
Burst-Mode Locally-Clocked Asynchronous Circuits

Charles Eric LaForest

December 2005
University of Waterloo
Independent Studies

Abstract

An active and a passive version of an asynchronous four-phase handshake circuit are speci�ed as Burst-Mode
machines and synthesized as hazard-free two-level logic. These circuits are used to build self-timed modules
which can generate local clocks with a variable period, exchange data with other asynchronous systems, or act
as input/output ports with provisions against metastability. A variation of each module with early handshake
termination is also presented. Finally, some notes outline the use of these modules to create an asynchronous
implementation of the Gullwing computer architecture.

1

This page intentionally left blank.

2

Contents

1 Introduction 5

2 Literature Search 5

3 Active Circuit 7
3.1 Speci�cation . 7
3.2 Synthesis . 7
3.3 Module . 7
3.4 Waveform . 7
3.5 Local Clock Generation . 9

3.5.1 Module Concatenation . 9
3.5.2 Clock Domain . 9

3.6 Communication . 11
3.6.1 Synchronizer . 11
3.6.2 Input/Output . 11
3.6.3 Early Termination . 11

4 Passive Circuit 13
4.1 Speci�cation . 13
4.2 Synthesis . 13
4.3 Module . 13
4.4 Waveform . 13
4.5 Passive Communication . 15

4.5.1 Synchronizer . 15
4.5.2 Input/Output . 15
4.5.3 Early Termination . 15

5 Gullwing Implementation 17
5.1 Finite State Machine Table . 17
5.2 Implementation . 17

A VHDL Code 18
A.1 Delay Element . 18
A.2 Active . 18

A.2.1 Element . 18
A.2.2 Module . 19

A.3 Passive . 20
A.3.1 Element . 20
A.3.2 Module . 21

A.4 Active-Passive Communication . 22
A.4.1 Standard . 22
A.4.2 Early Termination . 24

A.5 Active-Active Communication . 27

References 30

3

List of Figures

1 Active Element Speci�cation . 6
2 Active Element Schematic . 6
3 Active Module . 6
4 Active Module Waveform . 6
5 Local Clock Generation . 8
6 Concatenated Active Modules . 8
7 Active Module Synchronizer . 10
8 Active Synchronizer and Input/Output Port . 10
9 Active Module Synchronizer (Early Termination) . 10
10 Passive Element Speci�cation . 12
11 Passive Element Schematic . 12
12 Passive Module Synchronizer . 12
13 Passive Module Synchronizer Waveform . 12
14 Passive Synchronizer and Input/Output Port . 14
15 Passive Module Synchronizer (Early Termination) . 14
16 State Register . 17
17 Instruction Shift Register . 17

List of Algorithms

1 Active Element Boolean Equations . 7
2 Passive Element Boolean Equation . 13
3 Gullwing Finite State Machine . 16

4

1 Introduction

The Gullwing Processor [LaF05] is a second-generation stack computer closely based on the works of Charles H.
(�Chuck�) Moore [Moo01]1. The original state machine description (Algorithm 3) and planned system-level design
assume a single synchronous clock for multiple processors and their shared memories to obtain e�cient communication
and deterministic operation. The performance and reliability of this approach are compromised by uncertainties in
clock distribution (skew) and clock period (jitter), which impose additional design e�ort and force conservative timing
margins. Additionally, the strong clock drivers required to reduce skew generate heat which slows down nearby circuits
and further increases the timing margins required. The apparently obvious solution of having multiple clocks over
domains small enough to reduce these problems results in poor performance since communicating data between two
systems with local, unrelated clocks requires several extra cycles to resolve potential metastable states2.

One kind of solution, asynchronous systems, discards the global clock and uses multiple interacting control el-
ements instead [vBJN99]. The asynchronous approach presented here uses Fuhrer and Nowick's MINIMALIST
Burst-Mode machine speci�cation and synthesis tool [FN01] to build a pair of versatile building blocks which imple-
ment a four-phase handshake [PvB95]. These blocks are used to build self-timed, local, variable-period clocks which
allow for tighter timing margins, asynchronous communication channels which make smaller clock domains practical,
and reliable input/output ports that handle potential metastability when reading from the environment.

2 Literature Search

Beyond the sources listed in the body of this report, the following references were useful:

• [BS91][BNY99][ND91][NYD92][YDN93][HS02, LN02] cover Burst-Mode circuit theory and implementations.

• Parts of [Mye01] are a good introduction to Petri Nets and communication protocols.

• [TLE96] contains an in-depth discussion of hazards (glitches) in logic circuits.

1The F21 processor is also notable, but unpublished. See http://ultratechnology.com/f21cpu.html
2A metastable state is one which is neither of the usual high/low states.

5

0

1

2

0

R−

R+F+

A+

F−
A−

Figure 1: Active Element Speci�cation

F

A

R

Y0

Figure 2: Active Element Schematic

Y0
R

BE

F

A R

T

C

Figure 3: Active Module

Erδ

δ()X
δ Bf

F

R

A

1

2

3

4

Brδ

δ R δ R

5

6

δ Y0

7

δ R

δ Ef

Figure 4: Active Module Waveform

6

3 Active Circuit

The active circuit is the main building block for all the systems that follow. It implements the active half of a
four-phase handshake [PvB95].

3.1 Speci�cation

Figure 1 describes the Burst-Mode speci�cation of the active element, with the input signals to the left and the output
signals to the right. All signal transitions are monotonic and only the ones speci�ed on a given edge are allowed. A
state is stable until all speci�ed input transitions occur (in any order), at which point the output transitions occur
(in any order) and the state changes to its next value. All inputs must remain stable until the internal state and
output signal transitions have settled to their new values3. All edges entering a given state must result in the same
con�guration of input and output levels.

The initial state is 0 with all signals low. Raising the Function (F) input raises the Request (R) output until the
Acknowledge (A) input rises. After R falls, the circuit returns to its initial state once F and A fall.

3.2 Synthesis

The MINIMALIST tool takes a Burst-Mode speci�cation, performs state minimization, and returns a hazard-free4

two-level Boolean gate implementation5 of the corresponding Hu�man Finite State Machine6 (�gure 2). In this case
the three states are minimized to two and represented by the internal signal Y0. The output R is computed as a
function of the inputs F and A, and of the internal state Y0:

Algorithm 1 Active Element Boolean Equations

Y0 = A + (F * Y0)

R = F * A' * Y0'

3.3 Module

While the active element performs the logic of a four-phase handshake, the timing is implemented by controlling
the active element with asymmetric delay elements [MC79, Sei79] to form the active module shown in �gure 3.
The Request (R) signal becomes the Clock (C) output, and is fed through a Feedback delay (B) to generate the
Acknowledge (A) signal. The delayed R signal is further delayed through an Enable (E) delay and used to gate the
Trigger (T) input to the Function (F) signal.

3.4 Waveform

Figure 4 describes the typical operation of the active module. The Greek lowercase delta (δ) pre�xes internal and
external delays. For the asymmetric delay elements, the su�xes �r� and �f� denote the delays for the rising and
falling edges of their input.

The δBr delay controls the duration of the high part of R and is determined by δR and the timing requirements
of the logic driven by R. The δBf delay matches the internal delay δY0. It holds A high until the internal state Y0
has settled in order operate in the fundamental mode, otherwise R could glitch high.

The δEr delay must be at least as long as δR since the speci�cation shows F falling after R. In this case, the
implementation may allow this delay to be omitted. A potential problem exists if δEr is greater than δR+δBf since
it would overlap with δEf and this may not be possible, depending on the implementation of the asymmetric delay
element E. The δEf delay controls the duration of the low part of R and is determined by the settling time of the
logic driving F7. This prevents glitches from propagating through and causing malfunctions.

3This is �fundamental mode� operation, contrasted with �input/output mode� where inputs may change concurrently with outputs
and states.

4Free of glitches at the output for the speci�ed input transitions.
5It is also possible to synthesize to generalized C-Elements (gC), but doing so here would obscure the focus of the discussion.
6Hu�man FSM are asynchronous Mealy machines that store their state in combinational loops instead of clocked storage elements.
7It is assumed that the output of the logic driving F will not fall before the completion of the handshake at edge 6, since it it calculated

from the output of registers.

7

I E

BT C

D1

D2

G1

G2

S1

S2

L

Figure 5: Local Clock Generation

Y0
R

F

A R

B
E

Y0
R

F

A R

B

T1

T2 C

Figure 6: Concatenated Active Modules

8

3.5 Local Clock Generation

Figure 5 shows how an active module controls a number of registers. Control Lines (L) are decoded by I to drive the
active module Trigger (T), by G1 and G2 to gate the Clock (C), and by S1 and S2 to select the source Data (D1
and D2) to the negative edge-triggered registers. The internal delays E and B generate suitable low and high phases
for C. The low phase must be long enough to let the new data exit the registers and allow for the output of the
decoders to settle to its �nal value. The high phase must be long enough for the selected Data to propagate through
combinational logic and be stable at the input of the registers long enough to meet their setup time requirement.

3.5.1 Module Concatenation

The combinational delay between two registers depends on the source selected. On the other hand, the decoder
delays are fairly uniform since the decoders are of similar size and complexity. A single active module has to assume
the worst case for both delays. Adjusting the duration of the high phase to match the combinational delay of the
selected source would improve performance signi�cantly [PH04, p. 315]. Furthermore, similar operations have similar
combinational delays and group into a small number of types (register transfers, arithmetic calculations, bit-wise
Boolean operations, memory accesses, etc...), each with its own worst case delay, only one of which is the greatest,
global worst case.

Figure 6 shows how to concatenate multiple active modules to generate a clock signal with a selectable high phase
and a common low phase. At the end of the low phase one of the two Trigger inputs (T1 and T2) asserts and begins
a handshake cycle in the corresponding active module, with a high phase determined by that module's Feedback
delay (B). The Enable delay (E) is common to all the modules since the low phase must cover the worst case delay
of the logic that drives each Trigger and keep them all disabled until the current cycle ends, otherwise a glitch may
get through.

3.5.2 Clock Domain

Local clock generation reduces design e�ort by allowing the use of datapaths identical to those in synchronous
systems. However, this makes it as vulnerable to clock skew and jitter as a global free-running clock. Worse yet, the
irregular nature of the local clock makes it impossible to use Phase-Locked Loops (PLLs) and Delay-Locked Loops
(DLLs)8 to alleviate these problems. Thus, the domain of a local clock must be kept small enough to avoid amounts
of skew and jitter that would limit performance. Coordinating these multiple small domains is the topic of section
3.6.

8These are circuits, crucial to large synchronous systems, which dynamically adjust the relative phase and delay of separate clocks.

9

Y0
R

E
B

F

A R

T

R
C
A

Figure 7: Active Module Synchronizer

I E

BTL C
R

A X
C

XD

Figure 8: Active Synchronizer and Input/Output Port

Y0
R

E B

F

A R

T

R

C
A

Figure 9: Active Module Synchronizer (Early Termination)

10

3.6 Communication

Registers controlled by di�erent, non-concatenated active modules have local clocks which are unrelated in phase and
frequency, and are thus asynchronous to each other. Transferring data between asynchronous local clock domains
cannot be done directly since a receiving register may read from the output of a sending register while the latter
is changing state, resulting in a metastable condition in the former. To reliably transfer data across domains, the
sender must signal that there is data available and the receiver must acknowledge that it has received the data before
the sender can change state again.

3.6.1 Synchronizer

Figure 7 shows how this handshake is implemented by opening the Request-Acknowledge loop of the active module
from �gure 3. The operation is identical to the one described in �gure 4 except that the δBr and δBf delays are now
reaction time delays δX from the environment. The Clock (C) is no longer a direct copy of the Request (R) signal,
but a delayed one provided by the re-purposed delay element B.

Figure 8 shows how this new active synchronizer integrates in the local clock generation system from section 3.5.
When triggered, the active synchronizer raises R, the register begins sampling the data from the environment X,
the Clock (C) rises shortly thereafter. The entire system remains in a stable high phase state until the environment
raises A, signalling that the input to the register is valid9. The active synchronizer then drops R to signal the receipt
of the data, which is now latched into the register and visible internally, and C drops after a suitable propagation
delay. The system enters a stable low phase until the environment drops A, completing the handshake. Reversing the
direction and edge polarity of the register and following the same steps allows reliable writing to the environment.

3.6.2 Input/Output

If the interface with the environment cannot be made in a coordinated manner, the active synchronizer can be
converted into a plain input/output port by looping back R to A (by shorting their pins together, for example) and if
reading from the environment, by extending the delay of a falling edge through B to allow for the register to resolve
a potential metastable state before internal registers read its output10.

3.6.3 Early Termination

The time between the receipt of data and the end of a handshake (edges 4 to 6 in �gure 4) performs only a
synchronization function since the data has already been latched. Figure 9 shows a modi�ed synchronizer which
gates o� A when R falls in order to abridge this part of a handshake. The low phase then completes without waiting
for the environment to release its acknowledgement (A). The disadvantage of this method is that the system may
initiate a new handshake while A is still high, which would prematurely end the high phase before the environment
had time to respond11.

9The signal A actually rises a short time after the data is valid to provide margin against uneven transit time (skew) and to meet the
setup time of the register [PvB95].

10If the synchronizer will never be used as an input/output port, then the register can be omitted and the B delay reduced accordingly.
11It also allows two active synchronizers to communicate by cross-connecting their R and A lines. See Appendix A.5.

11

0

1

0

F+
R+

A+

F− A−
R−

Figure 10: Passive Element Speci�cation

F
R

A

Figure 11: Passive Element Schematic

E

A

B

F

A R

T

A

R
C

Figure 12: Passive Module Synchronizer

���� ����
��

��F

R

A

1 2

12

3

δ
δ X

4 5

δ Er

45

Aδ
X

A
δ

66

7 7

δ Ef

Xδ

Figure 13: Passive Module Synchronizer Waveform

12

4 Passive Circuit

The passive element is the complement of the active element. It implements the passive half of a four-phase handshake
[PvB95].

4.1 Speci�cation

Figure 10 describes the Burst-Mode speci�cation of the passive element, with the input signals to the left and
the output signals to the right. All signal transitions are monotonic and only the ones speci�ed on a given edge
are allowed. A state is stable until all speci�ed input transitions occur (in any order), at which point the output
transitions occur (in any order) and the state changes to its next value. All inputs must remain stable until the
internal state and output signal transitions have settled to their new values12. All edges entering a given state must
result in the same con�guration of input and output levels.

The initial state is 0 with all signals low. Raising the Function (F) and Request (R) inputs raises the Acknowledge
(A) output, which remains high until both F and R fall13.

4.2 Synthesis

The MINIMALIST tool takes a Burst-Mode speci�cation, performs state minimization, and returns a hazard-free14

two-level Boolean gate implementation15 of the corresponding Hu�man Finite State Machine16 (�gure 11). In this
case the two states are minimized to one, which is held by having the output A fed back as an input. The output A
is computed as a function of the inputs F and R, and of A itself:

Algorithm 2 Passive Element Boolean Equation

A = (F * R) + (F * A) + (R * A)

4.3 Module

While the passive element performs the logic of a four-phase handshake, the timing is implemented by controlling
the passive element with asymmetric delay elements [MC79, Sei79] to form the passive module shown in �gure 12.
The Acknowledge (A) signal becomes the Clock (C) output, once fed through a delay (B), and the A signal is delayed
through an Enable (E) delay and used to gate the Trigger (T) input to the Function (F) signal.

4.4 Waveform

Figure 13 describes the typical operation of the active module. The Greek lowercase delta (δ) pre�xes internal and
external delays. For the asymmetric delay elements, the su�xes �r� and �f� denote the delays for the rising and
falling edges of their input. The δEr delay controls the minimum duration of the high phase of A and is determined
by the timing requirements of the logic being driven by A. The δEf delay controls the duration of the low phase of A
and is determined by the settling time of the logic driving F17 in order to prevent glitches from propagating through
and causing malfunctions.

12This is �fundamental mode� operation, contrasted with �input/output mode� where inputs may change concurrently with outputs
and states.

13This is the same behaviour as a Muller C-Element, one of the fundamental asynchronous control circuits. This implementation has
not yet been compared to existing ones.

14Free of glitches at the output for the speci�ed input transitions.
15It is also possible to synthesize to generalized C-Elements (gC), but doing so here would obscure the focus of the discussion.
16Hu�man FSM are asynchronous Mealy machines that store their state in combinational loops instead of clocked storage elements.
17It is assumed that the output of the logic driving F will not fall before the middle of the handshake at edge 3. This guaranteed by

the delays on A, which drives the local clock controlling the registers from which F is computed.

13

I ATL C
R

A

X

X

A
C

D

Figure 14: Passive Synchronizer and Input/Output Port

E

A

B

F

A R

T

R

A
C

Figure 15: Passive Module Synchronizer (Early Termination)

14

4.5 Passive Communication

Registers controlled by di�erent, non-concatenated active modules have local clocks which are unrelated in phase and
frequency, and are thus asynchronous to each other. Transferring data between asynchronous local clock domains
cannot be done directly since a receiving register may read from the output of a sending register while the latter
is changing state, resulting in a metastable condition in the former. To reliably transfer data across domains, the
sender must signal that there is data available and the receiver must acknowledge that it has received the data before
the sender can change state again.

4.5.1 Synchronizer

Figure 14 shows how the passive synchronizer integrates in the local clock generation system from section 3.5. When
triggered, the passive synchronizer waits for R to rise, after which it raises A to latch the received data18 and make
it visible to the internal registers. The Clock (C) rises shortly thereafter. The entire system remains in a stable high
phase state until the environment drops R. The passive synchronizer then drops A to signal the end of the handshake,
and C drops after a suitable propagation delay. Reversing the direction and the edge polarity of the register and
following the same steps allows reliable writing to the environment.

4.5.2 Input/Output

If the interface with the environment cannot be made in a coordinated manner, the passive synchronizer can be
converted into a plain input/output port by looping back A to R via an inverter19, and if reading from the environment
by extending the delay of a falling edge through B to allow for the register to resolve a potential metastable state
before internal registers read its output20.

4.5.3 Early Termination

The time between the receipt of data and the end of a handshake (edges 4 to 6 in �gure 13) performs only a
synchronization function since the data has already been latched. Figure 15 shows a modi�ed synchronizer which
gates o� R when F falls in order to abridge this part of a handshake. The high phase then completes without waiting
for the environment to release its request (R). The disadvantage of this method is that the system may initiate a
new handshake while R is still high, which would prematurely begin the high phase before the environment had time
to respond21.

18The signal R actually rises a short time after the data is valid to provide margin against uneven transit time (skew) and to meet the
setup time of the register [PvB95].

19This suggests that a passive version of the active module in �gure 3 is possible, but this has not been explored yet.
20If the synchronizer will never be used as an input/output port, then the register can be omitted and the B delay reduced accordingly.
21It may also allow two passive synchronizers to communicate by cross-connecting their A and R lines via inverters, but this has not

been explored yet.

15

Algorithm 3 Gullwing Finite State Machine
Inputs Outputs f(ISR0,TOS,LAST,State)

----------------------------- ------------------------------

ISR0 TOS LAST State Next Control

---- --- ---- ----- ---- -------

PC@ X 0 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

JMP X 0 1 MEM -> MAR, -> PC

JMP X 1 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

JMP0 =0 X 0 1 NEXT -> TOP, DS(POP), MEM -> MAR, -> PC

JMP0 !=0 X 0 0 NEXT -> TOP, DS(POP), PC -> ALU(+1) -> PC, -> MAR, ISR>�>

JMP0 X 1 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

JMP+ MSB(0) X 0 1 NEXT -> TOP, DS(POP), MEM -> MAR, -> PC

JMP+ MSB(1) X 0 0 NEXT -> TOP, DS(POP), PC -> ALU(+1) -> PC, -> MAR, ISR>�>

JMP+ X 1 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

CALL X 0 1 PC -> ALU(+1) -> R, RS(PUSH), MEM -> MAR, -> PC

CALL X 1 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

RET X 0 1 RS(POP), R -> MAR, -> PC

RET X 1 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

LIT X 0 0 MEM -> TOP, TOP -> NEXT, DS(PUSH), PC -> ALU(+1)->PC,->MAR, ISR>�>

@A+ X 0 1 A -> MAR, -> ALU(+1) -> A

@A+ X 1 0 MEM -> TOP, TOP -> NEXT, DS(PUSH), PC -> MAR, ISR>�>

@R+ X 0 1 R -> MAR, -> ALU(+1) -> R

@R+ X 1 0 MEM -> TOP, TOP -> NEXT, DS(PUSH), PC -> MAR, ISR>�>

@A X 0 1 A -> MAR

@A X 1 0 MEM -> TOP, TOP -> NEXT, DS(PUSH), PC -> MAR, ISR>�>

!A+ X 0 1 A -> MAR, -> ALU(+1) -> A

!A+ X 1 0 DS(POP), NEXT -> TOP, TOP -> MEM, PC -> MAR, ISR>�>

!R+ X 0 1 R -> MAR, -> ALU(+1) -> R

!R+ X 1 0 DS(POP), NEXT -> TOP, TOP -> MEM, PC -> MAR, ISR>�>

!A X 0 1 A -> MAR

!A X 1 0 DS(POP), NEXT -> TOP, TOP -> MEM, PC -> MAR, ISR>�>

COM 0 0 0 TOP -> ALU(NOT) -> TOP, ISR>�>

COM 1 0 0 TOP -> ALU(NOT) -> TOP, PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

AND 0 0 0 TOP, NEXT -> ALU(AND) -> TOP, DS(POP), ISR>�>

AND 1 0 0 TOP,NEXT->ALU(AND)->TOP,DS(POP),PC->ALU(+1)->PC,->MAR,MEM->ISR

XOR 0 0 0 TOP, NEXT -> ALU(XOR) -> TOP, DS(POP), ISR>�>

XOR 1 0 0 TOP,NEXT->ALU(XOR)->TOP,DS(POP),PC->ALU(+1)->PC,->MAR,MEM->ISR

+ 0 0 0 (TOP, NEXT) -> ALU(+) -> TOP, DS(POP), ISR>�>

+ 1 0 0 (TOP, NEXT) -> ALU(+)->TOP,DS(POP),PC->ALU(+1)-> PC,->MAR,MEM->ISR

2* 0 0 0 TOP -> ALU(2*) -> TOP, ISR>�>

2* 1 0 0 TOP -> ALU(2*)->TOP,PC->ALU(+1)->PC,->MAR,MEM->ISR

2/ 0 0 0 TOP -> ALU(2/) -> TOP, ISR>�>

2/ 1 0 0 TOP -> ALU(2/)->TOP,PC->ALU(+1)->PC,->MAR,MEM->ISR

+* LSB(0) 0 0 0 ISR>�>

+* LSB(0) 1 0 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

+* LSB(1) 0 0 0 (NEXT, TOP) -> ALU(+) -> TOP, ISR>�>

+* LSB(1) 1 0 0 (NEXT, TOP) -> ALU(+) -> TOP, PC -> ALU(+1) -> PC, -> MAR,MEM->ISR

A> 0 0 0 A -> TOP, TOP -> NEXT, DS(PUSH), ISR>�>

A> 1 0 0 A -> TOP, TOP -> NEXT, DS(PUSH), PC ->ALU(+1)->PC,->MAR,MEM->ISR

>A 0 0 0 TOP -> A, NEXT -> TOP, DS(POP), ISR>�>

>A 1 0 0 TOP -> A, NEXT -> TOP, DS(POP), PC -> ALU(+1)->PC,->MAR,MEM->ISR

DUP 0 0 0 TOP -> NEXT, DS(PUSH), ISR>�>

DUP 1 0 0 TOP -> NEXT, DS(PUSH), PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

DROP 0 0 0 NEXT -> TOP, DS(POP), ISR>�>

DROP 1 0 0 NEXT -> TOP, DS(POP), PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

OVER 0 0 0 NEXT -> TOP, TOP -> NEXT, DS(PUSH), ISR>�>

OVER 1 0 0 NEXT -> TOP, TOP -> NEXT, DS(PUSH),PC->ALU(+1)->PC,->MAR,MEM->ISR

R> 0 0 0 RS(POP), R -> TOP, TOP -> NEXT, DS(PUSH), ISR>�>

R> 1 0 0 RS(POP),R->TOP,TOP->NEXT,DS(PUSH),PC->ALU(+1)->PC,->MAR,MEM->ISR

>R 0 0 0 DS(POP), NEXT -> TOP, TOP -> R, RS(PUSH), ISR>�>

>R 1 0 0 DS(POP), NEXT -> TOP, TOP -> R, RS(PUSH),PC->ALU(+1)->PC,->MAR,MEM->ISR

NOP 0 0 0 ISR>�>

NOP 1 0 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

UNDEF0 0 0 0 ISR>�>

UNDEF0 1 0 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

UNDEF1 0 0 0 ISR>�>

UNDEF1 1 0 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

UNDEF2 0 0 0 ISR>�>

UNDEF2 1 0 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

UNDEF3 0 0 0 ISR>�>

UNDEF3 1 0 0 PC -> ALU(+1) -> PC, -> MAR, MEM -> ISR

16

5 Gullwing Implementation

5.1 Finite State Machine Table

Algorithm 3 [LaF05] describes the Mealy �nite state machine (FSM) which controls the Gullwing processor. The
Instruction Shift Register (ISR) shifts in a PC-Fetch (PC@) instruction as instructions are shifted out, denoted by
the shorthand ISR>�>. The signal ISR0 refers to the location in the ISR containing the current instruction. The signal
LAST is set when the next instruction to be executed is PC@. An X denotes a don't care condition where the value of
LAST is irrelevant. The entries under Top-Of-Stack (TOS) are combinational functions of the contents of the top of
the data stack respectively describing the all-zero, positive/negative, and even/odd conditions. At each step, State
takes on the value of Next.

5.2 Implementation

The implementation of the Gullwing architecture is easily described using the locally clocked method presented in
section 3.5. The control lines (L) are the signals listed under Inputs in algorithm 3. The local clock (C) is controlled
by the instruction decoder (I) which selects a period of appropriate duration for the kind of instruction to execute.
The register-to-register transfers are controlled by each register's clock gating (G) and source select (S) decoders.

The state of the FSM is kept in a similarly controlled register which toggles itself as needed (�gure 16).

STATE

C

Figure 16: State Register

The ISR is also controlled in the same manner, but is a compound system which either loads instructions from
memory (MEM) or shifts them out (ISR0) and generates the LAST signal (�gure 17).

G

S
L PC@

C

MEM

ISR0

LAST

Figure 17: Instruction Shift Register

17

A VHDL Code

Here are VHDL simulations of the element syntheses and module designs. The delays are for demonstration only.

A.1 Delay Element

This code describes a universal transport delay element.

-- VHDL simulation of asymmetric delay element

library IEEE;

use ieee.std_logic_1164.all;

entity delay is

generic (

re_delay : time := 0 ns; -- rising edge

fe_delay : time := 0 ns -- falling edge

);

port (

input : in std_logic := '0';

output : out std_logic := '0'

);

end delay;

architecture main of delay is

begin

process begin

wait until rising_edge(input);

output <= transport input after re_delay;

wait until falling_edge(input);

output <= transport input after fe_delay;

end process;

end main;

A.2 Active

A.2.1 Element

-- VHDL simulation of Burst-Mode active 4-phase handshake element

library IEEE;

use ieee.std_logic_1164.all;

entity active is

generic (

state_delay : time := 0 ns;

output_delay : time := 0 ns

);

port (

F : in std_logic := '0';

A : in std_logic := '0';

R : out std_logic := '0'

);

end active;

architecture main of active is

-- Internal state

signal Y0 : std_logic := '0';

begin

-- AND + OR

Y0 <= transport A OR (F AND Y0) after state_delay;

-- NOT + AND

R <= transport F AND (NOT A) AND (NOT Y0) after output_delay;

end main;

18

A.2.2 Module

-- VHDL testbench for active.vhd

library IEEE;

use ieee.std_logic_1164.all;

entity active_tb is

end active_tb;

architecture main of active_tb is

signal fun_in : std_logic := '0';

signal fun_en : std_logic := '0';

signal enable_in : std_logic := '0';

signal enable_out : std_logic := '0';

signal feedback_in : std_logic := '0';

signal feedback_out : std_logic := '0';

signal fun : std_logic := '0';

signal req : std_logic := '0';

signal ack : std_logic := '0';

begin

fsm : entity work.active

generic map (

state_delay => 2 ns,

output_delay => 2 ns

)

port map (

F => fun,

A => ack,

R => req

);

enable : entity work.delay

generic map (

re_delay => 1 ns,

fe_delay => 1 ns

)

port map (

input => enable_in,

output => enable_out

);

feedback : entity work.delay

generic map (

re_delay => 1 ns,

fe_delay => 1 ns

)

port map (

input => feedback_in,

output => feedback_out

);

feedback_in <= req;

ack <= feedback_out;

enable_in <= feedback_out;

fun_en <= enable_out;

fun <= transport fun_in AND (NOT fun_en) after 1 ns;

process begin

wait for 10 ns;

fun_in <= '1';

end process;

end main;

19

A.3 Passive

A.3.1 Element

-- VHDL simulation of Burst-Mode passive handshake (Muller C?) element

library IEEE;

use ieee.std_logic_1164.all;

entity passive is

generic (

delay : time := 0 ns

);

port (

F : in std_logic := '0';

R : in std_logic := '0';

A : out std_logic := '0'

);

end passive;

architecture main of passive is

signal A_i : std_logic := '0';

begin

A_i <= transport (F AND R) OR (F AND A_i) OR (R AND A_i) after delay;

A <= A_i;

end main;

20

A.3.2 Module

-- VHDL testbench for passive.vhd

library IEEE;

use ieee.std_logic_1164.all;

entity passive_tb is

end passive_tb;

architecture main of passive_tb is

signal fun_in : std_logic := '0';

signal fun_en : std_logic := '0';

signal enable_in : std_logic := '0';

signal enable_out : std_logic := '0';

signal feedback_in : std_logic := '0';

signal feedback_out : std_logic := '0';

signal fun : std_logic := '0';

signal req : std_logic := '0';

signal ack : std_logic := '0';

begin

fsm : entity work.passive

generic map (

delay => 8 ns

)

port map (

F => fun,

R => req,

A => ack

);

enable : entity work.delay

generic map (

re_delay => 9 ns,

fe_delay => 20 ns

)

port map (

input => enable_in,

output => enable_out

);

feedback : entity work.delay

generic map (

re_delay => 5 ns,

fe_delay => 2 ns

)

port map (

input => feedback_in,

output => feedback_out

);

-- Nota Bene

feedback_in <= NOT ack;

req <= feedback_out;

enable_in <= ack;

fun_en <= enable_out;

fun <= fun_in AND (NOT fun_en);

process begin

wait for 30 ns;

fun_in <= '1';

end process;

end main;

21

A.4 Active-Passive Communication

A.4.1 Standard

-- VHDL testbench for active-passive communication

library IEEE;

use ieee.std_logic_1164.all;

entity ap_tb is

end ap_tb;

architecture main of ap_tb is

-- Function input and enabled input

signal a_fun_in : std_logic := '0';

signal a_fun_en : std_logic := '0';

signal p_fun_in : std_logic := '0';

signal p_fun_en : std_logic := '0';

-- Enable delays

signal a_enable_in : std_logic := '0';

signal a_enable_out : std_logic := '0';

signal p_enable_in : std_logic := '0';

signal p_enable_out : std_logic := '0';

-- Communication lines transport delays

signal req_req_in : std_logic := '0';

signal req_req_out : std_logic := '0';

signal ack_ack_in : std_logic := '0';

signal ack_ack_out : std_logic := '0';

-- Delayed generated clocks

signal a_clk : std_logic := '0';

signal p_clk : std_logic := '0';

signal a_clk_in : std_logic := '0';

signal a_clk_out : std_logic := '0';

signal p_clk_in : std_logic := '0';

signal p_clk_out : std_logic := '0';

-- FSM signals

signal a_fun : std_logic := '0';

signal a_req : std_logic := '0';

signal a_ack : std_logic := '0';

signal p_fun : std_logic := '0';

signal p_req : std_logic := '0';

signal p_ack : std_logic := '0';

begin

a_fsm : entity work.active

generic map (

state_delay => 8 ns,

output_delay => 6 ns

)

port map (

F => a_fun,

A => a_ack,

R => a_req

);

p_fsm : entity work.passive

generic map (

delay => 6 ns

)

port map (

F => p_fun,

R => p_req,

A => p_ack

22

);

a_enable : entity work.delay

generic map (

re_delay => 10 ns,

fe_delay => 10 ns

)

port map (

input => a_enable_in,

output => a_enable_out

);

p_enable : entity work.delay

generic map (

re_delay => 10 ns,

fe_delay => 10 ns

)

port map (

input => p_enable_in,

output => p_enable_out

);

a_clk_delay : entity work.delay

generic map (

re_delay => 2 ns,

fe_delay => 2 ns

)

port map (

input => a_clk_in,

output => a_clk_out

);

p_clk_delay : entity work.delay

generic map (

re_delay => 2 ns,

fe_delay => 2 ns

)

port map (

input => p_clk_in,

output => p_clk_out

);

req_req : entity work.delay

generic map (

re_delay => 1 ns,

fe_delay => 1 ns

)

port map (

input => req_req_in,

output => req_req_out

);

ack_ack : entity work.delay

generic map (

re_delay => 1 ns,

fe_delay => 1 ns

)

port map (

input => ack_ack_in,

output => ack_ack_out

);

req_req_in <= a_req;

p_req <= req_req_out;

23

ack_ack_in <= p_ack;

a_ack <= ack_ack_out;

a_enable_in <= a_ack;

a_fun_en <= a_enable_out;

p_enable_in <= p_ack;

p_fun_en <= p_enable_out;

a_clk_in <= a_req;

a_clk <= a_clk_out;

p_clk_in <= p_ack;

p_clk <= p_clk_out;

a_fun <= a_fun_in AND (NOT a_fun_en);

p_fun <= p_fun_in AND (NOT p_fun_en);

process begin

wait for 10 ns;

a_fun_in <= '1';

wait for 20 ns;

p_fun_in <= '1';

end process;

end main;

A.4.2 Early Termination

-- VHDL testbench for active-passive fast communication

library IEEE;

use ieee.std_logic_1164.all;

entity ap_fast_tb is

end ap_fast_tb;

architecture main of ap_fast_tb is

-- Function input and enabled input

signal a_fun_in : std_logic := '0';

signal a_fun_en : std_logic := '0';

signal p_fun_in : std_logic := '0';

signal p_fun_en : std_logic := '0';

-- Enable delays

signal a_enable_in : std_logic := '0';

signal a_enable_out : std_logic := '0';

signal p_enable_in : std_logic := '0';

signal p_enable_out : std_logic := '0';

-- Communication lines transport delays

signal req_req_in : std_logic := '0';

signal req_req_out : std_logic := '0';

signal ack_ack_in : std_logic := '0';

signal ack_ack_out : std_logic := '0';

-- Delayed generated clocks

signal a_clk : std_logic := '0';

signal p_clk : std_logic := '0';

signal a_clk_in : std_logic := '0';

signal a_clk_out : std_logic := '0';

signal p_clk_in : std_logic := '0';

signal p_clk_out : std_logic := '0';

-- FSM signals

signal a_fun : std_logic := '0';

signal a_req : std_logic := '0';

signal a_ack : std_logic := '0';

signal p_fun : std_logic := '0';

signal p_req : std_logic := '0';

24

signal p_ack : std_logic := '0';

begin

a_fsm : entity work.active

generic map (

state_delay => 5 ns,

output_delay => 5 ns

)

port map (

F => a_fun,

A => a_ack,

R => a_req

);

p_fsm : entity work.passive

generic map (

delay => 5 ns

)

port map (

F => p_fun,

R => p_req,

A => p_ack

);

a_enable : entity work.delay

generic map (

re_delay => 5 ns,

fe_delay => 5 ns

)

port map (

input => a_enable_in,

output => a_enable_out

);

p_enable : entity work.delay

generic map (

re_delay => 5 ns,

fe_delay => 5 ns

)

port map (

input => p_enable_in,

output => p_enable_out

);

a_clk_delay : entity work.delay

generic map (

re_delay => 2 ns,

fe_delay => 2 ns

)

port map (

input => a_clk_in,

output => a_clk_out

);

p_clk_delay : entity work.delay

generic map (

re_delay => 2 ns,

fe_delay => 2 ns

)

port map (

input => p_clk_in,

output => p_clk_out

);

25

req_req : entity work.delay

generic map (

re_delay => 1 ns,

fe_delay => 1 ns

)

port map (

input => req_req_in,

output => req_req_out

);

ack_ack : entity work.delay

generic map (

re_delay => 1 ns,

fe_delay => 1 ns

)

port map (

input => ack_ack_in,

output => ack_ack_out

);

-- Nota Bene

req_req_in <= a_req;

p_req <= req_req_out AND p_fun;

ack_ack_in <= p_ack;

a_ack <= ack_ack_out AND a_req;

a_enable_in <= a_ack;

a_fun_en <= a_enable_out;

p_enable_in <= p_ack;

p_fun_en <= p_enable_out;

a_clk_in <= a_req;

a_clk <= a_clk_out;

p_clk_in <= p_ack;

p_clk <= p_clk_out;

a_fun <= a_fun_in AND (NOT a_fun_en);

p_fun <= p_fun_in AND (NOT p_fun_en);

process begin

wait for 10 ns;

a_fun_in <= '1';

wait for 10 ns;

p_fun_in <= '1';

wait for 10 ns;

a_fun_in <= '0';

wait for 10 ns;

p_fun_in <= '0';

end process;

end main;

26

A.5 Active-Active Communication

-- VHDL testbench for active-active fast communication

library IEEE;

use ieee.std_logic_1164.all;

entity aa_fast_tb is

end aa_fast_tb;

architecture main of aa_fast_tb is

-- Function input and enabled input

signal a1_fun_in : std_logic := '0';

signal a1_fun_en : std_logic := '0';

signal a2_fun_in : std_logic := '0';

signal a2_fun_en : std_logic := '0';

-- Enable delays

signal a1_enable_in : std_logic := '0';

signal a1_enable_out : std_logic := '0';

signal a2_enable_in : std_logic := '0';

signal a2_enable_out : std_logic := '0';

-- Communication lines transport delays

signal req_ack1_in : std_logic := '0';

signal req_ack1_out : std_logic := '0';

signal req_ack2_in : std_logic := '0';

signal req_ack2_out : std_logic := '0';

-- Delayed generated clocks

signal a1_clk : std_logic := '0';

signal a2_clk : std_logic := '0';

signal a1_clk_in : std_logic := '0';

signal a1_clk_out : std_logic := '0';

signal a2_clk_in : std_logic := '0';

signal a2_clk_out : std_logic := '0';

-- FSM signals

signal a1_fun : std_logic := '0';

signal a1_req : std_logic := '0';

signal a1_ack : std_logic := '0';

signal a2_fun : std_logic := '0';

signal a2_req : std_logic := '0';

signal a2_ack : std_logic := '0';

begin

a1_fsm : entity work.active

generic map (

state_delay => 5 ns,

output_delay => 5 ns

)

port map (

F => a1_fun,

A => a1_ack,

R => a1_req

);

a2_fsm : entity work.active

generic map (

state_delay => 5 ns,

output_delay => 5 ns

)

port map (

F => a2_fun,

A => a2_ack,

R => a2_req

27

);

a1_enable : entity work.delay

generic map (

re_delay => 5 ns,

fe_delay => 5 ns

)

port map (

input => a1_enable_in,

output => a1_enable_out

);

a2_enable : entity work.delay

generic map (

re_delay => 5 ns,

fe_delay => 5 ns

)

port map (

input => a2_enable_in,

output => a2_enable_out

);

a1_clk_delay : entity work.delay

generic map (

re_delay => 2 ns,

fe_delay => 2 ns

)

port map (

input => a1_clk_in,

output => a1_clk_out

);

a2_clk_delay : entity work.delay

generic map (

re_delay => 2 ns,

fe_delay => 2 ns

)

port map (

input => a2_clk_in,

output => a2_clk_out

);

req_ack1 : entity work.delay

generic map (

re_delay => 1 ns,

fe_delay => 1 ns

)

port map (

input => req_ack1_in,

output => req_ack1_out

);

req_ack2 : entity work.delay

generic map (

re_delay => 1 ns,

fe_delay => 1 ns

)

port map (

input => req_ack2_in,

output => req_ack2_out

);

-- Nota Bene

req_ack1_in <= a1_req;

28

a2_ack <= req_ack1_out AND a2_req;

req_ack2_in <= a2_req;

a1_ack <= req_ack2_out AND a1_req;

a1_enable_in <= a1_ack;

a1_fun_en <= a1_enable_out;

a2_enable_in <= a2_ack;

a2_fun_en <= a2_enable_out;

a1_clk_in <= a1_req;

a1_clk <= a1_clk_out;

a2_clk_in <= a2_ack;

a2_clk <= a2_clk_out;

a1_fun <= a1_fun_in AND (NOT a1_fun_en);

a2_fun <= a2_fun_in AND (NOT a2_fun_en);

process begin

wait for 10 ns;

a1_fun_in <= '1';

wait for 10 ns;

a2_fun_in <= '1';

wait for 10 ns;

a1_fun_in <= '0';

wait for 10 ns;

a2_fun_in <= '0';

end process;

end main;

29

References

[BNY99] Erik Brunvand, Steven Nowick, and Kenneth Yun, Practical advances in asynchronous design and in
asynchronous/synchronous interfaces, DAC '99: Proceedings of the 36th ACM/IEEE conference on Design
automation (New York, NY, USA), ACM Press, 1999, An overview of the �eld. Covers control, datapaths,
and processors, pp. 104�109.

[BS91] Janusz A. Brzozowski and Carl-Johan H. Seger, Asynchronous circuits, Springer-Verlag, New York, NY,
USA, 1991, Section 15.4 brie�y covers Burst-Mode circuits.

[FN01] Robert M. Fuhrer and Steven Nowick, Sequential optimization of asynchronous and synchronous �nite-
state machines: Algorithms and tools, Kluwer Academic Publishers, Norwell, MA, USA, 2001, The primary
reference for Burst-Mode synthesis using the MINIMALIST CAD tool.

[HS02] Soha Hassoun and Tsutomu Sasao (eds.), Logic synthesis and veri�cation, Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[LaF05] Eric LaForest, Unit 2-3 (IS 102B) report: The Gullwing stack computer architecture, IS Unit report,
University of Waterloo, Independent Studies Program, April 2005, Otherwise unpublished.

[LN02] Luciano Lavagno and Steven M. Nowick, Asynchronous control circuits, ch. 10, pp. 255�284, in Hassoun
and Sasao [HS02], 2002, Introduces Burst-Mode circuits.

[MC79] Carver Mead and Lynn Conway, Introduction to VLSI systems, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1979, The original and authoritative book on VLSI circuitry.

[Moo01] Charles H. Moore, c18 colorForth compiler, Proceedings of the 17th EuroForth Conference (Schloss
Dagstuhl, Saarland, Germany), University of Teesside, November 2001, One of the few published papers
by Chuck Moore. Describes the c18 instruction set in detail.

[Mye01] Chris J. Myers, Asynchronous circuit design, Wiley-Interscience, 2001, Read as an introduction to Petri
Nets and communication protocols.

[ND91] Steven M. Nowick and David L. Dill, Automatic synthesis of locally-clocked asynchronous state machines,
ICCAD '91: Proceedings of the 1991 IEEE International Conference on Computer-Aided Design (Wash-
ington, DC, USA), IEEE Computer Society, Nov 1991, Covers the rules for Burst-Mode speci�cations.
The state machine implementation method is obsolete though., pp. 318�321.

[NYD92] Steven M. Nowick, Kenneth Y. Yun, and David L. Dill, Practical asynchronous controller design, ICCD
'92: Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer &
Processors (Washington, DC, USA), IEEE Computer Society, 1992, Shows practical DRAM and SCSI con-
troller designs using Burst-Mode circuits. The state machine implementation method is obsolete though.,
pp. 341�345.

[PH04] David A. Patterson and John Hennessy, Computer organization and design, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004, The primary undergraduate textbook on the topic.

[PvB95] A. Peeters and K. van Berkel, Single-rail handshake circuits, ASYNC '95: Proceedings of the 2nd Working
Conference on Asynchronous Design Methodologies (Washington, DC, USA), IEEE Computer Society,
1995, Contains an excellent discussion of four-phase handshakes.

[Sei79] Charles L. Seitz, System timing, ch. 7, in [MC79], 1979, Fundamental reference. Covers asymmetric delays,
controlled clocks, and asynchronous communication.

[TLE96] Nozar Tabrizi, Michael J. Liebelt, and Kamran Eshraghian, Dynamic hazards and speed independent
delay model, ASYNC '96: Proceedings of the 2nd International Symposium on Advanced Research in
Asynchronous Circuits and Systems (Washington, DC, USA), IEEE Computer Society, 1996, Contains an
excellent introduction to the various kinds of hazards found in logic circuits., p. 94.

[vBJN99] C. H. (Kees) van Berkel, Mark B. Josephs, and Steven Nowick, Applications of asynchronous circuits,
Proceedings of the IEEE (Washington, DC, USA), vol. 87, IEEE Computer Society, Feb 1999, An overview
of the useful properties of asynchronous circuits., pp. 223�233.

30

[YDN93] Kenneth Y. Yun, David L. Dill, and Steven M. Nowick, Practical generalizations of asynchronous state
machines, Proceedings of the [4th] European Conference on Design Automation, 1993, with the European
Event in ASIC Design (Washington, DC, USA), IEEE Computer Society, Feb 1993, Introduces Extended
Burst-Mode synthesis., pp. 525�530.

31

