
Maximizing Speed and Density

of Tiled FPGA Overlays

via Partitioning

Charles Eric LaForest

J. Gregory Steffan

University of Toronto

ICFPT 2013

FPGA Overlay Architectures

• Layer of abstraction over FPGA

– Easier development

– Compile software rather than design hardware

– Typically a soft-processor

• Provides parallelism through “tiling”

– Multiple Cores

– Multiple Datapaths (Vector Processors)

2

Scalar Core: Octavo

3

• A soft-processor on Stratix IV

– 10 stages, 8 threads, 550 MHz in many cases

– Highly configurable and customizable

• Published at FPGA 2012

– “Octavo: an FPGA-Centric Processor Family”

0 1 2 3 4 5 6 7 8 9

ALU0 ALU1 ALU2 ALU3

CTL0 CTL1

I

A/B A/B

Tiling Datapaths

• Attach SIMD Lanes

– Copies of the Scalar Datapath

• Private data memories

• Replicated instruction logic

– Pipelined distribution and decoding

– Not the critical path!

• Intuition: Fmax stays “constant”

Scalar Core

SIMD

SIMD

SIMD

SIMD

4

Experimental Framework

• Quartus 12.1 targeting Stratix IV E230

• Test harness to isolate paths to outside

• Synthesize for speed

– Including full physical synthesis

• Maximum Place & Route effort

• 550 MHz clock target (BRAM Fmax)

• Average results over 10 runs

• Measure area as equivalent ALMs (eALMs)

5

Fmax with Increasing SIMD Lanes

Scalar Core

32 SIMD Lanes

6

Optimized instruction

logic fan-out!

Disabling Duplicate Register Removal

467 MHz

370 MHz

+26% Fmax

7

A Better Way: Partitioning

• Logical division of a design

– Synthesize as separate netlists

– Generally, optimizations do not cross partitions

• Register retiming

• Register de-duplication

• Boolean simplification

8

Partitioning Each SIMD Lane

9

Impact on Critical Paths

Flat

373 MHz

21 Nodes

Duplicate Registers

456 MHz

43 Nodes

Partitioned

489 MHz

64 Nodes

32-Lane SIMD Core

Source node fan-out of

top 100 failing paths

10

Improving Compute Density

Beneficial optimization

Excessive fan-out

11

Improving Compute Density

Lost

optimization

Duplicated registers:

less excessive fan-out

12

Improving Compute Density

Lost

optimization

Partitioning: local optimizations!

13

Area Impact

(Relative to Flat)

14

Partitioned (solid)

Duplicate Registers

(dashed)

Area Impact

Dup. Registers

+5% area

15

Partitioning:

+11-14% area

Summary: SIMD Partitioning

• Scalar Core with 0 to 32 SIMD Lanes

– Tiling datapaths

• Replicated instruction logic

– Pipelined distribution and decoding in each Lane

• Placing each Lane in a Partition

– 32 Lanes: 372 MHz  482 MHz (+30%)

• Area increase from partitioning: 11-14%

– Reflects area of preserved replicated logic

• Better to not partition for a few Lanes!

– 4 lanes or less have better compute density

– Local optimizations outweigh increased fanout

16

Partitioning!? Really!?

• Can we get the same results in another way?

• “Layering” replicated logic:

– Introducing sequential dependency via pipelining

• Not about breaking critical paths!

• Isolating instances of replicated logic

– Prevents optimization of replicated logic

– Staggers execution of each layer

17

Layering a SIMD Core

1 Layer with 4 Lanes Scalar

SIMD

SIMD

SIMD

SIMD

18

Layering a SIMD Core

2 Layers with 2 Lanes

Scalar

SIMD

SIMD

SIMD

SIMD

19

Layering a SIMD Core

4 Layer with 1 Lane

Scalar

SIMD

SIMD

SIMD

SIMD

Staggered SIMD execution!
20

Layering a SIMD Core

2
4

8
16 32

1

Flat: +65 MHz (+17%)

21

Layering a SIMD Core

Partitioned: +30 MHz (+6%)

Flat: +65 MHz (+17%)

22

Replicating Entire Processors

• Connect processors in a pipelined Mesh

• Entire processors replicated

• No critical paths between processors

• Intuition: Fmax stays “constant”

Scalar/SIMD

Scalar/SIMD

Scalar/SIMD

Scalar/SIMD

Scalar/SIMD Scalar/SIMD
23

Critical Paths of Meshes

Flat

331 MHz

2 nodes

Partitioned

489 MHz

61 nodes

Mesh of 102 Cores

Source node fan-out

of top 100 failing paths

24

Partitioning Meshes

• Mesh of 102 Scalar Cores

• Bottleneck: optimized 3-bit counter

– Round-robin thread counter in each Scalar Core

– No inputs, but identical and synchronized states

• Placing each Core in a Partition

– Avg. Fmax: 284 MHz  437 MHz (54%)

• Only a 22% Fmax drop over 102x scaling!

• Area increase from partitioning: 0.85%

– No relation between Fmax and area increases

– Mysterious 10-11% area overhead from CAD tool

• No significant increase to CAD time!

25

Summary

• Tiled designs contain replicated logic

– Forms the critical paths in large tilings

• Useless optimizations causing excessive fanout

– Becomes significant at higher speeds

• Partitioning avoids this problem

– Simpler than per-node management

– Lower area than disabling duplicate removal

– Better performance than sequential dependencies

– Benefit scales with the number of tiles

– Area increase only proportional to replicated logic

– No significant change to total CAD time
26

Further Work

• The CAD tools could automatically…

– Detect repeated optimizations across modules

• Tag the replicated logic and/or alert the designer

– “Restart” optimization

• Keep performance and save (some) area

• Only if substantial replicated logic area

– Partition modules containing replicated logic

• Power Analysis of Partitioning

– Could go either way…

• CAD tool mysteriously adds area when tiling

– Main source of density reduction when tiling

27

Acknowledgements

• Funding:

– Queen Elizabeth II World Telecom. Congress

– Walter C. Sumner Foundation

– Altera

– NSERC

• Computing:

– SciNet GPC supercomputer

• 24 CPU-years of Quartus runs

– Altera

28

