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Abstract

A number of Gullwing virtual machines are written in Flight and their relative overheads are compared. The sources of the
overhead are explained in terms of the Popek and Goldberg requirements for machine virtualization, which are then used to
derive the necessary changes to the Gullwing architecture to optimally support virtual machines. Some minor alterations are
performed on the Flight language kernel to allow for retargeting its compilation. From this is built a framework for expressing
the Flight kernel in Flight instead of assembly. When combined with the virtual machines, this allows Flight to create a second,
nested instance of itself which cannot affect the first.
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1 Virtual Machines
The virtual machines (VMs) presented are behavioural simulations of the Gullwing processor [LaF05a]1. It is important to
keep in mind that none of these VMs do address translation2. The addresses used are the physical ones at which the allocated
memory resides. This means that the VMs are imperfect in their simulation, since software could test for the location of the
Kernel and Input/Output ports to see if they match those on the native hardware (which they wouldn’t).

1.1 Preambles
These are blocks of code referenced throughout. Where they would be inserted in-line, they are replaced for brevity by a
reference between angle brackets (<...>). All code listed makes use of the Flight Extensions, described in [LaF05b].

1.1.1 Opcodes

These words return the opcode for each instruction.

: PCFETCHopcode n# 0 ;
: CALLopcode n# 1 ;
: RETopcode n# 2 ;
: JMPopcode n# 3 ;
: JMPZEROopcode n# 4 ;
: JMPPLUSopcode n# 5 ;
: FETCHAopcode n# 6 ;
: STOREAopcode n# 7 ;
: FETCHAPLUSopcode n# 8 ;
: STOREAPLUSopcode n# 9 ;
: FETCHRPLUSopcode n# 10 ;
: STORERPLUSopcode n# 11 ;
: LITopcode n# 12 ;
: UNDEF0opcode n# 13 ;
: UNDEF1opcode n# 14 ;
: UNDEF2opcode n# 15 ;
: XORopcode n# 16 ;
: ANDopcode n# 17 ;
: NOTopcode n# 18 ;
: TWOSTARopcode n# 19 ;
: TWOSLASHopcode n# 20 ;
: PLUSopcode n# 21 ;
: PLUSSTARopcode n# 22 ;
: DUPopcode n# 23 ;
: DROPopcode n# 24 ;
: OVERopcode n# 25 ;
: TORopcode n# 26 ;
: RFROMopcode n# 27 ;
: TOAopcode n# 28 ;
: AFROMopcode n# 29 ;
: NOPopcode n# 30 ;
: UNDEF3opcode n# 31 ;

1.1.2 VM Parameters

These are common to all the virtual machines (VM). They de-
fine the size of the memory and of the stacks, the width of the
opcodes, and calculate the locations of the virtual memory-
mapped input and output ports, which are always the last two
locations in MEM.

: MEMSIZE n# 8192 ;
: MEM MEMSIZE var ;
: STACKDEPTH n# 16 ;
: OPCODEWIDTH n# 5 ;
: OPCODEMASK n# 31 ;
: MEM_INPUT MEM MEMSIZE + -n 2 + # ;
: MEM_OUTPUT MEM MEMSIZE + -n 1 + # ;

1The state machine description in that report has a few errors and omissions, which are corrected in [LaF05d].
2There was not enough time to implement that feature.
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1.1.3 Instruction Call Table

This creates an array of the addresses of the VM func-
tions which emulate the native instructions. The &> func-
tion looks up the address and stores it into memory. Calling
instruction_call_table returns the address of the ar-
ray, which is then indexed into with the opcode to be emulated.

: , c #>c c ALIGN ;
: &> c l c , ;

: instruction_call_table
create
&> do_pcfetch
&> do_call
&> do_ret
&> do_jmp
&> do_jmpzero
&> do_jmpplus
&> do_fetcha
&> do_storea
&> do_fetchaplus
&> do_storeaplus
&> do_fetchrplus

&> do_storerplus
&> do_lit
&> do_undef
&> do_undef
&> do_undef
&> do_xor
&> do_and
&> do_not
&> do_twostar
&> do_twoslash
&> do_plus
&> do_plusstar
&> do_dup
&> do_drop
&> do_over
&> do_tor
&> do_rfrom
&> do_toa
&> do_afrom
&> do_nop
&> do_undef
does ;

1.2 VM1
The first virtual machine is an almost pure emulation of the Gullwing processor. The stacks are reproduced in main memory,
as is the A register (AREG), but the Program Counter (PC) and the Instruction Shift Register (ISR) are kept on the Data Stack,
with the ISR on top.

<VM Parameters (Section 1.1.2)>

: AREG n 1 var ;

These define the Data and Return Stacks (DSH, RSH), compute
the address of their tails (DST, RST), and create pointers into
them (DSP, RSP).

: DSH STACKDEPTH var ;
: DST DSH STACKDEPTH -n 1 + + # ;
: DSP n 1 var ;
: RSH STACKDEPTH var ;
: RST RSH STACKDEPTH -n 1 + + # ;
: RSP n 1 var ;

Set the pointers to the address of the heads of the stacks.

: empty_stacks
DSH # DSP # (!) RSH # RSP # (!) ;

The following block constructs the push and pop operations for
the stacks. The pointer incrementing and decrementing func-
tions only do so if the pointer is not already at either the tail
or the head, to prevent stack overflows and underflows from
corrupting other memory.

: DSP1+
DSP # (@) (DUP) DST # (XOR)

if (N+) 1 (DUP) (A!) ; else ;
: DSP1-
DSP # (@) (DUP) DSH # (XOR)
if (DUP) (N-) 1 (A!) ; else ;
: DSPprev
DSP # (@) (DUP) DSH # (XOR)
if (N-) 1 ; else ;
: RSP1+
RSP # (@) (DUP) RST # (XOR)
if (N+) 1 (DUP) (A!) ; else ;
: RSP1-
RSP # (@) (DUP) RSH # (XOR)
if (DUP) (N-) 1 (A!) ; else ;
: push_ds c DSP1+ (!) ;
: pop_ds c DSP1- (@) ;
: push_rs c RSP1+ (!) ;
: pop_rs c RSP1- (@) ;

These redirect memory reads and writes to the actual I/O ports
if the emulated ones are accessed, else they simply read or
write from memory. The addresses used are untranslated, and
there is no protection against accessing memory outside of
MEM.

: mem_read
(DUP) MEM_INPUT # (XOR)
if (@) ; else (DROP) c ># ;
: mem_write (DUP) MEM_OUTPUT # (XOR)
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if (!) ; else (DROP) c #> ;

The following functions emulate the Gullwing instructions,
which are described in [LaF05a] and summarized in [LaF05b].
They typically fetch from the stacks in memory, perform the
work on the actual Data Stack, then store the results back.

For example, do_call begins by dropping the ISR from
the stack, duplicates the PC, increments that copy by 1 to make
it into the return address, and stores it on the emulated return
stack. It then uses the original PC to fetch the called address,
makes a copy and puts it away into the A register, increments
the original by 1 to make it into the next address to execute,
and finally uses the copy to fetch the new block of instructions,
which will be processed by do_next_instruction later
on.

: do_call
(DROP) (DUP) (N+) 1 c push_rs
(@) (DUP) (>A) (N+) 1 (A@) ;

: do_pcfetch
(DROP) (DUP) (>A) (N+) 1 (A@) ;

: do_ret
(DROP) (DROP) c pop_rs
(DUP) (>A) (N+) 1 (A@) ;

: do_jmp
(DROP) (@) (DUP) (>A) (N+) 1 (A@) ;

: do_jmpzero
c pop_ds
if (>R) (N+) 1 (R>) ;
else j do_jmp

: do_jmpplus
c pop_ds
if- (>R) (N+) 1 (R>) ;
else j do_jmp

: do_fetcha
AREG # (@) c mem_read c push_ds ;

: do_storea
c pop_ds AREG # (@) c mem_write ;

: do_fetchaplus
AREG # (@) (DUP) c mem_read c push_ds
(N+) 1 AREG # (!) ;

: do_storeaplus
AREG # (@) c pop_ds (OVER) c mem_write
(N+) 1 AREG # (!) ;

: do_fetchrplus
c pop_rs (DUP) c mem_read c push_ds
(N+) 1 c push_rs ;

: do_storerplus
c pop_rs c pop_ds (OVER) c mem_write
(N+) 1 c push_rs ;

: do_lit
(>R) (DUP) (>A) (N+) 1 (R>) (A@) c push_ds ;

: do_undef
n 31 COMPILE_OPCODE ;

: do_xor
c pop_ds DSP # (@) (@) (XOR) (A!) ;

: do_and
c pop_ds DSP # (@) (@) (AND) (A!) ;

: do_not
DSP # (@) (@) (NOT) (A!) ;

: do_twostar
DSP # (@) (@) (2*) (A!) ;

: do_twoslash
DSP # (@) (@) (2/) (A!) ;

: do_plus
c pop_ds DSP # (@) (@) (+) (A!) ;

: do_plusstar
c pop_ds (>R) DSP # (@) (@)
(R>) (+*) c push_ds (DROP) ;

: do_dup
DSP # (@) (@) c push_ds ;

: do_drop
c pop_ds (DROP) ;

: do_over
c DSPprev (@) c push_ds ;

: do_tor
c pop_ds c push_rs ;

: do_rfrom
c pop_rs c push_ds ;

: do_toa
c pop_ds AREG # (!) ;

: do_afrom
AREG # (@) c push_ds ;

: do_nop
(NOP) ;

<Instruction Call Table (Section 1.1.3)>
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This compiles code3 which shifts out the previous instruction,
shifting in zeroes which eventually form the PC@ opcode.

: (shift_isr)
c (2/) c (2/) c (2/) c (2/) c (2/) ;

This compiles code to mask off a copy of the ISR, returning
the current instruction to emulate.

: (extract_instruction)
c (DUP) OPCODEMASK # c # c (AND) ;

The extracted instruction is then used to index into the instruc-
tion call table to get the address of the emulating function,
which is then called.

: do_next_instruction

(extract_instruction)
(>R) (shift_isr) (R>)
instruction_call_table # (+) (@)
c EXECUTE ;

Finally, the VM is started by emptying the stacks, placing ini-
tial values of PC and ISR on the Data Stack, and entering an
endless loop which emulates the instructions.

: run_vm
c empty_stacks
MEM #
n 0 #
: vm_loop
c do_next_instruction
j vm_loop

1.3 VM2
The second virtual machine is identical to the first, but memory accesses and program flow changes are now checked to see if
they fall within the bounds of MEM. Only code added or changed is listed below.

: MEMHEAD MEM # ;
: MEMTAIL MEM_OUTPUT # ;

If the address is after the head of MEM, then (check_low)
will return a positive number.

: (check_low)
MEMHEAD negate # c # c (+) ;

If the address is before the tail of MEM, then
(check_high) will return a positive number.

: (check_high)
c (negate) MEMTAIL # c # c (+) ;

Perform both checks and OR the numbers together. If either is
negative, indicating a memory access outside of MEM, then the
final number will be necessarily also negative.

: mem_in_range?
(DUP) (check_low) (OVER) (check_high) (OR) ;

: mem_access_msg
create >$ ILLEGAL_MEMORY_ACCESS: $>c
does j cs>

Outputs the error message, followed by the address in ques-
tion.

: report_mem_error
c mem_access_msg
c \s c #$> j \n

If the address is out of range, then output the error message,
and echo the remaining input to the output as a crude way of
indicating where the range violation occurred.

: access_check
c mem_in_range?
if-
c report_mem_error
j errcontext

else ;

The access_check function is then inserted just before any
emulated memory access code would use an address. Flow
control instructions must be included since self-modifying
code could pass a compile-time memory range check, but gen-
erate illegal addresses at run-time.

: mem_read
(DUP) MEM_INPUT # (XOR)
if
c access_check (@) ;
else
(DROP) c ># ;

: mem_write
(DUP) MEM_OUTPUT # (XOR)
if
c access_check (!) ;

else
(DROP) c #> ;

: do_pcfetch
(DROP) c access_check
(DUP) (>A) (N+) 1 (A@) ;

: do_call
(DROP) (DUP) (N+) 1 c push_rs (@)
c access_check (DUP) (>A) (N+) 1 (A@) ;

3It is a naming convention in Flight to place inside parentheses the names of functions which compile their code instead of executing it.
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: do_ret
(DROP) (DROP) c pop_rs c access_check
(DUP) (>A) (N+) 1 (A@) ;

: do_jmp
(DROP) (@) c access_check
(DUP) (>A) (N+) 1 (A@) ;

1.3.1 VM2-1 (Tail-Call Elimination)

To eliminate some of the function call overhead, function tail-calls have been replaced by jumps, and the call to EXECUTE
in do_next_instruction has been replaced with in-line code. These changes are listed below. The improvement in
performance is discussed in Section 1.6.

: (check_low)
MEMHEAD negate # c # j (+)

: (check_high)
c (negate) MEMTAIL # c # j (+)

: mem_read
(DUP) MEM_INPUT # (XOR)
if
c access_check (@) ;
else
(DROP) j >#

: mem_write
(DUP) MEM_OUTPUT # (XOR)
if
c access_check (!) ;
else
(DROP) j #>

: do_fetcha
AREG # (@) c mem_read j push_ds

: do_storea
c pop_ds AREG # (@) j mem_write

: do_fetchrplus
c pop_rs (DUP) c mem_read
c push_ds (N+) 1 j push_rs

: do_storerplus
c pop_rs c pop_ds (OVER)
c mem_write (N+) 1 j push_rs

: do_lit
(>R) (DUP) (>A) (N+) 1
(R>) (A@) j push_ds

: do_dup
DSP # (@) (@) j push_ds

: do_over
c DSPprev (@) j push_ds

: do_tor
c pop_ds j push_rs

: do_rfrom
c pop_rs j push_ds

: do_afrom
AREG # (@) j push_ds

: do_next_instruction
(extract_instruction)
(>R) (shift_isr) (R>)
instruction_call_table # (+) (@)
(>R) ;
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1.4 VM3
1.4.1 Stacks

Virtual stacks kept in memory require many memory accesses per emulated instruction. The third virtual machine eliminates
them and instead uses the actual Data and Return stacks as they would normally be used. The PC and ISR are still kept on the
Data Stack and are moved out of the way as needed. The performance impact is discussed in Section 1.6.

1.4.2 Temporary Storage Congestion

Since there are only three non-memory places to temporarily store information (A Register, Return Stack, Data Stack), keeping
more than two items (PC and ISR) would cause a great increase in the amount of shuffling required to get to the information
buried underneath on the stacks. When do_next_instruction calls an instruction emulation function, it would place a
return address on the Return Stack, which raises the total of saved items to three, and thus greatly complicates emulation.

The solution used here is to change the call/return sequence into a pair of jumps. The first is in do_next_instruction,
which jumps to EXECUTE instead of calling it, which effectively jumps to the provided function address. The second is by
exiting functions with a jump back to do_next_instruction, instead of a tail-call, tail jump, or function return. Together,
these avoid the use of the Return Stack.

1.4.3 Trampoline

Unfortunately, a set of dependencies prevents the jump back to do_next_function from being straightforward. The
instruction_call_table can only be compiled after the functions it indexes are, and do_next_function can only
be compiled after the instruction_call_table is. This means that the emulation functions cannot know the address of
do_next_instruction since it has not been compiled yet!

The solution is to replace the jump to do_next_instruction with code for an indirect jump which takes its address
from a previously defined variable. Just before the VM is started, this address is set to that of do_next_instruction.
This trampoline is however much less efficient than the call/return pair it replaces.

It should be possible to use actual jumps whose targets would then be fixed-up afterwards, as is done in the Flight Extensions
for the if, else, create, and does constructs, but doing so for an arbitrary number of functions is not trivial, since the
number of addresses to fix-up is not known in advance and may exceed the capacity of the Data Stack.

1.4.4 Source

: trampoline n 1 var ;

: (jump_to_trampoline)
trampoline # c # c (@) c (>R) c ; ;

<VM Parameters (Section 1.1.2)>

: MEMHEAD MEM # ;
: MEMTAIL MEM_OUTPUT # ;

: (check_low)
MEMHEAD negate # c # c (+) ;

: (check_high)
c (negate) MEMTAIL # c # c (+) ;

: mem_in_range?
(DUP) (check_low) (OVER) (check_high) (OR) ;

: mem_access_msg
create >$ ILLEGAL_MEMORY_ACCESS: $>c
does j cs>

: report_mem_error

c mem_access_msg
c \s c #$> j \n

: access_check
c mem_in_range?
if-
c report_mem_error
j errcontext

else ;

: AREG n 1 var ;

: mem_read
(DUP) MEM_INPUT # (XOR)
if
c access_check (@) ;

else
(DROP) c ># ;

: mem_write
(DUP) MEM_OUTPUT # (XOR)
if
c access_check (!) ;

else
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(DROP) c #> ;

: do_pcfetch
(DROP) c access_check
(DUP) (>A) (N+) 1 (A@)
(jump_to_trampoline)

: do_call
(DROP) (DUP) (N+) 1 (>R) (@)
c access_check
(DUP) (>A) (N+) 1 (A@)
(jump_to_trampoline)

: do_ret
(DROP) (DROP) (R>)
c access_check
(DUP) (>A) (N+) 1 (A@)
(jump_to_trampoline)

: do_jmp
(DROP) (@)
c access_check
(DUP) (>A) (N+) 1 (A@)
(jump_to_trampoline)

: do_jmpzero
(>R) (>R)
if
(R>) (N+) 1 (R>)
(jump_to_trampoline)
else
(R>) (R>)
j do_jmp

: do_jmpplus
(>R) (>R)
if-
(R>) (N+) 1 (R>)
(jump_to_trampoline)
else
(R>) (R>)
j do_jmp

: do_fetcha
(>R) (>R)
AREG # (@) c mem_read
(R>) (R>)
(jump_to_trampoline)

: do_storea
(>R) (>R)
AREG # (@) c mem_write
(R>) (R>)
(jump_to_trampoline)

: do_fetchaplus
(>R) (>R)

AREG # (@) (DUP)
c mem_read (>R)
(N+) 1 AREG # (!) (R>)
(R>) (R>)
(jump_to_trampoline)

: do_storeaplus
(>R) (>R)
(>R) AREG # (@) (R>) (OVER)
c mem_write
(N+) 1 AREG # (!)
(R>) (R>)
(jump_to_trampoline)

: do_fetchrplus
(R>) (DUP)
c mem_read (>A) (N+) 1 (>R)
(>R) (>R)
(A>)
(R>) (R>)
(jump_to_trampoline)

: do_storerplus
(R>) (>A)
(>R) (>R)
(>R) (A>) (R>)
(OVER) c mem_write (N+) 1 (>A)
(R>) (R>)
(A>) (>R)
(jump_to_trampoline)

: do_lit
(>R) (DUP) (>A) (N+) 1 (>R) (A@)
(R>) (R>)
(jump_to_trampoline)

: do_undef
n 31 COMPILE_OPCODE
(jump_to_trampoline)

: do_xor
(>R) (>R)
(XOR)
(R>) (R>)
(jump_to_trampoline)

: do_and
(>R) (>R)
(AND)
(R>) (R>)
(jump_to_trampoline)

: do_not
(>R) (>R)
(NOT)
(R>) (R>)
(jump_to_trampoline)
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: do_twostar
(>R) (>R)
(2*)
(R>) (R>)
(jump_to_trampoline)

: do_twoslash
(>R) (>R)
(2/)
(R>) (R>)
(jump_to_trampoline)

: do_plus
(>R) (>R)
(+)
(R>) (R>)
(jump_to_trampoline)

: do_plusstar
(>R) (>R)
(+*)
(R>) (R>)
(jump_to_trampoline)

: do_dup
(>R) (>R)
(DUP)
(R>) (R>)
(jump_to_trampoline)

: do_drop
(>R) (>R)
(DROP)
(R>) (R>)
(jump_to_trampoline)

: do_over
(>R) (>R)
(OVER)
(R>) (R>)
(jump_to_trampoline)

: do_tor
(>A) (OVER) (>R)
(>R) (DROP) (R>) (A>)

(jump_to_trampoline)

: do_rfrom
(R>) (>A)
(>R) (>R)
(A>)
(R>) (R>)
(jump_to_trampoline)

: do_toa
(>R) (>R)
AREG # (!)
(R>) (R>)
(jump_to_trampoline)

: do_afrom
(>R) (>R)
AREG # (@)
(R>) (R>)
(jump_to_trampoline)

: do_nop
(NOP)
(jump_to_trampoline)

<Instruction Call Table (Section 1.1.3)>

: (shift_isr)
c (2/) c (2/) c (2/) c (2/) c (2/) ;

: (extract_instruction)
c (DUP) OPCODEMASK # c # c (AND) ;

: do_next_instruction
(extract_instruction)
(>R) (shift_isr) (R>)
instruction_call_table # (+) (@)
j EXECUTE

: run_vm
MEM #
n 0 #
l# do_next_instruction
trampoline # (!)
j do_next_instruction

1.4.5 VM3-1 (Trampoline Removed)

The trampoline mechanism was removed and tail-call elimination and inlining were added as in Section 1.3.1. As expected,
removing the trampoline forces some very convoluted stack shuffling to take place, especially in functions that emulate in-
structions that use both stacks such as do_fetchrplus, do_storerplus, do_rfrom, and do_tor. Only the code
significantly affected by these changes is listed.

: mem_read
(DUP) MEM_INPUT # (XOR)
if

c access_check (@) ;
else
(DROP) j >#

10



: mem_write
(DUP) MEM_OUTPUT # (XOR)
if
c access_check (!) ;
else
(DROP) j #>

: do_call
(R>) (>A)
(DROP) (DUP) (N+) 1 (>R)
(A>) (>R)
(@) c access_check
(DUP) (>A) (N+) 1 (A@) ;

: do_ret
(R>) (>A)
(DROP) (DROP) (R>)
(A>) (>R)
c access_check
(DUP) (>A) (N+) 1 (A@) ;

: do_jmpzero
(>R) (>R)
if
(R>) (N+) 1 (R>) ;
else
(R>) (R>)
j do_jmp

: do_jmpplus
(>R) (>R)
if-
(R>) (N+) 1 (R>) ;
else
(R>) (R>)
j do_jmp

: do_fetcha
(>R) (>R)
AREG # (@) c mem_read
(R>) (R>) ;

: do_storea
(>R) (>R)
AREG # (@) c mem_write
(R>) (R>) ;

: do_fetchaplus
(>R) (>R)
AREG # (@) (DUP)
c mem_read (>R)
(N+) 1 AREG # (!) (R>)
(R>) (R>) ;

: do_storeaplus
(>R) (>R)
(>R) AREG # (@) (R>) (OVER)
c mem_write
(N+) 1 AREG # (!)
(R>) (R>) ;

: do_fetchrplus
(R>)
(R>) (DUP)
c mem_read
(>A) (N+) 1 (>R)
(>R)
(>R) (>R)
(A>)
(R>) (R>) ;

: do_storerplus
(R>)
(R>) (>A)
(>R) (>R) (>R)
(>R) (A>) (R>)
(OVER) c mem_write
(N+) 1 (>A)
(R>) (R>) (R>)
(A>) (>R)
(>R) ;

: do_tor
(>R) (>R)
(>A)
(R>) (R>) (R>)
(A>) (>R)
(>R) ;

: do_rfrom
(R>)
(R>) (>A)
(>R) (>R) (>R)
(A>)
(R>) (R>) ;

: do_next_instruction
(extract_instruction)
(>R) (shift_isr) (R>)
instruction_call_table # (+) (@)
(>R) ;

: run_vm
MEM #
n 0 #
: vm_loop
c do_next_instruction
j vm_loop

11



1.5 VM4
To avoid the stack shuffling in VM3-1 (Section 1.4.5), the fourth virtual machine keeps the virtual PC and ISR in memory as
PCREG and ISRREG. Combined with the trampoline mechanism, this leaves the stacks completely free of persistent extraneous
data, and exactly as if the code was running natively on the hardware, with slightly shallower stacks to account for the locations
temporarily used by the VM code.

In fact, functions emulating instructions which do not access memory are reduced to the instruction itself plus the trampoline
indirect jump. The mem_read and mem_write code has been folded into the functions emulating instructions which access
memory so as to avoid using the Return Stack. The call to access_check is left in place since it either leaves nothing on
the stack or aborts the entire program. This method however does increase the amount of work that flow control instruction
emulation functions must do, since they must interact with memory more.

: AREG n 1 var ;
: PCREG n 1 var ;
: ISRREG n 1 var ;

: trampoline n 1 var ;

: (jump_to_trampoline)
trampoline # c # c (@) c (>R) c ; ;

<VM Parameters (Section 1.1.2)>

: MEMHEAD MEM # ;
: MEMTAIL MEM_OUTPUT # ;

: (check_low)
MEMHEAD negate # c # c (+) ;

: (check_high)
c (negate) MEMTAIL # c # c (+) ;

: mem_in_range?
(DUP) (check_low)
(OVER) (check_high) (OR) ;

: mem_access_msg
create >$ ILLEGAL_MEMORY_ACCESS: $>c
does j cs>

: report_mem_error
c mem_access_msg
c \s c #$> j \n

: access_check
c mem_in_range?
if-
c report_mem_error
j errcontext
else ;

: do_pcfetch
PCREG # (@)
c access_check (DUP)
(N+) 1 (A!)
(@) ISRREG # (!)
(jump_to_trampoline)

: do_call
PCREG # (@) (DUP) (N+) 1 (>R)
(@) c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # (!)
(jump_to_trampoline)

: do_ret
(R>) c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # (!)
(jump_to_trampoline)

: do_jmp
PCREG # (@) (@)
c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # (!)
(jump_to_trampoline)

: do_jmpzero
if
PCREG # (@) (N+) 1 (A!)
(jump_to_trampoline)

else
j do_jmp

: do_jmpplus
if-
PCREG # (@) (N+) 1 (A!)
(jump_to_trampoline)

else
j do_jmp

: do_fetcha
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AREG # (@)
(DUP) MEM_INPUT # (XOR)
if
c access_check (@)
(jump_to_trampoline)
else
(DROP) c >#
(jump_to_trampoline)

: do_storea
AREG # (@)
(DUP) MEM_OUTPUT # (XOR)
if
c access_check (!)
(jump_to_trampoline)
else
(DROP) c #>
(jump_to_trampoline)

: do_fetchaplus
AREG # (@)
(DUP) MEM_INPUT # (XOR)
if
c access_check
(>A) (A@+) (A>)
AREG # (!)
(jump_to_trampoline)
else
(N+) 1 AREG # (!) c >#
(jump_to_trampoline)

: do_storeaplus
AREG # (@)
(DUP) MEM_OUTPUT # (XOR)
if
c access_check
(>A) (A!+) (A>)
AREG # (!)
(jump_to_trampoline)
else
(N+) 1 AREG # (!) c #>
(jump_to_trampoline)

: do_fetchrplus
(R>)
(DUP) MEM_INPUT # (XOR)
if
c access_check
(>R) (R@+)
(jump_to_trampoline)
else
(N+) 1 (>R) c >#
(jump_to_trampoline)

: do_storerplus
(R>)
(DUP) MEM_OUTPUT # (XOR)
if
c access_check
(>R) (R!+)
(jump_to_trampoline)

else
(N+) 1 (>R) c #>
(jump_to_trampoline)

: do_lit
PCREG # (@)
(DUP) (N+) 1 (A!)
(@)
(jump_to_trampoline)

: do_undef
n 31 COMPILE_OPCODE
(jump_to_trampoline)

: do_xor
(XOR)
(jump_to_trampoline)

: do_and
(AND)
(jump_to_trampoline)

: do_not
(NOT)
(jump_to_trampoline)

: do_twostar
(2*)
(jump_to_trampoline)

: do_twoslash
(2/)
(jump_to_trampoline)

: do_plus
(+)
(jump_to_trampoline)

: do_plusstar
(+*)
(jump_to_trampoline)

: do_dup
(DUP)
(jump_to_trampoline)

: do_drop
(DROP)
(jump_to_trampoline)
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: do_over
(OVER)
(jump_to_trampoline)

: do_tor
(>R)
(jump_to_trampoline)

: do_rfrom
(R>)
(jump_to_trampoline)

: do_toa
AREG # (!)
(jump_to_trampoline)

: do_afrom
AREG # (@)
(jump_to_trampoline)

: do_nop
(NOP)
(jump_to_trampoline)

<Instruction Call Table (Section 1.1.3)>

: (shift_isr)
c (2/) c (2/) c (2/) c (2/) c (2/) ;

: (extract_instruction)
OPCODEMASK # c # c (AND) ;

: do_next_instruction
ISRREG # (@)
(DUP) (shift_isr) (A!)
(extract_instruction)
instruction_call_table # (+) (@)
j EXECUTE

: run_vm
MEM # PCREG # (!)
n 0 # ISRREG # (!)
n 123456 # AREG # (!)
l# do_next_instruction
trampoline # (!)
j do_next_instruction
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1.5.1 VM4-1 (Trampoline Removed)

As for VM3-1 in Section 1.4.5, the trampoline mechanism has been removed, the few remaining tail-calls in the memory-
accessing instruction emulations have been replaced by jumps, and the call to EXECUTE has been replaced by in-line code.
Only the significantly affected functions are listed below.

As expected, this required some extra stack shuffling to move the do_next_instruction return address out of the
way, but since PC and ISR are now in memory, the overhead is much lower.

: do_call
(R>)
PCREG # (@)
(DUP) (N+) 1 (>R)
(@) c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # (!)
(>R) ;

: do_ret
(R>)
(R>) c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # (!)
(>R) ;

: do_fetcha
AREG # (@)
(DUP) MEM_INPUT # (XOR)
if
c access_check (@) ;
else
(DROP) j >#

: do_storea
AREG # (@)
(DUP) MEM_OUTPUT # (XOR)
if
c access_check (!) ;
else
(DROP) j #>

: do_fetchaplus
AREG # (@)
(DUP) MEM_INPUT # (XOR)
if
c access_check
(>A) (A@+) (A>)
AREG # (!) ;
else
(N+) 1 AREG # (!) j >#

: do_storeaplus
AREG # (@)
(DUP) MEM_OUTPUT # (XOR)
if
c access_check
(>A) (A!+) (A>)
AREG # (!) ;
else
(N+) 1 AREG # (!) j #>

: do_fetchrplus
(R>) (>A) (R>)
(DUP) MEM_INPUT # (XOR)
if
c access_check
(>R) (R@+)
(A>) (>R) ;

else
(N+) 1 (>R)
(A>) (>R)
j >#

: do_storerplus
(R>) (>A) (R>)
(DUP) MEM_OUTPUT # (XOR)
if
c access_check
(>R) (R!+)
(A>) (>R) ;

else
(N+) 1 (>R)
(A>) (>R)
j #>

: do_tor
(R>) (>A)
(>R)
(A>) (>R) ;

: do_rfrom
(R>) (>A)
(R>)
(A>) (>R) ;

: do_next_instruction
ISRREG # (@)
(DUP) (shift_isr) (A!)
(extract_instruction)
instruction_call_table # (+) (@)
(>R) ;

: run_vm
MEM # PCREG # (!)
n 0 # ISRREG # (!)
n 123456 # AREG # (!)
: vm_loop
c do_next_instruction
j vm_loop
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1.6 Execution Overhead Comparison
Table 1 compares the number of instructions executed for code run on the native Gullwing machine versus the various VMs.
For the native machine, the setup code was only the Flight Extensions. For the VMs, it also included the VM code, the
metacompiler, and the Flight in Flight code (Section 3.3).

The test code includes all of the above, plus a recompilation of the Extensions with some code added to exercise its functions.
The difference column shows the actual number of instructions executed by the test code once those from the setup code have
been subtracted.

From that, the ratios of the differences relative to the native machine are calculated, which show how many instructions
were executed on average for each actual instruction in the test code. From these ratios, we can observe the effects of the
implementation differences between the VMs.

Number Of Executed Instructions
Machine Setup Test Difference Ratio
Native 4,462,579 10,441,974 5,979,395 1.00000
VM1 20,193,157 253,535,067 233,359,910 39.0273
VM2 21,081,801 288,838,769 267,756,968 44.7799

VM2-1 20,918,123 276,506,826 255,588,703 42.7449
VM3 19,467,189 218,732,738 199,265,549 33.3254

VM3-1 19,617,587 203,307,626 183,690,039 30.7205
VM4 19,120,323 219,314,594 200,194,271 33.4807

VM4-1 19,332,042 204,325,338 184,993,296 30.9385

Table 1: Number Of Executed Instructions

1.6.1 Memory Protection

The only difference between VM1 and VM2 is that the latter adds the access_check function to memory and flow con-
trol instruction emulation functions to prevent code run inside the VM from accessing memory or executing code outside its
allocated area.

The average overhead is 5.7526 instructions. The actual number of instructions in a call to access_check, including
all call/return overhead, adds up to 13. This means that memory and flow control instructions account for about 44% of the
executed test code, which agrees with the dynamic instruction frequencies listed in [Koo89, 6.3.1]4.

1.6.2 Tail-Call Elimination and Inlining

VM2-1 eliminates tail-calls in a number of functions and inlines the code for EXECUTE in do_next_function, which
eliminates an average of 2.035 instructions. The tail-call elimination end up counting for virtually nothing since all the run-
time tail-calls are to the virtual stack push and pop functions, whose typical 15 instructions dwarf the one instruction saved by
the eliminated tail-call in only ten functions.

The do_next_instruction function is executed for every single simulated instruction, so its impact is far greater.
The original code for calling to the address of the function simulating an instruction calls EXECUTE, which executes two
instructions to enter the called function. This function then returns to do_next_instruction, which immediately returns
to the run_vm loop, for a total of five instructions.

The new code executes two instructions which effectively jump to the function. This function eventually returns but since it
was not called, the return instruction returns to run_vm directly, the caller of do_next_instruction, for a total of three
instructions.

The elimination of what is effectively a tail-call to every simulated instruction accounts for those two saved instructions,
with the other tail-call eliminations accounting for the remaining 0.035.

4The dynamic (meaning, executed) instruction frequencies of stack-based software roughly divide into 25% flow control, 25% memory, 50% other. This
division varies a little with each program, but is accurate enough for estimates.
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1.6.3 Virtual Stacks vs. Physical Stacks

The VM3 machine eliminates the virtual stacks and instead uses the actual stacks for the program running under it, and sub-
stitutes the function calls with a trampoline mechanism (8 instructions) to free the Return Stack. Relative to VM2, this saves
11.4545 instructions on average. VM3-1 discards the trampoline and adds in the same calling mechanism as done in VM2-1 (3
instructions). This now saves 14.0594 instructions relative to VM2. This difference of 2.6049 is less than the expected 5 due to
to the extra stack shuffling required to move the return address to run_vm.

Unfortunately, removing the virtual stacks affects the amount of stack shuffling the instruction simulation functions have to
perform, as can be seen by comparing the code for VM1 and VM3. Further experiments would have to be done to separate the
effects. Nonetheless, the advantage of not using virtual stacks is clear.

1.6.4 Location of PC and ISR

The VM4 machine alters VM3 by removing all virtual machine state from the stack and storing it in PCREG and ISRREG. In
addition, to keep the Return Stack free, it also uses the trampoline mechanism. These two changes eliminate all stack shuffling
for most functions, but increase the work done by the flow control instructions. The net effect is an increase of 0.1553 average
instructions relative to VM3.

VM4-1 replaces the trampoline with the eliminated tail-calls of VM2-1, which saves the expected 2.5422 instructions, but
is still slightly worse that VM3-1. The point of diminishing returns seems to have been reached.

1.6.5 Instruction Extraction

Throughout all the virtual machines, the single largest source of overhead is the process of extracting the next instruction. The
do_next_instruction function takes from 16 to 19 instructions to execute, depending on the VM. This is more than the
instructions saved by all the previously mentioned optimizations. This overhead is irreducible and is the main reason for the
poor performance of virtual machines on the Gullwing processor.
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2 Virtualization Requirements
The Popek and Goldberg virtualization requirements [PG74] can be used to explain the sources of overhead in the virtual
machines (VMs) and suggest changes to the Gullwing architecture to reduce them.

2.1 Virtual Machine Properties
The requirements assume three major properties of a virtual machine5:

1. Equivalence: a program runs identically on the virtual machine than on the native one.

2. Resource Control: the virtual machine must be in complete control of the allocated resources.

3. Efficiency: the majority of the executed instructions do so directly on the native machine.

The virtual machines presented in Section 1) meet the first criterion, with the exception of the lack of address translation. If a
program uses hardcoded addresses such as the location of the native I/O ports, it will behave differently in a virtual machine.

The second criterion is met without any reservations, since all flow control and memory access instructions are bounds-
checked.

The VMs completely fail the third criterion, since none of the program instructions execute natively. This is the cause of all
the overhead mentioned in Section 1.6 and the main weakness addressed by this section.

2.2 Instruction Set Architecture Properties
With the assumption that the native machine has two modes, user and supervisor, and a means to trap between them, the
instruction set is broken down into three groups:

1. Privileged: instructions that trap when executed in user mode, but not in supervisor mode.

2. Control Sensitive: instructions that can change the control flow or the allocated resources.

3. Behaviour Sensitive: instructions whose behaviour depends on the configuration of the resources.

The Gullwing processor has no modes, and so has no privileged instructions. The instructions which alter the program control
flow (CALL, JMP, RET, etc...) and the instructions which access memory (A@, R!+, LIT, etc...) are all control sensitive. There
are no behaviour sensitive instructions.

2.3 Theorem
The main theorem proven in [PG74] is as follows:

For any conventional third generation computer, a virtual machine monitor may be constructed if the set of sensitive
instructions for that computer is a subset of the set of privileged instructions.

Summarized, a third generation computer is one with a code relocation mechanism (address translation and bounds-checking),
user/supervisor modes, and a trap mechanism. The Gullwing processor has none of these and so immediately fails to meet
the specifications of the theorem, but this is put aside for now and addressed in the next subsection. More importantly, the
Gullwing processor is not virtualizable since its set of privileged instructions is empty, and thus the non-empty set of sensitive
instructions cannot be its subset.

2.4 Making Gullwing Virtualizable
The way to make the Gullwing processor virtualizable then is to alter it such that the sensitive instructions become privileged
instructions. This requires at least user and supervisor modes and a trap mechanism which will trigger whenever an attempt is
made to execute a sensitive instruction while in user mode.

One form of such a mechanism would place the contents of the Instruction Shift Register (ISR) on the Data Stack, place the
contents of the Program counter (PC) on the Return Stack, switch to supervisor mode, and jump to the trap handler. The handler

5Strictly speaking, the properties are those of a Virtual Machine Monitor, which can control multiple virtual machines, but only the singular case is
considered here.
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would then extract the instruction from the ISR, look it up in a table, call its emulating function, and then simultaneously switch
to user mode, reload the ISR and PC, and return to the program using a “return from trap” instruction6.

A relocation register is not strictly required. If the trapping mechanism includes the instructions which access memory, then
the trap handler can do the address translation and bounds-checking in software. This is a weaker form of virtualization since
it does fulfil the efficiency property as much (Section 2.1), but the majority of the executed instructions will still do so directly.
This is the approach taken for now, for simplicity.

2.5 A Hypothetical VM5
Most of the instructions simulated in VM4 (Section 1.5) execute natively, wrapped only in a trampoline (Section 1.4.3), which is
not far from the ideal VM mentioned in Section 2.1. The source for VM4 can be used as the basis for a sketch of a hypothetical,
improved virtual machine on the virtualizable version of the Gullwing processor outlined in the previous subsection.

This virtual machine still suffers from the need to extract instructions from the ISR (Section 1.6.5), but now does so only
for the privileged instructions, which count for less than 50% (Section 1.6.1) of the executed total.

2.5.1 Final Improvement

Adding a relocation register and limiting the traps on the privileged instructions to memory range traps would effectively
implement in hardware the function of access_check and its subroutines. This would invoke the trap handler, and its
associated instruction extraction overhead, only if an attempt is made to pass program control or access a memory location
outside of the bounds specified by the relocation register. This would eliminate all emulation code, reduce the trap handler to
dealing with exceptional cases, and leave a well-behaved program running unimpeded on the native machine.

2.5.2 Source Code Draft

<VM Parameters (Section 1.1.2)>

: MEMHEAD MEM # ;
: MEMTAIL MEM_OUTPUT # ;

: (check_low)
MEMHEAD negate # c # c (+) ;

: (check_high)
c (negate) MEMTAIL # c # c (+) ;

: mem_in_range?
(DUP) (check_low)
(OVER) (check_high) (OR) ;

: mem_access_msg
create >$ ILLEGAL_MEMORY_ACCESS: $>c
does j cs>

: report_mem_error
c mem_access_msg
c \s c #$> j \n

: access_check
c mem_in_range?
if-
c report_mem_error
j errcontext
else ;

: do_pcfetch
(R>) (R>)
c access_check
(>R) (>R) ;

: do_call
(R>) (R>) (DUP)
(>R) (>R) (@)
c access_check
(DROP) ;

: do_ret
(R>) (R>)
c access_check
(>R) (>R) ;

: do_jmp
(R>) (R>) (DUP)
(>R) (>R) (@)
c access_check
(DROP) ;

: do_jmpzero
(R>) (R>) (DUP)
(>R) (>R) (@)
c access_check
(DROP) ;

: do_jmpplus
(R>) (R>) (DUP)

6If it switched to user mode before the return, the return would trap, leading to an infinite loop. Thus a privileged “return from trap” instruction is required.
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(>R) (>R) (@)
c access_check
(DROP) ;

: do_fetcha
(get_A_register)
c access_check
(DROP) ;

: do_storea
(get_A_register)
c access_check
(DROP) ;

: do_fetchaplus
(get_A_register)
c access_check
(DROP) ;

: do_storeaplus
(get_A_register)
c access_check
(DROP) ;

: do_fetchrplus
(R>) (R>) (R>)
c access_check
(>R) (>R) (>R) ;

: do_storerplus
(R>) (R>) (R>)
c access_check
(>R) (>R) (>R) ;

: do_lit
(R>) (R>)
c access_check
(>R) (>R) ;

: , c #>c c ALIGN ;
: &> c l c , ;

: instruction_call_table
create
&> do_pcfetch
&> do_call
&> do_ret
&> do_jmp
&> do_jmpzero
&> do_jmpplus
&> do_fetcha
&> do_storea
&> do_fetchaplus
&> do_storeaplus
&> do_fetchrplus
&> do_storerplus
&> do_lit
does ;

: (shift_isr)
c (2/) c (2/) c (2/) c (2/) c (2/) ;

: (extract_instruction)
OPCODEMASK # c # c (AND) ;

: trap_handler
(save_A_register)
(extract_instruction)
(>R) (shift_isr) (R>)
instruction_call_table # (+) (@)
c EXECUTE
(restore_A_register)
(return_from_trap)
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3 Metacompiler
A limitation of Flight is that it can only compile as an extension of itself. Names and code must end up in their respective
dictionaries. This makes it impossible to write code for other locations in memory, such as the MEM of a virtual machine, short
of implementing an assembler for the virtual machine and starting over from scratch.

However, by saving, altering, and restoring the dictionary pointers a kind of new ’context’ can be created which will
transparently point Flight to different name and code dictionaries, and with a little cleverness, keep the ability to lookup and
use the code in the original dictionaries!

Borrowing a term from Forth linguo, this technique is called metacompilation, since it allows the full power of the language
to be used to create a separate piece of software, possibly including a new copy of itself7.

Some trivial modifications to the Kernel and the Extensions are required. They are documented in Appendices A and B.
The purpose of the pointers is described in [LaF05c] and [LaF05b], and summarized as follows:

HERE Current location at which code is being compiled
HERE_NEXT Next location at which code will be compiled
THERE Location at which the next name will be compiled
SLOT Current instruction slot available in a memory word
INPUT Location of the head of the input buffer
NAME_END Location of the tail of the name dictionary

3.1 Limitations
The biggest limitation of this metacompiler is that it cannot translate addresses. It is not possible to compile code that is meant
to run at a different address than the one at which it was compiled, which is the actual memory location of the target (Section
1). For example, this makes it impossible to compile code that would be burnt to ROM (Read-Only Memory) or for virtual
machines which do address translation.

Translating addresses in a VM at run-time consists of simply adding an offset to the memory addresses used by fetches and
stores in the program being run inside. Since the metacompiler uses Flight’s own compilation code to generate the target, the
capability to add an offset would have to be built into the Flight Kernel itself, and it is not obvious where to do so short of a
complete rewrite8, nor is it a required capability for its basic operation.

In the worst case, the non-translating metacompiler could be used to compile a translating version of Flight run inside a
VM, in the same manner as the one in Section 3.3. The metacompiler would then be compiled under this new Flight, and then
used to create an address-translated target.

3.2 Source

These are used to save the target location of Flight.

: vm_here n 1 var ;
: vm_here_next n 1 var ;
: vm_there n 1 var ;
: vm_slot n 1 var ;
: vm_input n 1 var ;
: vm_name_end n 1 var ;

These are used to save the original state of Flight.

: nm_here n 1 var ;
: nm_here_next n 1 var ;
: nm_there n 1 var ;
: nm_slot n 1 var ;
: nm_input n 1 var ;
: nm_name_end n 1 var ;

The following functions simply save and restore the original and target values.

: save_nm_here l# HERE (@) nm_here # (!) ;
: save_nm_here_next l# HERE_NEXT (@) nm_here_next # (!) ;
: save_nm_slot l# SLOT (@) nm_slot # (!) ;
: save_nm_input l# INPUT (@) nm_input # (!) ;
: save_nm_there l# THERE (@) nm_there # (!) ;
: save_nm_name_end l# NAME_END (@) nm_name_end # (!) ;

7Strictly speaking, this is barely a metacompiler. Real metacompilers can cross-compile to other platforms, test the foreign code, and alter compiled
addresses when compiling code at a different location than the one at which it is intended to run. They are extremely arcane pieces of software, with very little
widely published about them.

8It would be strange if Flight could not not be extended to support address translation. Hopefully only the lower-level compiling words, such as CMPCALL,
would need to be redefined.
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: save_vm_here l# HERE (@) vm_here # (!) ;
: save_vm_here_next l# HERE_NEXT (@) vm_here_next # (!) ;
: save_vm_slot l# SLOT (@) vm_slot # (!) ;
: save_vm_input l# INPUT (@) vm_input # (!) ;
: save_vm_there l# THERE (@) vm_there # (!) ;
: save_vm_name_end l# NAME_END (@) vm_name_end # (!) ;

: restore_nm_here nm_here # (@) l# HERE (!) ;
: restore_nm_here_next nm_here_next # (@) l# HERE_NEXT (!) ;
: restore_nm_slot nm_slot # (@) l# SLOT (!) ;
: restore_nm_input nm_input # (@) l# INPUT (!) ;
: restore_nm_there nm_there # (@) l# THERE (!) ;
: restore_nm_name_end nm_name_end # (@) l# NAME_END (!) ;

: restore_vm_here vm_here # (@) l# HERE (!) ;
: restore_vm_here_next vm_here_next # (@) l# HERE_NEXT (!) ;
: restore_vm_slot vm_slot # (@) l# SLOT (!) ;
: restore_vm_input vm_input # (@) l# INPUT (!) ;
: restore_vm_there vm_there # (@) l# THERE (!) ;
: restore_vm_name_end vm_name_end # (@) l# NAME_END (!) ;

: init_vm_here MEM # vm_here # (!) n# 0 (A@) (!) ;
: init_vm_here_next MEM n 1 + # vm_here_next # (!) n# 0 (A@) (!) ;
: init_vm_slot n# 0 vm_slot # (!) ;
: init_vm_there MEM_INPUT n 1 - # vm_there # (!) ;
: init_vm_input MEM_INPUT # vm_input # (!) ;
: init_vm_name_end MEM_INPUT # vm_name_end # (!) ;

The vm_nxec function is the core of the metacompiler.
Like the original NXEC in Flight, it reads in a string, looks up
the address of the associated code, and calls to it. It does so
first in the target name dictionary, and if the name is not found
there, it swaps the name dictionary pointers with those of the
original one and looks there. It then swaps the pointers again
and executes the function.

This allows the use of Flight to bootstrap an empty target
by using its existing compiling functions. Furthermore, if a
target function is compiled with the same name as an original
Flight function, then it will get found instead. Later references
to the function will now remain inside the target code. With
care, the target can be completely ’weaned’ from references to
the original Flight code.

: vm_nxec
c SCAN
c LOOK
(DUP) l# NAME_END (@) (XOR)
if
c POP_STRING
c EXECUTE
j vm_nxec
else
(DROP)
c save_vm_there
c save_vm_name_end
c restore_nm_there

c restore_nm_name_end
c LOOK
c save_nm_there
c save_nm_name_end
c restore_vm_there
c restore_vm_name_end
c POP_STRING
c EXECUTE
j vm_nxec

The LOOK function expects a non-empty name dictionary.
This function initializes a name dictionary by creating a
dummy entry called ’zeroword’ that points to address 0.

: init_name_dict
create >$ zeroword $>c
does c c>$ n# 0 c DEFN_AS ;

The (unwind) function discards the address of the calling
function. It is used when the control flow of a program is
forcibly changed and prevents the old addresses from filling
up the Return Stack.

: (unwind) c (R>) c (DROP) ;
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The VM( function initializes the target state and swaps the
original state for it. It then initializes the target name dictio-
nary and substitutes vm_exec as the main loop.

: VM(
c init_vm_here
c init_vm_here_next
c init_vm_slot
c init_vm_there
c init_vm_input
c init_vm_name_end
c save_nm_here
c save_nm_here_next
c save_nm_slot
c save_nm_there
c save_nm_input
c save_nm_name_end
c restore_vm_here
c restore_vm_here_next
c restore_vm_slot
c restore_vm_there
c restore_vm_input
c restore_vm_name_end
c init_name_dict
(unwind)
j vm_nxec

The )VM function does the opposite, returning the state and
main loop to normal.

: )VM
c save_vm_here
c save_vm_here_next
c save_vm_slot
c save_vm_there
c save_vm_input
c save_vm_name_end
c restore_nm_here
c restore_nm_here_next
c restore_nm_slot
c restore_nm_there
c restore_nm_input
c restore_nm_name_end
(unwind)
j NXEC

3.3 Flight In Flight
As an example of metacompilation, here is the Flight Kernel implemented in Flight code and targeted into the MEM of a virtual
machine. The object code generated is virtually identical to the original Kernel9.

VM(

n 0 (JMP) MEM n 1 + >$ START_WORD DEFN_AS

: HERE
: HERE_NEXT
: THERE
: SLOT
: INPUT
: NAME_END

: MINUS (NOT) n# 1 (+) (+) ;
: OR (OVER) (NOT) (AND) (XOR) ;

: READ1 MEM_INPUT # (@) ;
: WRITE1 MEM_OUTPUT # (!) ;

: STRING_TAIL (>A) (A@+) (A>) (+) ;

: PUSH_STRING
(DUP) n# 1 (+) (NOT)
l# INPUT (@) (+) (DUP) (A!)
(!)
l# INPUT (@)

c STRING_TAIL
(DUP) (!) ;

: POP_STRING
l# INPUT (@)
c STRING_TAIL
n# 1 (+)
l# INPUT (!) ;

: COMPARE_STRINGS
(>A) (>R)
: CS_LOOP
(R@+) (A@+) (XOR)
j0 CS_LOOP
-n# 1 (R>) (+)
-n# 1 (A>) (+) ;

: SCAN_STRING
l# INPUT (@) (>R) (R@+)
: SS_LOOP
c READ1 (R!+)
-n# 1 (+) (DUP)
if j SS_LOOP
else (DROP) (R>) (DUP) (!) ;

9A few memory locations are wasted, and this code contains the bug-fixes and improvements done since the original Kernel.
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: SCAN
c READ1
c PUSH_STRING
j SCAN_STRING

: FIRST_SLOT
l# SLOT (>A)
n# 31 (A!) ;

: LAST_SLOT
l# SLOT (>A)
n# 1040187392 (A!) ;

: NULL_SLOT
l# SLOT (>A)
n# 0 (A!) ;

: ALIGN
l# HERE_NEXT (@)
(DUP) (>R) n# 0 (R!+)
(R>) (A!)
l# HERE (!)
j NULL_SLOT

: NEXT_SLOT
l# SLOT (@)
n# 0 (OVER) (XOR)
if
n# 1040187392 (OVER) (XOR)
if
(2*) (2*) (2*) (2*) (2*) (A!) ;

else
(DROP) c ALIGN j FIRST_SLOT

else
(DROP) j FIRST_SLOT

: DEFN_AS
l# THERE (@) (!)
l# INPUT (@)
-n# 1 (+)
l# THERE (!) ;

: NEW_WORD
c ALIGN
l# HERE (@) ;

: DEFN
c NEW_WORD
j DEFN_AS

: LOOK
l# THERE (@) n# 1 (+) (DUP)
: LOOK_LOOP
l# INPUT (@)
c COMPARE_STRINGS
l# INPUT (@)

c STRING_TAIL (XOR)
if
(DROP) c STRING_TAIL
n# 1 (+)
(DUP) l# NAME_END (@) (XOR)
if
(DUP) j LOOK_LOOP
else
(DROP) l# NAME_END (@) ;

else
(>A) (DROP) (A@) ;

: COMPILE_OPCODE
c NEXT_SLOT
(>R) l# SLOT (@) (NOT)
(R>) (OVER) (OVER) (AND) if
(2*) (2*) (2*) (2*) (2*)
(OVER) (OVER) (AND) if
(2*) (2*) (2*) (2*) (2*)
(OVER) (OVER) (AND) if
(2*) (2*) (2*) (2*) (2*)
(OVER) (OVER) (AND) if
(2*) (2*) (2*) (2*) (2*)
(OVER) (OVER) (AND) if
(2*) (2*) (2*) (2*) (2*)
else else else else else
l# HERE (@)
(@) (+) (A!) (DROP) ;

: COMPILE_LITERAL
l# HERE_NEXT (@)
(>A) (A!+)
(A>) l# HERE_NEXT (!) ;

: CMPCALL
CALLopcode #
c COMPILE_OPCODE
c COMPILE_LITERAL
j ALIGN

: CMPJMP
JMPopcode #
c COMPILE_OPCODE
c COMPILE_LITERAL
j ALIGN

: CMPJMPZERO
JMPZEROopcode #
c COMPILE_OPCODE
j COMPILE_LITERAL

: CMPJMPPLUS
JMPPLUSopcode #
c COMPILE_OPCODE
j COMPILE_LITERAL
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: NUMC
LITopcode #
c COMPILE_OPCODE
j COMPILE_LITERAL

: CMPPCFETCH
PCFETCHopcode #
j COMPILE_OPCODE

: CMPRET
RETopcode #
j COMPILE_OPCODE

: CMPFETCHAPLUS
FETCHAPLUSopcode #
j COMPILE_OPCODE

: CMPFETCHRPLUS
FETCHRPLUSopcode #
j COMPILE_OPCODE

: CMPFETCHA
FETCHAopcode #
j COMPILE_OPCODE

: CMPSTOREAPLUS
STOREAPLUSopcode #
j COMPILE_OPCODE

: CMPSTORERPLUS
STORERPLUSopcode #
j COMPILE_OPCODE

: CMPSTOREA
STOREAopcode #
j COMPILE_OPCODE

: CMPNOT
NOTopcode #
j COMPILE_OPCODE

: CMPAND
ANDopcode #
j COMPILE_OPCODE

: CMPXOR
XORopcode #
j COMPILE_OPCODE

: CMPPLUS
PLUSopcode #
j COMPILE_OPCODE

: CMPTWOSTAR
TWOSTARopcode #
j COMPILE_OPCODE

: CMPTWOSLASH
TWOSLASHopcode #
j COMPILE_OPCODE

: CMPPLUSSTAR
PLUSSTARopcode #
j COMPILE_OPCODE

: CMPAFROM
AFROMopcode #
j COMPILE_OPCODE

: CMPTOA
TOAopcode #
j COMPILE_OPCODE

: CMPDUP
DUPopcode #
j COMPILE_OPCODE

: CMPDROP
DROPopcode #
j COMPILE_OPCODE

: CMPOVER
OVERopcode #
j COMPILE_OPCODE

: CMPTOR
TORopcode #
j COMPILE_OPCODE

: CMPRFROM
RFROMopcode #
j COMPILE_OPCODE

: CMPNOP
NOPopcode #
j COMPILE_OPCODE

: EXECUTE
(>R) ;

: EXEC
c READ1
c EXECUTE
j EXEC

: NXEC
c SCAN
c LOOK
c POP_STRING
c EXECUTE
j NXEC

: TENSTAR
(DUP) (2*) (2*) (2*) (OVER) (+) (+) ;
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: NUMI
l# INPUT (@)
(>R) (R@+)
n# 0 (>A)
(DUP)
if
: NUMI_LOOP
(A>) c TENSTAR (R@+) -n# 48 (+) (+) (>A)
-n# 1 (+) (DUP)
if
j NUMI_LOOP

else
else
(DROP) (R>) (DROP) (A>)

j POP_STRING

l NXEC l START_WORD !

Before the target is ready for execution, the values of its point-
ers saved in the metacompiler must be placed into their target
equivalents.

save_vm_here vm_here @ l HERE !
save_vm_here_next vm_here_next @ l HERE_NEXT !
save_vm_slot vm_slot @ l SLOT !
save_vm_input vm_input @ l INPUT !
save_vm_there vm_there @ l THERE !
save_vm_name_end vm_name_end @ l NAME_END !

)VM

A Flight Kernel Changes (v. 6)
Core Words Of Flight - Take 6

2006/03/02
Altered LOOK to not pop the string on the input stack and to return the
value of NAME-END if no match so we can test against that for error checking.
This means changing some low-level words in the Flight extensions so as
to keep things working as before since most of the time the input string
doesn’t need to be kept.

2006/02/25
Altered LOOK to use NAME-END as end of dictionary address, so it can be
temporarily altered for retargeted compilation.

2006/01/05
Fixed PUSH-STRING to set the tail

B Flight Extension Changes
SCAN : DEFN
SCAN SCAN LOOK POP_STRING CMPCALL
SCAN DEFN LOOK POP_STRING CMPCALL CMPRET

: l
SCAN SCAN LOOK POP_STRING CMPCALL
SCAN LOOK LOOK POP_STRING CMPCALL
SCAN POP_STRING LOOK POP_STRING CMPCALL CMPRET

: $c
l LOOK CMPCALL
l POP_STRING CMPCALL
l CMPCALL CMPCALL CMPRET

alias POP_STRING $pop

: $j c $l c $pop c (JMP) ;
: $j0 c $l c $pop c (JMP0) ;
: $j+ c $l c $pop c (JMP+) ;
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