
CSC2227 (Winter 2008)
Fletcher: Final Project Report

Eric LaForest

1

2 Contents

Contents

1 Introduction . 4
2 Goal, Motivation, and Previous Work 4
3 Design . 5
3.1 Hardware . 5

3.1.1 Memory Model . 5
3.1.2 Peripherals . 6

Input/Output Ports . 6
Cycle Counter . 6
Disk Read Port . 6
Disk Write Port . 6

3.1.3 Stack Machine . 6
Subroutine Calls on a Stack Machine 7

3.1.4 Virtualization . 7
3.1.5 From Subroutine Call to Trap Handling 8

3.2 Software . 9
3.2.1 Cycle Counter . 9
3.2.2 Process . 10
3.2.3 Disk Driver and Page Cache 10
3.2.4 Trap Handler . 11

4 Evaluation . 11
4.1 Syscalls Under Linux . 11
4.2 Stack Machine Syscalls . 11
4.3 Stack Machine Traps . 12
5 Results . 12

Syscalls and Traps . 12
Disk I/O . 13

6 Discussion . 14
7 Further Work . 14

Reduced Trap State . 14
Fewer Trap Sources . 14
Non-Virtual Memory Management 15

Bibliography17

List of Figures 3

List of Figures

1 Structure of the system address space 6
2 Simplified block diagram of a stack machine 7
3 Additional hardware to support virtualization of a stack machine . . . 8
4 Machine state after a trap. 9
5 Structure of a user process . 10

List of Tables

1 Comparison of simple system call times 5
2 Comparison ofgetpid() performance 13
3 Comparison of buffered disk read performance (1 byte) 13

4 2 Goal, Motivation, and Previous Work

1 Introduction

Amongst the various operating system design options, I find the microkernel archi-
tecture particularly compelling due to its careful separation of services into separate,
mutually protected modules. This organization makes each module smaller and easier
to reason about, improving the odds of a correct implementation.

However, this division also introduces the need for communication across mod-
ules. Since modules are protected from each other by placingthem in disjoint virtual
memory spaces and/or privilege levels, any OS operation notentirely contained inside
a single module will require a system transition from user mode to kernel mode and
back. This overhead is thus omnipresent and may affect system performance.

2 Goal, Motivation, and Previous Work

This project seeks to explore the possibility that an alternative system design, in terms
of processor architecture and memory model, could reduce the latency of user/kernel
mode switching. Specifically, can the fast subroutine call mechanism of a second-
generation stack architecture be used to implement a comparably fast mode switch?

The speed of the mode switch between user and kernel is important to the overall
performance of an operating system as it places a lower limitto the time taken to
perform a system call (syscall) and thus to the speed of I/O operations [Hay02]. Thus,
the speed of syscalls is measured as an indicator of potential system performance (Table
1).

Various approaches have been used to keep syscall times to a minimum. The Xen
paravirtualization system [BDF+03] allows the installation of ’fast’ exception handlers
for syscalls that do not alter the global system state and thus do not require entering the
hypervisor, causing no mode switch.

The L4Linux microkernel [HHL+97] transforms syscalls into Inter-Process Com-
munication (IPC) between processes, adding several hundred cycles. However, L4Linux
enjoys extremely efficient IPC by remapping virtual memory pages instead of copying.
This optimization compensates for the overhead in all but the simplest syscalls.

Finally, at the other extreme, the Singularity operating system [HHA+07] com-
pletely eliminates mode switches by running all processes in the same address space
and privilege level, using strong compile-time language-based checks to ensure safety,
resulting in extremely fast IPC and syscalls. However, thisapproach requires some
strong constraints within processes, such as being unable to load or generate code at
run time.

All of the above works acknowledge that virtual memory can pose a problem for
syscall performance, as switching modes means entering a different virtual memory
space, which requires changing the page table and flushing the Translation Look-aside
Buffer (TLB). This overhead can add several hundred cycles to a mode switch [Lie95]
and negatively impact the performance of systems which are I/O-bound in some form,
such as IPC in microkernels or disk and network traffic in servers.

5

Paper Operating System syscallµs cycles Platform

[FHL+96] Fluke 2 400 200MHz Pentium Pro

[BSP+95] DEC OSF/1 5 665 133MHz Alpha AXP
[BSP+95] Mach 3.0 7 931 133MHz Alpha AXP
[BSP+95] Spin 4 532 133MHz Alpha AXP

[BDF+03] XenoLinux 2.4.21 0.46 1104 2.4GHz Xeon
[BDF+03] Linux 2.4.21 (UP) 0.45 1080 2.4GHz Xeon

[HHA+07] Singularity - 91 2GHz Athlon 64 X2
[HHA+07] FreeBSD 5.3 - 878 2GHz Athlon 64 X2
[HHA+07] Linux 2.6.11 - 437 2GHz Athlon 64 X2
[HHA+07] Windows XP SP2 - 627 2GHz Athlon 64 X2

[HHL+97] Linux 2.0.21 1.68 223 133MHz Pentium
[HHL+97] L4Linux 2.0.21 3.95 526 133MHz Pentium
[HHL+97] MkLinux 2.0.28 15.41 2050 133MHz Pentium

Tab. 1: Comparison of simple system call times

3 Design

The entire system exists inside a Linux process as a structural, cycle-accurate stack
machine simulator without any knowledge of the host system.The virtual hardware
of the simulator supports a small extensible language run-time which provides an in-
teractive environment capable of compilation. Both hardware and software required
changes from their original implementation [LaF07] as partof the project execution.

3.1 Hardware

3.1.1 Memory Model

Figure 1 shows the structure of the address space. At the bottom is the installed RAM
while memory-mapped I/O sits near the top. Unused memory space is mapped by
the kernel to disk blocks1. The entire memory is flat and physically addressed, thus
a unique address is sufficient to identify anything within the address space. In terms
of performance, this is comparable to a virtual memory whichnever faults and never
experiences any TLB misses.

1 This is rather restrictive for 32-bit systems, but given a 64-bit address space and the current 3-year
doubling period for disk storage [HP07, 6.2], this should allow for up to a century before the address space
runs out in a simple system.

6 3 Design

RAM I/O

2n0

Disk

Fig. 1: Structure of the system address space

3.1.2 Peripherals

The system peripherals are memory-mapped at the top of the address space.

Input/Output Ports These ports are used to read in commands and write responses
to the console. For simplicity, they block the simulator until the host system can re-
spond.

Cycle Counter When read, the cycle counter returns a 32-bit value which is incre-
mented every cycle. The counter can be set by writing a new value.

Disk Read Port A write to the Disk Read Port sets the current disk block number.
Subsequent reads return one integer from that block until itis complete. Further reads
begin reading the next block. Disk access latency is not simulated.

Disk Write Port A write to the disk write port sets the number of the block to be
overwritten. The next 128 writes2 will be written to that block, whereupon the port
expects a new block number. A read returns zero.

3.1.3 Stack Machine

The simulator implements a simple stack machine (Figure 2) derived from past com-
mercial designs [MT95][Fox98] and from previous undergraduate work [LaF07] . The
Data Stack (DS) is the core of the system, where ALU operations are performed and
subroutine parameters placed in a Reverse Polish Notation manner. The Return Stack
(RS) holds the return address during the execution of subroutines.

The stacks are not data structures in memory, but actual hardware devices which
cannot be randomly addressed3. Loads and stores take their address from the Address
Register (A) and their data from DS. There is a single port to main memory (MEM),
capable of one load or store per cycle. Finally, there are theusual Instruction Register
(IR) and Program Counter (PC) registers.

2 128 integers = 512 bytes = one disk block
3 The depth of the stacks is arbitrary. Past research [Koo89] has shown that 16 elements is sufficient for

most code. This design uses generous, 32-deep stacks to avoid having to deal with overflows.

3.1 Hardware 7

A

PC

data adrMEM

DS RS

IR

Fig. 2: Simplified block diagram of a stack machine

Subroutine Calls on a Stack Machine The key feature of interest in stack ma-
chines is the speed at which subroutine calls can be performed. Most processors must
flush some registers to a stack in memory and move the functionparameters to certain
predefined registers before calling a subroutine. This method takes several instructions
and memory accesses to complete.

On the other hand, on a stack machine, the parameters of a subroutine are on the
Data Stack, usually placed there as the result of previous computations by the caller.
Calling a subroutine requires only to save the current Program Counter on the Return
Stack and fetch the first subroutine instruction into the Instruction Register. The called
subroutine them simply computes with the values found on theData Stack, as if it
had been in-line code. Returning from a subroutine restoresthe Program Counter and
resumes the fetching of instructions from the caller. Both call and return each require
only two cycles and two loads from memory.

3.1.4 Virtualization

To support a clean division between user and supervisor mode, I opted to virtualize
the entire machine as per the Popek & Goldberg criteria [PG74], which define the
conditions required to present to a user process an interface that is identical to the
native machine while preventing the process from usurping its resources4. In fact,
except for memory and privilege constraints, the user process runs unhindered on the
bare hardware.

Figure 3 shows the major components added: The upper and lower range of acces-
sible memory are defined by the contents of the Upper Bound (UB) and Lower Bound
(LB) registers. Any out-of-bounds memory access will causea trap to the kernel. The
entry point to the kernel is held in the Trap Program Counter (TPC). The Mode Bit
specifies if the stack machine is in User or Supervisor mode.

4 There is no periodic interrupt in this system so a user process can run for indefinite lengths of time, but
this is not a factor in the experiments.

8 3 Design

Additionally, I added a privileged Return To User (RTU) instruction to transfer
from Supervisor mode to User mode. Attempting to execute RTUin User Mode causes
a trap.

A

PC

TPC

data adrMEM

DS RS

IR

ModeLB UB

Fig. 3: Additional hardware to support virtualization of a stack machine

3.1.5 From Subroutine Call to Trap Handling

While in User Mode, if a memory access is outside the range delimited by LB and
UB, or if the RTU instruction is executed, the machine will trap to the kernel. The
state of the machine after a trap is shown in Figure 4: The LB and UB registers are
set to encompass the entire address space, preventing any memory access traps from
occurring while in Supervisor mode. The Mode Bit is set to Supervisor, enabling the
normal operation of the Return To User (RTU) instruction. The previous contents of
LB and UB are pushed onto the Data Stack, while those of IR and PC are pushed onto
the Return Stack. The PC is loaded with the contents of TPC, and the IR is filled
with the first instruction of the trap handler. The A registeris untouched. While in
Supervisor mode, executing RTU will perform the same steps in reverse, restoring the
state of the user process.

One exception is that the saved PC and IR must be swapped by thetrap handler
before executing RTU. This is so the contents of the IR are popped from the Return
Stack and restored in the last cycle of RTU, since overwriting IR will immediately
begin the execution of its new contents. This could be avoided by saving IR and PC in
the reverse order during a trap, but this complicates trap handling as the instruction that
caused the trap would be buried under the saved PC and could nolonger be directly
moved to the Data Stack for manipulation.

The net effect of these operations is to implement a subroutine call whose saved
state includes the memory bounds and current instruction ofthe caller in addition to
the usual Program Counter. Both traps and return from traps take the same amount of

3.2 Software 9

time and bandwidth as subroutine calls and returns: two cycles and two loads5.

2n

data adrMEM

A

IR

TPC Super

(PC)

(UB)

(LB)

(TPC)

(IR)

0

Fig. 4: Machine state after a trap.

3.2 Software

The core software is a minimal, Forth-like language [LaF07]. The kernel is composed
of functions which read input, look-up names, define names, and compile stack ma-
chine opcodes. The main loop consists of reading the name of afunction, looking it up
in a dictionary, and executing the associated code. This code may itself define names
and compile code, thus extending the language kernel. Thereis no further syntax.

The bare language kernel is extremely spartan and unsuitable for general program-
ming, thus a number of extensions are considered “built-in”for the purpose of this
project and used to create the actual system software. Theseextensions include if/else
constructs, arithmetic operations, simple strings, linear memory allocation, code com-
pilation, etc. . . The language kernel and its extensions compose the kernel of the oper-
ating system and execute in Supervisor Mode.

3.2.1 Cycle Counter

The first extension deals with using the Cycle Counter to measure intervals. Typical
use first resets the counter (to avoid wraparound issues), stores a copy of the current
counter value, stores a copy of the final counter value after the measured action, and
computes the time interval, taking internal overhead into account.

5 This sounds like a lot to have happen in two cycles, but note that each stack can independently push/pop
one item per cycle, while the memory performs a load or store.Only simple one-register-transfer-per-cycle
steps are assumed.

10 3 Design

3.2.2 Process

The structure of a user process is shown in Figure 5. The process header contains the
address of the previous and next process in a ring6, the Process ID (PID) of this process,
the Upper (UB) and Lower (LB) Bounds of memory which the process is allowed to
access, and the Entry Point of the process code.

PID
UB
LB

UB

LB Entry

Next
Prev} Header

} Code

Fig. 5: Structure of a user process

The process extension creates acurrent_process pointer, a sequential PID
creation function, functions to allocate a process header and read/write its fields, and
process creation functions. The following code outlines the specification of a process:

begin_process foo
: some_function_1 ... ;
: some_function_2 ... ;
...

enter_process some_function_2
end_process

The functions defined inside the process compose the Code section. The UB and LB
fields are set to enclose it.

3.2.3 Disk Driver and Page Cache

The disk driver extension defines a single disk block buffer and block read/write func-
tions to fill/flush the buffer. The disk driver can also print the contents of the block
buffer to the console.

The page cache extension translates memory addresses to a disk block number and
an offset within it. If the block is not already loaded in the buffer, it fills the buffer then
returns the integer at the correct offset. Write caching anddirty buffer flushing are not
implemented.

6 This feature is currently unused. All tests were done using asingle runnable process.

11

3.2.4 Trap Handler

The trap handler is the top-level function in the operating system kernel. It defines
an entry point for traps, some functions to save and restore process state, system call
and trap handling functions, various range checks, and functions to start a process and
return to it after a trap.

The trap handler’s first action is to identify the instruction causing the trap. This
divides the traps into two types: plain traps and syscalls. If the trapping instruction is
a load or a store, then the trap handler verifies that the access to the memory location
is allowable. If so, the kernel performs the operation and returns to the process. The
whole trap is transparent to the process.

If the trapping instruction is Return To User (RTU), then thekernel treats the trap as
a syscall. The topmost entry in the Data Stack is verified to bea valid syscall number,
then used to index into a table of syscall functions. The kernel performs the syscall,
leaves its return value(s) on the Data Stack, and returns to the process.

4 Evaluation

The performance of mode switching is evaluated by measuringthe round-trip time for
a trivial syscall. Under UNIX-like systems, the simple syscall is getpid(), as it
consists of only reading a constant field in the header of the current process.

4.1 Syscalls Under Linux

Unfortunately, the nature of syscalls under Linux has changed since about version
2.5 of the kernel, which complicates the measurement. Before Linux 2.5, the i386
syscalls used the 0x80 software interrupt. Under the Pentium IV, this method suffered
a strong performance penalty [Hay02] (see [BDF+03] entries in Table 1 for an exam-
ple) and the syscall mechanism was moved to thesysenter/sysexit instruction
pair [Bro07][Gar06], specifically designed for fast mode switches. This new syscall
code is placed at a fixed address in a read-only page mapped near the end of a process’s
virtual memory. Furthermore, this page now also holds read-only information such as
the current time or the PID of the process, eliminating the syscall outright for these
data and reducing the glibc version ofgetpid() to reading a memory location.

Thus three versions ofgetpid()must be measured: reading directly from userspace,
performing the syscall viasysenter, and via interrupt 0x80. The syscalls were mea-
sured by modifying thelat_syscall null benchmark from the lmbench-3.0-a7
suite, while the direct read version was measured in a customprogram since it is too
fast for lmbench to measure7.

4.2 Stack Machine Syscalls

The implementation of syscalls on the stack machine take advantage of the fact that
RTU is a privileged instruction. A user process places the syscall number on the Data

7 It took 40billion iterations to get a reliable measurement. The loop overheadwas verified and negligible.

12 5 Results

Stack and executes RTU, causing a trap. The kernel, upon seeing that RTU is the cause
of the trap, jumps to the syscall. Forgetpid(), the kernel will leave the PID on the
stack before returning to the user process.

4.3 Stack Machine Traps

As an alternative to syscalls on the stack machine, if a process knows the address of its
PID, it can try to read it directly. Since the PID is located inthe process header, which
is outside the memory bounds of the process code, a read attempt will cause a trap. The
kernel verifies that the address is within the process’s own header and if so, performs
the read before returning to the user process.

Similarly, if the address is beyond the installed RAM, then the kernel translates this
address to a disk block number and an offset within it, loads the block into a buffer
if it isn’t already, and reads the value at the block offset before returning to the user
process. From the process’s point of view, the disk is ordinary RAM, only slower and
persistent.

The Linux kernel does not have a similar trap mechanism, except perhaps for page
fault handling. There was not enough time to investigate this comparison.

5 Results

The performance of mode switches on the stack machine is compared against that of
a Linux 2.6.20.6 kernel running on a 2.2 Ghz8 Athlon 64 X2. Both machines run in
single-user mode. Time is compared as clock cycles to abstract away relative clock
speeds and architectural differences9.

Syscalls and Traps Table 2 compares the stack machinegetpid() syscall and
trap against the three versions ofgetpid() on Linux. The stack machine syscall
compares favourably against both Linux syscall mechanisms. The stack machine trap
is a little slower due to the necessity of checking the address of the trapping read.

The performance of the stack machine also compares favourably against the sys-
tems listed in Table 1. Most notably, the syscall performance exceeds that of Singular-
ity, which performs syscalls without mode switches.

The cost of a stack machine syscall can be better understood by subtracting the
time taken by a ’null’ syscall which returns immediately without action. This overhead
counts for 68 cycles, leaving 13 as actual work done bygetpid(). This roughly
agrees with the measured cycles for the direct read version of Linux getpid().

8 Precisely: 2211 MHz
9 This view is based on the assumption that a clock cycle represents a basic register-transfer operation,

such as a register move or an addition, regardless of machinetype since it’s ultimately constrained by physics.
This also accounts for multi-cycle pipelined operations.

13

Linux µs cycles Stack cycles Speedup Stack cycles Speedup

int 0x80 0.1494 330 syscall 81 4.07 trap 98 3.37
sysenter 0.0819 181 - - 2.23 - - 1.85
direct 0.0047 10 - - 0.12 - - 0.10

Tab. 2: Comparison ofgetpid() performance

Disk I/O As further comparison, Table 3 compares the time taken to read one byte10

from a buffered disk block. The Linux result comes from the lmbench-3.0-a7lat_syscall
read benchmark, which repeatedly reads a byte from/dev/zero. The stack ma-
chine result comes from a user process sequentially readinga number of memory lo-
cations mapped to disk blocks. The first read trap causes a kernel buffer to be filled,
while subsequent traps return directly from the buffer, which is the number reported
here.

Although the result initially seems very favourable, closeinspection of the Linux
kernel code reveals that the permission checks are done by the Virtual File System
(VFS) at each read, and not when the file is opened. This, plus additional size checks,
differentiates the operation too much to be directly comparable to the stack machine.
However, there does seem to be sufficient room to implement such checks and still
remain competitive with Linux.

Note that the stack machine time includes an integer division in softwareto map
an address to a disk block and offset11, while the Linux kernel avoids this overhead
altogether since it keeps a position counter for an open file,and would have the use of
a hardware divider otherwise.

Linux µs cycles Stack cycles Speedup

read() 0.2788 616 trap 105 5.87

Tab. 3: Comparison of buffered disk read performance (1 byte)

10 Actually one integer (4 bytes) for the stack machine, but this being its fundamental addressing unit,
should not be a significant difference.

11 (block number, block offset) = (quotient, remainder) = (read address - disk base address) / block size.
Block size is 128 (integers).

14 7 Further Work

6 Discussion

Although the comparison was more complicated than anticipated, I believe that there
is sufficient evidence that a stack architecture can improvesyscall performance. I
find it particularly exciting that the stack syscalls were faster than those in Singularity
[HHA+07], without the need for process constraints and compile-time checks.

Despite this improvement, most of the overhead of a syscall or a trap (64 cycles,
on top of the base hardware cost of four cycles) is spent shuffling state on the stacks,
suggesting that there is room for improvement in the mode switching mechanism.

However, the comparison was made in ideal conditions for both machines. Under
a multiprogrammed load, the Linux system would suffer longer mode switches due to
conflicts in virtual memory mappings and the consequent TLB flushes [Lie95]. On the
other hand, the flat memory of the stack machine would not suffer any such penalty,
having instead to do more work when communicating across processes or when allo-
cating memory.

7 Further Work

The initial version of the trap handling code immediately saved all process state to
memory, restoring it at the end. This was found to be too time-consuming. The next
version was designed such that the state of a trapping process was not saved to memory,
but kept on the stacks for the duration of the trap.

Although faster, shuffling the state around the stacks to access buried data and to
preserve the value of the Address Register, which is not copied during a trap, is now
the source of most of the overhead in the trap handler.

Reduced Trap State In hindsight, the Upper and Lower Bounds registers do not
need to be pushed onto the Data Stack during a trap, as the kernel already knows which
process was running and thus can fetch these values from the process header when
checking memory accesses and before returning to user mode.

This simplification would also allow the trap mechanism to instead save a copy of
the Address Register onto the Data Stack, avoiding many operations in the trap handler
to temporarily push and pop it from the stacks to preserve itsvalue when the kernel
must access memory.

Fewer Trap Sources Another source of overhead in the trap handler is the initial
check to see which instruction caused the trap. This is used to distinguish between
syscalls, caused by Return To User (RTU), or a memory access trap, causes by loads
and stores. Having only a single trap source would eliminatethe need to extract the
instruction and use it in a table lookup.

Possible candidates are RTU, which would reduce mode switches to syscalls only,
or calls and jumps, which would trap when branching to code inthe kernel or another
process. In the latter case, which flow control instruction causes the trap is irrelevant,
and the kernel would only have to alter the memory bounds before returning to user
mode. As long as a userspace trapping mechanism exists, either through memory trap

15

or through a privileged instruction, then these changes will not break the virtualization
of the stack machine.

Another benefit of not having to check the trapping instruction would be that the
trap mechanism could place the saved PC and IR on the Return Stack in the correct
order expected by RTU when returning to user mode, eliminating the need to swap
them in the trap handler (see 3.1.5, Trap Handling).

Non-Virtual Memory Management Although the stack machine’s flat memory
model avoids the mode switching overhead of TLB flushes, it also means that processes
can never share memory12 and that new memory cannot be allocated to a process except
by memory range extension. This prevents fast Inter-Process Communication (IPC)
through page sharing [HHL+97] and the usualmalloc() andfork() behaviour.

However, the fast mode switches made possible by the same stack machine sys-
tem, along with the fact that the kernel is actually an extensible language kernel, may
provide some of the flexibility lost by not having virtual memory.

For example, signalling another process could be accomplished by placing the sig-
nal value on the Data Stack and doing a call to the remote process, with the kernel
handling the context switch. More complex IPC would requirethe kernel to copy a
buffer across processes.

Similarly, if the normal sequential fetching of instructions is exempted from mem-
ory traps, then a process could perform a syscall requestingpermission to change its
memory bounds in order to operate on remote data. Once done, the process can ask the
kernel to restore its usual memory bounds. This change wouldallow for true shared
buffers.

This mechanism should be secure, since calls and branches are still guarded by the
memory bounds, and attempts to ’fall through’ to hostile code placed after a process
can be thwarted by appending a syscall at the tail of a processat creation time, just
outside of its normal memory bounds to make it inaccessible to the process.

12 Unless they were contiguous and had overlapping memory bounds. But that is inflexible and complicates
process structure.

16 7 Further Work

References 17

References

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield,Xen and the art
of virtualization, SOSP ’03: Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles (New York, NY, USA), ACM, 2003,
pp. 164–177.

[Bro07] Andries Brouwer,Some remarks on the linux kernel, website, 2007,
http://www.win.tue.nl/ aeb/linux/lk/lk.html.

[BSP+95] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers,Extensibility safety and perfor-
mance in the spin operating system, SOSP ’95: Proceedings of the fif-
teenth ACM symposium on Operating systems principles (New York, NY,
USA), ACM, 1995, pp. 267–283.

[FHL+96] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann,Godmar Back,
and Stephen Clawson,Microkernels meet recursive virtual machines, Op-
erating Systems Design and Implementation, 1996, pp. 137–151.

[Fox98] Jeff Fox,F21 CPU, web page, 1998, http://ultratechnology.com/f21.html.

[Gar06] Manu Garg,Sysenter based system call mechanism in linux 2.6, website,
2006, http://manugarg.googlepages.com/systemcallinlinux2_6.html.

[Hay02] Mike Hayward,Intel p6 vs p7 system call performance, Linux Kernel
Mailing List, December 2002, http://lwn.net/Articles/18412/.

[HHA+07] Galen Hunt, Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Haw-
blitzel, Orion Hodson, James Larus, Steven Levi, Bjarne Steens-
gaard, David Tarditi, and Ted Wobber,Sealing os processes to im-
prove dependability and safety, EuroSys ’07: Proceedings of the ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007 (New
York, NY, USA), ACM, 2007, pp. 341–354.

[HHL+97] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Jean Wolter, and
Sebastian Schönberg,The performance of micro-kernel-based systems,
SOSP ’97: Proceedings of the sixteenth ACM symposium on Operating
systems principles (New York, NY, USA), ACM, 1997, pp. 66–77.

[HP07] John L. Hennessy and David A. Patterson,Computer architecture: A
quantitative approach, 4th ed., Morgan Kaufmann Publishers Inc., 2007.

[Koo89] Philip J. Koopman,Stack computers: the new wave, Halsted Press, 1989.

[LaF07] Charles Eric LaForest,Second-generation stack computer architecture, In-
dependent Studies thesis, University of Waterloo, April 2007.

18 References

[Lie95] Jochen Liedtke,Improved address-space switching on Pentium proces-
sors by transparently multiplexing user address spaces, Arbeitspapiere der
GMD No. 933, GMD — German National Research Center for Informa-
tion Technology, Sankt Augustin, September 1995.

[MT95] Charles H. Moore and C. H. Ting,MuP21 – a MISC processor, Forth
Dimensions (1995), 41, http://www.ultratechnology.com/mup21.html.

[PG74] Gerald J. Popek and Robert P. Goldberg,Formal requirements for virtu-
alizable third generation architectures, Commun. ACM17 (1974), no. 7,
412–421.

