
Extensions To The Flight Programming Language

Charles Eric LaForest

December 2005
University of Waterloo
Independent Studies

Abstract

The Flight programming language is based on a small kernel of primitives su�cient to linearly allocate memory,

compile stack-based machine code, associate a name to a memory address, look up a memory address from its

name, and execute the code there. Although self-contained, this kernel lacks useful features such as the freeing

of allocated memory, interactive use of the underlying machine, inline compilation of code and strings, string

and number output, �ow control constructs, elementary multiplication and division, function composition, lexical

closures, and higher-order functions. These features are added to Flight without additions the kernel and without

the use of software tools other than Flight itself. The code for these features adds up to about 300 lines of source

and compiles into about 2000 words of 32-bit memory.

1

Contents

1 Introduction 3
1.1 Gullwing Programmer Model Summary . 4

1.1.1 Data Stack . 4
1.1.2 Return Stack . 4
1.1.3 Address Register . 5
1.1.4 Other . 5

1.2 Flight Internals Summary . 6
1.2.1 Counted Strings . 6
1.2.2 Code Dictionary . 6
1.2.3 Name Dictionary . 6
1.2.4 Input Bu�er . 6

2 Extensions To The Flight Kernel 7
2.1 Compilation . 7

2.1.1 De�ning Function Names . 7
2.1.2 Looking Up Functions By Name . 7
2.1.3 Compiling Function Calls . 8

2.2 Aliasing . 8
2.3 Conditional Jumps . 9
2.4 Interactive Use . 9
2.5 Literals And Inline Compilation . 10
2.6 Special Terminal Characters . 11
2.7 Conditionals . 11
2.8 String Constant Compilation and Output . 12
2.9 Memory De-allocation . 13
2.10 Elementary Math Functions . 13

2.10.1 Min/Max/Abs . 13
2.10.2 Unsigned Multiplication . 14
2.10.3 Unsigned Division . 14

2.11 Function Rede�nition . 15
2.12 Binary To Decimal Conversion . 15
2.13 Function Composition . 16
2.14 Lexical Closures . 16
2.15 Higher-Order Functions . 17

2.15.1 Accumulator Generator . 17
2.15.2 Fibonacci Generator . 18
2.15.3 Fibonacci Generator (Optimized) . 18
2.15.4 Map . 19
2.15.5 Map Generator (Optimized Caesar) . 20
2.15.6 Map Generator (Printing Fibonacci Numbers) . 20

A Flight Kernel Bug Fixes 21
A.1 ALIGN and NEXT-SLOT . 21

A.1.1 FIRST_SLOT . 21
A.1.2 LAST_SLOT . 21
A.1.3 NULL_SLOT . 21
A.1.4 ALIGN . 21
A.1.5 NEXT_SLOT . 21

A.2 COMPILE_OPCODE . 22
A.2.1 Future Work . 22

A.3 DEFN . 22
A.3.1 NEW_WORD . 22
A.3.2 DEFN_AS . 22
A.3.3 DEFN . 22

A.4 PUSH_STRING (Future Work) . 23

2

1 Introduction

The Flight programming language kernel [LaF05b] is an attempt at a minimal self-extensible language suited to
the Gullwing second-generation stack-based computer architecture [LaF05a] which allows more sophisticated pro-
gramming than a symbolic assembler and more expressive power than a traditional compiler while being simpler to
implement.

While the kernel of Flight meets these goals it lacks many features. Memory, once allocated, cannot be freed.
There is no way to interactively read and write from memory and evaluate expressions. There are no inline versions of
functions. There are no means to print strings and decimal numbers. There are no �ow control constructs except for
the direct use of conditional jumps. There are no arithmetical operations other than addition. There is no function
composition with arbitrary numbers of return values and parameters. There are no lexical closures or higher-order
functions to make programming more succinct and powerful.

While the Flight kernel itself could be modi�ed to support these features, it would entail a lot of tedious bug-prone
assembly programming and would burden the kernel with code that is not essential. Flight is its own interpreter,
assembler and compiler and thus it is possible to implement the aforementioned features not as monolithic assembly
primitives, using external tools, but as a hierarchy of functions compiled to e�cient machine code and described in
the Flight language itself.

3

1.1 Gullwing Programmer Model Summary

The Flight programming language has many functions which directly relate to the instructions of the Gullwing
processor. Here is a summary programmer's view of the underlying hardware.

1.1.1 Data Stack

The data stack is a 32-bit wide, 16-deep Last-In-First-Out bu�er where most of the computations are performed.
The instructions which operate upon it are:

LIT pushes a literal from the next memory location

XOR replaces the two topmost elements with their bit-wise XOR

AND replaces the two topmost elements with their bit-wise AND

NOT replaces the topmost element with its binary complement

2* shifts the topmost element one bit to the right, shifting a zero into the least signi�cant bit

2/ shift the topmost element one bit to the left, duplicating the sign bit

+ replaces the two topmost elements with their sum

+* adds the second element to the �rst if the �rst element is an odd number (multiply step)

DUP pushes a copy of the topmost element

DROP pops the topmost element

OVER pushes a copy of the second element

1.1.2 Return Stack

The return stack is a 32-bit wide, 16-deep Last-In-First-Out bu�er where function call return addresses are kept. It
is also used for sequential memory access and temporary storage. The instructions which operate upon it are:

CALL branches to an address stored in the next memory location and pushes the return address

RET pops the return address and branches to it

JMP jumps unconditionally to an address stored in the next memory location

JMP0 pops the topmost element of the data stack, jumps to an address stored in the next memory location if
it is equal to zero

JMP+ pops the topmost element of the data stack, jumps to an address stored in the next memory location if
it is positive

R@+ pushes onto the data stack the content of an address on the top of the return stack, post-increments the
address by one

R!+ pops the topmost element on the data stack and stores it at the address on the top of the return stack,
post-increments the address by one

>R pops the topmost element on the data stack and pushes it onto the return stack

R> pops the topmost element on the return stack and pushes it onto the data stack

4

1.1.3 Address Register

The 32-bit wide address register is the main means of memory access. The instructions which operate upon it are:

>A pops the topmost element of the data stack and stores it into the address register

A> pushes a copy of the address register onto the data stack

A@ fetches from the address in the address register and pushes the data onto the data stack

A! pops the topmost element of the data stack and stores it at the address in the address register

A@+ fetches from the address in the address register and pushes the data onto the data stack, post-increments
the address by one

A!+ pops the topmost element of the data stack and stores it at the address in the address register, post-
increments the address by one

1.1.4 Other

There are six instructions not tied to the Stacks or the address register:

NOP Does nothing but consume a processor cycle.

UNDEF[0-3] four opcodes which are still unused and are currently de�ned as NOPs

PC@ Fetches the next group of instructions into the Instruction Shift Register. There are six instruction slots or
one literal per memory word. This instruction is invisible to the programmer and compiled automatically
by the ALIGN kernel function.

5

1.2 Flight Internals Summary

A summary description of the internal structure of Flight will make the extensions presented easier to understand.

1.2.1 Counted Strings

The elementary unit of memory allocation is the counted string. The head of a string is a single memory word which
holds the number of memory words used by the contents of the string, which follow the head and are arbitrary. The
tail of the string is an additional memory word after the contents which holds its own address.

The head and the tail make it easy to copy, process, and compare strings. Copies and calculations are accelerated
by knowing the length of the string in advance. Comparisons fail immediately if two strings are of di�erent length
and necessarily end at the tail, which is unique to each string.

1.2.2 Code Dictionary

The code dictionary is where machine code is compiled. It begins at the �rst address in memory and expands
towards the last. Instructions are compiled one after the other without delimiters. The current and next compilation
addresses are held in the HERE and HERE_NEXT kernel variables.

1.2.3 Name Dictionary

The name dictionary is where the names and addresses of function are kept. It begins near the last memory location,
after some input/output ports, and expands towards the �rst. Name entries are modi�ed counted strings, appended
one after the other. The content of the string is a name associated with a memory location. The tail of the string
contains the address of the memory location associated with the name. This address is usually the beginning of the
code for a function. The name dictionary is searched in reverse order, so the latest matching name will be the one
found. The address of the head of the latest entry in the name dictionary is kept in the THERE kernel variable.

1.2.4 Input Bu�er

The input bu�er begins right before the latest name dictionary entry and encompasses all of the unused memory
up to the tail of the code dictionary. The address of the current head of the bu�er is stored in the INPUT kernel
variable. Counted strings are allocated and consumed on the bu�er in a stack-like manner. If there is only one
string in the bu�er, it can be converted to a name entry in place by storing the code address in the tail and altering
THERE to point to the head of the string and INPUT to point to the �rst memory location before that string.

6

2 Extensions To The Flight Kernel

The extensions are presented in logical order and assume a bare Flight kernel. The most important detail to keep in
mind is that the kernel does not parse code like a compiler, but looks up and executes words as they are presented.
Compilation is achieved by the execution of words which compile code into memory.

2.1 Compilation

The �rst thing implemented is an easier way to de�ne and call functions, which is used throughout the later kernel
extensions.

2.1.1 De�ning Function Names

SCAN : DEFN SCAN SCAN LOOK CMPCALL SCAN DEFN LOOK CMPCALL CMPRET

This code is executed as follows:

1. SCAN reads the string �:� into the input bu�er.

2. DEFN creates a name entry with that string, pointing to the current location in memory where code is to be
compiled.

3. SCAN reads in �SCAN�.

4. LOOK looks up the code address of �SCAN� and leaves it on the data stack.

5. CMPCALL compiles a function call to the address on the data stack.

6. SCAN reads in �DEFN�.

7. LOOK looks up the code address of �DEFN� and leaves it on the data stack.

8. CMPCALL compiles a function call to the address on the data stack.

9. CMPRET compiles a function returns.

The resulting machine code resembles the following assembly code:

call SCAN

call DEFN

ret

The net result is a new word, :, which will read in the following string and associate a memory address with it.

2.1.2 Looking Up Functions By Name

: l SCAN SCAN LOOK CMPCALL SCAN LOOK LOOK CMPCALL CMPRET

This Flight code compile this machine code:

call SCAN

call LOOK

ret

which is a function named l which reads in the following string and looks up the memory address associated with it.

7

2.1.3 Compiling Function Calls

Flight code:

: $c l LOOK CMPCALL l CMPCALL CMPCALL CMPRET

Resulting machine code:

call LOOK

call CMPCALL

ret

which is a function named $c which compiles a call to a function whose name is in the input bu�er.
It is now possible to compile a call to a preexisting function foo by inputting the following Flight code:

SCAN foo $c

Some Flight code, SCAN in this instance, places the name of a function in the input bu�er and cause a call to be
compiled to it. This is already much shorter than what the bare Flight kernel allows, but it can be improved further:

: c SCAN SCAN $c SCAN $c $c CMPRET

This integrates the use of SCAN into the function and will thus compile a call to whichever function whose name
comes next in the input stream to Flight:

c foo

2.2 Aliasing

Due to the nature of the kernel's initial assembler, the names of the functions are subject to the limitations of C
language identi�ers. The resulting names are cumbersome. It is possible to simply compile a call to these functions
under a more suitable name, but this introduces the overhead of an extra function call every time the renamed
function is called. A better way is to create a name entry which is associated with the address of the code associated
with the original name, thus compiling a call to the function's new name generates the same machine code as
compiling a call to its original name.

: alias c l c SCAN c DEFN_AS CMPRET

The function alias will look up the address of the next name in the input stream, read in the new name, and
make it into a name entry pointing to the address. The names of the kernel functions are then changed where it is
convenient:

alias CMPJMP (JMP)

alias CMPJMPZERO (JMP0)

alias CMPJMPPLUS (JMP+)

alias CMPCALL (CALL)

alias CMPRET ;

alias NUMC #

alias NUMI $n

alias LOOK $l

alias DEFN $:

alias SCAN >$

alias WRITE1 #>

alias READ1 >#

alias TENSTAR 10*

alias CMPFETCHA (A@)

alias CMPSTOREA (A!)

alias CMPFETCHAPLUS (A@+)

alias CMPSTOREAPLUS (A!+)

alias CMPFETCHRPLUS (R@+)

8

alias CMPSTORERPLUS (R!+)

alias CMPXOR (XOR)

alias CMPAND (AND)

alias CMPNOT (NOT)

alias CMPTWOSTAR (2*)

alias CMPTWOSLASH (2/)

alias CMPPLUS (+)

alias CMPPLUSSTAR (+*)

alias CMPDUP (DUP)

alias CMPDROP (DROP)

alias CMPOVER (OVER)

alias CMPTOR (>R)

alias CMPRFROM (R>)

alias CMPTOA (>A)

alias CMPAFROM (A>)

alias CMPNOP (NOP)

With arbitrary names now possible, some naming conventions can be established:

• Words which compile code inline have their names surrounded by parentheses, with the exceptions of ; and #.

• The use of the input bu�er is represented by the use of $ in a name.

• The use of the data stack is represented by the use of # in a name.

• Moving or copying an item to/from a location is represented by the use of > in a name.

2.3 Conditional Jumps

A way of compiling conditional and unconditional jumps to functions is needed to support looping and and tail-call
elimination. This is done in the same manner as for compiling calls to functions:

: $j c $l c (JMP) ;

: j c >$ c $j ;

: $j0 c $l c (JMP0) ;

: j0 c >$ c $j0 ;

: $j+ c $l c (JMP+) ;

: j+ c >$ c $j+ ;

These respectively compile an unconditional jump, jump-on-zero, and jump-on-positive in the same manner previously
done for calls.

2.4 Interactive Use

It is necessary to perform manipulation on values while either interacting with Flight or while compiling code. Words
for this purpose are created by compiling the code for a machine instruction or Flight word and associating a name
to it. Feeding this name to Flight will cause its function to be executed immediately instead of compiled.

: @ (>A) (A@) ;

: ! (>A) (A!) ;

: XOR (XOR) ;

: AND (AND) ;

: NOT (NOT) ;

: OR (OVER) (NOT) (AND) (XOR) ;

: 2* (2*) ;

: 2/ (2/) ;

: + (+) ;

: +* (+*) ;

9

: DUP (DUP) ;

: DROP (DROP) ;

: OVER (OVER) ;

: NOP (NOP) ;

Not all machine instructions and kernel functions shown in subsection 2.2 can be used interactively. The reason for
this is that in order to execute a word, its name must �rst be scanned in, its address looked up, and the code called.
This would overwrite values placed by the user in the A register and bury those on the return stack. At worst, this
could corrupt the execution of the Flight kernel itself.

2.5 Literals And Inline Compilation

: n c SCAN c NUMI CMPRET

The function n reads in the string form of an unsigned decimal number and converts it to binary form.

: #+ c # c (+) ;

: n# c n c # ;

: l# c l c # ;

The function #+ takes a number on the data stack and compiles a literal load instruction for it, followed by an addition
instruction. The next two functions compile literal loads from decimal numbers and from looked-up addresses of
functions.

: negate (NOT) n# 1 (+) ;

: (negate) c (NOT) n# 1 c #+ ;

The �rst function, negate, is a straightforward implementation of the negation of a two's-complement binary number.
The machine code is only three instructions, which execute in three cycles total and consume only half of a memory
word. A function call and return use up a total of four cycles and two memory words. It is thus advantageous to
inline the code of negate where possible.

The (negate) source code looks similar to that of negate, except that it compiles calls to the compiling words
instead. When (negate) is called, it will compile the code of negate inline with existing code at that location. This
is used to add the ability to read in a positive number in its negative form:

: -n c n (negate) ;

: -$n c $n (negate) ;

: -n# c -n c # ;

It is common in code to increment or decrement by a �xed number, and so some inlining words are created for this
purpose:

: (N-) c -n c #+ ;

: (N+) c n c #+ ;

Subtraction is implemented in a similar manner:

: - (negate) (+) ;

: (-) c (negate) c (+) ;

Finally, inlining versions of other short or common words are created:

: (@) c (>A) c (A@) ;

: (!) c (>A) c (A!) ;

: (OR) c (OVER) c (NOT) c (AND) c (XOR) ;

10

2.6 Special Terminal Characters

The current input pre-processor to Flight uses whitespace ASCII symbols as string delimiters. It is impossible to enter
those delimiters as strings for storage and later output. Here are some words to output the whitespace characters,
with the names based on the C language escape codes:

: \a n# 7 n# 1 c #> j #>

: \b n# 8 n# 1 c #> j #>

: \t n# 9 n# 1 c #> j #>

: \n n# 10 n# 1 c #> j #>

: \v n# 11 n# 1 c #> j #>

: \f n# 12 n# 1 c #> j #>

: \r n# 13 n# 1 c #> j #>

: \s n# 32 n# 1 c #> j #>

In order, these output the alarm (terminal bell), backspace, horizontal tab, newline, vertical tab, formfeed, carriage
return, and space characters. There is currently no way to print them as strings, so the counted string output is
done piecewise by outputting the count (1) followed by the character itself. The Flight output post-processor will
convert this into a single ASCII character.

2.7 Conditionals

It is possible to write loops and other conditional program �ow structures using the words from subsection 2.3, but
this is e�ectively assembly programming and makes the code harder to write and read. The higher-level if...else
construct is implemented thus:

: if n# 0 c (JMP0) l# HERE_NEXT (@) (N-) 1 ;

: if- n# 0 c (JMP+) l# HERE_NEXT (@) (N-) 1 ;

: else (>R) c NEW_WORD (R>) (>A) (A!) ;

The if word compiles a jump-on-zero to address zero and leave on the data stack the address at which the zero
address value is stored. The if- word does the same for a jump-on-positive. Code is then executed as usual until
else, which aligns the compilation address to the next empty memory word and overwrites with this new address
the zero address of the conditional jump instruction compiled by the if word. The net e�ect is to jump over the code
compiled between if and else if the condition tested by the conditional jump instruction is true. Combined with
the j word, this allows for the construction of any kind of loop, and for the creation of more complex conditionals:

: <=

(-) (DUP)

if- (DROP) -n# 1 ;

else

if n# 0 ;

else -n# 1 ;

: >=

(-) (DUP)

if- (DROP) n# 0 ;

else

if n# 0 ;

else -n# 1 ;

These leave a -1 (true) on the data stack if the �rst number on the data stack is lesser-than-or-equal/greater-than-
or-equal than the second number, else they leave a 0 (false). This �ag can then be used by an if...else construct.

11

2.8 String Constant Compilation and Output

If a program is to output messages to a user, there must be a way to store strings in the code for later output. The
�rst thing needed is a way to allocate the required space to store the string in the code. This word is also important
for lexical closures (section 2.14).

: allot (DUP) if c ALIGN (N-) 1 j allot else (DROP) ;

A word to copy strings in memory is also required. The addresses are taken from the data stack:

: $copy

(>R) (>A)

(A@) (A>) (+) (N+) 1

: $copy-loop (A>) (OVER) (XOR)

if (A@+) (R!+) j $copy-loop

else (DROP)

(R>) (DUP) (>A) (A!) ;

This word is then used to copy a string from the input bu�er into the code dictionary:

: $>c

l# INPUT (@)

l# HERE (@)

(OVER) (@) (N+) 1 c allot

c $copy

c ALIGN

j POP_STRING

Similarly, the following word takes the address of a word in the code dictionary and copies it into the input bu�er,
as if it had originated from the input stream:

: c>$

(DUP) (@) c PUSH_STRING

l# INPUT (@)

c $copy ;

This word takes the address of a counted string and sends the string to the output stream:

: cs>

(DUP) (@) (+) (N+) 1

(A>) (>R)

: cs>-loop (R>) (OVER) (OVER) (XOR)

if (>R) (R@+) c #> j cs>-loop

else (DROP) (DROP) ;

The cs> word can then used to output the newest string in the input bu�er:

: $>

l# INPUT (@)

c cs>

j POP_STRING

The next two words look up the name of a string and output it. The �rst does so by copying �rst to the input bu�er
while the second outputs directly from the original string contents.

: $print c l c c>$ j $>

: csprint c l j cs>

Finally, a single character or number from the data stack can be stored into the code dictionary:

: #>c l# HERE (@) (!) ;

12

2.9 Memory De-allocation

All the words compiled so far cannot be removed from memory. Their name and code dictionary entries are perma-
nent. To make changes possible, a means of de-allocating this memory is required. The word forget takes the name
of a function from the input bu�er and moves the point of compilation to the beginning of that function's name
and code entries, e�ectively erasing it. Since memory is allocated sequentially, forgetting a function necessarily also
forgets any other name and code entries compiled after those of the forgotten function.

The code to do this is fairly complex and is thus built from the bottom up. The �rst component function returns
a 0 if an address on the data stack matches the tail address of the string in the input bu�er. This happens if the
name of the function to be forgotten is found in the name dictionary.

: match?

l# INPUT (@) c STRING_TAIL (XOR) ;

The next function tests to see if the end of the name entry dictionary has been reached, meaning that the name of
the function to be forgotten has not been found.

: end?

l NAME_END @ # (XOR) ;

The erase function moves the compilation pointers to the beginning of the name and code entries of the forgotten
function. The function cannot be looked up anymore, and the next compiled code and the next de�ned name will
overwrite those of the forgotten function.

: erase

(DUP) l# THERE (!)

(DUP) (N+) 1 l# INPUT (!)

(@) (DUP)

(N-) 1 l# HERE (!)

l# HERE_NEXT (!)

j ALIGN

From these the code for forget is built up:

: forget

c >$

l# THERE (@) (N+) 1 (DUP)

: forget-loop

l# INPUT (@)

c COMPARE_STRINGS

c match?

if (DROP) c STRING_TAIL (N+) 1 (DUP) c end?

if (DUP) j forget-loop

else (DROP) c POP_STRING ;

else c erase (DROP) ;

2.10 Elementary Math Functions

These are the building blocks for further mathematical operations. They are currently very limited and some are
shown for example only.

2.10.1 Min/Max/Abs

These functions are straightforward. They respectively return the larger (or smaller) of two numbers on the data
stack, and the absolute value.

: max (OVER) (OVER) (-) if- (>R) (DROP) (R>) ; else (DROP) ;

: min (OVER) (OVER) (-) if- (DROP) ; else (>R) (DROP) (R>) ;

: abs (DUP) if- (negate) ; else ;

13

2.10.2 Unsigned Multiplication

There is no multiplication hardware in the underlying Gullwing machine, therefore integer multiplication is imple-
mented via the common shift-and-add method. However, this algorithm is accelerated by the use of a conditional
multiply step instruction, which adds the second number on the data stack to the �rst only if the �rst number is
odd.

This example function multiplies two 15-bit unsigned numbers into a single unsigned 30-bit unsigned number.
The range is limited since the result of a full multiplication must �t in the range of a 32-bit signed number and the
product of two unsigned 16-bit numbers could over�ow this range1.

: 15x15

(>R)

(2*) (2*) (2*) (2*)

(2*) (2*) (2*) (2*)

(2*) (2*) (2*) (2*)

(2*) (2*) (2*)

(R>)

(+*) (2/) (+*) (2/) (+*) (2/) (+*) (2/)

(+*) (2/) (+*) (2/) (+*) (2/) (+*) (2/)

(+*) (2/) (+*) (2/) (+*) (2/) (+*) (2/)

(+*) (2/) (+*) (2/) (+*) (2/) (+*)

(>R) (DROP) (R>) ;

2.10.3 Unsigned Division

The U/ function implements unsigned integer division by iteratively comparing and subtracting, as in manual long
division, and leaves the quotient and the remainder on the data stack. It does not intrinsically handle division-by-zero
and so the divisor is checked at the beginning.

The divby0msg code stores an error message into memory and provides a name reference to it. The divby0

function sends that message to the output stream. The errcontext redirects the remaining input stream to the
output stream, providing a crude way of seeing at which point the division-by-zero error occurred. The divby0check
function compares the divisor with zero and if true, outputs the error message followed by the context.

: divby0msg >$ DIV_BY_0_ERROR $>c

: divby0 l# divby0msg c cs> ;

: errcontext c \s c >$ c $> j errcontext

: divby0check (DUP) if ; else (DROP) (DROP) c divby0 j errcontext

: U/

c divby0check

n# 0 (>A)

: U/-loop

(OVER) (>R) (DUP) (R>) c <=

if

(DUP) (>R) (-) (R>)

(A>) (N+) 1 (>A)

j U/-loop

else

(DROP) (A>) ;

1There exist means of composing wider multiplications from this, but I have not explored them yet.

14

2.11 Function Rede�nition

A useful property that comes from separating function naming and code compilation is the possibility of rede�ning a
function under the same name2. In this case, PUSH_STRING has a design �aw which needs repairing: it does not
set the tail of the counted string memory it allocates. This burdens other functions later on. The correct solution is
to �x the kernel, but in the meantime a patch will su�ce.

The set_tail function �nds the tail of the topmost string in the input bu�er and sets it to contain its own
address.

: set_tail l# INPUT (@) c STRING_TAIL (DUP) (!) ;

The following code begins a new code dictionary entry, compiles code to execute PUSH_STRING and set_tail in
sequence, and associated the name PUSH_STRING with the address of this code. Looking up the address of
PUSH_STRING will now �nd this new version.

NEW_WORD c PUSH_STRING j set_tail >$ PUSH_STRING DEFN_AS

If the naming was done �rst as usual, the code c PUSH_STRING would end up calling to the new instance of
PUSH_STRING, creating an endless recursion when executed.

2.12 Binary To Decimal Conversion

The code here performs the inverse of the NUMI kernel function: it converts a signed integer into a decimal number
string.

The minus? function returns 1 if the number is negative, 0 otherwise.

: minus?

if- n# 1 ; else n# 0 ;

To allocate the correct amount of memory for the decimal string, the number of digits required must be found out
in advance. This is done by comparing with increasing powers of ten which �t in 32 bits.

: numstrlen

c abs (DUP) (N-) 10

if- (DROP) n# 1 ; else (DUP) (N-) 100

if- (DROP) n# 2 ; else (DUP) (N-) 1000

if- (DROP) n# 3 ; else (DUP) (N-) 10000

if- (DROP) n# 4 ; else (DUP) (N-) 100000

if- (DROP) n# 5 ; else (DUP) (N-) 1000000

if- (DROP) n# 6 ; else (DUP) (N-) 10000000

if- (DROP) n# 7 ; else (DUP) (N-) 100000000

if- (DROP) n# 8 ; else (DUP) (N-) 1000000000

if- (DROP) n# 9 ; else (DROP) n# 10 ;

The #>$ function allocates space for the decimal representation of a number, plus one for a negative sign if needed,
and �lls that space backwards with the remainders from successive divisions by ten until the remainder is zero.

: #>$

(DUP) c numstrlen (OVER) c minus? (+) c PUSH_STRING

(DUP) if- n# 45 l# INPUT (@) (N+) 1 (!) c abs else

(>R) l# INPUT (@) c STRING_TAIL (N-) 1 (R>)

: #>$-loop

n# 10 c U/ (>R) n# 48 (+) (OVER) (!) (N-) 1 (R>)

(DUP) if j #>$-loop else (DROP) (DROP) ;

It is now a trivial matter to create a function to directly output the decimal form of a binary number on the data
stack:

: #$> c #>$ c $> ;

2It could also be used to create nameless, anonymous functions, but there has not been a need for such yet.

15

2.13 Function Composition

It is not possible to pass via the data stack an arbitrary number of arguments between functions since the stack is
�nite in depth and a function cannot determine how much of it is in use at the time. This severely limits function
composition. The solution is to place the output of the �rst function into the input bu�er as if it had been read
from the input stream, ready to be processed by the second function. The number of arguments that can be passed
is then limited only by the amount of free memory. The example shown here composes two function to calculate the
mean of an arbitrary segment of the Fibonacci number sequence.

The 1fib function takes two adjacent Fibonacci numbers and calculates the next number in the sequence, dis-
carding the oldest original number.

: 1fib

(OVER) (>R) (+) (R>) ;

This function is then placed in a loop which allocates and �lls a counted string with Fibonacci numbers3.

: nfibx

c PUSH_STRING l# INPUT (@) (DUP) (>R) c STRING_TAIL (R>) (N+) 1 (>A)

: nfib-loop

(>R) c 1fib (DUP) (A!+) (R>) (DUP) (A>) (XOR)

if j nfib-loop

else (DROP) (DROP) (DROP) ;

The mean of these numbers is then the sum of all the elements of the string, divided by its length:

: nmean

n# 0

l# INPUT (@) (DUP) (>R) c STRING_TAIL (R>) (N+) 1 (>A)

: nmean-loop

(>R) (A@+) (+) (R>) (DUP) (A>) (XOR)

if j nmean-loop

else (DROP) l# INPUT (@) (@) c U/ c POP_STRING ;

The following function composition example leaves on the stack the mean of the �rst eight Fibonacci numbers:

n 1 n 0 n 8 nfibx nmean

2.14 Lexical Closures

It is necessary for some functions to have persistent, modi�able values stored within their code, unlike literals and
global variables. This is known as a lexical closure, and makes new kinds of functions possible.

The create function compiles a literal load and a jump instruction. The literal is the address of the �rst memory
location after the jump, and the address of the jump is set by does, in the same manner as for if...else, so as to
skip over the memory pointed to by the literal. When the code runs, the address of the skipped memory is left on
the stack.

: create

n# 0 c # l# HERE_NEXT (@) (N-) 1 (>R)

n# 0 c (JMP) l# HERE (@) (N-) 1

l# HERE (@) (R>) (!) ;

alias else does

3This version terminates when the current storage address matches that of the tail of the string. A decrementing counter version is

also possible:

: nfibc

(DUP) c PUSH_STRING l# INPUT (@) (N+) 1 (>A)

: nfib-loop

(>R) c 1fib (DUP) (A!+) (R>) (N-) 1 (DUP)

if j nfib-loop

else (DROP) (DROP) (DROP) ;

This version uses fewer instructions, but must do a relatively slow subtraction instead of a fast XOR.

16

A closure can be used to make global variable storage more convenient to manipulate. The var function takes a
number as an argument, allocates that number of memory locations, and compiles code to return the address of the
�rst of those locations.

: var c create (>R) (N-) 1 c allot (R>) c does ;

This is used to create global variables. Executing first will return the address of the one memory location allocated
within it.

: first n 1 var ;

Storing a number in �rst and recovering it later for output is straightforward:

n 4 first !

first @ #$> \t

Closures can also contain executable code. The EXECUTE kernel function take the address of the closure and does a
function call to it.

: pass n# 1 c #$> c \t create n# 2 c #$> c \n ; does n# 3 c #$> c \t c EXECUTE ;

The output of pass is: 1 3 2

2.15 Higher-Order Functions

Higher-order functions are functions which can take a function as an argument or return one as a result.

2.15.1 Accumulator Generator

An accumulator generator takes an argument and returns a function which will increment that original argument
with its current one.

: accgen

c NEW_WORD (>R)

c create (>R) c #>c (R>) c does

c (@) c (+) c (DUP) c (A!) c ;

(R>) ;

: name-as c >$ c DEFN_AS ;

n 3 accgen name-as foo

n 2 accgen name-as bar

n 5 foo #$> \t

n 5 bar #$> \t

n 2 foo #$> \t

n 2 bar #$> \t

n 7 foo #$> \t

n 7 bar #$> \t

n 100 foo #$> \t

n 100 bar #$> \t \n

The output of this segment of code is: 8 7 10 9 17 16 117 116

17

2.15.2 Fibonacci Generator

The fibgen1 function is similar in structure as accgen, except that it stores two separate values and names the
created function before compiling it.

: fibgen1

c :

c create (>R) c #>c (R>) c does

c create (>R) c #>c (R>) c does

c (OVER) c (@) c (OVER) c (@) c (+) c (>R)

c (OVER) c (@) c (OVER) c (!) c (DROP)

c (>A) c (R>) c (DUP) c (A!) c ; ;

2.15.3 Fibonacci Generator (Optimized)

The code compiled by fibgen1 amounts to 20 instructions, not including the code for the two lexical closures. Instead
of repeating it every time a function is generated, a function call can be compiled to a function that takes addresses
as arguments.

: memfib

(OVER) (@) (OVER) (@) (+) (>R)

(OVER) (@) (OVER) (!) (DROP)

(>A) (R>) (DUP) (A!) ;

: fibgen2

c :

c create (>R) c #>c (R>) c does

c create (>R) c #>c (R>) c does

l# memfib c (CALL) c ; ;

n 0 n 1 fibgen2 fibonacci

fibonacci #$> \t

fibonacci #$> \t

fibonacci #$> \t

fibonacci #$> \t

fibonacci #$> \t

fibonacci #$> \t

fibonacci #$> \t

fibonacci #$> \t \n

The output is: 1 2 3 5 8 13 21 34

18

2.15.4 Map

The map function applies a function to each element of a set. In Flight, this means performing the same operation
on each element of a counted string. The example used here is the Caesar cipher, which shifts the letters of a message
up or down by a secret amount.

The caesar function takes a number and an address from the data stack and adds the number to the contents
of the memory location.

: caesar

(>R) (>A) (R>) (A@) (+) (A!) ;

The caesargen function creates an instance of caesar with the number to be added as a lexical closure. Using the
negative of the original number applies the Caesar cipher in reverse, decoding the message. In this case the secret
amount is three.

: caesargen

c :

c create (>R) c #>c (R>) c does

c (@) l# caesar c (CALL) c ; ;

n 3 caesargen encode

-n 3 caesargen decode

The map1 function applies a function to each memory location in a counted string.

: map1

(DUP) (>R) c STRING_TAIL (R>)

(N+) 1

c l (>R)

: map1-loop

(DUP) (R>) (DUP) (>R) c EXECUTE (N+) 1

(OVER) (OVER) (XOR)

if j map1-loop

else (DROP) (DROP) (R>) (DROP) ;

It is now possible to encode and decode strings without having to write loops:

>$ ABCD

l INPUT @

DUP cs> \t

DUP map1 encode

DUP cs> \t

DUP map1 decode

$> \t \n

The output of this example is: ABCD DEFG ABCD

19

2.15.5 Map Generator (Optimized Caesar)

The lexical closure of caesar is always a single literal, and the call to caesar is at the tail of the compiled code. This
new version of caesargen uses these facts to replace the lexical closure with a literal load instruction, and eliminate
the tail call with a jump.

: caesargen

c : c # l# caesar c (JMP) ;

The map1 function is limited since it can only stride over a counted string with an interval of one memory word, and
must repeatedly copy and EXECUTE the address of the mapped function. The address of the function to be mapped
and the number of memory words it manipulates is known in advance and can be used to create a tailored mapping
function which compiles a direct function call and adds the correct memory stride to the address.

: mapgen

c (DUP) c (>R) l# STRING_TAIL c (CALL) c (R>)

n 1 # c # c (+)

c NEW_WORD

c (DUP) c l c (CALL) (>R) c # (R>) c (+)

c (OVER) c (OVER) c (XOR)

c if (>R) c (JMP) (R>)

c else c (DROP) c (DROP) c ; ;

The new caesargen function is used just like the old one:

n 5 caesargen encode1

-n 5 caesargen decode1

The mapgen function is used to compile a mapping version of the encoding and decoding functions. The cipher

function will encode every second letter only.

: cipher n 2 mapgen encode1

: decipher n 1 mapgen decode1

The example is as before, except that the use of the map function is now implicit:

>$ lmnopq

l INPUT @

DUP cs> \t

DUP cipher

DUP cs> \t

DUP decipher

$> \t \n

The output is: lmnopq qmsouq lhnjpl

2.15.6 Map Generator (Printing Fibonacci Numbers)

The function print$# outputs a tab-delimited list of numbers taken from the input bu�er.

: print# (@) c #$> c \t ;

: print$# n 1 mapgen print#

n 1 n 0 n 8 nfibx l INPUT @ print$# POP_STRING

The output is: 1 1 2 3 5 8 13 21

20

A Flight Kernel Bug Fixes

No substantial changes to the kernel have been done to implement the extensions, but some bugs and design �aws
needed immediate correction.

A.1 ALIGN and NEXT-SLOT

The ALIGN function adjusts the HERE, HERE_NEXT, and SLOT kernel variables so as to continue compilation at the
next free code dictionary location. The NEXT_SLOT function points SLOT to the next available instruction slot.

The concept of a null slot, which denotes a memory word in which no instructions had yet been compiled, was
introduced to �x a bug which would sometimes leave the zeroth slot of a memory word unused and thus �lled with a
PC@ instruction. This would cause the Gullwing processor to skip the remainder of the instructions in that memory
location.

A.1.1 FIRST_SLOT

Begin compiling at zeroth slot.

LIT [address of SLOT] >A

LIT [mask for slot 0] A! ;

A.1.2 LAST_SLOT

Setup at �fth slot, so the next compilation will occur at the zeroth slot.

LIT [address of SLOT] >A

LIT [mask for slot 5] A! ;

A.1.3 NULL_SLOT

Null slot mask. Denotes that the location pointed to by HERE is empty.

LIT [address of SLOT] >A

LIT [mask for null slot] A! ;

A.1.4 ALIGN

Makes HERE point to the next free location so a name entry does not end up pointing at the tail of the previous
function or at a literal. Makes HERE_NEXT point to the following location. Marks HERE as empty with NULL_SLOT.

LIT [address of HERE_NEXT] >A A@

DUP >R LIT 0 R!+ (zero (PC@) for compilation and increment)

R> A! (update HERE_NEXT)

LIT [address of HERE] >A A! (update HERE)

JMP NULL_SLOT

A.1.5 NEXT_SLOT

Point to the zeroth slot if the location pointed to by HERE is empty (null slot), else point to the next free slot, else
ALIGN.

LIT [address of SLOT] >A A@ (get slot mask)

LIT [null slot mask] OVER XOR JMP0 HEREEMPTY

LIT [fifth slot mask] OVER XOR JMP0 HEREFULL

2* 2* 2* 2* 2* A! ; (next 5-bit slot)

HEREFULL:

DROP CALL ALIGN JMP FIRST_SLOT

HEREEMPTY:

DROP JMP FIRST_SLOT

21

A.2 COMPILE_OPCODE

Takes an opcode and compiles it at the next empty HERE/SLOT location. Assumes that the current slot is full. Leaves
SLOT pointing to the next full slot. This fails for PC@, since its opcode is all zeroes, but it is not necessary to compile
it explicitly since ALIGN zeroes memory before compilation.

Calls NEXT_SLOT at the beginning now instead of at the end.

call NEXT_SLOT

>R LIT [address of SLOT] >A A@ ~ (get slot mask and invert)

R> (place opcode on top)

OVER OVER & JMP0 COMPILE (slot 0)

2* 2* 2* 2* 2* (shift opcode by one slot)

OVER OVER & JMP0 COMPILE (slot 1)

2* 2* 2* 2* 2*

OVER OVER & JMP0 COMPILE (slot 2)

2* 2* 2* 2* 2*

OVER OVER & JMP0 COMPILE (slot 3)

2* 2* 2* 2* 2*

OVER OVER & JMP0 COMPILE (slot 4)

2* 2* 2* 2* 2*

COMPILE: (then we *have* to be in slot 5)

LIT [address of HERE] >A A@

>A A@ + A! DROP ; (compile opcode, drop mask, return)

A.2.1 Future Work

The whole slot mask shifting mechanism is wasteful. Instead, COMPILE_OPCODE could shift the contents of HERE and
add in the opcode in the �fth slot. The slot mask then devolves into a counter. Since there are less than 32 slots the
counter can be a simple one-hot count, which eliminates the need for an addition. However, ALIGN will then have to
check and shift the opcodes towards the zeroth sloth if required.

A.3 DEFN

The DEFN function, which takes a name and creates a name dictionary entry with it, has been split into two parts to
make function rede�nition possible (section 2.15).

A.3.1 NEW_WORD

Returns an aligned address to compile into.

call ALIGN

LIT [address of HERE] >A A@ ;

A.3.2 DEFN_AS

Takes the aligned address of a code entry (usually from HERE) and the address of a SCANed string (from INPUT),
converts it to a name entry, and updates THERE. The string must be the only one in the input bu�er as it is converted
in place, so INPUT must be pointing to it and its tail must be at THERE. Because of this, INPUT does not need to be
changed.

LIT [address of THERE] >A A@ >A A! (store address in (THERE))

LIT [address of INPUT] >A A@ (get string start address)

LIT -1 + (move to first free location before it)

LIT [address of THERE] >A A! ;

A.3.3 DEFN

De�nes a name entry for the current code entry location.

CALL NEW_WORD

JMP DEFN_AS

22

A.4 PUSH_STRING (Future Work)

The PUSH_STRING function should set the tail instead of SCAN_STRING. Otherwise, every function afterwards that
allocates memory using PUSH_STRING has to set the tail, whose value is known the instant it is allocated.

References

[LaF05a] Eric LaForest, Unit 2-3 (IS 102B) report: The Gullwing stack computer architecture, IS Unit report,
University of Waterloo, Independent Studies Program, April 2005, Otherwise unpublished.

[LaF05b] , Unit 4-5 (IS 101B) report: The Flight programming language, IS Unit report, University of Wa-
terloo, Independent Studies Program, April 2005, Otherwise unpublished.

23

