Maximizing Speed and Density of Tiled FPGA Overlays via Partitioning Charles Eric LaForest J. Gregory Steffan University of Toronto **ICFPT 2013**

FPGA Overlay Architectures

- Layer of abstraction over FPGA
 - Easier development
 - Compile software rather than design hardware
 - Typically a soft-processor
- Provides parallelism through "tiling"
 - Multiple Cores
 - Multiple Datapaths (Vector Processors)

Scalar Core: Octavo

- A soft-processor on Stratix IV
 - 10 stages, 8 threads, 550 MHz in many cases
 - Highly configurable and customizable
- Published at FPGA 2012

- "Octavo: an FPGA-Centric Processor Family"

Tiling Datapaths

- Attach SIMD Lanes

 Copies of the Scalar Datapath
- Private data memories
- Replicated instruction logic
 - Pipelined distribution and decoding
 - Not the critical path!
- Intuition: Fmax stays "constant"

Experimental Framework

- Quartus 12.1 targeting Stratix IV E230
- Test harness to isolate paths to outside
- Synthesize for speed
 Including full physical synthesis
- Maximum Place & Route effort
- 550 MHz clock target (BRAM Fmax)
- Average results over 10 runs
- Measure area as equivalent ALMs (eALMs)

Disabling Duplicate Register Removal

A Better Way: Partitioning

- Logical division of a design
 - Synthesize as separate netlists
 - Generally, optimizations do not cross partitions
 - Register retiming
 - Register de-duplication
 - Boolean simplification

Impact on Critical Paths

Flat 373 MHz 21 Nodes Duplicate Registers Partitioned 456 MHz 43 Nodes

489 MHz 64 Nodes 0

Area Impact

Summary: SIMD Partitioning

- Scalar Core with 0 to 32 SIMD Lanes
 Tiling datapaths
- Replicated instruction logic
 - Pipelined distribution and decoding in each Lane
- Placing each Lane in a Partition
 32 Lanes: 372 MHz → 482 MHz (+30%)
- Area increase from partitioning: 11-14%
 Reflects area of preserved replicated logic
- Better to not partition for a few Lanes!
 - 4 lanes or less have better compute density
 - Local optimizations outweigh increased fanout

Partitioning!? Really!?

- Can we get the same results in another way?
- "Layering" replicated logic:
 - Introducing sequential dependency via pipelining
 - Not about breaking critical paths!
 - Isolating instances of replicated logic
 - Prevents optimization of replicated logic
 - Staggers execution of each layer

Layering a SIMD Core

2 Layers with 2 Lanes

4 Layer with 1 Lane

Staggered SIMD execution!

Layering a SIMD Core

Layering a SIMD Core

Layering a SIMD Core

Replicating Entire Processors

- Connect processors in a pipelined Mesh
- Entire processors replicated
- No critical paths between processors
- Intuition: Fmax stays "constant"

Critical Paths of Meshes

Partitioning Meshes

- Mesh of 102 Scalar Cores
- Bottleneck: optimized 3-bit counter
 - Round-robin thread counter in each Scalar Core
 - No inputs, but identical and synchronized states
- Placing each Core in a Partition
 - Avg. Fmax: 284 MHz → 437 MHz (54%)
 - Only a 22% Fmax drop over 102x scaling!
- Area increase from partitioning: 0.85%
 - No relation between Fmax and area increases
 - Mysterious 10-11% area overhead from CAD tool
- No significant increase to CAD time!

Summary

- Tiled designs contain replicated logic
 - Forms the critical paths in large tilings
 - Useless optimizations causing excessive fanout
 - Becomes significant at higher speeds
- Partitioning avoids this problem
 - Simpler than per-node management
 - Lower area than disabling duplicate removal
 - Better performance than sequential dependencies
 - Benefit scales with the number of tiles
 - Area increase only proportional to replicated logic
 - No significant change to total CAD time

Further Work

- The CAD tools could automatically...
 - Detect repeated optimizations across modules
 - Tag the replicated logic and/or alert the designer
 - "Restart" optimization
 - Keep performance and save (some) area
 - Only if substantial replicated logic area
 - Partition modules containing replicated logic
- Power Analysis of Partitioning
 Could go either way...
- CAD tool mysteriously adds area when tiling
 Main source of density reduction when tiling

Acknowledgements

- Funding:
 - Queen Elizabeth II World Telecom. Congress
 - Walter C. Sumner Foundation
 - Altera
 - NSERC
- Computing:
 - SciNet GPC supercomputer
 - 24 CPU-years of Quartus runs

– Altera