ECE 1754

Survey of Loop Transformation

Techniques

Eric LaForest

March 19, 2010

2 Contents
Contents

1 Introduction 4
2 Data-Flow-Based Loop Transformations 4
2.1 Loop-Based Strength Reduction 4
2.2 Induction Variable Elimination 5
2.3 Loop-Invariant Code Motion 6
2.4 LoopUnswitching 7
3 LoopReordering 8
3.1 Looplinterchange 8
3.2 LoopSkewing 10
3.3 LoopReversal 12
34 StripMining 13
35 CycleShrinking 14
3.6 LoopTiling 14
4 Loop Restructuring 16
41 LoopUnrolling 16
4.2 Software Pipelining o 17
43 LoopCoalescing 18
44 LoopCollapsing. e 19
45 LoopPeeling 19
4.6 Loop Normalization. 20
47 LoopSpreading 21

Contents 3
4.8 LoopFission 22
4.9 LoopFusion. 23
4.10 Node Splitting 23
5 Loop Replacement 25
5.1 Reduction Recognition 25
5.2 Array Statement Scalarization 26
6 Memory ACCESS« o o i e e e e 28
6.1 ArrayPadding. 28
6.2 ScalarExpansiono 29
6.3 ArrayContraction 29
6.4 ScalarReplacement 30

Bibliography33

4 2 Data-Flow-Based Loop Transformations

1 Introduction

In this paper | present a survey of basic loop transformagchniques. These
are general transformations, mostly at the source levat,db not stem from a
common theoretical background except for the lexicogmapinder of the loop
dependence vectors. Thus, | present them in a cataloguatfgnouped by gen-
eral transformation types. The group types and examplesastly taken from
Sections 6 and 7 of Bacon, Graham, and Shar@@ipiler Transformations for
High-Performance Computing” [1], with my own explanations added. The exam-
ples are copied mostly verbatim because | could not imprpes wheir concise-

ness.

2 Data-Flow-Based Loop Transformations

2.1 Loop-Based Strength Reduction

Strength reduction replaces an expensive operation, lysodime, with a less
expensive one. The canonical example is the replacementoifitgplication by
2™ with alogs (n) bit shift. In loops, the possibility of strength reductiomnifests
itself often when calculating memory location from arragioes.

For example, the following code performs a constant mudiion with i
every iteration. This operation can be quite expensive oraghine without a
hardware multiplier. Even with one, a multiplication makeanany more cycles

than an addition.

2.2 Induction Variable Elimination 5

doi =1, n
a[i] = a[i] + c*i
end do
The multiplication may be replaced by repeatedly addingcthrestant value to
an accumulator, iteratively recreating the multiplication.
T=c¢c
doi =1, n
a[i] = a[i] + T
T=TH+c¢c
end do
This method is applicable to operations involving a contstarich have a serial
decomposition, such as exponentiation, or with a cheapianaatic equivalent,

such as multiplication with a reciprocal instead of divisibarring numerical

precision concerns).

2.2 Induction Variable Elimination

The main induction variable in a loop is frequently used fowate both memory
addresses and loop exit conditions, as in the following gtam
for(i =0; i < n; i++){
a[i] = a[i] + c;
}
Given a known final value of the main induction variable anellthear relations
to derived values, the loop bounds can be expressed as a ksompgest to the

final derived values with only a single update calculatiothie body of the loop,

6 2 Data-Flow-Based Loop Transformations

completely eliminating the main induction variable andciédculations. The fol-
lowing code demonstrates this conversion on the previoample, eliminating

index calculations:

A = &a;

T &a + n;
whil e(A < T){
*A = A + (o
A++:

\ ,

2.3 Loop-Invariant Code Motion

In the following example, the index af i] does not change for the entire du-
ration of the inner loop, despite being recalculated atyeiteration, and is thus

loop-invariant in the the inner loop.

doi =1, n
doj =1, n
ali,j] =b[j,i] + c[i]
end do
end do

The code may thus be moved to just before the loop, calcutated, its result

stored in a register and reused throughout the inner loop.

doi =1,

T=di]
doj =1, n
ali,j] =b[j,i] +T
end do

end do

n

2.4 Loop Unswitching 7

Note that the moved code may need to be protected by a guasiteceaecute
only if the loop using its result will execute also, to prasgethe meaning of any
exceptions that may be raised. In this example, the tramsfoon is identical to

Scalar Replacement (Section 6.4).

2.4 Loop Unswitching

The following example shows a loop with a conditional exexupath in its body.
Having to perform a test and jump inside every iteration ceduthe performance
of the loop as it prevents the CPU, barring sophisticatechan@sms such as trace
caches or speculative branching, from efficiently execgutire body of the loop in
a pipeline. The conditional also inhibii® al | parallelization of the loop since

any conditional statement must execute in order after tte te

doi =2, n

a[i] = a[i] + c

if (x <7) then

b[i] = a[i] * c[i]

el se

b[i] = a[i-1] * b[i-1]
end if

end do

Similarly to Loop-Invariant Code Motion, if the loop-invant expression is a
conditional, then it can be moved to the outside of the looith wach possible
execution path replicated as independent loops in eacletrdinis multiplies the
total code size, but reduces the running set of each podsiateh, can expose

parallelism in some of them, plays well with CPU pipeliniagd eliminates the

8 3 Loop Reordering

repeated branch test calculations. Note that a guard mayalsecessary to avoid

branching to a loop that would never execute over a givengang

if (n>2) then
if (x < 7) then
do all i =2, n
a[i] = a[i] + c
b[i] a[i] = c[i]
end do
el se
doi =2, n
a[i] = a[i] + ¢
b[i] = a[i-1] * b[i-1]

end do
end if
end if

3 Loop Reordering

These transformations change the relative ordering aradignment of nested
loops in order to expose parallelism by altering depenasnar to improve the

locality of code to better fit the memory hierarchy.

3.1 Loop Interchange

Loop interchange simply exchanges the position of two lansloop nest. One
of the main uses is to improve the behaviour of accesses toan &or example,

given a column-major storage ordethe following code accesseg] with a

1 vVisually speaking, consecutive memory locations are stéimeadjacent columns of a ma-
trix, along rows, from top left to bottom right as in Englishading order. The cache lines span
consecutive sections of the rows. The array indices aragedag col um, row .

3.1 Loop Interchange 9

stride ofn. This may interact very poorly with the cache, especiallhé stride
is larger than the length of a cache line or is a multiple of weroof two, causing

collisions in set-associative caches.

doi =1, n
doj =1, n
b[i] = Db[i] + a[i,]]
end do
end do

Interchanging the the loops alters the access pattern tiobg eonsecutive mem-

ory locations ofa[], greatly increasing the effectiveness of the cache.

doj =1, n

doi =1, n
b[i] = Db[i] + a[i,]]
end do

end do

However, loop interchange is only legal if the dependenctoreof the loop nest
remains lexicographically positive after the interchgngleich alters the order of
dependencies to match the new loop order. For example, Hogvfiog loop nest

cannot be interchanged since its dependency vectdr isl). The interchanged

loops would end up using future, uncomputed values in theyarr

doi =2, n

doj =1, n-1
a[i,j] = a[i-1,]+1]
end do

end do

10 3 Loop Reordering

Similarly, loop interchange can be used to control the daaity of the work in
nested loops. For example, by moving a parallel loop outsyaite necessarily
serial work is moved towards the inner loop, increasing thewnt of work done

per fork-join operation.

3.2 Loop Skewing

Loop skewing does exactly what it says: it skews the exenuifan inner loop
relative to an outer one. This is useful if the inner loop haependence on the
outer loop which prevents it from running in parallel. Foaayle, the following
code has a dependency vectof ¢f, 0), (0, 1) }2. Neither loop can be parallelized
since they each carry a dependency. Simply interchangelgptps would merely

interchange the indices holding the dependencies, accsimm nothing.

doi =2, n-1
doj =2, m1l
ali,j] =
(ala-1,j] + a[i,j-1] + a[i+1,j] + a[i,j+1]) / 4
end do
end do

Loop skewing is implemented by adding the index of the ouwdep] times some
skewing factorf, to the bounds of the inner loop and subtracting the samevalu
from all the uses of the inner loop index. The subtractiorpkdbe indices within

the new loop bounds, preserving the correctness of the @mogrhe effect on the

2 Nested dependencies begin with the induction variabléngestder,{ (i), ()}, and nest again
in the same order for the loop dependencies to each varigleter, inner), (outer, inner)}.

3.2 Loop Skewing 11

inner loop iterations is to shift their position in the arfaywards byf relative
to the current outer loop, increasing the dependency distém the outer loop
in the same manner. In other words, given a dependency vectby, skewing
transforms it tda, fa + b). Since this transformation preserves the lexicographic
order of the dependenciest is always legal. Applying a skew factor of one to
the above inner loop yields the following code:
doi =2, n-1
do j = 2+i, m1l+i
afi,j-i] =
(af[a-1,j-i] + afi,j-1-i] +a[i+l,j-i] + a[i,j+1-i]) / 4
end do
end do
This new code executes in the same manner, but with depeederi¢(1,1), (0,1)}.

Both loops still carry a dependency. However, interchagitiie loops at this point

yields a dependence vectf(l, 0), (1, 1)}, as shown in the following code:

doj =4, mtn-2

doi = mx(2, j-mtl), mn(n-1, j-2)

afi,j-i] =

(a[a-1,j-i] + a[i,j-1-i] + a[i+1,j-i] + a[i,j+1-i]) / 4
end do
end do

The inner loop can now be parallelized since it has now no-lceopied depen-
dency onj , and the dependency 1o is carried by the outer loop. Note that
interchanging skewed loop bounds is no longer straightiotweach loop must

take into account the upper and lower bounds of the other. loop

3 If it was positive before, it will be positive after.

12 3 Loop Reordering

3.3 Loop Reversal

Loop reversal simply changes the direction of the iteratioverting the sign of
its position in the dependence vector. It is a legal tramsé&tion if the resulting
dependence vector remains lexicographically positivethdlgh trivial, it is a
useful optimization since it may enable others such as logyéhange and can
reduce the loop exit condition to a single branch-not-edqotero instruction.
For example, the following code cannot be interchanged we lita inner loop

parallelized because ¢f, —1) dependencies.

doi =1, n

doj =1, n

a[i,j] =a[i-1,j+1] + 1
end do

end do

Reversing the inner loop yields, 1) dependencies. The loops can now be inter-

changed and/or the inner loop made parallel.

doi =1, n
doj =n, 1, -1
a[i,j] = a[i-1,j+1] + 1
end do
end do

3.4 Strip Mining 13

3.4 Strip Mining

Strip mining is used to control the granularity of the inn@op, usually to adjust
to a vector length or to limit the working set at a given poi&trip mining itself
does not alter dependencies, so it is always legal. Letistithte the process with

the following simple loop:

doi =1, n
a[i] = a[i] + ¢
end do
Let's assume that strips of 64 array elements are desiraie. first new line
computes the multiple of 64 closest o The outer loop iterates towards this
multiple in increments of 64. A new inner loop performs thgmral loop on the
current strip. Finally, a fixup loop may be requirechifis not a multiple of 64.

Note that this inner loop could also be converted inttbaal | loop.

TN = (n/ 64) 64
doi =1, TN, 64
doj =1, 64
a[i+j-1] = a[i+-1] + c

end do
end do
doi = TN+1, n

a[i] = a[i] + c
end do

14 3 Loop Reordering

3.5 Cycle Shrinking

If a dependency prevent the parallelization of an inner J@opl the dependency
distance is positive and constant, then strip mining the limbo an inner loop

whose strip length is equal to the dependence distance elhsgime fine-grained
parallelism. For example, the following loop has flow depamdes of distance

K.

doi =1, n
a[i+k] = b[i]
b[i+k] = a[i] + c[i]

end do

All the steps of a strip of lengtk can execute in parallel since they will complete

before the next strip begins, where the dependencies tatenin

do TI =1, n, k

do all i =TI, TlI+k-1
a[i+k] = b[i]
b[i+k] = a[i] + c[i]
end do al
end do

3.6 Loop Tiling

Strip mining is useful if the loop body performs calculasdmearly through an
array. But if the calculations do both row and column-wisessses, strip mining
will be of little benefit as the row-wise accesses orthogtm#ie strip will require

a different cache line each time. Eventually, this will cantflvith the cache line

in use by the strip and performance will suffer.

3.6 Loop Tiling 15

Loop tiling performs strip mining in multiple array dimensis, constraining
the working set to fit within both the cache line length (folhuwon-wise iteration)
and the number of cache lines (for row-wise iteration), diivy the array into
cache-size tiles. The following code shows this with a lcap$pose example:

doi =1, n

doj =1, n
a[i,j] =Db[j,i]
end do

end do

By strip mining both loops at once the working set is limitedte cache size: 64
lines of 64 elements in this case. The transformation idl liédpath loop can be
interchanged, since the original outermost loag now the inner loop of another

version of the inner loop, asTJ.

do TI =1, n, 64

do TJ =1, n, 64
doi =TI, mn(TlI+63, n)
doj =TJ, mn(TJ+63, n)
afi,j] = b[j,i]
end do
end do
end do

end do

16 4 Loop Restructuring

4 Loop Restructuring

These transformations alter the form of the loop, but notdider or types of
calculations. Thus, these transformations are virtudiyags legal (see Loop

Fission (4.8), Fusion (4.9), and Node Splitting (4.10) fug £xceptions).

4.1 Loop Unrolling

Loop unrolling is a simple transformation that instantsgteonsecutive instances
of loop iterations in the body and increases the loop stefn@game factor. This
divides the loop overhead bf; and also promotes reuse since identical and con-

secutive values appear multiple times in the unrolled loogyb

doi =2, n-1
a[i] = a[i] + a[i-1] = a[i+1]
end do

The following loop shows an unrolling of factor 2. The uppasp bound must be
altered to stay in its original range and a small fixup cood#i statement or loop

may be needed afterwards to finish the fastod f statements.

doi =1, n-2, 2

a[i] = a[i] + a[i-1] * a[i+1]
a[i+1] = a[i+1] + a[i] * a[i+2]
end do

if (nmod(n-2,2) = 1) then

a[n-1] = a[n-1] + a[n-2] * a[n]
end if

4.2 Software Pipelining 17

4.2 Software Pipelining

Software pipelining is similar to loop unrolling. The stage the body of a loop
are broken down into consecutive steps and scheduled oipta@kecution units
such that the next statement begins execution while thertuone completes.

doi =1, n

a[i] = a[i] + c

end do
For example, given a machine with separate load/store atioheatic units, the
preceding loop can be unrolled once, and the steps of eatemaat interleaved

together as described in the adjacent comments.

doi =1, n, 2 /1 Load/ Store : Arithnetic
a[i] = a[i] + c /1 load a[i] o=+ 1
a[i+1] = a[i+l] + c // load a[i+1l] : a[i] + c
end do /'l store a[i] coali+l] + c
/]l store a[i+1] : i =i + 1

[l jmp if i < n:

18 4 Loop Restructuring

4.3 Loop Coalescing

Loop coalescing combines nested loops into a single lo@uaiag to a single
induction variable, and computing the indices from thatalde. This reduces
loop overhead (assuming the index calculations can be dieg)land can allow
for better load balancing. For example, the following loajthough highly par-
allel, would load-balance poorly on P processons endmwere slightly larger
than P, leaving one processor to finish up a set of iteratindgassibly doubling

execution time.

do all i =1, n
doall j =1, m
a[i,j] = al[i,j] +c
end do all

end do all

However, by using a single induction varialllevhich spans the entire range of
the array in a linear manner, the row and column indices cadeoeed from
T and placed in a single loop. The iterations of this loop caw be evenly
divided amongst a number of chunks that is a multiple of Hding a perfect

load balancé

do all T =1, nx
= ((T-1) /' m
m
j]

m
1
j = nod(T-1,
ali,j] = a[i,
end do all

* m +
+ 1
+ C

4 Memory hierarchy effects notwithstanding.

4.4 Loop Collapsing 19

4.4 Loop Collapsing

Loop collapsing is similar to loop coalescing, but makes aefseases when the
stride is constant. The difference is that collapsing redute dimensions of
a loop to eliminate the overhead of calculating multipleiced for each array
location. The following code shows this transformation fioe previous loop
coalescing example: The two-dimensional araaig cast as a linear arralyA of

the same size, requiring only one index.

real TA[nxmj

equi val ence(TA, a)
do all T =1, nxm
TA[T] = TAIT] + ¢
end do all

4.5 Loop Peeling

Loop peeling extracts into a separate loop one or more ibaifrom the begin-
ning or end of the loop iteration space. This transformatiam eliminate depen-
dencies and adjust loop bounds for later loop fusion. Fomgte, the following

loop cannot be made parallel since all iterations depenti@first.

doi =2, n
b[i] = b[i] + b[2]
end do

By peeling the first iteration out so as to calculate it befaliethe others, and

adjusting the bounds of the loop, the dependency is elimthabince the peeled

20 4 Loop Restructuring

iteration is in the same order as before, this transformasalways legal (see

4.8, Loop Fission).

if (2 <= n) then
b[2] = b[2] + Db[2]
end if

do all i =
b[i] = b[i
end do all

3, n
] + b[2]

4.6 Loop Normalization

This is a simple transformation which alters the loop bouaasl body to match)
to iterate overl to n with a stride of one. This simplifies many analyses and

enables other optimizations such as fusion.

doi =2, n+l
b[i] = a[i-1] * b[i]
end do

In this simple example, the code above had its bounds mowddtaone, nor-
malizing the loop, and its indices moved forward by the sameuwnt to com-
pensate. Multiple normalized loops can be trivially fusgssuming no backward

dependencies are introduced.

doi =1, n
b[i+1] = a[i] * b[i+1]
end do

4.7 Loop Spreading 21

4.7 Loop Spreading

The following two loops cannot be combined with loop fusiaedo unequal loop

bounds and an introducef}ds.S; dependency om| | .

doi =1, n/2
Sy a[i+l] = a[i+1l] + a[i]
end do
doi =1, n-3
So: b[i+1] = b[i+1] +b[i] = a[i +3]
end do

However, some instruction parallelism can be exposed by $pweading, a lim-
ited for of loop fusion. The key is to delay the executionSetby its dependence
distance taS;, plus one, to separate the dependent accesses within atioier
To compensate, the indices 8f must be moved back by the same amount. This
modified version ofS; can then be run concurrently with each iteratiorsef as

denoted by th€OBEG N andCOEND statements.

doi =1, n/2
COBEG N
a[i+1] = a[i+1] + a[i]
if(i > 3) then
b[i-2] = Db[i-2] + b[i-3] * a[i]
end if
COEND
end do

In this case, the upper loop bound of the first loop is less thanhof the second,

so the remainder of the work & must be done serially, after shifting the lower

22 4 Loop Restructuring

loop bound of the second loop to the end of the first, minus tiggnal delay

value since we're using the unmodifiegl.

doi =(n/2)-3, n-3
b[i+1] = b[i+1] + b[i] * a[i+3]
end do

Had the first loop a higher upper bound than the second, tlegnith> 3) con-
ditional would have been augmented with a guard to the ugogr bound of the

second loop and the second loop would have been omitte@kgntir

4.8 Loop Fission®

Loop fission is a simple transformation that is very usefuldonplifying loop
bodies, often reducing the memory and registers requirédgithe execution of
the loop. It can also remove simple flow dependencies betlosgnstatements,
so long as the dependent statements execute in the sanieeretder afterwards.
The following code shows this by having a distance zero flopedéence from
the first to second statement.
doi =1, n
a[i] = a[i] + ¢
X[1+1] = x[i]*7 + x[i+1] + a[i]
end do
The first statement can be moved to its own copy of the looprevihean execute

in parallel. The writes oR[] must still occur before the reads in the second

51 moved Fission and Fusion from Loop Reordering transfoionatto Loop Restructuring
since they really do the latter and don't alter executioreard

4.9 Loop Fusion 23

statement, so the new loop must precede the second one.dqiensl, if circular
dependencies exist between two statements, they cannepbeated by fission

(but see 4.10, Node Splitting, for a workaround).

do all i =1, n

a[i] = a[i] + c

end do al
doi =1, n

x[1+1] = x[i]*7 + x[i+1] + a[i]
end do

This transformation would also not be possible if the depecd distance was
non-zero. For example, if the first statement \a@s +1] = a[i] + c,then
the second statement, after loop fission, would not be akdedess the original

value ofa[i] .

4.9 Loop Fusion

Loop fusion is simply the inverse of fission. It's benefits d@nsimilar to loop
fission, depending on the machine, and it always reducestipeoverhead. To be
legal, both loops to be fused must have the same loop boundsha statements

in the fused loop must not exhibit any backward dependerteigs. S>0%51).

4.10 Node Splitting®

Cyclic dependencies in a loop prevent loop fission (SectiBh #or example, the

following loop has a flow dependenSeé{fSQ and an antidependen®gd? S, both

6 This example was adapted from Padua & Wolfe [2].

24 4 Loop Restructuring

onal], forming a cycle.

doi =1, n
Si:oa[i] =b[i] + c[i]
Sor d[i] = (a[i] + a[i+1]) / 2

end do

However, antidependencies can be eliminated by copyingnenaname. Thus
we can create a shifted copy of the original conten@&s[df asT[] to replace the
a[i +1] reference inS,. This changes the dependencie$io{S;, 516({52, and

546155, breaking the cycle.

doi =1, n
Sz T[i] = a[i+1]
Si:oa[i] =Db[i] + c[i]
Sor d[i] = (a[i] + T[i]) /I 2

end do

Without a cycle and sincé; has no loop-carried dependencies to itself, it can be
fissioned-off into its own loop (placed after the first IooﬂmourSlégSQ) and

made parallel. The same could be doné&t@ndS; if desired.

doi =1, n
Ssi T[] = a[i +1]
Si:oa[i] =Db[i] + c[i]
end do
doall i =1, n

Sor d[i] = (a[i] + T[i]) /I 2
end do

25

5 Loop Replacement

These are more radical transformations that rely on reeaggisome common

loop purposes and completely altering the loop to bettetempnt them.

5.1 Reduction Recognition

A reduction is a common operation that reduces an array poflisalues to a
single scalar. Common examples are finding the min, max,rarafla number of
items. By default, reduction cannot be made fully paraleddduse of loop-carried

dependence on the scalar.

doi =1, n
s =s + a[i]
end do

However, reductions can be parallelized into a binary tfegperations, or some
partially collapsed version thereof. For example, if thecmae has some vector
or SIMD hardware it can be used to cluster the reduction sté&pe following

code adds a 64-entry array and initially redue¢$ in 64-entry vector chunks.
The individual elements of the vector are then summed $erilthis reduces the

number of operations from to (n/ 64) +64.

real TS[64]

TS[1:64] = 0.0

do TI =1, n, 64

TS[1:64] = TS[1:64] + a[Tl: TI+63]
end do

26 5 Loop Replacement

do TI =1, 64
s =s + TS Tl]
end do

This transformation has the caveat that it is only guarahteerect if the reduction

operation is fully associative. Otherwise, the transfatho®p may yield different

results which may not match the programmer’s intent.

5.2 Array Statement Scalarization

If a machine has no vector hardware, what can a compiler doamitly operations

expressed as vectors?
a[2:n-1] = a[2:n-1] + a[l:n-2]

The apparent solution is to simply iterate over the vectogea However, this is
incorrect as it breaks the simultaneity of the vector asaigmts on the left-hand
side. Each iteration accesses the previous array elemérghwas incorrectly
modified by the previous iteration.

doi =2, n-1

a[i] = a[i] + a[i-1]

end do

To avoid a destructive partial update of the array, a tenrgonast be used which

is then copied back after all the iterations have run.

5.2 Array Statement Scalarization 27

doi =2, n-1

T[i] = a[i] + a[i-1]
end do

doi =2, n-1

a[i] = T[i]

end do

However, a simpler solution is to reverse the loop diregticansforming the de-
pendence on the previous element to one on the next elentdninmodified.
This solution only works if the dependencies are all in theedirection (see 3.3,
Loop Reversal).

doi =n-1, 2, -1

a[i] = a[i] + a[a-1]
end do

28 6 Memory Access

6 Memory Access

While some previously described transformations impravesinory access be-
haviour by altering the iterations of a loop, these tramaftions alter the memory

layout of the data in order to better work with the memory diehy.

6.1 Array Padding

If a machine routes consecutive memory accesses to diffexemory banks in
order to improve throughput, then a stride that is a multgflehe number of
banks can defeat this improvement, as each successivestegjlidbe routed to
the same bank, serializing the memory accesses. The sam@ypé&eon can occur
with cache and TLB sets.

For example, given a machine with eight memory banks andasgLcolumn-
major array order, the following code will create an arrayeweheach row will end
up stored in a single bank. Thus the following code will repdly access the first

bank only.

real a[8,512]

doi =1, 512
a[1,i] = a[l,i] +c
end do

The simple solution, at the cost of wasted space, is to iotedne or more
dummy columns in the array such that the new number of columaonly 1 as
common divisor with the number of banks. This ensures thett @aw element

ends up staggered into consecutive banks.

6.2 Scalar Expansion 29

real a9, 512]

doi =1, 512
a[l,i] = a[l,i] + ¢
end do

6.2 Scalar Expansion

Scalars introduce ash§*S; dependence in loops. They can manifest as compiler-
generated temporaries.

doi =1, n
c = b[i]

a[i] = a[i] + c
end do

This dependence can be eliminated by expanding the scadaamarray, effec-
tively giving each iteration a private copy and enablitgg al | parallelism. The

size of the new array can be controlled by first strip-minimg toop.

real T[n]
do all i

6.3 Array Contraction

In the following loop nest, the value of indéexfor T[] is constant throughout the
inner loop since the outer loop is not parallel (no two valoiis ever get used at

once to address). There are also no loop-carried dependencies on i, nbfr is

30 6 Memory Access

used after the inner loop before i changes again. The netteffahis is that a

given locationT[i , j] is addressed only once over the loop nest.

real T[n,n]

doi =1, n

do all j =1, n
Ti,j] =a[i,j]*3
bli,j[= Ti,j] + bli,jl/T[i,j]
end do al

end do

Since the elements df[| along thei dimension are never reused, they can be
simply eliminated. This will reduce storage space and imrhe locality of
T].
real T[n]
doi =1, n
do all j =1, n
T] = alijls3
bli,j[=T[j] + b[i,j]/T[j]
end do all
end do

6.4 Scalar Replacement

Another simple transformation deals with the frequent eeafsa fixed array ele-
ment in an inner loop. In the following codept al [i] is repeatedly read and

written in the inner loop.

6.4 Scalar Replacement 31

doi =1, n

doj =1, n

total[i] = total[i] + a[i,]]
end do

end do

Instead, the fixed array element can be assigned to a scédae lbee inner loop,
and if modified, stored back into the original element afeadg. This saves in-

dex calculations and reduces the total number of accesdbe trray element,

reducing memory traffic.

doi =1, n

T =total[i]
doj =1, n
T=T+ a[i,]j]
end do

total[i] =TT
end do

32

6 Memory Access

References 33

References

[1] BACON, D. F., GRAHAM, S. L., AND SHARP, O. J. Compiler transfor-
mations for high-performance computingCM Comput. Surv. 26, 4 (1994),
345-420.

[2] PADUA, D. A., AND WOLFE, M. J. Advanced compiler optimizations for

supercomputersCommun. ACM 29, 12 (1986), 1184-1201.

