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Abstract This paper describes the implementation of a
stereo-vision system using Field Programmable Gate Arrays
(FPGAs). Reconfigurable hardware, including FPGAs, is an
attractive platform for implementing vision algorithms due
to its ability to exploit parallelism often found in these algo-
rithms, and due to the speed with which applications can be
developed as compared to hardware. The system outputs 8-
bit, subpixel disparity estimates for 256 × 360 pixel images
at 30 fps. A local-weighted phase correlation algorithm for
stereo disparity [Fleet, D. J.: Int. Conf. Syst. Man Cybernet-
ics 1:48–54 (1994)] is implemented. Despite the complexity
of performing correlations on multiscale, multiorientation
phase data, the system runs as much as 300 times faster in
hardware than its software implementation. This paper de-
scribes the hardware platform used, the algorithm, and the
issues encountered during its hardware implementation. Of
particular interest is the implementation of multiscale, steer-
able filters, which are widely used in computer vision algo-
rithms. Several trade-offs (reducing the number of filter ori-
entations from three to two, using fixed-point computation,
changing the location of one localized low-pass filter, and
using L1 instead of L2 norms) were required to both fit the
design into the available hardware and to achieve video-rate
processing. Finally, results from the system are given both
for synthetic data sets as well as several standard stereo-pair
test images.

Keywords Stereo disparity estimation · Frame rate
implementation · Field Programmable Gate Arrays
(FPGAs) · Reconfigurable hardware implementation ·
Phase correlation

1 Introduction

High-level computer vision tasks such as robot navigation
and collision avoidance require 3-D depth information about
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the surrounding environment at frame rate. At present, few
high-performance implementations of stereo-vision algo-
rithms exist, and the fastest of these involve the use of spe-
cial hardware features to achieve their high performance.
Implementations based on general-purpose microprocessors
have had to be of low computational complexity in order to
achieve processing speeds above a few frames per second
(fps), and exclude algorithms of moderate or high compu-
tational complexity. One solution to implementing complex
algorithms at frame rates is to build custom hardware. This
approach can exploit the inherent parallelism in image pro-
cessing and vision problems since it is possible to build hard-
ware to perform costly operations, for example 2-D convo-
lutions, in the time it takes to acquire a single frame. Even
ignoring parallelism, it is possible to implement operations
that might take many CPU cycles in software, much faster
in hardware. The downside to hardware-based approaches is
that design of custom hardware has typically been a lengthy
and expensive process. It may take months to develop and
verify a design, and fabrication of boards and Application-
Specific Integrated Circuits (ASICs) incurs costs ranging
from hundreds to hundreds of thousands of dollars.

There is a third option available that bridges the gap be-
tween the ease of design associated with software and the
performance associated with hardware. The advent of recon-
figurable logic hardware in the form of Field-Programmable
Gate Arrays (FPGAs) allows designs to be quickly devel-
oped and prototyped at relatively low cost. These devices
contain large quantities of logic elements and have the abil-
ity to flexibly interconnect these elements to implement vir-
tually any logic design imaginable. This can be done by
downloading a sequence of bits to the device that describe
the desired connectivity. The interconnections can be eas-
ily and rapidly changed to allow the same device to be used
repeatedly for multiple purposes. High-level Hardware De-
scription Languages (HDLs) such as VHDL and Verilog
bring the process of hardware design a step closer to the ease
of software design. New, high-level synthesis tools allow de-
signers to work with familiar simulation tools, such as Mat-
lab, and have the results easily translated into hardware. This
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shortens the time of the design-prototype cycle and allows
the algorithm designer to work directly with the hardware as
opposed to passing the design off to a hardware specialist.

This paper describes an FPGA-based implementation of
a computationally complex stereo disparity algorithm based
on locally weighted phase correlation [1]. Disparity is the
apparent shift in the image positions of a scene point viewed
by two cameras, and is a function of the depth of the scene
point along the optic axis and the distance between the cam-
era’s optic centers. This particular algorithm was chosen due
to an interest in phase-based recovery of disparity, and the
system is the first hardware implementation of a phase-based
stereo algorithm. Our motivation for implementation of this
algorithm in hardware stems from a belief that reconfig-
urable hardware allows for high-performance implementa-
tions of computer vision algorithms that are impossible to
match using software alone. Many current implementations
of vision algorithms are far too slow to be used for frame-
rate processing. Those algorithms that do run at frame rate
on serial CPUs are often too simplified to give meaningful
results, or use the entire resources of the CPU so that no
other processing is possible. Some frame-rate systems re-
quire a cluster of serial CPUs and are therefore unsuitable
for mobile applications. Finally, some frame-rate algorithms
require the fastest serial CPUs currently available, and these
may be unsuitable for particular environments, such as space
exploration. In this case, the slower clock speeds of recon-
figurable devices may allow them to be used, even without
special efforts to make them “radiation hard.”

An obvious drawback to using FPGAs is that, presently
at least, the implementation of complex algorithms is
strongly tied to the target architecture, and therefore not
easily ported to newer, more powerful devices. FPGA
manufacturers are working to remedy this by developing
high-level programming environments to allow abstracting
algorithm implementations from the target hardware. Com-
mercial packages such as System GeneratorTM [2] and DSP
BuilderTM [3] are already simplifying this sort of design.
FPGAs are already popular in embedded systems, and
will likely become standard hardware on workstations and
graphics cards in the not-too-distant future. Finally, while
there is much interest in implementing vision algorithms
on commodity graphics hardware [4, 5], it is important to
note that FPGAs still provide a more flexible framework for
processing than GPUs.

A final and important consideration is that reconfig-
urable hardware is, like software running on a serial CPU,
reusable. It is reasonable to expect that a high-level vi-
sion system may comprise multiple task-specific modules,
and that not all modules are in use at any given time. In
this case, reconfigurable hardware allows modules to be
swapped in and out on an as-needed basis. For example, a
robotic vision system might have a navigation module for
use while the robot is in motion, an object recognition mod-
ule when the robot is stationary and manipulating objects in
its workspace, and perhaps a face and gesture recognition
module to allow it to obey commands of human co-workers.

Total hardware can be kept to a minimum by swapping in
only the module(s) required by the current task. Keeping
hardware to a minimum has both monetary and spatial ben-
efits. Unlike software, processing capacity is expanded by
increasing the number of FPGA chips, with the added over-
head of sharing signals between the devices.

An outline of this paper is as follows. We start with
a brief description of the FPGA system used in this work
in Sect. 2. Previous approaches to implementing hardware-
based and hardware-accelerated stereo algorithms are re-
viewed in Sect. 3. Next is a description of the stereo algo-
rithm implemented in this work. Then comes a description
of our design in Sect. 5, including an overview of our pro-
posed system architecture in Sect. 5.1, and several specific
implementation issues in Sect. 5.2–5.4. Section 6 contains a
discussion of the results, with the imaging system specified
in Sect. 6.1. System performance measures are discussed
in Sect. 6.2, and results for synthetic and several standard
stereo-pair images are given in Sect. 6.3. We conclude in
Sect. 7 and provide some suggestions for future directions.

2 Transmogrifier-3A

The Transmogrifier-3A (TM-3A) [6, 7], shown in Fig. 1, is a
reconfigurable board built at the University of Toronto con-
taining four Xilinx Virtex2000E FPGAs [8]. A 98-bit bus
exists between each pair of FPGAs, allowing for designs
larger than will fit into a single device. Each chip is also con-
nected to a 256K × 64 bit synchronous SRAM memory, an
I/O connector, and a bus which allows communication with
a housekeeping FPGA. The housekeeping chip communi-
cates with the host computer for download and control func-
tions. Video encoder/decoder chips are also integrated into
the TM-3A board, which give the ability to receive an NTSC
video stream and to send output results directly to an SVGA
display. Circuits have been built on the TM-3A operating at
frequencies of 50 MHz. The system as used was configured

Fig. 1 The TM-3A board. The four large chips are Xilinx Virtex
2000Es. On the left ribbon cables connect the TM-3A to the host com-
puter via an S-bus. On the right are video in/out connections and power
cables. I/O connectors and memory modules are seen along the top and
bottom edges of the board
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with three SRAM modules, giving a total of 6 MB of SRAM
memory.

3 Review of previous work

A variety of reconfigurable stereo machines have been in-
troduced in recent years [9–13]. The PARTS reconfigurable
computer [12] consists of a 4 × 4 array of mesh-connected
FPGAs with a maximum total number of about 35,000 4-
input LUTs. A stereo system was developed on PARTS
based on the census transform, which mainly consists of bit-
wise comparisons and additions [13]. Kanade et al. [11] de-
scribe a hybrid system using C40 digital signal processors
together with programmable logic devices (PLDs, similar
to FPGAs) mounted on boards in a VME-bus backplane.
The system, which the authors do not claim to be recon-
figurable, implements a sum-of-absolute-differences along
predetermined epipolar geometry to generate 5-bit disparity
estimates at frame-rate. One interesting feature of this sys-
tem is that it can accept inputs from up to six cameras. In
Faugeras et al. [9], a 4 × 4 matrix of small FPGAs is used
to perform the cross-correlation of two 256 × 256 images
in 140 ms. In Hou et al. [10], a combination of FPGA and
Digital Signal Processors (DSPs) is used to perform edge-
based stereo vision. Their approach uses FPGAs to perform
low level tasks like edge detection and uses DSPs for higher
level integration tasks.

Not all previous hardware approaches have been based
on reconfigurable devices. Burt [14] describes an ASIC
(nonreconfigurable) designed to act as a front-end for video
processing algorithms. The chip contains a stereo module
which generates 8-bit disparity measurements with subpixel
accuracy. A “sum of absolute difference” (SAD) algorithm
is used, with programmable regions ranging from 7 × 7 to
13×13. Disparity estimates are generated at frame rates. The
chip clocks at 100 MHz and is capable of 80 GOPS, although
not all of this processing is used by the stereo module. This
work is continued in [15]. Yang and Pollefeys [5] report an
implementation of a multiresolution sum of squared differ-
ences (SSD) stereo algorithm, with a throughput reported at
6–8 fps on 256×256 images (although no performance data
with respect to accuracy is given). Their solution relies on a
serendipitous match between their algorithm’s requirements
and available fast operations on the graphics processor, so it
is not clear if other vision algorithms (or even other stereo
algorithms) will be as easy to map onto graphics hardware.

A number of fast algorithms that do not use reconfig-
urable hardware also exist in the literature. Some of these
take advantage of special hardware, specifically SIMD (sin-
gle instruction, multiple data) instructions in Intel MMX
processors [16, 17]. A number of intensity-based cross-
correlation techniques are reported [16–20]. Approaches to
speed up algorithms include the use of image pyramids
[14, 19, 21, 22] and the use of simplified algorithms [23].

The two fastest algorithms both use MMX processors.
Hirschmuller et al. [16] achieve 4.7 fps on 320×240 images

using intensity correlation in 7 × 7 windows with Gaus-
sian prefiltering. Their method includes both rectification
and left–right consistency checking (without these the frame
rate is estimated at 5.7 fps). Their hardware is a 450 MHz
Pentium running Linux. Muhlmann [17], using an 800 MHz
MMX processor, achieves less than 5 fps on 348×288 color
images, again using intensity correlation. A trinocular dis-
parity system is implemented by Mulligan et al. [18] on a
4-processor system utilizing Intel IPL libraries. This system
takes 456 ms to compute disparity for three 320 × 240 im-
ages up to a maximum disparity of 64 pixels. Sun [19] com-
putes disparity (up to 10 pixels) in 450 ms on a 500 MHz
Pentium processor based on fast intensity correlation in an
image pyramid.

Birchfield and Tomasi [23] use a simplified algorithm
that minimizes a 1-D cost function based on pixel intensity
differences. They report speeds of 4 s/frame on a 333 MHz
Pentium for 640×480 images. Given a faster processor their
algorithm would doubtlessly perform better than 1 fps. It has
the advantage of explicitly accounting for occlusion as well
as propagating disparity information between scan lines, a
property typically found in global algorithms according to
[24].

A number of commercial stereo-vision systems are cur-
rently available. Point Grey Research [25] offers IEEE1394-
based two- and three-camera systems with software develop-
ment kits for Windows platforms. They claim performances
of 26 fps for 320 × 240 images and a disparity range of 48
pixels with subpixel interpolation on a 2.4 GHz P4 system,
although this drops to 4.3 fps for 640 × 480 images. The
algorithm includes rectification, and cross validation, but is
based on SAD. The Small Vision System [26], based on the
SRI stereo engine and the Small Vision System by Konolige
[27] is based on SAD performed on prefiltered images, and
claims performance of 340 × 240 images for disparity of 32
pixels at 30 fps on a 700 MHz P3 system, although the exam-
ple on their website is listed as 340 × 240 images for dispar-
ity of 24 pixels at 15 fps. The system requires MMX technol-
ogy for best performance, and slows down as the disparity
range is increased and as the correlation area is increased.
The CanestaVision Electronic Perception Development Kit
[28] gives depth maps for a 64 × 64 image array based on
“time of flight” using an IR laser to actively illuminate the
image. The main advantage here is the lack of requirement
for texture in the scene, but it has limited range (on the order
of a few metres), is slow (on the order of 5 fps) and can be
strongly affected by ambient light.

4 Local weighted phase correlation stereo algorithm

The heart of any stereo-vision system is stereo matching,
the goal of which is to establish correspondence between
points in the left and right images arising from the same
element in the scene. Stereo matching is complicated by
factors such as lack of texture, occlusion, depth disconti-
nuity and image noise. Techniques proposed to solve the
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correspondence problem and improve the performance of
stereo matching can be categorized into three major groups:
(1) Intensity-based; (2) Feature-based; and (3) Phase-based.
Intensity-based techniques assume that image intensity cor-
responding to a 3-D point remains the same in binocular im-
ages. These techniques usually lead to window-based and
coarse-to-fine strategies. Intensity-based methods are often
confused by changes in image scale between the left and
right images, and also by deformation between the two.
Changes in intensity are also problematic, but this effect
can be minimized through the use of normalization tech-
niques, albeit with considerable additional computational ef-
fort. Feature-based techniques use sparse primitives such as
edges [29] or straight line segments [30]. The major limita-
tion of all feature-based techniques is that they cannot gen-
erate dense disparity maps, and hence they often need to be
used in conjunction with other techniques. In phase-based
techniques, the disparity is defined as the shift necessary to
align the phase value of band-pass filtered versions of two
images. It has been shown that phase-based methods are ro-
bust to smooth lighting variations and modest deformations
between stereo images [31, 32]. It has also been shown that
phase is predominantly linear [32], and hence reliable ap-
proximations to disparity can be extracted from phase dis-
placement [31].

The stereo system described in this paper is based
on a phase-based stereo matching technique called “Local
Weighted Phase-Correlation” (LWPC) [1]. This algorithm
combines the robustness of phase-difference methods with
the simple control strategy of phase-correlation methods.
The LWPC algorithm has four major steps:

1. Create a Gaussian pyramid with total number of S scales
for both left and right images. Then apply spatially-
oriented quadrature-pair filters [33] to each scale of the
pyramid. If K j (x) is the filter impulse response of the
j th orientation, then we can write the complex-valued
output of the convolution of K j (x) with each scale of
the left and right images, Il(x) and Ir (x), as

Ol(x) = ρl(x)eiφl (x) = K j (x) ⊗ Il(x) and
Or (x) = ρr (x)eiφr (x) = K j (x) ⊗ Ir (x)

in polar representation, where ρ(x) = |O(x)| is the am-
plitude and φ(x) = arg [O(x)] is the phase of the com-
plex response.

2. For each scale and orientation, compute local voting
functions C j,s(x, τ ) as

C j,s(x, τ ) = W (x) ⊗ [Ol(x)O∗
r (x + τ)]

√
W (x) ⊗ |Ol(x)|2√W (x) ⊗ |Or (x)|2 ,

(1)

where W (x) is a smoothing, localized window and τ is
the preshift of the right filter output.

3. Combine the voting functions C j,s(x, τ ) over all orien-
tations, 1 ≤ j ≤ F , and scales, 1 ≤ s ≤ S, where F

is the total number of orientations, to get the cumulative
voting function

V (x, τ ) =
∑

j,s

C j,s(x, τ ).

4. For each image position x , find the τ value correspond-
ing to the peak in the real part of V (x, τ ) as a good esti-
mate for the true disparity.

The cumulative voting function is expected to be a more
accurate indicator of disparity as spurious peaks at different
scales and orientations will be uncorrelated, but the true dis-
parity will create a peak in the same location in each local
voting function, and this peak will be dominant in the cumu-
lative voting function.

Two major features make this algorithm a good candi-
date for hardware implementation. First, it is primarily com-
posed of linear operations that are easily implemented in
hardware. Operations such as addition and multiplication
can be represented efficiently in terms of number of logic
blocks required, and can be computed in few, or even one,
clock cycles. Second, there is no iteration nor any explicit
coarse-to-fine control strategy. This property makes the real-
time flow of data possible through the hardware. In the next
sections, we will describe the hardware of the system and
then modifications applied to the original LWPC method.

5 System design

5.1 System overview

When implementing a complex algorithm on re-
programmable hardware, the most important issue is
that there is a fixed amount of hardware available as
described in Sect. 2. These hardware resources include
logic capacity, on-FPGA and off-FPGA available memory,
memory access bandwidth and chip-to-chip communication
bandwidth. Achieving the best overall performance requires
efficient usage of all hardware resources.

In this work, for parallel and efficient hardware imple-
mentation of the stereo depth measurement, some modifica-
tions are introduced to the original LWPC algorithm. Three
major modifications are: (1) Employing fixed-point data rep-
resentation vs. floating-point representation; (2) Changing
the location of a low pass localized filter; and (3) Using the
L1 norm instead of the L2 norm in calculating phase corre-
lation. In this section, we first describe the major building
blocks of the system and the distribution of the tasks over
four FPGAs available on the TM-3A board. Then we will
discuss the advantages and effects of modifications on the
overall system performance.

The architecture of the stereo-vision system is illustrated
in Fig. 2. It consists of four major units: the Video Interface
Unit, the Scale-Orientation Decomposition unit, the Phase-
Correlation unit and the Interpolation/Peak Detection unit.
Each of these units is implemented on one of the Xilinx
V2000E FPGAs available on the TM-3A.
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Fig. 2 This diagram shows a high-level view of the system architec-
ture. The system is divided into four major blocks, each of which is
implemented on one of the four FPGAs on the TM-3A

The Video Interface Unit receives the video signal from
cameras in composite NTSC format with an image size of
512 × 720 pixels and immediately downsamples to 256 ×
360. Since there is only one video input channel available
at a time on the TM-3A board, we switch between synchro-
nized camera signals after each frame such that we receive
15 fps from each camera. However, the stereo-vision system
itself processes and outputs 30 fps using buffered images. If
there were two video inputs available,1 the system would in
fact be processing 30 unique image-pairs each second. The
video is de-interlaced as it is acquired, causing a 1/60th sec-
ond delay as the first field is stored in memory. After frame
buffering, the video interface unit sends two noninterlaced
gray scale image streams to the Scale/Orientation decompo-
sition unit.

In the Scale-Orientation Decomposition Unit, a 3-level
Gaussian pyramid is built for both left and right images.
Each level of the pyramid is built by low-pass filtering with
a 3-tap FIR filter and subsampling by a factor of two. Each
of the pyramid levels is then decomposed into +45◦ and
−45◦ orientations using G2/H2 steerable filters [33]. While
the original algorithm [1] also calls for a third orientation
of 0◦, this orientation was omitted due to resource limita-
tions. Based on results given in Sect. 6.3, this omission has
not caused a large degradation in system performance. The
G2/H2 filters use a set of seven separable 7 × 7 FIR filters
as basis filters. The tap coefficients in the filter were quan-

1 As is the case in the newly designed Transmogrifier-4.

tized to 8-bits. By choosing proper coefficients for the linear
combination of the basis filters, one can synthesize filters
of arbitrary orientation. One important advantage of using
G2/H2 filters for hardware implementation is that they are
X–Y separable and therefore require less hardware resources
than nonseparable filters of the same size. The vertical com-
ponent of each filter is applied first, generating a series of
16-bit values that are then passed to the horizontal filter com-
ponents. The order of application of the filter components
does not affect the result of the computations, but it does
have an impact on resource allocation. All FIR filter designs
in hardware require the input data to be stored in a series of
delay buffers prior to multiplication by filter coefficients and
summation. Since video data arrives row-by-row, the delay
buffers for the horizontal filter components are quite small,
while those for the vertical components must store as many
scan lines of data as the filter has taps. By applying the ver-
tical filter components first, a common set of buffers can be
used for all seven vertical filter components, thus saving on
memory resources. The output of each vertical filter compo-
nent must be buffered separately, but these buffers are much
smaller by comparison as they feed the horizontal filter com-
ponents. This arrangement is shown in Fig. 3. At the end
of this unit, filter outputs are reduced to 16-bits before be-
ing sent to the phase-correlation unit. The issues related to
the effects of fixed-point representation will be discussed in
Sect. 5.2.

Adders and multipliers implemented in logic blocks may
be optimized either for maximum speed or minimum area
(logic blocks used). In this system, since the system clock
speed of 48 MHz is much higher than the arrival of pixels
in the data stream (roughly 5.6 MHz), we have spread ad-
dition and multiplication computations over multiple cycles
wherever possible in order to save on FPGA resources.

The Phase-Correlation Unit is the heart of the algorithm.
For each pixel in the left image, it computes the real part of
the voting function C j,s(x, τ ) as mentioned in Eq. (1) for
0 ≤ τ ≤ D, where τ is a preshift in the right image and D
is the maximum allowed disparity. The value for D for the
finest scale (s = 1) is set to 20 pixels. Hence, for the next
coarser scales, D is set to 10 and 5, respectively.

Figure 4 shows the architecture of the phase correlation
block as dictated by the original algorithm. The voting func-
tions C j,s(x, τ ) are reduced to an 8-bit representation before
being sent to the interpolation unit.

The Interpolation/Peak-Detection Unit interpolates the
two coarser scale voting functions, C j,2(x, τ ) and C j,3(x,
τ ), in both x and τ domains such that they can be combined
with the finest scale voting function C j,1(x, τ ). It performs
quadrature interpolation in the τ domain and constant inter-
polation in the x domain. The interpolated voting functions
are then added together to produce the cumulative voting
function V (x, τ ).

The final step in this unit is peak detection. For each
pixel x in the image, it detects the value of τ for which
V (x, τ ) is maximum. By performing subpixel interpolation
of the disparities, this unit produces disparity values with
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Fig. 3 The arrangement of delay buffers for the horizontal and vertical components of the G2 and H2 basis filters is shown. By applying the
vertical component first, the larger delay buffer structure can be shared among all seven basis filters, thus saving resources

8-bit resolution from the 20-pixel disparity range. The final
disparity results are sent back to the video interface unit to be
written in the video output buffer and displayed on a mon-
itor. Table 1 lists the hardware resources used in each unit
in terms of number of Look Up Tables (LUTs), flip-flops
and the number of on-chip fast memory banks. Each row
represents resource utilization on one of the TM-3A’s FP-
GAs. In the design of the hardware, we have assumed that
the two cameras have identical focal length and are verti-
cally aligned such that no rectification [34] is required. Also,
there is no postprocessing stage such as left-to-right/right-
to-left validation or smoothing/gap filling implemented in
hardware. As will be pointed out in Sect. 6, these steps have
been left out due to space limitations, but are currently being
added in a new version of the system.

Table 1 Resources consumed by each section of the design

Unit name 4-Input LUTs Flip-flops On-chip memory (bits)

Video interface 169 71 –
Scale/orientation decomposition 23,151 18,020 614,400
Phase correlation 16,709 30,961 –
Interpolation peak detection 26,615 33,974 172,032

5.2 Fixed-point representation

There is always a trade-off between the accuracy of fixed-
point representation and the hardware efficiency: minimum
quantization error requires using wide fixed-point represen-
tations, but wider signals require larger mathematical oper-
ators (dividers, multipliers, adders, etc.). In addition, more
hardware resources are needed for data path circuits. As
an example, Fig. 5 shows the relation between the required
number of LUTs to create parallel (one clock cycle) multi-
pliers or dividers versus the input width of the multiplier or
divider. The number of LUTs increases with the square of
the input width.

We need to make good decisions for the precision of the
variables and operations in each stage of the algorithm. This
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analysis requires both knowledge of the target hardware and
the algorithm itself. Few tools have been developed to solve
this problem. For example, Chang and Hauck [35] present a
framework for automatically determining fixed-point preci-
sion of floating-point calculations. Our approach has been to
optimize width of data paths using real data together with
knowledge of the constraints imposed by the target hard-
ware to choose appropriate data widths. Before moving to
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Fig. 6 This graph shows the error in the final disparity estimate (as
compared to the floating point algorithm implementation) resulting
from different multiplier widths in the phase correlation block. Since
multiplier cost increases as the square of the input width, 8-bit multi-
pliers were chosen as they allowed the disparity error to be kept below
1 pixel

hardware, we conducted simulations in order to find the most
efficient precisions for each stage of the system. To find the
optimum precision, we have simulated our hardware system
for a range of precisions and calculated the quantization er-
ror for each.

Figure 6 shows the Mean Square Error between using
full-precision and a fixed-point multiplier in the correlation
unit for a range of precisions (assuming that all other stages
are in full precision). In this case, for example, based on
Figs. 5 and 6, an 8-bit multiplier was chosen for the phase-
correlation unit. Since resolution need not be fixed across
all stages of the system, we performed similar analyses for
each of the units, and we have chosen 16- and 8-bit widths
for Orientation Decomposition Unit and Interpolation Unit
multipliers, respectively.

5.3 Relocation of weighting function

The implementation of the correlation block based on the
architecture of Fig. 4 requires hardware resources beyond
the capacity of a Virtex 2000E FPGA. To shrink the size of
the circuit, we have modified the correlation block as shown
in Fig. 7. In this revised architecture we have placed the
Gaussian window, W , at the end of voting function blocks.
This change allows us to extract the common portions of the
computations out of voting function units as much as possi-
ble. Extracting the two normalization blocks in Fig. 7 leaves
a simple inner product calculation and a single Gaussian
window inside each voting function block. Each normaliza-
tion block receives a complex-valued input and divides it
by its magnitude such that the output has the same phase
but with unit magnitude. Changing the location of Gaussian
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window along with sharing the normalization block reduces
the total number of multipliers, dividers and square roots
in the correlation unit by more than 65%. Since the output of
the normalization blocks is in the limited range of [−1,+1],
it is possible to use a small number of bits in representing
their output. At present the output is 8 bits.

The drawback of this architecture is that the Gaussian
window relocation to the end of voting function block is
not an exact analytical equivalent of the original method.
In fact, by comparison with [31], it is seen that the revised
computation closely resembles a previously proposed phase
differencing method, except that the difference function is
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Fig. 8 The effect of using an L1 norm in computations instead of an L2 norm

now windowed and the voting structure has been retained.
One can show that for FIR filters close to an impulse func-
tion, this revision is a reasonable approximation [36] to the
original algorithm. Since in our stereo-vision system a 3-tap
Gaussian LP filter is used as W , this trade off seems to be
reasonable.

5.4 Normalization of complex values

A further reduction in the size of the phase-correlation unit is
achieved through modification of the architecture of the nor-
malization block. This block is used to compute the magni-
tude of the complex-valued inputs. The L2-norm of a com-
plex number A is defined as ||A||2 = √�{A}2 + �{A}2.
The hardware implementation of ||A||2 is expensive because
it requires two multipliers, one square root and one adder.
Instead, we replace it with the L1-norm of A, defined as
||A||1 = |�{A}|+|�{A}|. Figure 8 shows the effect of using
||A||1 instead of ||A||2 to normalize the output. When using
L2, all the normalized vectors are located on the unit circle
in the Real-Imaginary plane, but in L1 they are projected
on a square as shown in Fig. 8. This is because the sum of
absolute real and imaginary parts of L1-normalized vectors
is always unity and therefore they are projected to straight
lines in each quadrant which form a square instead of a unit
circle. This technique provides enough accuracy for our ap-
plication and may also be used in other applications requir-
ing computation of vector norms. To improve the accuracy
of the normalization operation and still avoid implementa-
tion of ||A||2, there exists a different solution to the one we
implemented: since �{Au1} and �{Au1}, shown in Fig. 8,
always lie between −1 and 1, one can use a memory block
as a look up table with appropriate values to replace current
Au1 vectors with corresponding points on unit circle. These
look up tables can be built using on-chip memory, which is
available in most current FPGA devices, without the need to
use logic elements of the device. An example of the effect
of replacing the L2 norm with an L1 norm in our system is
given in Fig. 9.
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Fig. 9 This figure compares the performance of the L1 norm against that of the L2 norm. The differences between the two methods appears
minor, and can be characterized in a manner similar to quantization noise

Finally, it is worth considering the resource require-
ments to implement an L2 norm. Each magnitude requires
(i) computing �{A}2 + �{A}2, and then (ii) computing
the square root of this value. Step (i), assuming 16-bit
multipliers operating over four clock cycles, would require
roughly 200 4-LUTs. Step (ii) would require a further 760
4-LUTs to compute the square root at the required precision.
Since 12 magnitude units would be required, this entails
roughly 11,500 4-LUTs. While the FPGA implementing the
phase correlation has 35,000 4-LUTs and only 16,709 are
utilized, the chip is at 99% slice utilization, so it would not
be possible to implement the L2 magnitude units. While a
CORDIC implementation [37, 38] would be possible and
would take less LUTs, the trade-off is LUTs for clock cycles
and the resulting design would not be fast enough, assuming
enough slices were available.

5.5 Subpixel peak detection

Another modification made to the original algorithm is the
addition of a simple subpixel peak detection scheme. Once
the integer-valued location of the voting function peak is
found, a quadratic function is fitted locally to the peak and its
two neighboring values. This requires two shift operations,
four additions and one division. Since the integer peak loca-
tion can be encoded in five bits, we can encode the subpixel
correction in three bits to end up with an 8-bit output. Others
have followed a similar procedure, for example Kanade et al.
[11] perform the same interpolation on the C40 processor in
their system.

5.6 Data communication between FPGAs

As mentioned previously, our design is spread across
four FPGA devices mounted on a single circuit board. A
data path 98-bits wide exists between each pair of chips.
We found that 98-bits was often not enough to trans-
mit the required data between chips. For example in the
Scale/Orientation unit each image-pair has three pyramid
levels, with two orientations each, each producing both a

complex and real part, giving 24 16-bit values to be commu-
nicated to the phase correlation unit. This requires 384 bits
to be transmitted for each clock cycle in the data pipeline.
The transmission is achieved using a time-division multi-
plexing (TDM) scheme. Since the overall system clock runs
at 48 MHz, we have at least six time slices in which to
transfer data and achieve an overall throughput of 8 MHz.
It should be noted that the use of TDM comes with a cost, as
hardware resources are required to buffer data on both sides
and manage the transfer.

6 Discussion

In Sect. 5 the implementation of the algorithm in FPGA
hardware was described, and issues surrounding this im-
plementation were discussed. In this section we evaluate
the performance of the implementation through compari-
son with other stereo disparity implementations and through
comparison with the original floating point software imple-
mentation of the algorithm.

6.1 Imaging system

Image acquisition for the stereo system uses two Hitachi KP-
D51 color CCD cameras, with a CCD size of 7.55 mm ×
6.45 mm and 12 mm lenses. The cameras are rigidly fixed
on a common mounting bracket, and there is a separation
of 70 mm between the lens centers. In the stereo-vision sys-
tem, the size of the phase-correlation and interpolation hard-
ware design is directly proportional to the maximum dispar-
ity that we specify between two images. We have set the
maximum allowed disparity to 20 pixels. This corresponds
to a minimum allowed distance of about 2 m from the objects
to the stereo head. Other parameters such as separation be-
tween the cameras, CCD size and resolution can reduce the
minimum distance, but they are usually restricted by optical
and physical constraints. For example, to reduce the mini-
mum distance, wide-angle lenses can be used but lenses with
smaller focal length start to introduce radial distortion, that
will degrade performance.
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Table 2 Comparison of PDS performance for various systems

Image size Disparity D Frame PDS
n × m time (ms) (×106) Algorithm Platform

INRIA [9] 256 × 256 32 280 7.5 Intensity correlation PeRLe-1 board (23 Xilinx
XC3090 FPGAs

PARTS Engine [12] 240 × 320 24 23.8 77 Census 16 Xilinx 4025 FPGAs
CMU Stereo Machine [11] 200 × 200 30 33 36 SAD Special purpose hardware

(c40 DSP + real-time
processor)

Yang/Pollefeysa [5] 512 × 512 20 71.4 58.9 multi-resolution SSD NVIDIA GeForce4
Graphics card

Point Grey [25] 240 × 320 48 38.5 101.8 SAD 2.4 GHz P4
This work 256 × 360 20 33 55.2 LWPC (phase correlation) TM-3A board (4 Xilinx

Virtex 2000E FPGAs)

aThis result is for a single image, and does not include real-time capture and rectification of images. The PDS value drops considerably when processing a
captured sequence.

6.2 Performance

The FPGA stereo system described in this paper performs
multiresolution, multiorientation disparity estimation based
on local weighted phase-correlation. It produces a dense dis-
parity map of size 256 × 360 pixels with 8-bit subpixel ac-
curacy disparity results at the rate of 30 fps. In the metric of
Points × Disparity Estimates per second (PDS), this system
achieves a performance of 55.2 × 106 PDS, which is among
the highest rates reported [12]. Taking into account the rel-
ative complexity of SAD vs. LWPC, the Point Grey result
seems less dominant. Table 2 compares several stereo-vision
systems. While the PDS metric reflects the density and the
speed of the system, it does not reflect the complexity or ac-
curacy of the implemented algorithm. An important feature
of our system in comparison with other hardware stereo ma-
chines is its high-performance, phase-based algorithm. To
realize a phase-based algorithm in video rate, the system
performs the equivalent of more than 10 billion 16 × 16-bit
multiplications per second and the four Virtex devices com-
municate in a data rate of up to 200 Mbytes/s. Our algorithm
is the most computationally complex stereo algorithm yet
implemented in hardware. The results given in Sect. 6.3 jus-
tify the use of such a computationally intensive algorithm.

By comparison, the floating point version of the LWPC
algorithm, implemented in Matlab scripts, takes approxi-
mately 30 s to compute disparity results for 256 × 360 im-
ages when run on a Sun UltraSPARC-III 750 MHz worksta-
tion with 2.5 GB of memory. While a comparison between
hardware and an interpreted language may seem unfair, Mat-
lab can be very computationally efficient so long as certain
structures, such as loops, are avoided (as they have been in
our scripts). Porting it to C would result in some speed im-
provement, perhaps a factor of ten, but certainly not enough
to make it anywhere near frame-rate.

The disparity output by the system is just the output
of the Peak-Detection unit without any postprocessing such
as left-to-right/right-to-left validation [39] or smoothing/gap
filling. Also, when the images are input to the system, they
are not preprocessed to achieve rectification, although this

should be done. We estimate that rectification and left-to-
right/right-to-left validation can be added to the current sys-
tem by increasing resources by approximately half of the
size of one Xilinx Virtex2000E FPGA. Given the capacity
of FPGA devices now available, this poses no problem. For
example, as suggested in [11], rectification can be imple-
mented using a simple memory look-up to transform image
coordinates before doing the phase-correlation. The trans-
form values can be computed off-line using standard calibra-
tion techniques and downloaded during the programming of
the FPGAs. As another solution, rectification can be avoided
as prerectified images can be directly generated using spe-
cial optical setups [40]. An efficient technique to integrate
the left–right, right–left validation feature to the current sys-
tem is to alternate between left and right images after each
subsequent frame. Since left–right and right–left matching is
performed in different time slices, they can share the same
blocks and hence there is no need for extra hardware. Even
if we want to perform both matchings at the same time slice,
we can still share the filtering blocks and need only imple-
ment the correlation and peak detection separately.

6.3 Results

In this section we examine the accuracy of the system. This
will be done in two ways. First, we present stereo image
pairs for which “ground truth” (or a good, independent es-
timate of it) is known. Results are presented for both a
synthetic image pair containing a random-dot stereogram
and also a real image-pair with hand measured depth at se-
lected points. Our second method of evaluation will be to
compare the hardware performance against output of the
floating-point, software implementation of the LWPC algo-
rithm. This will be done for several stereo-pairs commonly
used to evaluate stereo disparity algorithms. This compari-
son uses images that have been previously rectified, and so
removes this source of error from the reported results.

Figure 10 shows the disparity map from a random
dot stereogram (RDS) extracted by the original LWPC
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Fig. 10 Comparison of the performance of the software version of LWPC against the performance of the hardware. The input is a random-
dot stereogram image pair whose ground-truth disparity is shown in (a). The performance of the software implementation and the hardware
implementation are shown in (b) and (c) respectively. While they are not identical, the differences are confined to the left-edges of the depth
discontinuities which are expected to be noisy (see text)

algorithm and also by the hardware. The RDS was gener-
ated by shifting blocks of pixels to the right. This explains
the noise seen along the left edges of the disparity discon-
tinuities: in these regions there are pixels that exist in one
image but not the other, similar to occlusion that would be
experienced in real scenes. In these regions the phase corre-
lation attempts to find matches for pixels where none exists,
so we do not expect the algorithm to perform well. Left–
right/right–left validation, currently not part of the system,
would allow this type of error to be labeled as such [39]. It
should also be noted that the algorithm does not include ei-
ther a texture test or other false-matching tests, which would
at least allow it to give a certainty measure for the estimates
produced. Figure 11 shows a sample image from the camera
head and the depth map generated by the hardware.

In Table 3, the depth estimates obtained by our system
are compared with hand-measured depths. Since the hard-
ware outputs disparity, and not depth, estimates, depths were
computed according to

d = f T

D

Fig. 11 This figure compares the estimates of the hardware implementation against hand-measured ground truth shown in Table 3. In a is shown
one of the original images from the pair used to generate the disparity map shown in b

where d is depth, f is the focal length of the imaging
system, T is the baseline between the cameras, and D is
the disparity. Since we measure D in pixels, it is neces-
sary to estimate the focal length in pixels via camera cal-
ibration. This formula assumes that the cameras are per-
fectly aligned, which of course they are not. A simple cal-
ibration was performed to estimate the value of the prod-
uct f T prior to making the estimates shown in Table 3. As
in most of the other stereo-matching algorithms, the phase-
based stereo-matching algorithm is sensitive to depth dis-
continuity and lack of texture. In regions with sufficient tex-
ture, most of the depth measurement errors are less than
3%, but in regions with little or no texture or at depth
discontinuities, where occlusion and dis-occlusion become
an issue, the depth value estimates are less reliable. An
example is the depth estimate for point 3 in Fig. 11a).
This point lies on an occlusion boundary (where local al-
gorithms are expected to do poorly, [24]), and inspection
of the disparity map (b) shows that it is obviously in er-
ror. It is worth noting that despite the good results shown
in Table 3, they would be even better if a full camera
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Table 3 Depth measurements for points labeled in Fig. 11

Point # 1 2 3 4 5

Ground truth depth (cm) 300 315 320 354 396
Hardware depth estimate (cm) 309 (3%) 320 (1.6%) 276 (13.7%) 355 (0.3%) 402 (1.5%)

Fig. 12 Comparison of performance between the floating-point and fixed-point implementations of the algorithm. The disparities have been
rescaled to the range [0, 255] for display purposes. Since the hardware emulation result (c) includes subpixel peak detection, it shows a greater
number of different disparity values than are evident in (b). Hardware emulation results without subpixel peak detection are shown in (d)

calibration had been performed and the images had been
rectified.

In Figs. 12 and 13, we see comparisons between the
floating point version of the algorithm, and the hardware
emulation. In these comparisons, we will see the effect of
changes made to the algorithm, including the addition of
subpixel peak detection. Figure 12 shows results from a
stereo pair where the disparity is in the range [−4, 4].2 The
measured error (root mean square error) between the soft-
ware and hardware-emulation disparities is about 0.49 pixels
(0.52 pixels with subpixel disparity turned off). The agree-
ment between the two implementations is very good, despite
the necessary changes in the hardware version.

2 Anytime results outside the range [0, 20] are quoted in this paper,
the results are from an exact emulation of the fixed-point computation
performed by the hardware.

In Fig. 13, we see results from another stereo im-
age pair, this time with disparities over a much larger
range, [−20, 20]. The RMSE between the software and
hardware-emulation in this case is 3.09 pixels. The error
is 3.08 pixels with subpixel disparity turned off, since the
original algorithm does not include subpixel estimation.
In Fig. 14 we see a histogram of the absolute values of
the errors. The distribution has a dominant peak at zero,
indicating that most pixels have an error less than 1 pixel.
The distribution also has a long tail, which may indicate
a uniform distribution of errors in cases where no good
match was found by either algorithm, but the software and
hardware-emulation chose different values. In this sense the
performance of the hardware implementation is probably
much better than the RMSE would suggest. Figure 14b
shows the distribution of errors over the entire image,
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Fig. 13 Another test sequence is shown here. The left image from the original stereo pair is shown in (a), the disparity calculated by the floating
point version of the algorithm is shown in (b), and the hardware emulation version of the disparity is shown in (c)

Fig. 14 In (a) is shown the error distribution for the books test image. We see that the majority of the error is concentrated below 1 pixel, although
the distribution has a long tail. The root-mean-square error between the hardware emulator and the floating point versions is 3.09 pixels. The
reason for this large value is evident in Fig. 13, in the noisy section in the top-right corner. Both algorithms report disparity estimates varying
between ±20 in this region when it should be closer to zero. In some cases the floating point algorithm returns +20 when the hardware emulation
reports −20, and vice versa. This leads to outliers in the error distribution, as can readily be verified from (b)

confirming that there are indeed localized regions in which
the error is quite large, but that it is otherwise quite small.

In order to provide a further comparison of the hardware
implementation with the original, floating-point LWPC
implementation, we used a standard test set of stereo-pair
images provided by Scharstein and Szeliski [24].3 These
data sets also allow for a direct comparison against other
stereo implementations. The results from three of these tests
are shown in Figs. 15 and 16, and Table 4. It can be seen that
the hardware implementation provides performance that is
comparable to the floating point version for the Sawtooth
and Map images, although it performs somewhat worse
for the Tsukuba and Venus images. An error image and its
associated error density for the Tsukuba image is shown in

3 These images, along with a numerical comparison with lead-
ing stereo algorithms for the same data sets, can be found at
http://bj.middlebury.edu/ schar/stereo/web/results.php.

Fig. 16, and it is seen that much of the error again comes
from attempting to match occluded pixels. The figures in
Table 4 do not include occluded pixels (Fig. 16 does), but
shows that nontextured regions and depth discontinuities
are still problematic, as is to be expected with a correlation-
based algorithm. For example, the lamp shade has very
low texture, and can be seen to have large disparity errors
in Fig. 16b). In all cases similar performance is found in
the discontinuity regions: while the performance is not the
best in either case, Scharstein and Szeliski admit that these
regions are expected to be troublesome for pure “local” al-
gorithms [24]. The hardware implementation is consistently
poorer on the untextured regions, but this is not unexpected
given the loss of fine detail through the fixed precision of
the hardware system. In comparison with other algorithms,
the hardware implementation delivered performance that
was comparable to [19] and the Dynamic Programming
methods [24] for the Venus and Map test images and [17]
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Table 4 Numerical results from the standard test images [24] from Fig. 15a

Tsukuba Sawtooth Venus Map
All Untex Disc All Untex Disc All Untex Disc All Disc

LWPC
14.16 14.46 38.98 5.15 5.95 23.54 6.32 10.59 26.68 3.54 17.31

Hardware LWPC
19.59 24.90 37.62 6.93 11.71 22.68 10.51 18.11 31.52 3.87 20.12

aValues indicate percentage of pixels with disparity error above one pixel.

Fig. 15 The comparative results of running the original LWPC algorithm along side the hardware for three images from Scharstein and Szekiski’s
standard test set [24]. The ground-truth disparities are shown in the first column. While the hardware results are “noisier” than the original
algorithm, it is usually in regions where the original algorithm encountered difficulty. Numerical results are shown in Table 4

Fig. 16 In (a) is shown the error distribution for the Tsukuba test images. Again, the majority of the error is concentrated below 1 pixel, and
the distribution tail is again long. The absolute disparity error is shown in (b), with black representing zero (no error) and white representing
maximum error (10 pixels). It is evident that the algorithm has had difficulty at left-occlusion boundaries (the left image is used as reference),
due to trying to match pixels that do not exist in the right image. The algorithm essentially guesses in these cases, giving rise to the distribution’s
rather flat tail. The root-mean-square error between hardware and the ground truth is 1.59 pixels
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for the Venus image. This is significant since none of these
are hardware implementations and all are much slower.
No comparative data is known for the commercial stereo
systems.

7 Conclusion

In summary, it should be seen that our system compares
favorably with the systems described in Sect. 3. While some
of the systems are starting to achieve frame rates above
5 fps, none of them are doing the amount of computation
that our system is, and we expect our effective accuracy
(assuming rectified images) to be significantly better. For
example, while others are using correlation methods, none
are computing complex filter responses at multiple scales
and orientations, and then recovering and correlating the
phase responses. While others are using image pyramid
approaches, they use the pyramid to simplify computation at
subsequent scales, as opposed to combining the information
across scales. Finally, while we have attempted to compare
running speeds of other algorithms based on the same
size of image that our system currently processes, it must
be mentioned that we are able to handle larger images at
30 fps if the algorithm is moved to larger FPGAs. Speed
is thus dependent on the logic capacity of the FPGA, and
not just its clock speed. FPGAs with capacities greatly
exceeding that of the FPGAs used in this work now
exist.

This paper demonstrates the feasibility of implement-
ing challenging vision applications on FPGAs to achieve
frame-rate performance. It illustrates the trade-offs required
for a fast and efficient hardware implementation. Although
this paper is specifically focused on a particular phase-based
stereo-vision FPGA implementation, most of the design is-
sues are common among other DSP and image-processing
applications. Many of the components of this system can be
reused in other vision algorithms. prefiltering and building
the image pyramid are basic operations used by many algo-
rithms doing tasks such as stereo, motion analysis and object
recognition and localization. In particular, our implementa-
tion of steerable filters has great potential for reuse. Exam-
ples of algorithms based on these filters include optic flow
computation [41, 42], object tracking [43] and recovery of
rotation and illumination invariant features [44], which can
be used for object tracking and/or object recognition. The
implementation of the correlation units can be adapted for
use in other systems that require correlation, such as tem-
plate matching.

Finally, it must be acknowledged that the LWPC algo-
rithm is not among the top performers in the Middlebury
comparative results. At the time this system was conceived
this comparative data was not available, and had it been a
different choice of algorithm might have been considered.
However, in defense of the system, it has given rise to a num-
ber of components that can be reused in other vision systems
(as noted in the preceding paragraph).

7.1 Future work

A number of avenues for future work exist. The most
obvious is porting this system to larger FPGA devices
that would allow for restoring the third orientation to the
Scale/Orientation unit, add preprocessing to rectify the im-
age, and postprocessing to perform validation tasks such as
left–right/right–left validation on the output. The size of im-
ages that can be processed will be increased, and compu-
tation of a confidence measure for each disparity estimate
should be included. This measure can be based in part on
estimates of local texture energy and probability of false
matches. Given the increase in capacity in newer FPGA de-
vices these goals should not be difficult to accomplish.

Another improvement is to increase the range of allowed
disparities, and this work (along with the items mentioned
in the previous paragraph) has already begun [45]. Although
this could be achieved by merely increasing hardware re-
sources, there are other possible solutions. One solution to
increasing the system’s disparity range lies in preshifting
the phase correlation to cover the expected range of dispar-
ity for a particular section of the image. Between succes-
sive frames, the expected disparity is not expected to change
rapidly, so disparity values from the previous frame could be
used to determine the required amount of prewarping for in-
dividual pixels. At present the system has no memory of the
results from the previous frame when starting computations
on a new image pair.

We would also like to look into methods to automate the
search for optimal fixed-point widths. This could be done
through exhaustive search over a predetermined range of
bit-widths, or through a simplified search where each stage
in the pipeline is optimized on its own, assuming previous
stages have already been optimized and subsequent stages
are still in floating point (this approach lends itself well
to the hardware-emulation stage). Also, it should be possi-
ble to simultaneously optimize with respect to target device
space limitations; this will require development of integrated
fixed-point width search and synthesis/place & route algo-
rithms.

Finally, recent advancements in FPGA technology have
made it possible to include simple processor cores to run
software within an FPGA device. Such processors can be
customized for a particular application, and are well suited
for higher-level control tasks. The application of such cores
to implementations of vision algorithms warrants further in-
vestigation.
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