
ECE 1754

Survey of Loop Transformation

Techniques

Eric LaForest

March 19, 2010

1

2 Contents

Contents

1 Introduction . 4

2 Data-Flow-Based Loop Transformations 4

2.1 Loop-Based Strength Reduction 4

2.2 Induction Variable Elimination 5

2.3 Loop-Invariant Code Motion . 6

2.4 Loop Unswitching . 7

3 Loop Reordering . 8

3.1 Loop Interchange . 8

3.2 Loop Skewing . 10

3.3 Loop Reversal . 12

3.4 Strip Mining . 13

3.5 Cycle Shrinking . 14

3.6 Loop Tiling . 14

4 Loop Restructuring . 16

4.1 Loop Unrolling . 16

4.2 Software Pipelining . 17

4.3 Loop Coalescing . 18

4.4 Loop Collapsing . 19

4.5 Loop Peeling . 19

4.6 Loop Normalization . 20

4.7 Loop Spreading . 21

Contents 3

4.8 Loop Fission . 22

4.9 Loop Fusion . 23

4.10 Node Splitting . 23

5 Loop Replacement . 25

5.1 Reduction Recognition . 25

5.2 Array Statement Scalarization 26

6 Memory Access . 28

6.1 Array Padding . 28

6.2 Scalar Expansion . 29

6.3 Array Contraction . 29

6.4 Scalar Replacement . 30

Bibliography33

4 2 Data-Flow-Based Loop Transformations

1 Introduction

In this paper I present a survey of basic loop transformationtechniques. These

are general transformations, mostly at the source level, that do not stem from a

common theoretical background except for the lexicographic order of the loop

dependence vectors. Thus, I present them in a catalogue format grouped by gen-

eral transformation types. The group types and examples aremostly taken from

Sections 6 and 7 of Bacon, Graham, and Sharp’s “Compiler Transformations for

High-Performance Computing” [1], with my own explanations added. The exam-

ples are copied mostly verbatim because I could not improve upon their concise-

ness.

2 Data-Flow-Based Loop Transformations

2.1 Loop-Based Strength Reduction

Strength reduction replaces an expensive operation, usually in time, with a less

expensive one. The canonical example is the replacement of amultiplication by

2n with a log2(n) bit shift. In loops, the possibility of strength reduction manifests

itself often when calculating memory location from array indices.

For example, the following code performs a constant multiplication with i

every iteration. This operation can be quite expensive on a machine without a

hardware multiplier. Even with one, a multiplication may take many more cycles

than an addition.

2.2 Induction Variable Elimination 5

do i = 1, n
a[i] = a[i] + c*i

end do

The multiplication may be replaced by repeatedly adding theconstant valuec to

an accumulatorT, iteratively recreating the multiplication.

T = c
do i = 1, n
a[i] = a[i] + T
T = T + c

end do

This method is applicable to operations involving a constant which have a serial

decomposition, such as exponentiation, or with a cheaper arithmetic equivalent,

such as multiplication with a reciprocal instead of division (barring numerical

precision concerns).

2.2 Induction Variable Elimination

The main induction variable in a loop is frequently used to calculate both memory

addresses and loop exit conditions, as in the following example:

for(i = 0; i < n; i++){
a[i] = a[i] + c;

}

Given a known final value of the main induction variable and the linear relations

to derived values, the loop bounds can be expressed as a comparison test to the

final derived values with only a single update calculation inthe body of the loop,

6 2 Data-Flow-Based Loop Transformations

completely eliminating the main induction variable and itscalculations. The fol-

lowing code demonstrates this conversion on the previous example, eliminating

index calculations:

A = &a;
T = &a + n;
while(A < T){

*A = *A + c;
A++;
}

2.3 Loop-Invariant Code Motion

In the following example, the index ofc[i] does not change for the entire du-

ration of the inner loop, despite being recalculated at every iteration, and is thus

loop-invariant in the the inner loop.

do i = 1, n
do j = 1, n
a[i,j] = b[j,i] + c[i]

end do
end do

The code may thus be moved to just before the loop, calculatedonce, its result

stored in a register and reused throughout the inner loop.

do i = i, n
T = C[i]
do j = 1, n
a[i,j] = b[j,i] + T

end do
end do

2.4 Loop Unswitching 7

Note that the moved code may need to be protected by a guard so as to execute

only if the loop using its result will execute also, to preserve the meaning of any

exceptions that may be raised. In this example, the transformation is identical to

Scalar Replacement (Section 6.4).

2.4 Loop Unswitching

The following example shows a loop with a conditional execution path in its body.

Having to perform a test and jump inside every iteration reduces the performance

of the loop as it prevents the CPU, barring sophisticated mechanisms such as trace

caches or speculative branching, from efficiently executing the body of the loop in

a pipeline. The conditional also inhibitsdo all parallelization of the loop since

any conditional statement must execute in order after the test.

do i = 2, n
a[i] = a[i] + c
if (x < 7) then
b[i] = a[i] * c[i]

else
b[i] = a[i-1] * b[i-1]

end if
end do

Similarly to Loop-Invariant Code Motion, if the loop-invariant expression is a

conditional, then it can be moved to the outside of the loop, with each possible

execution path replicated as independent loops in each branch. This multiplies the

total code size, but reduces the running set of each possiblebranch, can expose

parallelism in some of them, plays well with CPU pipelining,and eliminates the

8 3 Loop Reordering

repeated branch test calculations. Note that a guard may also be necessary to avoid

branching to a loop that would never execute over a given range.

if (n > 2) then
if (x < 7) then
do all i = 2, n
a[i] = a[i] + c
b[i] = a[i] * c[i]

end do
else
do i = 2, n
a[i] = a[i] + c
b[i] = a[i-1] * b[i-1]

end do
end if
end if

3 Loop Reordering

These transformations change the relative ordering and/oralignment of nested

loops in order to expose parallelism by altering dependencies or to improve the

locality of code to better fit the memory hierarchy.

3.1 Loop Interchange

Loop interchange simply exchanges the position of two loopsin a loop nest. One

of the main uses is to improve the behaviour of accesses to an array. For example,

given a column-major storage order1, the following code accessesa[] with a

1 Visually speaking, consecutive memory locations are stored in adjacent columns of a ma-
trix, along rows, from top left to bottom right as in English reading order. The cache lines span
consecutive sections of the rows. The array indices are arranged as[column, row].

3.1 Loop Interchange 9

stride ofn. This may interact very poorly with the cache, especially ifthe stride

is larger than the length of a cache line or is a multiple of a power of two, causing

collisions in set-associative caches.

do i = 1, n
do j = 1, n
b[i] = b[i] + a[i,j]

end do
end do

Interchanging the the loops alters the access pattern to be along consecutive mem-

ory locations ofa[], greatly increasing the effectiveness of the cache.

do j = 1, n
do i = 1, n
b[i] = b[i] + a[i,j]

end do
end do

However, loop interchange is only legal if the dependence vector of the loop nest

remains lexicographically positive after the interchange, which alters the order of

dependencies to match the new loop order. For example, the following loop nest

cannot be interchanged since its dependency vector is(1,−1). The interchanged

loops would end up using future, uncomputed values in the array.

do i = 2, n
do j = 1, n-1
a[i,j] = a[i-1,j+1]

end do
end do

10 3 Loop Reordering

Similarly, loop interchange can be used to control the granularity of the work in

nested loops. For example, by moving a parallel loop outwards, the necessarily

serial work is moved towards the inner loop, increasing the amount of work done

per fork-join operation.

3.2 Loop Skewing

Loop skewing does exactly what it says: it skews the execution of an inner loop

relative to an outer one. This is useful if the inner loop has adependence on the

outer loop which prevents it from running in parallel. For example, the following

code has a dependency vector of{(1, 0), (0, 1)}2. Neither loop can be parallelized

since they each carry a dependency. Simply interchanging the loops would merely

interchange the indices holding the dependencies, accomplishing nothing.

do i = 2, n-1
do j = 2, m-1
a[i,j] =
(a[a-1,j] + a[i,j-1] + a[i+1,j] + a[i,j+1]) / 4

end do
end do

Loop skewing is implemented by adding the index of the outer loop, times some

skewing factorf , to the bounds of the inner loop and subtracting the same value

from all the uses of the inner loop index. The subtraction keeps the indices within

the new loop bounds, preserving the correctness of the program. The effect on the

2 Nested dependencies begin with the induction variable nesting order,{(i), (j)}, and nest again
in the same order for the loop dependencies to each variable:{(outer, inner), (outer, inner)}.

3.2 Loop Skewing 11

inner loop iterations is to shift their position in the arrayforwards byf relative

to the current outer loop, increasing the dependency distance to the outer loop

in the same manner. In other words, given a dependency vector(a, b), skewing

transforms it to(a, fa + b). Since this transformation preserves the lexicographic

order of the dependencies3, it is always legal. Applying a skew factor of one to

the above inner loop yields the following code:

do i = 2, n-1
do j = 2+i, m-1+i
a[i,j-i] =
(a[a-1,j-i] + a[i,j-1-i] + a[i+1,j-i] + a[i,j+1-i]) / 4

end do
end do

This new code executes in the same manner, but with dependencies of{(1, 1), (0, 1)}.

Both loops still carry a dependency. However, interchanging the loops at this point

yields a dependence vector{(1, 0), (1, 1)}, as shown in the following code:

do j = 4, m+n-2
do i = max(2, j-m+1), min(n-1, j-2)
a[i,j-i] =
(a[a-1,j-i] + a[i,j-1-i] + a[i+1,j-i] + a[i,j+1-i]) / 4

end do
end do

The inner loop can now be parallelized since it has now no loop-carried depen-

dency onj, and the dependency toi is carried by the outer loop. Note that

interchanging skewed loop bounds is no longer straightforward: each loop must

take into account the upper and lower bounds of the other loop.

3 If it was positive before, it will be positive after.

12 3 Loop Reordering

3.3 Loop Reversal

Loop reversal simply changes the direction of the iteration, inverting the sign of

its position in the dependence vector. It is a legal transformation if the resulting

dependence vector remains lexicographically positive. Although trivial, it is a

useful optimization since it may enable others such as loop interchange and can

reduce the loop exit condition to a single branch-not-equal-to-zero instruction.

For example, the following code cannot be interchanged or have its inner loop

parallelized because of(1,−1) dependencies.

do i = 1, n
do j = 1, n
a[i,j] = a[i-1,j+1] + 1
end do
end do

Reversing the inner loop yields(1, 1) dependencies. The loops can now be inter-

changed and/or the inner loop made parallel.

do i = 1, n
do j = n, 1, -1
a[i,j] = a[i-1,j+1] + 1

end do
end do

3.4 Strip Mining 13

3.4 Strip Mining

Strip mining is used to control the granularity of the inner loop, usually to adjust

to a vector length or to limit the working set at a given point.Strip mining itself

does not alter dependencies, so it is always legal. Let’s illustrate the process with

the following simple loop:

do i = 1, n
a[i] = a[i] + c

end do

Let’s assume that strips of 64 array elements are desirable.The first new line

computes the multiple of 64 closest ton. The outer loop iterates towards this

multiple in increments of 64. A new inner loop performs the original loop on the

current strip. Finally, a fixup loop may be required ifn is not a multiple of 64.

Note that this inner loop could also be converted into ado all loop.

TN = (n/64)*64
do i = 1, TN, 64
do j = 1, 64
a[i+j-1] = a[i+j-1] + c

end do
end do
do i = TN+1, n
a[i] = a[i] + c

end do

14 3 Loop Reordering

3.5 Cycle Shrinking

If a dependency prevent the parallelization of an inner loop, and the dependency

distance is positive and constant, then strip mining the loop into an inner loop

whose strip length is equal to the dependence distance can yield some fine-grained

parallelism. For example, the following loop has flow dependencies of distance

k.

do i = 1, n
a[i+k] = b[i]
b[i+k] = a[i] + c[i]
end do

All the steps of a strip of lengthk can execute in parallel since they will complete

before the next strip begins, where the dependencies terminate.

do TI = 1, n, k
do all i = TI, TI+k-1
a[i+k] = b[i]
b[i+k] = a[i] + c[i]

end do all
end do

3.6 Loop Tiling

Strip mining is useful if the loop body performs calculations linearly through an

array. But if the calculations do both row and column-wise accesses, strip mining

will be of little benefit as the row-wise accesses orthogonalto the strip will require

a different cache line each time. Eventually, this will conflict with the cache line

in use by the strip and performance will suffer.

3.6 Loop Tiling 15

Loop tiling performs strip mining in multiple array dimensions, constraining

the working set to fit within both the cache line length (for column-wise iteration)

and the number of cache lines (for row-wise iteration), dividing the array into

cache-size tiles. The following code shows this with a loop transpose example:

do i = 1, n
do j = 1, n
a[i,j] = b[j,i]

end do
end do

By strip mining both loops at once the working set is limited to the cache size: 64

lines of 64 elements in this case. The transformation is legal if both loop can be

interchanged, since the original outermost loopi is now the inner loop of another

version of the inner loopj, asTJ.

do TI = 1, n, 64
do TJ = 1, n, 64
do i = TI, min(TI+63, n)
do j = TJ, min(TJ+63, n)
a[i,j] = b[j,i]

end do
end do

end do
end do

16 4 Loop Restructuring

4 Loop Restructuring

These transformations alter the form of the loop, but not theorder or types of

calculations. Thus, these transformations are virtually always legal (see Loop

Fission (4.8), Fusion (4.9), and Node Splitting (4.10) for the exceptions).

4.1 Loop Unrolling

Loop unrolling is a simple transformation that instantiatesf consecutive instances

of loop iterations in the body and increases the loop step by the same factor. This

divides the loop overhead byf , and also promotes reuse since identical and con-

secutive values appear multiple times in the unrolled loop body.

do i = 2, n-1
a[i] = a[i] + a[i-1] * a[i+1]
end do

The following loop shows an unrolling of factor 2. The upper loop bound must be

altered to stay in its original range and a small fixup conditional statement or loop

may be needed afterwards to finish the lastn mod f statements.

do i = 1, n-2, 2
a[i] = a[i] + a[i-1] * a[i+1]
a[i+1] = a[i+1] + a[i] * a[i+2]
end do
if (mod(n-2,2) = 1) then
a[n-1] = a[n-1] + a[n-2] * a[n]
end if

4.2 Software Pipelining 17

4.2 Software Pipelining

Software pipelining is similar to loop unrolling. The stages of the body of a loop

are broken down into consecutive steps and scheduled on multiple execution units

such that the next statement begins execution while the current one completes.

do i = 1, n
a[i] = a[i] + c

end do

For example, given a machine with separate load/store and arithmetic units, the

preceding loop can be unrolled once, and the steps of each statement interleaved

together as described in the adjacent comments.

do i = 1, n, 2 // Load/Store : Arithmetic
a[i] = a[i] + c // load a[i] : i = i + 1
a[i+1] = a[i+1] + c // load a[i+1] : a[i] + c

end do // store a[i] : a[i+1] + c
// store a[i+1] : i = i + 1
// jmp if i < n :

18 4 Loop Restructuring

4.3 Loop Coalescing

Loop coalescing combines nested loops into a single loop, reducing to a single

induction variable, and computing the indices from that variable. This reduces

loop overhead (assuming the index calculations can be simplified) and can allow

for better load balancing. For example, the following loop,although highly par-

allel, would load-balance poorly on P processors ifn andm were slightly larger

than P, leaving one processor to finish up a set of iterations and possibly doubling

execution time.

do all i = 1, n
do all j = 1, m
a[i,j] = a[i,j] + c

end do all
end do all

However, by using a single induction variableT which spans the entire range of

the array in a linear manner, the row and column indices can bederived from

T and placed in a single loop. The iterations of this loop can now be evenly

divided amongst a number of chunks that is a multiple of P, yielding a perfect

load balance4.

do all T = 1, n*m
i = ((T-1) / m) * m + 1
j = mod(T-1, m) + 1
a[i,j] = a[i,j] + c
end do all

4 Memory hierarchy effects notwithstanding.

4.4 Loop Collapsing 19

4.4 Loop Collapsing

Loop collapsing is similar to loop coalescing, but makes useof cases when the

stride is constant. The difference is that collapsing reduces the dimensions of

a loop to eliminate the overhead of calculating multiple indices for each array

location. The following code shows this transformation forthe previous loop

coalescing example: The two-dimensional arraya is cast as a linear arrayTA of

the same size, requiring only one index.

real TA[n*m]
equivalence(TA,a)
do all T = 1, n*m
TA[T] = TA[T] + c

end do all

4.5 Loop Peeling

Loop peeling extracts into a separate loop one or more iterations from the begin-

ning or end of the loop iteration space. This transformationcan eliminate depen-

dencies and adjust loop bounds for later loop fusion. For example, the following

loop cannot be made parallel since all iterations depend on the first.

do i = 2, n
b[i] = b[i] + b[2]

end do

By peeling the first iteration out so as to calculate it beforeall the others, and

adjusting the bounds of the loop, the dependency is eliminated. Since the peeled

20 4 Loop Restructuring

iteration is in the same order as before, this transformation is always legal (see

4.8, Loop Fission).

if (2 <= n) then
b[2] = b[2] + b[2]
end if
do all i = 3, n
b[i] = b[i] + b[2]
end do all

4.6 Loop Normalization

This is a simple transformation which alters the loop bounds(and body to match)

to iterate over1 to n with a stride of one. This simplifies many analyses and

enables other optimizations such as fusion.

do i = 2, n+1
b[i] = a[i-1] * b[i]
end do

In this simple example, the code above had its bounds moved back by one, nor-

malizing the loop, and its indices moved forward by the same amount to com-

pensate. Multiple normalized loops can be trivially fused,assuming no backward

dependencies are introduced.

do i = 1, n
b[i+1] = a[i] * b[i+1]
end do

4.7 Loop Spreading 21

4.7 Loop Spreading

The following two loops cannot be combined with loop fusion due to unequal loop

bounds and an introducedS2δ
a
2
S1 dependency ona[].

do i = 1, n/2
S1: a[i+1] = a[i+1] + a[i]

end do
do i = 1, n-3

S2: b[i+1] = b[i+1] +b[i] * a[i+3]
end do

However, some instruction parallelism can be exposed by loop spreading, a lim-

ited for of loop fusion. The key is to delay the execution ofS2 by its dependence

distance toS1, plus one, to separate the dependent accesses within an iteration.

To compensate, the indices ofS2 must be moved back by the same amount. This

modified version ofS2 can then be run concurrently with each iteration ofS1, as

denoted by theCOBEGIN andCOEND statements.

do i = 1, n/2
COBEGIN
a[i+1] = a[i+1] + a[i]
if(i > 3) then
b[i-2] = b[i-2] + b[i-3] * a[i]
end if

COEND
end do

In this case, the upper loop bound of the first loop is less thanthat of the second,

so the remainder of the work ofS2 must be done serially, after shifting the lower

22 4 Loop Restructuring

loop bound of the second loop to the end of the first, minus the original delay

value since we’re using the unmodifiedS2.

do i = (n/2)-3, n-3
b[i+1] = b[i+1] + b[i] * a[i+3]
end do

Had the first loop a higher upper bound than the second, then the(i > 3) con-

ditional would have been augmented with a guard to the upper loop bound of the

second loop and the second loop would have been omitted entirely.

4.8 Loop Fission5

Loop fission is a simple transformation that is very useful for simplifying loop

bodies, often reducing the memory and registers required during the execution of

the loop. It can also remove simple flow dependencies betweenloop statements,

so long as the dependent statements execute in the same relative order afterwards.

The following code shows this by having a distance zero flow dependence from

the first to second statement.

do i = 1, n
a[i] = a[i] + c
x[i+1] = x[i]*7 + x[i+1] + a[i]
end do

The first statement can be moved to its own copy of the loop, where it can execute

in parallel. The writes ofa[] must still occur before the reads in the second

5 I moved Fission and Fusion from Loop Reordering transformations to Loop Restructuring
since they really do the latter and don’t alter execution order.

4.9 Loop Fusion 23

statement, so the new loop must precede the second one. Consequently, if circular

dependencies exist between two statements, they cannot be separated by fission

(but see 4.10, Node Splitting, for a workaround).

do all i = 1, n
a[i] = a[i] + c

end do all
do i = 1, n
x[i+1] = x[i]*7 + x[i+1] + a[i]

end do

This transformation would also not be possible if the dependence distance was

non-zero. For example, if the first statement wasa[i+1] = a[i] + c, then

the second statement, after loop fission, would not be able toaccess the original

value ofa[i].

4.9 Loop Fusion

Loop fusion is simply the inverse of fission. It’s benefits canbe similar to loop

fission, depending on the machine, and it always reduces the loop overhead. To be

legal, both loops to be fused must have the same loop bounds, and the statements

in the fused loop must not exhibit any backward dependencies(e.g.:S2δ
aS1).

4.10 Node Splitting6

Cyclic dependencies in a loop prevent loop fission (Section 4.8). For example, the

following loop has a flow dependenceS1δ
f
0S2 and an antidependenceS2δ

a
1
S1 both

6 This example was adapted from Padua & Wolfe [2].

24 4 Loop Restructuring

ona[], forming a cycle.

do i = 1, n
S1: a[i] = b[i] + c[i]
S2: d[i] = (a[i] + a[i+1]) / 2

end do

However, antidependencies can be eliminated by copying to anew name. Thus

we can create a shifted copy of the original contents ofa[] asT[] to replace the

a[i+1] reference inS2. This changes the dependencies toS3δ
a
1
S1, S1δ

f
0 S2, and

S3δ
f
0S2, breaking the cycle.

do i = 1, n
S3: T[i] = a[i+1]
S1: a[i] = b[i] + c[i]
S2: d[i] = (a[i] + T[i]) / 2

end do

Without a cycle and sinceS2 has no loop-carried dependencies to itself, it can be

fissioned-off into its own loop (placed after the first loop tohonourS1δ
f
0 S2) and

made parallel. The same could be done toS1 andS3 if desired.

do i = 1, n
S3: T[i] = a[i+1]
S1: a[i] = b[i] + c[i]

end do
do all i = 1, n

S2: d[i] = (a[i] + T[i]) / 2
end do

25

5 Loop Replacement

These are more radical transformations that rely on recognizing some common

loop purposes and completely altering the loop to better implement them.

5.1 Reduction Recognition

A reduction is a common operation that reduces an array or list of values to a

single scalar. Common examples are finding the min, max, or sum of a number of

items. By default, reduction cannot be made fully parallel because of loop-carried

dependence on the scalar.

do i = 1, n
s = s + a[i]

end do

However, reductions can be parallelized into a binary tree of operations, or some

partially collapsed version thereof. For example, if the machine has some vector

or SIMD hardware it can be used to cluster the reduction steps. The following

code adds a 64-entry array and initially reducesa[] in 64-entry vector chunks.

The individual elements of the vector are then summed serially. This reduces the

number of operations fromn to (n/64)+64.

real TS[64]
TS[1:64] = 0.0
do TI = 1, n, 64
TS[1:64] = TS[1:64] + a[TI: TI+63]

end do

26 5 Loop Replacement

do TI = 1, 64
s = s + TS[TI]
end do

This transformation has the caveat that it is only guaranteed correct if the reduction

operation is fully associative. Otherwise, the transformed loop may yield different

results which may not match the programmer’s intent.

5.2 Array Statement Scalarization

If a machine has no vector hardware, what can a compiler do with array operations

expressed as vectors?

a[2:n-1] = a[2:n-1] + a[1:n-2]

The apparent solution is to simply iterate over the vector range. However, this is

incorrect as it breaks the simultaneity of the vector assignments on the left-hand

side. Each iteration accesses the previous array element, which was incorrectly

modified by the previous iteration.

do i = 2, n-1
a[i] = a[i] + a[i-1]
end do

To avoid a destructive partial update of the array, a temporary must be used which

is then copied back after all the iterations have run.

5.2 Array Statement Scalarization 27

do i = 2, n-1
T[i] = a[i] + a[i-1]

end do
do i = 2, n-1
a[i] = T[i]

end do

However, a simpler solution is to reverse the loop direction, transforming the de-

pendence on the previous element to one on the next element, still unmodified.

This solution only works if the dependencies are all in the same direction (see 3.3,

Loop Reversal).

do i = n-1, 2, -1
a[i] = a[i] + a[a-1]

end do

28 6 Memory Access

6 Memory Access

While some previously described transformations improvedmemory access be-

haviour by altering the iterations of a loop, these transformations alter the memory

layout of the data in order to better work with the memory hierarchy.

6.1 Array Padding

If a machine routes consecutive memory accesses to different memory banks in

order to improve throughput, then a stride that is a multipleof the number of

banks can defeat this improvement, as each successive request will be routed to

the same bank, serializing the memory accesses. The same phenomenon can occur

with cache and TLB sets.

For example, given a machine with eight memory banks and assuming column-

major array order, the following code will create an array where each row will end

up stored in a single bank. Thus the following code will repeatedly access the first

bank only.

real a[8,512]
do i = 1, 512
a[1,i] = a[1,i] + c
end do

The simple solution, at the cost of wasted space, is to introduce one or more

dummy columns in the array such that the new number of columnshas only 1 as

common divisor with the number of banks. This ensures that each row element

ends up staggered into consecutive banks.

6.2 Scalar Expansion 29

real a[9,512]
do i = 1, 512
a[1,i] = a[1,i] + c

end do

6.2 Scalar Expansion

Scalars introduce anS2δ
aS1 dependence in loops. They can manifest as compiler-

generated temporaries.

do i = 1, n
c = b[i]
a[i] = a[i] + c

end do

This dependence can be eliminated by expanding the scalar into an array, effec-

tively giving each iteration a private copy and enablingdo all parallelism. The

size of the new array can be controlled by first strip-mining the loop.

real T[n]
do all i = 1, n
T[i] = b[i]
a[i] = a[i] + T[i]

end do all

6.3 Array Contraction

In the following loop nest, the value of indexi for T[] is constant throughout the

inner loop since the outer loop is not parallel (no two valuesof i ever get used at

once to addressT). There are also no loop-carried dependencies on i, nor isT[]

30 6 Memory Access

used after the inner loop before i changes again. The net effect of this is that a

given locationT[i,j] is addressed only once over the loop nest.

real T[n,n]
do i = 1, n
do all j = 1, n
T[i,j] = a[i,j]*3
b[i,j[= T[i,j] + b[i,j]/T[i,j]

end do all
end do

Since the elements ofT[] along thei dimension are never reused, they can be

simply eliminated. This will reduce storage space and improve the locality of

T[].

real T[n]
do i = 1, n
do all j = 1, n
T[j] = a[i,j]*3
b[i,j[= T[j] + b[i,j]/T[j]

end do all
end do

6.4 Scalar Replacement

Another simple transformation deals with the frequent reuse of a fixed array ele-

ment in an inner loop. In the following code,total[i] is repeatedly read and

written in the inner loop.

6.4 Scalar Replacement 31

do i = 1, n
do j = 1, n
total[i] = total[i] + a[i,j]

end do
end do

Instead, the fixed array element can be assigned to a scalar before the inner loop,

and if modified, stored back into the original element afterwards. This saves in-

dex calculations and reduces the total number of accesses tothe array element,

reducing memory traffic.

do i = 1, n
T = total[i]
do j = 1, n
T = T + a[i,j]

end do
total[i] = T

end do

32 6 Memory Access

References 33

References

[1] BACON, D. F., GRAHAM , S. L., AND SHARP, O. J. Compiler transfor-

mations for high-performance computing.ACM Comput. Surv. 26, 4 (1994),

345–420.

[2] PADUA , D. A., AND WOLFE, M. J. Advanced compiler optimizations for

supercomputers.Commun. ACM 29, 12 (1986), 1184–1201.

