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Abstract

Some minor alterations to the Gullwing virtual machine and to the Flight language kernel allow for multiple processor
to share a common memory. These changes make it possible for an instance of Flight to compile code in memory and have
it executed by another processor under software control. This capability is then used to connect via serial channels multiple
instances of Flight running on such multiprocessors and use the self-extensible nature of Flight to remotely compile code and
make the system appear as a single instance of Flight with parallelism.
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1 Background
The underlying hardware upon which the Flight programming language executes is the Gullwing processor architecture [LaF05a].
It is a simple, second-generation stack architecture without support for interrupts or predefined Input/Output protocols, using
instead memory-mapped, individually controllable I/O lines which are abstracted here as serial communication channels. It is
currently implemented only as an emulator on UNIX platforms.

The Flight programming language itself is a stack-oriented, typeless, dynamic language which is also its own compiler
[LaF05c]. The kernel of Flight is very spartan, containing only what is required to make it self-extensible, thus most software
makes use of a library of code which extends Flight into a more tractable form. The code for these extensions is listed in
Appendix A and is described in detail in [LaF05b].

1.1 Gullwing Pairs
Some trivial alterations to the Gullwing processor and the Flight kernel allow for the conversion of the original uniprocessor
system into a pair which shares a common memory (Figure 1). Each processor has complete, independent and simultaneous
access to memory, and each has a pair of unidirectional serial communication channels to the outside world.

At reset, the Data Stacks of each processor is loaded with an initial value: Processor A gets a zero, while B gets a nonzero
value. When the reset is released, both processors will begin executing at location 0 in memory, which contains a conditional
branch-on-zero instruction. By default, A will enter the NXEC scan-lookup-execute loop of Flight, while B will enter the
SLAVE_LOOP function, which endlessly reads the address contained in SLAVE_TASK and calls to it. SLAVE_TASK is
initially set to run the NULL_TASK, which executes some no-ops and is also used as a coordination semaphore between A and
B.

The example hardware platform used is shown in Figure 2. It is simply a chain of processor pairs, with code input into pair
PA, and outputs visible at PA and P1B.

MEMA B

Figure 1: Pair Of Gullwing Processors

P P0 P1

A B A AB B

Figure 2: Chain Of Pairs
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2 Shared-Memory Communication
Since processors A and B share the entirety of the memory, it is possible to divide a program between them. By this method
features absent from hardware, such as interrupts and communication controllers, can be simulated (or at least, approximated)
in software. This method is also the basis for serial channel communication, as shown in Section 3.

To distinguish between the processors and the tasks they run, whichever is running NXEC is known as the ’master’, while
the one which runs SLAVE_LOOP is know as the ’slave’. By default A is master and B is slave. It is possible to have two
masters or two slaves, but these cases are not considered here.

2.1 Master/Slave Echo Demo
In this first demonstration, the master receives strings at PA and instructs the slave to echo them at PB. The slave reads from
the same input buffer and executes the same fundamental code than the master would if it was echoing to PA. All the source
shown is received and compiled by the master.

The first function, slave-wait, simply sets the SLAVE_TASK to the address of the NULL_TASK.

: slave-wait
l# NULL_TASK l# SLAVE_TASK (!) ;

write-task calls the string output function, then reassigns itself to the null task so that it only runs once.

: write-task
c $>
j slave-wait

slave-write sets the write-task as the SLAVE_TASK.

: slave-write
l# write-task l# SLAVE_TASK (!) ;

This is simply an alias to make the code look consistent.

: master-read
j >$

The NULL_TASK is used as a semaphore. The master checks the address of the code that the slave is executing, and loops until
the slave is idle.

: wait-for-slave
l# SLAVE_TASK (@) l# NULL_TASK (XOR)
if j wait-for-slave else ;

The master enters a loop of reading in a string, telling the slave to output it, and waiting for the slave to finish. If two alternating
input buffers were used, the master and the slave could operate concurrently.

: run-through
c master-read
c slave-write
c wait-for-slave
j run-through
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2.2 Master/Slave Task Demo
This second demonstration takes advantage of the fact that each processor simulation is a separate UNIX process to show the
coordination between the master and the slave despite the non-deterministic run-time relationship between both.

: slave-wait
l# NULL_TASK l# SLAVE_TASK (!) ;

The next two functions output a counted string of length 1 containing the ASCII symbol ’A’ or ’B’.

: A-task
n# 65 n# 1 c #> c #>
c slave-wait ;

: B-task
n# 66 n# 1 c #> c #>
c slave-wait ;

: slave-A
l# A-task l# SLAVE_TASK (!) ;

: slave-B
l# B-task l# SLAVE_TASK (!) ;

This is an instrumented version of wait-for-slave which outputs ’W’ while it is waiting, and ’D’ once done.

: wait-for-slave
l# SLAVE_TASK (@) l# NULL_TASK (XOR)
if
n# 87 n# 1 c #> c #>
j wait-for-slave
else
n# 68 n# 1 c #> c #> ;

: run-through
c wait-for-slave
c slave-A
c wait-for-slave
c slave-B
j run-through ;

When run-through is called, the output from the master is

WDWWDWDWWDWDWDWDWWDWWWDWDWWDWWDWWWWDWWWDWW

and the output from the slave is

ABABABABABABABABABABABABABABABABABABABA

The masters ends up waiting for one to four loops in this example, while the slave executes in a fixed sequence.
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2.3 Slave Control Library
This code is as before, except that a function to return the address of the task the slave is running at the moment has been added.
It and the task-setting function now compile their code in-line for speed1.

: (set-slave-task)
l# SLAVE_TASK c # c (!) ;

: (get-slave-task)
l# SLAVE_TASK c # c (@) ;

: slave-wait
l# NULL_TASK (set-slave-task) ;

: wait-for-slave
(get-slave-task) l# NULL_TASK (XOR)
if j wait-for-slave else ;

2.4 Slave Output Library
These two functions provide a way for the master to have the slave output a string from the input buffer.

: $>-task
c $> j slave-wait

: slave-$>
l# $>-task (set-slave-task)
j wait-for-slave

2.5 Master/Slave Swap Library
This set of functions allow the master and the slave to swap roles without race conditions. The first function, (unwind),
compiles in-place the body of EXECUTE, which ’unwinds the stack’2 to forcibly return to its caller’s caller. It is used here to
remove from the stack the address of the function’s caller, which is either the NXEC or the SLAVE_LOOP function, since it will
never be returned to again3. If this was not done, successive master/slave role swaps would eventually overflow the stack.

: (unwind)
c (R>) c (DROP) ;

The slave simply sets itself idle, clears the return stack, and jumps to the Flight main loop, thus becoming the master.

: slave-become-master
c slave-wait
(unwind)
j NXEC

The master instructs the slave to change roles, waits for the slave to have begun by detecting it to be idle, clears the return stack,
and jumps to the slave loop.

: master-become-slave
l# slave-become-master (set-slave-task)
c wait-for-slave
(unwind)
j SLAVE_LOOP

1It has become a convention in Flight to denote functions which compile their function instead of executing it by surrounding the name with parentheses.
This is purely a naming convention.

2An expression borrowed from C programming. The stack is the Return Stack in this case.
3Actually, leaving the address in place could be useful for brief role swaps: the master and slave would then simply have to perform a function return at the

top level to return to their previous roles. Some form of race condition avoidance would still be required though, else both processors may briefly end up in the
same role and corrupt memory.
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3 Serial Channel Communication
Because it is possible for the slave to output a string read in by the master, a bidirectional daisy-chain of pairs becomes the first
network possible (Figure 2). Each pair runs an instance of Flight, therefore one instance can control another and thus distribute
a program across pairs.

The software to accomplish this works by echoing a sequence of strings down the daisy-chain. It does so by modifying
its own invocation and sending it to the next hop down the line, along with the carried message. At the hop just before the
destination, the code removes its invocation from the stream and sends the raw carried message to the destination. This process
can also be used to bootstrap the network by having the carried message be the source code of its carrier.

To keep the source listings manageable, previously defined and discussed source is replaced by a reference to its section,
enclosed between angle brackets (<...>).

3.1 Send Library Base
This is the code which allows the library to call the instance of itself at the next hop. It simply sends out the required strings.
The source works by create’ing a storage location, reading a string into it, then compiling code to place its address on the
stack before executing the code following does, which in this case simply outputs the string.

The )-string function is a particular case. Since the ’)’ string is the delimiter for the carried message, it cannot occur in
its body. This means that the Send Library, which tests for that string, must not contain it else it could not send itself! Therefore,
instead of reading in the string at compilation, it is generated in place.

: send-n
create >$ n $>c
does j cs>

: send-send(
create >$ send( $>c
does j cs>

: )-string
create n 1 #>c ALIGN n 41 #>c ALIGN l HERE (@) #>c
does ;

: send-)
)-string # j cs>

3.2 Send Library
<Slave Control (Section 2.3)>

<Slave Output (Section 2.4)>

These function wrap the Send Library Base code into slave tasks for the master to initiate.

: send-n-task
c send-n j slave-wait

: slave-send-n
l# send-n-task (set-slave-task) j wait-for-slave

: send-send(-task
c send-send( j slave-wait

: slave-send-send(
l# send-send(-task (set-slave-task) j wait-for-slave

: send-)-task

7



c send-) j slave-wait

: slave-send-)
l# send-)-task (set-slave-task) j wait-for-slave

The match)? function compares the string just received with ’)’, and returns zero if there is a match. This is the test for the
end of the carried message.

: match)?
l# INPUT (@) )-string # c COMPARE_STRINGS
(DROP) l# INPUT (@) c STRING_TAIL (XOR) ;

Read in a string. If the received string is not the delimiter, then echo it to the next hop and loop, else discard it.

: pass-until-)
c >$
c match)?
if
c slave-$>
j pass-until-)
else
j POP_STRING

The number of hops to send the carried message is specified by an integer. This function decrements it by one and sends its
string representation to the next hop.

: slave-send-next-count
(N-) 1 c #>$ j slave-$>

Finally, the main loop of the Send Library checks if the hop count is zero. If not, then send to the next hop the new hop count,
the call to send(, the carried message, and the delimiter. If it is zero, then only send the carried message to the next hop.

: send(
(DUP)
if
c slave-send-n
c slave-send-next-count
c slave-send-send(
c pass-until-)
j slave-send-)
else
(DROP) j pass-until-)

3.2.1 Demo

Assuming the chain depicted in Figure 2, where each pair initially only contains the Flight kernel, the following code will
progressively bootstrap the network and allow code input at PA to be run on P1, which will send its output to PB. All code is
input at PA.

The first block compiles the Flight Extensions (Appendix A) and the Send Library on P.

<Flight Extensions From Appendix A>
<Send Library Base (Section 3.1)>
<Send Library (Section 3.2)>

The pair P can now forward messages to P1. The first messages sent are the same code block which was compiled on P.

n 0 send(
<Flight Extensions From Appendix A>
<Send Library Base (Section 3.1)>
<Send Library (Section 3.2)>
)
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Since P0 now has an instance of the Send Library, it is now possible to compile and execute code on P1.

n 1 send(
<Flight Extensions From Appendix A>
<Slave Control (Section 2.3)>
<Slave Output (Section 2.4)>
)

Finally, P1 can now be remotely instructed to add 2 and 6 and send the string representation of the sum to PB.

n 1 send( n 2 n 6 + #>$ slave-$> )

Here is how the previous command was rewritten as it travelled through the chain:

Input to PA: n 1 send( n 2 n 6 + #>$ slave-$> )
Output from PB: n 0 send( n 2 n 6 + #>$ slave-$> )

Input to P0A: n 0 send( n 2 n 6 + #>$ slave-$> )
Output from P0B: n 2 n 6 + #>$ slave-$>

Input to P1A: n 2 n 6 + #>$ slave-$>
Output from P1B: 8

3.3 Return Library Base
This build upon the Send Library Base (Section 3.1), and adds the remote invocation for return(.

: send-return(
create >$ return( $>c
does j cs>

3.4 Return Library
: send-return(-task
c send-return( j slave-wait

: slave-send-return(
l# send-return(-task (set-slave-task) j wait-for-slave

<Master/Slave Swap (Section 2.5)>

This code functions identically to send(, but invokes return( instead and swaps the roles of the master and the slave after
having sent the message. This reverses the direction of the network, allowing for data to be returned from a remote execution.
Returning the data with return( restores the network to its original state.

: return(
(DUP)
if
c slave-send-n
c slave-send-next-count
c slave-send-return(
c pass-until-)
c slave-send-)
j master-become-slave
else
(DROP)
c pass-until-)
j master-become-slave
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3.4.1 Demo

<Flight Extensions From Appendix A>
<Send Library Base (Section 3.1)>
<Send Library (Section 3.2)>
<Return Library Base (Section 3.3)>
<Return Library (Section 3.4)>

n 0 send(
<Flight Extensions From Appendix A>
<Send Library Base (Section 3.1)>
<Send Library (Section 3.2)>
<Return Library Base (Section 3.3)>
<Return Library (Section 3.4)>
)

n 1 send(
<Flight Extensions From Appendix A>
<Send Library Base (Section 3.1)>
<Return Library Base (Section 3.3)>
<Slave Control (Section 2.3)>
<Slave Output (Section 2.4)>
)

This command will compile code on P1, execute it, and as a flourish cause it to erase itself afterwards when forget reads in
marker and erases it and all code that comes after. The send-message-back function constructs the reply.

n 1 return(
: marker ;

: output-4-at-slave
n# 2 n# 2 (+) c #>$ j slave-$>

: output-5-at-master
n# 2 n# 3 (+) j #$>

: send-message-back
c send-n
n# 1 c #$>
c send-return(
c output-5-at-master
j send-)

: return-test
c output-4-at-slave
c send-message-back
j forget

return-test marker
)

Here is the flow of messages through the chain, starting with the last command sent:

Input to PA: n 1 return( : marker ; return-test marker )
Output from PB: n 0 return( : marker ; return-test marker )
(P swaps roles)

Input to P0A: n 1 return( : marker ; return-test marker )
Output from P0B: : marker ; return-test marker
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(P0 swaps roles)

Input to P1A: : marker ; return-test marker
Output from P1B: 4
Output from P1A: n 1 return( 5 )
(P1 forgets code from marker onwards)

Input to P0B: n 1 return( 5 )
Output from P0A: n 0 return( 5 )
(P0 swaps roles)

Input to PB: n 0 return( 5 )
Output from PA: 5
(P swaps roles)

The chain has now output 4 at the far end and 5 at the near end, from code input at P and executed at P1.

4 Multiple Flight Instances Demo
With the Send and Return Libraries, a local function can now execute code on and receive results from other processors.
Multiple remote calls might be dispatched and the return values, if any, read back at a later time. This can make one instance
of Flight into an intelligent interface for other instances, which all appear as a single large instance where the local code is
executed sequentially, but with internal parallelism. This may be recursively true for the underlying instances of Flight also.

This section will demonstrate the division of the input, processing, and output functions of a simple stream cipher program
across the chain shown in Figure 2, effectively pipelining its operation to operate all three parts at once while appearing local.

4.1 RANDU-based String Cipher
This function multiplies two 8-bit integers, returning a 16-bit product.

: 8x8
(>R)
(2*) (2*) (2*) (2*)
(2*) (2*) (2*) (2*)
(R>)
(+*) (2/) (+*) (2/) (+*) (2/) (+*) (2/)
(+*) (2/) (+*) (2/) (+*) (2/) (+*) (2/)
(>R) (DROP) (R>) ;

This is an unoptimized version of the RANDU linear congruential pseudorandom number generator (PRNG), reduced to 8 bits.
The recurrence relation is xi+1 =

[(
2n−2 + 3

)
xi

]
mod 2n−1 where n = 8 and x0 is odd4. This is possibly the worst PRNG

in existence, but its implementation is trivial.

: rand
n# 67 c 8x8 n# 128 c U/ (DROP) ;

: seed n 1 var ;

This takes the seed, which is xi, computes the exclusive-or of it and an ASCII character in memory, and stores the new value
back in the same location. It then computes a new seed value from the old one.

: process
(>R) seed # (@) (R>)
(@) (OVER) (XOR) (A!)
c rand seed # (!) ;

The process function is then used to build a version that iterates over strings.

4Actually, the first power of two should be 2
n
2 , but I goofed. It still works well enough.
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: cipher
n 1 mapgen process

4.1.1 Demo

First the initial seed is set.

n 77 seed !

Then a string is read into the input buffer.

>$ testword

The address of the input buffer is obtained, and its content printed out, followed by a horizontal tab. The DUPplicate instruction
creates a copy of the address on the stack for the next function.

l INPUT @
DUP cs> \t

The string is enciphered and printed, followed by a horizontal tab.

DUP cipher
DUP cs> \t

Applying the cipher, once the seed is reset to the same value, returns the string to clear text.

n 77 seed !
cipher
$> \n

The output is:

testword 9BF+*87k testword

4.2 Load1
This first segment programs the first pair, P. It implements the input interface in a manner similar to the Send Library (Section
3.2) but since it will not be used to process itself, the delimiter workaround is not required and it is present in the source. The
purpose of these functions is to initialize the cipher and watch for the message delimiter, ’EOL’, when forwarding messages.

<Flight Extensions From Appendix A>
<Send Library Base (Section 3.1)>
<Send Library (Section 3.2)>

: slave-send-set-seed
create >$ set-seed $>c
does c c>$ j slave-$>

: set-seed
c >$
c slave-send-set-seed
j slave-$>

: slave-send-encrypt
create >$ encrypt $>c
does c c>$ j slave-$>

: EOL-string
create >$ EOL $>c
does ;
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: matchEOL?
l# INPUT (@) EOL-string # c COMPARE_STRINGS
(DROP) l# INPUT (@) c STRING_TAIL (XOR) ;

: encrypt
c >$
c matchEOL?
if
c slave-send-encrypt
c slave-$>
j encrypt
else
j POP_STRING

Here are some example inputs and outputs:

Input to PA: set-seed 56
Output from PB: set-seed 56

Input to PA: encrypt This is a plaintext message EOL
Output from PB: encrypt This encrypt is encrypt a encrypt plaintext encrypt message

4.3 Load2
This segment programs P0. It accepts a command and a string from P, encrypts the string, and forwards it to P2. It also sets
the seed.

n 0 send(

<Flight Extensions From Appendix A>
<Send Library Base (Section 3.1)>
<Send Library (Section 3.2)>
<RANDU-based String Cipher (Section 4.1)>

: set-seed
c n
seed # (!) ;

: slave-send-write-out
create >$ write-out $>c
does c c>$ j slave-$>

: encrypt
c >$
l# INPUT (@)
c cipher
c slave-send-write-out
j slave-$>

)

Here are some example inputs and outputs:

Input to P0A: set-seed 56
Output from P0B: (no output, sets the seed to 56)

Input to P0A: encrypt This encrypt is encrypt a encrypt plaintext encrypt message
Output from P0B: write-out <ciphertext This> write-out <ciphertext is>
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4.4 Load3
This segment programs P1. It receives the ciphertext from P0 and outputs its numerical representation.

n 1 send(

<Flight Extensions From Appendix A>
<Slave Control (Section 2.3)>

See the end of Appendix A for the source to print$#, which prints a string as numbers.

: print$#-task
l# INPUT (@) c print$# j slave-wait

: slave-print$#
l# print$#-task (set-slave-task) j wait-for-slave

: write-out
c >$
j slave-print$#

)

Here are some example inputs and outputs:

Input to P1A: write-out <ciphertext This> write-out <ciphertext is>
Output from P1B: 34 12 6 123 43 2 31 87 09

4.5 Demo
The input at PA is:

set-seed 77
encrypt
This is a test sentence. EOL

set-seed 75
encrypt
This is a test sentence. EOL

set-seed 77
encrypt
This is a test sentence. EOL

The output, split into three lines for clarity, at P1B is:

25 79 92 44 52 36 36 123 8 116 33 76 24 89 17 10 99 4 16 49

31 73 74 90 82 2 114 13 78 50 119 58 126 127 7 124 101 2 6 71

25 79 92 44 52 36 36 123 8 116 33 76 24 89 17 10 99 4 16 49

5 Further Work

5.1 Nesting
It is possible in theory to nest send( and return( calls, which would allow more sophisticated network messaging (messages
that send/receive messages), but in practise this would require the presence of the ’)’ delimiter in the body of the message. A
possible solution would be to have the first string in the message be the current delimiter. Also, there is sometimes a need to
only compile a call to those function for later use. The send-message-back function (Section 3.4.1) does handles both the
delimiter and compilation problems by using the Send and Return Libraries to construct the required reply function, but a more
elegant mechanism is needed.
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5.2 Topology
The example network given in Figure 2 is merely linear, but if the A and B processors are provided with extra serial channels
then other topologies become possible. The Send and Return Libraries would then need to be improved to replace the single
hop count with a better coordinate system, but this is not a fundamental change. For example, if the pairs are arranged in a
n-cube mesh then the hop count becomes multiple integers, one for each dimension, but otherwise functioning in the same
manner by subtracting from the count at each hop. A more sophisticated algorithm would avoid the obvious shortest path if it
was congested, incrementing the hop count when not moving the message directly towards the destination [Hil86, 7.2].

5.3 Congestion
If a message is sent via the return( function, the path taken by the message is unavailable for other messages until the
destination provides a reply in the same manner. If the reply delay is long, and if the path happens to intersect another one, then
multiple parts of the distributed program may stall. Worse yet, if another return( reply takes an intersecting path, at least
one hop in the first reversed path will flip back to its previous direction, cleaving the path in two, preventing the reply from
reaching its destination, and effectively corrupting the program which is spread over the network.

A solution to this problem would be to split the message transactions. The sender uses send( for the original message,
and again at a later time to ask the receiver if the result is ready. Alternately, the receiver could notify the sender in the same
manner. Finally, the sender uses return( to ask for the result, which is ready and returned immediately.

5.4 Efficiency
Sending remote commands by emulating string input is a simple, but grossly inefficient method. Not only must the string be
sent and received symbol by symbol, but it must then be looked up in the dictionary to find the address of the code it refers to.
This can easily add up to thousands of instructions executed before any useful (and often, short) code is run.

The solution lies in the fact that the code address is fixed and already known by the time the remote code can be called. The
sender first sends a message to compile the code remotely, then sends another to request the address at which it was compiled.
Once all the required addresses are known to the sender, it sends a message to the receiver telling it to execute a different main
loop than NXEC (Section 1.1), which only reads in an integer and then calls to it. The sender now only needs to send a single
symbol, an integer, to remotely call code. The receiver now only needs to call to that address and avoids the entire address
lookup overhead. The message passing process remains otherwise unchanged, since it is the called code that will read in any
arguments sent, and not the main loop.

Also, the length of a message is know once it has been read in, so the use of delimiters or repeated calls as in Section 4.3 is
unnecessary. Instead, a recursive data structure, a string of strings, would reduce the delimiter comparisons to a simple count.
This is not a trivial change to implement, since all the I/O and dictionary functions will needs to be changed to use the new
structures.

5.5 Concurrency
In the simple examples given, the coordination between the master and the slave (Section 2.3) always leaves one of them idle
and waiting for the other to finish. This is to prevent them from simultaneously operating on the same buffer and thus corrupting
its contents. If separate buffers are used then the wait-for-slave function can be non-blocking, and simply return a value
based on whether or not the slave is running the null task. This would double the throughput of the distributed cipher program
in Section 4.

A Flight Extensions
SCAN : DEFN SCAN SCAN LOOK CMPCALL SCAN DEFN LOOK CMPCALL CMPRET
: l SCAN SCAN LOOK CMPCALL SCAN LOOK LOOK CMPCALL CMPRET
: $c l LOOK CMPCALL l CMPCALL CMPCALL CMPRET
: c SCAN SCAN $c SCAN $c $c CMPRET
: n c SCAN c NUMI CMPRET
: alias c l c SCAN c DEFN_AS CMPRET

alias CMPJMP (JMP)
alias CMPJMPZERO (JMP0)
alias CMPJMPPLUS (JMP+)
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alias CMPCALL (CALL)
alias CMPRET ;
alias NUMC #
alias NUMI $n
alias LOOK $l
alias DEFN $:
alias SCAN >$
alias WRITE1 #>
alias READ1 >#
alias TENSTAR 10*

: $j c $l c (JMP) ;
: j c >$ c $j ;

: $j0 c $l c (JMP0) ;
: j0 c >$ c $j0 ;

: $j+ c $l c (JMP+) ;
: j+ c >$ c $j+ ;

alias CMPFETCHA (A@)
alias CMPSTOREA (A!)
alias CMPFETCHAPLUS (A@+)
alias CMPSTOREAPLUS (A!+)
alias CMPFETCHRPLUS (R@+)
alias CMPSTORERPLUS (R!+)
alias CMPXOR (XOR)
alias CMPAND (AND)
alias CMPNOT (NOT)
alias CMPTWOSTAR (2*)
alias CMPTWOSLASH (2/)
alias CMPPLUS (+)
alias CMPPLUSSTAR (+*)
alias CMPDUP (DUP)
alias CMPDROP (DROP)
alias CMPOVER (OVER)
alias CMPTOR (>R)
alias CMPRFROM (R>)
alias CMPTOA (>A)
alias CMPAFROM (A>)
alias CMPNOP (NOP)

: @ (>A) (A@) ;
: ! (>A) (A!) ;
: XOR (XOR) ;
: AND (AND) ;
: NOT (NOT) ;
: OR (OVER) (NOT) (AND) (XOR) ;
: 2* (2*) ;
: 2/ (2/) ;
: + (+) ;
: +* (+*) ;
: DUP (DUP) ;
: DROP (DROP) ;
: OVER (OVER) ;
: NOP (NOP) ;
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: #+ c # c (+) ;
: n# c n c # ;
: l# c l c # ;
: (@) c (>A) c (A@) ;
: (!) c (>A) c (A!) ;
: (OR) c (OVER) c (NOT) c (AND) c (XOR) ;

: \a n# 7 n# 1 c #> j #>
: \b n# 8 n# 1 c #> j #>
: \t n# 9 n# 1 c #> j #>
: \n n# 10 n# 1 c #> j #>
: \v n# 11 n# 1 c #> j #>
: \f n# 12 n# 1 c #> j #>
: \r n# 13 n# 1 c #> j #>
: \s n# 32 n# 1 c #> j #>

: negate (NOT) n# 1 (+) ;
: (negate) c (NOT) n# 1 c #+ ;
: -n c n (negate) ;
: -$n c $n (negate) ;
: -n# c -n c # ;
: (N-) c -n c #+ ;
: (N+) c n c #+ ;
: - (negate) (+) ;
: (-) c (negate) c (+) ;

: if n# 0 c (JMP0) l# HERE_NEXT (@) (N-) 1 ;
: if- n# 0 c (JMP+) l# HERE_NEXT (@) (N-) 1 ;
: else (>R) c NEW_WORD (R>) (>A) (A!) ;

: max (OVER) (OVER) (-) if- (>R) (DROP) (R>) ; else (DROP) ;
: min (OVER) (OVER) (-) if- (DROP) ; else (>R) (DROP) (R>) ;
: abs (DUP) if- (negate) ; else ;

: allot (DUP) if c ALIGN (N-) 1 j allot else (DROP) ;

: $copy
(>R) (>A)
(A@) (A>) (+) (N+) 1
: $copy-loop (A>) (OVER) (XOR)
if (A@+) (R!+) j $copy-loop
else (DROP)
(R>) (DUP) (>A) (A!) ;

: $>c
l# INPUT (@)
l# HERE (@)
(OVER) (@) (N+) 1 c allot
c $copy
c ALIGN
j POP_STRING

: c>$
(DUP) (@) c PUSH_STRING
l# INPUT (@)
c $copy ;
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: cs>
(DUP) (@) (+) (N+) 1
(A>) (>R)
: cs>-loop (R>) (OVER) (OVER) (XOR)
if (>R) (R@+) c #> j cs>-loop
else (DROP) (DROP) ;

: $>
l# INPUT (@)
c cs>
j POP_STRING

: $print c l c c>$ j $>
: csprint c l j cs>

: match?
l# INPUT (@) c STRING_TAIL (XOR) ;

: end?
l NAME_END @ # (XOR) ;

: erase
(DUP) l# THERE (!)
(DUP) (N+) 1 l# INPUT (!)
(@) (DUP)
(N-) 1 l# HERE (!)
l# HERE_NEXT (!)
j ALIGN

: forget
c >$
l# THERE (@) (N+) 1 (DUP)
: forget-loop
l# INPUT (@)
c COMPARE_STRINGS
c match?
if (DROP) c STRING_TAIL (N+) 1 (DUP) c end?
if (DUP) j forget-loop
else (DROP) c POP_STRING ;
else c erase (DROP) ;

: #>c l# HERE (@) (!) ;

: <=
(-) (DUP)
if- (DROP) -n# 1 ;
else
if n# 0 ;
else -n# 1 ;

: >=
(-) (DUP)
if- (DROP) -n# 0 ;
else
if n# 0 ;
else -n# 1 ;
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: 15x15
(>R)
(2*) (2*) (2*) (2*)
(2*) (2*) (2*) (2*)
(2*) (2*) (2*) (2*)
(2*) (2*) (2*)
(R>)
(+*) (2/) (+*) (2/) (+*) (2/) (+*) (2/)
(+*) (2/) (+*) (2/) (+*) (2/) (+*) (2/)
(+*) (2/) (+*) (2/) (+*) (2/) (+*) (2/)
(+*) (2/) (+*) (2/) (+*) (2/) (+*)
(>R) (DROP) (R>) ;

: divby0msg >$ DIV_BY_0_ERROR $>c
: divby0 l# divby0msg c cs> ;
: errcontext c \s c >$ c $> j errcontext
: divby0check (DUP) if ; else (DROP) (DROP) c divby0 j errcontext

: U/
c divby0check
n# 0 (>A)
: U/-loop
(OVER) (>R) (DUP) (R>) c <=
if
(DUP) (>R) (-) (R>)
(A>) (N+) 1 (>A)
j U/-loop
else
(DROP) (A>) ;

: minus?
if- n# 1 ; else n# 0 ;

: numstrlen
c abs (DUP) (N-) 10
if- (DROP) n# 1 ; else (DUP) (N-) 100
if- (DROP) n# 2 ; else (DUP) (N-) 1000
if- (DROP) n# 3 ; else (DUP) (N-) 10000
if- (DROP) n# 4 ; else (DUP) (N-) 100000
if- (DROP) n# 5 ; else (DUP) (N-) 1000000
if- (DROP) n# 6 ; else (DUP) (N-) 10000000
if- (DROP) n# 7 ; else (DUP) (N-) 100000000
if- (DROP) n# 8 ; else (DUP) (N-) 1000000000
if- (DROP) n# 9 ; else (DROP) n# 10 ;

: #>$
(DUP) c numstrlen (OVER) c minus? (+) c PUSH_STRING
(DUP) if- n# 45 l# INPUT (@) (N+) 1 (!) c abs else
(>R) l# INPUT (@) c STRING_TAIL (N-) 1 (R>)
: #>$-loop
n# 10 c U/ (>R) n# 48 (+) (OVER) (!) (N-) 1 (R>)
(DUP) if j #>$-loop else (DROP) (DROP) ;

: #$> c #>$ c $> ;

: create
n# 0 c # l# HERE_NEXT (@) (N-) 1 (>R)
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n# 0 c (JMP) l# HERE (@) (N-) 1
l# HERE (@) (R>) (!) ;

alias else does

: var c create (>R) (N-) 1 c allot (R>) c does ;

: name-as c >$ c DEFN_AS ;

: mapgen
c (DUP) c (>R) l# STRING_TAIL c (CALL) c (R>)
n 1 # c # c (+)
c NEW_WORD
c (DUP) c l c (CALL) (>R) c # (R>) c (+)
c (OVER) c (OVER) c (XOR)
c if (>R) c (JMP) (R>)
c else c (DROP) c (DROP) c ; ;

: print# (@) c #$> c \t ;
: print$# n 1 mapgen print#
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