Flat 362 36,379 31.8
4x8 0 32 Per-Core 481 36,651 42.0

1-Lane SIMD Core

1x1 1 2 Flat 540 1,799 60.0
1x1 1 2 Per-Lane 547 1,904 57.5

4x4 1 32 Flat 380 32,226 37.7
4x4 1 32 Per-Core 438 32,718 42.8
4x4 1 32 Per-Lane 468 34,348 43.6

3-Lane SIMD Core

1x1 3 4 Flat 518 3,313 62.5
1x1 3 4 Per-Lane 539 3,632 59.4

2x4 3 32 Flat 385 29,865 41.3
2x4 3 32 Per-Core 412 30,313 43.5
2x4 3 32 Per-Lane 461 32,321 45.6

31-Lane SIMD Core

1x1 31 32 Flat 374 25,096 47.7
1x1 31 32 Per-Lane 473 28,385 53.3

TABLE II: Partitioned Meshes with 102 Datapaths

Shape SIMD Datapaths Scheme Fmax Area Density
(WxH) Lanes (Total) (MHz) (eALMs)

1x1 0 1 Flat 555 1,027 54.0

17x6 0 102 Flat 287 115,655 25.3
17x6 0 102 Per-Core 434 115,245 38.4

6x17 0 102 Flat 284 114,803 25.2
6x17 0 102 Per-Core 437 115,775 38.5

programming complications of staggered execution and
will always reach a higher Fmax.

VII. PARTITIONING MESHES

To contrast with SIMD parallelism, we tile a number of
Scalar and SIMD soft processor Cores into rectangular Meshes
(Figure 1(a)) with horizontal and vertical point-to-point bidi-
rectional links, and compare them to their building block
Core in isolation. Tables I and II compare the Fmax (MHz),
area (eALMs), and density (Peak MIPS per 100 eALMs) of
various Scalar and SIMD Cores tiled into rectangular Meshes of
various shapes and sizes, under three increasingly fine-grained
partitioning schemes: “Flat”, which keeps the entire mesh in a
single partition; “Per-Core”, which places each Core (including
its SIMD lanes, if any) into a partition; and “Per-Lane”, which
places each Scalar Core, and each SIMD Lane, into their own
separate partitions. For single-Core Meshes (1x1), “Per-Core”
and “Flat” are equivalent, so we show “Flat” only.

Table I compares Meshes with a total of 32 datapaths,
along with their respective Core used as a building block,
ranging from a 4x8 32-node Mesh of Scalar Cores, down to
a 1x1 Mesh composed of a single 31-Lane SIMD Core. Under
“Flat” partitioning, the dominating critical paths originate in the
deduplication of a 3-bit free-running thread counter, found in
the Control logic of each Core (see Figure 1), which does not
depend on the contents of any memory or the output of any
logic. Thus, the CAD tool considers them logically equivalent
and optimizes them down to a single instance. The fanout from

(a) Flat (331 MHz) (b) Per-Lane (489 MHz)
Fig. 9: Fanout of the source nodes of the top 100 critical paths for “Flat” and

“Per-Lane” partitions of a 102-core 17x6 tiled mesh of Scalar Cores. The

“Flat” critical paths reach 331 MHz and originate from only 2 centrally
placed nodes. In contrast, the “Per-Lane” critical paths originate from 61

unrelated and dispersed nodes, reaching an Fmax of 489 MHz.

this single counter instance causes a drop in Fmax proportional
to the number of Mesh nodes. We can demonstrate this drop
by simply separating the Cores into their own partitions (“Per-
Core”) to preserve the multi-locality of the thread counter,
with Fmax improving in proportion to the number of Mesh
nodes: a 4x8 Mesh of Scalar Cores improves its Fmax by
33%, while the equivalent but half-size 4x4 Mesh of 1-Lane
SIMD Cores see a proportional improvement of 15%, and the
quarter-size equivalent 2x4 Mesh of 3-Lane SIMD Cores see a
7% improvement. Note that all these Meshes have similar total
areas, so the gain from “Per-Core” partitioning only depends on
the number of Cores, not their individual area.

Even after “Per-Core” partitioning, Mesh nodes with SIMD
Lanes still have to preserve the multi-locality of their instruction
pipeline and I/O port address decoders. Partitioning “Per-Lane”
suffices, since this scheme places each Scalar component of
each SIMD Core into its own partition, and thus also preserves
the multi-locality of the thread counter. In each case shown in
Table I, when going from “Per-Core” to “Per-Lane” partition-
ing, the Fmax increases with the number of datapaths in each
Core: the 4x4 Mesh of 1-Lane Cores improves by 7%, the 2x4
Mesh of 3-Lane Cores improves by 12%, and the 1x1 Mesh of a
single 31-Lane SIMD Core improves by 26%. Once we preserve
all the multi-localities, the final Fmax of all the different 32-
datapath Meshes lie within a 4% range.

Table II shows two shapes (17x6 and 6x17) of a Mesh of
102 Scalar Cores, the largest number possible before running
out of M9K BRAMs3. Spanning the entire FPGA device (see
Figure 9), this 102-node Mesh uses 67% of all logic, broken
down by Quartus as: 76% of all memory bits, 74% of all flip-
flops, and 24% of all ALUTs. The aspect ratio of the 102-core
Mesh has negligible effect on speed and area, and partitioning
“Per-Core” improves Fmax by 51 to 54%, again showing the
preservation of the multi-locality of the thread counter and that
our gains do not depend on being able to spatially separate each
datapath, as Figure 4 might imply.

3Each Scalar Core uses 12 M9K BRAMs, leaving 11 unused out of 1235.



Figure 9 illustrates the fanout of the source nodes of the
top 100 critical paths for “Flat” and “Per-Lane” partitions of
a 102-core 17x6 tiled mesh of Scalar Cores. The “Flat” critical
paths reach 331 MHz, and despite having no shared instruction
pipelines or address decoders, originate from only 2 centrally
placed nodes resulting from the deduplication of free-running
thread counters common to the Control logic in all Cores (see
Figure 1), now fanning out over the entire design. In contrast,
the “Per-Lane” critical paths originate from 61 unrelated and
dispersed nodes, and reach an Fmax of 489 MHz.

Since partitioning prevents deduplication of multi-local
logic, it increase the area of a tiled design. However, the area
increases only proportionally to the size of the preserved
multi-local logic, not from partitioning itself. For example,
the area of the 102-core 6x17 Mesh increases by less than 1%
under “Per-Lane” partitioning, reflecting the tiny area of the
preserved multi-local 3-bit counters. At the other extreme, the
area of the 1x1 Mesh with 32 datapaths increases by 13% due
to the larger area of multi-local SIMD instruction pipelines and
address decoders. In the middle, the area of the 4x8, 4x4, and
2x4 Meshes (also with 32 datapaths) increases by 8% or less
since the multi-localities include both the smaller counters and
the larger instruction pipelines and address decoders. In all
cases, no relation exists between the increase in Fmax and the
increase in area.

The changes in Fmax and area as we scale-up Meshes
suggest that: (i) we may be getting near-optimal speed preser-
vation from the CAD tool when partitioning; (ii) the CAD tool
introduces some unknown area overhead, causing a drop in
density, even though we added no extra hardware when tiling.
Under “Per-Lane” partitioning, tiling a Scalar Core 32 times in
the 4x8 Mesh decreases Fmax only 13% (with similar decreases
for the 4x4 and 2x4 Meshes). Increasing the tiling 3.18x further
to 102 cores decreases Fmax by only an additional 9%, down
to 78% of the original speed of a single Scalar Core. A 22%
drop in speed over 102x scaling supports our original intuition
that multiple concurrent tiles should run at similar speeds to a
single tile.

Intuitively, we expect that tiling without adding any other
hardware should scale the total area by the number of tiles.
However, when tiling a Scalar Core 32 times (4x8 Mesh) the
area increases 35.7x, and 112.2x when tiling it 102 times: a
10 to 11% overhead. If the area increased as expected, and
assuming the same final Fmax, the density of the 102-core mesh
would reach 42.3, placing it within 8% of the densest 2x4 Mesh
(or within 11% of a similarly speculative 4x8 Mesh). Thus, we
speculate that some area overhead introduced by the CAD tool,
rather than the decrease in Fmax, primarily causes the drop in
density as Meshes scale up.

Partitioning has no significant effect on CAD time. For
example, for the 17x6 102-core mesh, the total CAD time goes
from 2h:28m when “Flat”, to 2h:17m (-7%) when partitioned
“Per-Lane”. Synthesis and Place-and-Route consume most of
the total time. The synthesis time went from 0h:18m to 0h:12m
(-33%), since the CAD tool can synthesize each partition in
parallel, but still represents only 12 to 8% of the total time.
The Place-and-Route time went from 2h:05m to 1h:55m (-
8%), but still represents 84% of the total, with or without
partitioning. Furthermore, once partitioned for performance,
nothing prevents a designer from using partitioning (and op-

tionally, floorplanning) to enable incremental re-compilation
and reduce future CAD time by containing the effect of design
changes [13]–[15].

Different kinds of tiling (SIMD Lanes vs. Mesh) expose
different multi-localities in the same tile hardware, which
we preserve with different partitioning schemes to recover
lost performance. Partitioning itself has no area impact: any
increase in area purely depends on the area of the preserved
multi-local logic, with no correlation to the amount of
lost/regained performance. The CAD tool preserves the
operating frequency of partitioned tiles extremely well
as their number increases, but introduces an unexplained
proportional area overhead, independent of partitioning,
which may explain the decreasing compute density with
scaling. Lastly, partitioning has no significant effect on
total CAD time, even without incremental recompilation.

VIII. RELATED WORK

Past work on partitioning and FPGAs address a different, but
related problem: how to partition the netlist of an ASIC project
across multiple FPGAs for simulation [18]. Fang and Wu [19],
[20] found that using the design hierarchy to guide partitioning
would lead to higher logic block utilization and lower I/O
pin utilization, which commonly formed the bottleneck when
partitioning over multiple FPGAs, and resembles our avoidance
of high-fanout paths. Some early work by Vahid, Frank, Le,
and Hsu [21], [22] pointed to the advantages of functional
partitioning, the kind we do in this paper, over structural
partitioning, where partitioning occurs after the synthesis of
a final, flattened netlist. They observed a similar control of
the critical paths (and area increase) by avoiding sharing logic
between functions (i.e.: “multi-local” logic).

IX. CONCLUSIONS

Through our study of high-speed tiled FPGA overlays,
we found the notion of “multi-local” (repeated and logically-
equivalent across tiles) logic useful to describe the origin of
the worst critical paths which emerge when tiling datapaths
or even entire processors: By default, the CAD tool performs
redundancy elimination (“deduplication”) on all multi-local
logic, reducing it to a single instance which then fans out to all
tiles, introducing large and unnecessary critical paths for little
area savings.

We found that partitioning the major datapaths of a
high-speed tiled system into separate netlists suffices to
prevent harmful global deduplication of multi-local logic,
while preserving beneficial local optimizations. Partitioning
provides: (i) a simpler approach than the existing per-node
micro-management of a design description or of the CAD
tool settings; (ii) a lower area increase than simply disabling
duplicate register removal in the CAD tool, only depending on
the area of preserved multi-local logic; (iii) greater performance
benefits than forcibly introducing sequential dependencies via
pipelining; (iv) a performance increase that scales with the
number of tiles; (v) improved performance with no significant
change in total CAD time.



X. FURTHER WORK

Although manual partitioning of tiled overlays requires
relatively little work from the designer, we believe the CAD
tool might automatically detect multi-local logic and take some
action other than complete redundancy elimination. (i) The
CAD tool could detect repeated deduplication of the same
logic across multiple modules and declare that logic multi-
local, optionally alerting the designer. (ii) The CAD tool could
“restart” the optimization of multi-local logic after a certain
number of deduplications, ensuring that sufficient copies remain
to avoid large critical paths, while still reducing area. (iii) The
CAD tool could use the location of the multi-local logic to
automatically partition its enclosing modules, automating the
approach we used throughout this paper. Some prior work
by Dehkordi, Brown, and Borer has explored this kind of
automated modular partitioning, but only to control incremental
recompilation time, with no impact on frequency [23].

Since partitioning can increase the operating frequency
more than it does logic area, the power density and power
consumption of the system may also increase. Alternately, the
power consumption may also decrease due to driving fewer
device-wide critical paths when partitioned. For designs under
power constraints, the CAD tool could explore the dynamic and
static power trade-offs of full or partial partitioning.

Finally, although the CAD tool preserves the performance
of partitioned tiles very well as their number increases, it seems
to add an unexplained and consistent area overhead when tiling,
causing a drop in compute density. Future CAD tools should
limit this overhead to better enable large-scale tiled overlays.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge funding from the
Queen Elizabeth II World Telecommunication Congress
Graduate Scholarship in Science and Technology, the Walter
C. Sumner Foundation, Altera, and NSERC. Computations,
totalling over 24 CPU-years, were performed on the GPC
supercomputer at the SciNet HPC Consortium [24]. SciNet
is funded by: the Canada Foundation for Innovation under
the auspices of Compute Canada; the Government of Ontario;
Ontario Research Fund - Research Excellence; and the
University of Toronto. The authors also thank Altera for
providing sufficient Quartus licenses to support our research.

REFERENCES

[1] P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: Portable, Scalable,
and Flexible FPGA-Based Vector Processors,” in Proceedings of the

International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES), 2008, pp. 61–70.

[2] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G.
Lemieux, “VEGAS: soft vector processor with scratchpad memory,” in
Proceedings of the 19th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA), 2011, pp. 15–24.

[3] A. Severance and G. Lemieux, “VENICE: A compact vector processor
for FPGA applications,” IEEE International Conference on Field

Programmable Technology (FPT), pp. 261–268, Apr. 2012.

[4] H. Y. Cheah, S. A. Fahmy, D. L. Maskell, and C. Kulkarni, “A Lean
FPGA Soft Processor Built Using a DSP Block,” in Proceedings of

the ACM/SIGDA international Symposium on Field Programmable Gate
Arrays (FPGA), 2012, pp. 237–240.

[5] H. Y. Cheah, S. Fahmy, and D. L. Maskel, “iDEA: A DSP block
based FPGA soft processor,” IEEE International Conference on Field
Programmable Technology (FPT), pp. 151–158, 2012.

[6] C. E. LaForest and J. G. Steffan, “OCTAVO: An FPGA-Centric
Processor Family,” in Proceedings of the 20th ACM/SIGDA international

symposium on Field Programmable Gate Arrays (FPGA), Feb. 2012, pp.
219–228.

[7] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-core
CPU accelerator,” Proceedings of the 16th International ACM/SIGDA

Symposium on Field Programmable Gate Arrays (FPGA), pp. 222–232,
2008.

[8] M. Labrecque, P. Yiannacouras, and J. G. Steffan, “Scaling Soft Pro-
cessor Systems,” 16th International Symposium on Field-Programmable

Custom Computing Machines (FCCM), pp. 195–205, Apr. 2008.

[9] D. Unnikrishnan, J. Zhao, and R. Tessier, “Application Specific
Customization and Scalability of Soft Multiprocessors,” 17th IEEE
Symposium on Field Programmable Custom Computing Machines

(FCCM), pp. 123–130, Apr. 2009.

[10] F. Anjam, M. Nadeem, and S. Wong, “A VLIW Softcore Processor with
Dynamically Adjustable Issue-slots,” International Conference on Field-

Programmable Technology (FPT), pp. 393–398, 2010.

[11] W. Zhang, V. Betz, and J. Rose, “Portable and Scalable FPGA-Based
Acceleration of a Direct Linear System Solver,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 5, no. 1, pp. 1–
26, Mar. 2012.

[12] R. Scoville, “Register Duplication for Timing Closure,” Altera, Tech.
Rep., 2011. [Online]. Available: http://www.alterawiki.com/uploads/a/
aa/Register Duplication for Timing Closure.pdf

[13] C. Zeh, “Incremental Design Reuse with Partitions,” Xilinx XAPP918

(v1.0), vol. 918, pp. 1–17, 2007. [Online]. Available: http://www.xilinx.
com/support/documentation/application notes/xapp918.pdf

[14] D. Chen and D. Singh, “Line-level incremental resynthesis techniques for
FPGAs,” Proceedings of the 19th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), pp. 133–142, 2011.

[15] Altera, “Best Practices for Incremental Compilation Partitions and
Floorplan Assignments,” Quartus II Handbook Version 13.0, vol. 1,
pp. 1–54, November 2012. [Online]. Available: http://www.altera.com/
literature/hb/qts/qts qii51017.pdf

[16] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. custom CMOS
and the impact on processor microarchitecture,” Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA), pp. 5–14, 2011.

[17] D. Lewis, V. Betz, D. Jefferson, and A. Lee, “The Stratix Routing
and Logic Architecture,” Proceedings of the ACM/SIGDA International

Symposium on Field Programmable Gate Arrays (FPGA), pp. 12–20,
2003.

[18] D. Behrens, K. Harbich, and E. Barke, “Hierarchical Partitioning,”
International Conference on Computer Aided Design (ICCAD), pp. 470–
477, 1996.

[19] W.-J. Fang and A. C.-H. Wu, “Performance-driven multi-FPGA
partitioning using functional clustering and replication,” Proceedings of

the 35th IEEE/ACM Design Automation Conference (DAC), pp. 283–286,
1998.

[20] ——, “Multiway FPGA partitioning by fully exploiting design hierar-
chy,” ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol. 5, no. 1, pp. 34–50, Jan. 2000.

[21] F. Vahid, T. D. Le, and Y.-C. Hsu, “A comparison of functional
and structural partitioning,” 9th International Symposium on System
Synthesis (ISSS), pp. 121–126, 1996.

[22] ——, “Functional partitioning improvements over structural partitioning
for packaging constraints and synthesis: tool performance,” ACM

Transactions on Design Automation of Electronic Systems (TODAES),
vol. 3, no. 2, pp. 181–208, Apr. 1998.

[23] M. E. Dehkordi, S. D. Brown, and T. P. Borer, “Modular Partitioning for
Incremental Compilation,” Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL), pp. 1–6, 2006.

[24] C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig,
T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong,
S. Northrup, J. Pinto, N. Knecht, and R. V. Zon, “SciNet: Lessons
Learned from Building a Power-efficient Top-20 System and Data
Centre,” Journal of Physics: Conference Series, vol. 256, p. 012026, Nov.
2010.


