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Abstract

Segmentation and Tracking of the Left Ventricle in Cardiac MRI

Leyla Imanirad

Master of Applied Science

Graduate Department of The Edward S. Rogers Sr. Department of Electrical and

Computer Engineering

University of Toronto

2006

In this work, we have presented a novel approach to the problem of segmentation and

tracking of the left ventricle (LV). A set of radial lines are defined which meet at roughly

the centre of the LV. Intersection of each line with the myocardium, surrounding the

LV, is estimated in a recursive Bayesian framework using particle filters. The probability

distribution of boundary estimates on each line is calculated based on the directional

derivative of the given line initially. This probability density is coupled with the data

from adjacent lines to yield a better estimate of the boundary positions in an iterative

process.
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Chapter 1

Introduction

1.1 Motivation

According to estimates from the American Heart Association [1], each year 17 million

people die of cardiovascular disease (CVD) around the globe. More than 30% of all

deaths in Canada are due to cardiovascular disease, an estimated 13% of which is caused

by smoking. CVD is responsible for more than 75,000 deaths, claiming more lives than

any other disease in Canada [2]. Based on Canadian Institutes of Health Research in

1998, with $18.5 billion in expenditures, CVD was the most costly disease, accounting for

11.6% of the total cost of illness in Canada. Therefore any effort to improve screening,

diagnosis and treatment of CVD is highly beneficial to society.

Generally, cardiac examination involves assessing a combination of the four follow-

ing physilogical measures: cardiac structure, function, perfusion and myocardial via-

bility. Different imaging modalities, including Ultrasound (US), single-photon emission

computer tomography (SPECT), computed tomography (CT), and magnetic resonance

imaging (MRI) are used in performing cardiac examinations. Among existing methods,

cardiac MRI (CMR) has attracted significant interest in the research community, as a

single imaging technique capable of retrieving all cardiac measures [3, 4], appropriately

1



Chapter 1. Introduction 2

given the name “one-stop shop”. Despite MRI’s effectiveness and wide acceptance in

cardiovascular research, it is used infrequently in clinical applications due to some limi-

tations. The patient’s ability to remain still plays a major role in quality of MR imaging,

as patient movements and respiratory motion create artifacts in MR images, causing

degradation of image quality. However, advancements in MRI hardware and acquisi-

tion systems have improved image quality by minimizing such effects. Additionally, each

MRI acquisition consists of six to ten cross-sectional slices of the heart, all scanned in

20 phases over the cardiac cycle. Including some long-axis scans, there are about 200

images to be processed per cardiac acquisition session. Manual analysis of these images is

an extremely time-consuming and laborious task at minimum, not to mention subjective

and error-prone. Therefore, development of automatic systems to analyze these images

and derive useful clinical information from them is highly desirable.

Analysis of the left ventricle (LV) in particular has attracted a lot of attention in

the medical imaging community, as numerous CVD symptoms are manifested through

variations in the left ventricle’s volume, mass or motion pattern. Ejection fraction of the

left ventricle is another important clinical measure, which is derived based on the LV

volume at two critical cardiac phases. While segmentation of the left ventricle in each

short-axis slice at any time instance provides volumetric data of the given phase, tracking

or detection of the ventricle boundaries through the cardiac cycle represent the ventricle

motion.

Segmentation and/or tracking of the LV has been an active research topic for the past

decade. Numerous vision-based algorithms have been utilized to address this problem, the

most prevalent of which include thresholding, contour-based, and shape-based methods.

Recently different formulation of probabilistic models have also been deployed to solve

this problem. Most of these algorithms require either manual initialization of the contours

in the first image (of a stacked data set), or they rely on a prior model obtained from

training sets.
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1.2 Thesis Objective

Our objective is to segment the LV in spatio-temporal sequences (2D+T) of short-axis

cardiac MRI with minimal user interaction. The motion of left ventricle can be traced

through time once segmentation results for each 2D scan are available. We do not require

manual segmentation of the first frame or a training set for that matter1. The problem has

been formulated in a probabilistic framework, and particle filters are used in estimating

boundary positions. We make use of the fact that image data are causal, and combine

image measurements of each frame with boundary estimation of the previous frame to

perform online detection of the left ventricle boundary. The result is a fast and efficient

algorithm that is comparable with other vision-based methods.

This thesis is organized as follows. Chapter 2 reviews relevant physiology, as well

as a brief summary of MR imaging technology. The theory behind particle filters and

Bayesian estimation frameworks is also discussed in Chapter 2. This chapter also entails a

literature review of the methods that have been applied to the LV segmentation problem.

Chapter 3 provides a detailed discussion of our design; representation of the problem in

a probabilistic framework, estimation of boundaries at each frame, and propagation of

boundaries from one frame to the next. Qualitative results of using this algorithm at

different stages, and quantitative measures comparing our method with hand-segmented

data are presented in Chapter 4. We conclude by providing a summary of this thesis,

along with suggestions for future directions, in Chapter 5.

1Although such data could be used to improve the proposed method.



Chapter 2

Background

We introduced the LV segmentation problem as the subject of our work in the previous

chapter. This chapter provides a basic overview of the background theory necessary

for understanding the problem at hand, and the formulation of the proposed solution.

Section 2.1 gives a summarized description of heart physiology and different physiological

measures derived from CMR image analysis. The basis of the MR imaging modality, and

its usage in diagnosis of cardiovascular disease, are discussed in Section 2.2. Section

2.3 contains a literature review of various methodologies that are proposed to address

this problem. Finally, details of the Bayesian estimation frameworks and particle filters,

which form the basis of our design, are discussed in Section 2.4.

2.1 Physiology Review

2.1.1 Heart Anatomy and Dynamics

The cardiovascular system consists of the heart and two vascular systems- the systemic

and pulmonary circulations [5]. The human heart, shown in figure 2.1, is a muscular four-

chambered organ, responsible for pumping blood throughout the body using rhythmic

actions, or what is commonly known as the heart beat. The top two chambers, or atria,

4
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work as a reservoir to collect the blood that is coming into the heart. The bottom

two chambers, or ventricles, have strong muscles, enabling them to provide the pumping

action required to push the blood out of the heart and through the vascular systems. The

right side of the heart is part of the pulmonary circulation, which receives de-oxygenated

blood from body organs and delivers it to the lungs. The left side, on the other hand, is

an essential part of the systemic circulation and collects the oxygenated blood in the left

atrium and pumps it to various body organs using the left ventricle. Since a larger force

is required from the left side to participate in systemic circulation, the left ventricle has

a much thicker and more muscular wall. The myocardium, depicted in Figure 2.1, is the

muscular wall of the heart. The smooth outer surface of the myocardium is called the

epicardium, while the inner lining is known as the endocardium. The apex and base of

the heart, as one might expect are the bottom and the top of the heart as displayed in

Figure 2.1.

Each cardiac cycle is divided into two main stages [6]:

• Diastole: during the period of diastole (or relaxation), the atria contract in order

to push the blood to ventricles, which are relaxed and filling with blood.

• Systole: during this period the ventricles contract to pump the blood out of the

heart to lungs and other body tissues, while the atria are relaxed and filling.

Considering the fact that normal heart rate of a healthy adult is around 72 bpm

(beats per minute), each cardiac cycle takes approximately 0.8 seconds to complete.

2.1.2 Physiological Measurements

General health and proper function of the heart depends on numerous factors. Evaluation

of cardiac function is performed based on global and local physiological measurements.

Some of these measurements are listed below:
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Figure 2.1: Heart Structure (image reproduced from [7])

• End-Diastolic Volume (EDV ): the volume of blood in a ventricle at the end of

diastole, or filling stage.

• End-Systolic Volume (ESV ): the volume of blood in a ventricle right after systole,

or ejection period, which is a measurement of adequacy of cardiac ejection.

• Stroke Volume (SV ): the volume of blood ejected from a ventricle at each heart

beat, which is calculated based on EDV and ESV as follows:

SV = EDV − ESV. (2.1)

• Ejection Fraction (EF ): defined as

Ef =
SV

EDV
=
EDV − ESV

EDV
(2.2)
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is the fraction of the end-diastolic volume (EDV) that is ejected with each heart

beat.

Ejection fraction (EF) is normally computed for the left ventricle unless otherwise

stated. In addition to the above-mentioned measures, myocardial wall motion and thick-

ness are also derivable from cardiac imaging. These physiological values assist in diagnosis

of various heart conditions such as ischemia, or acquired heart disease [3].

2.2 MR Imaging

Many imaging modalities are used in the screening and diagnosis of cardiovascular dis-

ease. Some of the more established techniques, reviewed in [4], include: Ultrasound

(US), single-photon emission computer tomography (SPECT), computed tomography

(CT), and magnetic resonance imaging (MRI). Among these methods MRI deserves spe-

cial attention as the ideal “one-stop shop”, which can potentially address most cardic

examination needs [4, 8]. The basic theory behind MRI and its applications in cardiac

imaging are presented in the following section.

2.2.1 MRI Techniques

Magnetic resonance imaging (MRI) works based on detection of protons inside hydrogen

nuclei (H), which are abundant in water and fat tissues inside the body [8]. An important

characteristics of these protons is the spin property, which can be thought of as a small

magnetic field. Once placed in a strong magnetic field, the magnetic moments associated

with nuclear spins tend to align themselves with the magnetic field of the MRI scanner.

These protons are excited using an oscillating magnetic field, called radio frequency

(RF) field. The excitation results in the magnetization being tipped into the plane

perpendicular to the main magnetic field. The energy that is released upon relaxation of



Chapter 2. Background 8

these protons is detected, and the resulting signals are used to construct clinically useful

images [9, 10].

Advancements in the field of MR imaging have led to an increase in its usage in

clinical applications, especially in CMR imaging. Cardiac examination normally involves

assessing a combination of the following measures [3]:

• Cardiac structure: used in visualizing cardiac morphology in order to identify ab-

normalities caused by congenital heart defects, right ventricle, or pericardial prob-

lems.

• Cardiac function: used in objective quantification of ventricular volumes and ejec-

tion fraction (EF) as defined in Section 2.1.2.

• Myocardial perfusion: is performed in the evaluation of the blood flow to the heart

at rest and stress conditions. Radioactive contrast agents are used to trace distri-

bution of blood to different areas of the heart.

• Myocardial viability: provides distinction between reversible and irreversible my-

ocardial injuries. It plays an important role in prognosis of patients with coronary

artery disease.

The focus of our work is on the first two measures, cardiac morphology and function.

Depending on the specific application, different MRI acquisition methods are utilised.

Cardiac structure

The two basic techniques in CMR, which are used in accurate depiction of morphology,

are “black-blood” and “bright-blood” methods. Spin-echo (SE) was the first method

generating black-blood sequences which makes the blood appear darker than the my-

ocardium and surrounding fatty tissues. This method has proven to be useful in visual-

izing morphology in congenital heart disease and pericardial abnormalities [8]. On the
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other hand, blood generates bright signal intensity, appearing lighter than myocardium,

in bright-blood imaging [8]. The dominant sequences of this method include gradient-

recalled echo (GRE) and fast GRE (fGRE). These methods yield both morphological

and functional data as well as myocardial perfusion. A short-axis MRI scan using each

of these methods is depicted in Figure 2.2.

(a) (b)

Figure 2.2: (a) Short-axis spin-echo, (b) Short-axis gradient-recalled-echo (images repro-
duced from [10]).

Cardiac Function

Evaluation of cardiac function is performed in a global scale through analysis of EF, and

in regional scale by measuring contractile disfunction. The latter is derived based on

analysis of wall thickening in tagged MRI images, while the former is calculated based

on cine MRI techniques. Cine MRI generates images of a single or multiple slices every

30–50 ms during cardiac cycle, providing temporal as well as spatial information. Since

blood flow and respiratory motion create artifacts and noise in the resulting images,

the imaging time of each scan should be minimized to avoid motion blurring. These

artifacts pose some challenges in the analysis of cardiac images using traditional computer

vision algorithms. Additionally, during each MRI acquisition, typically six to eight cross-
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sectional slices are acquired from the apex to the base, all with around 20 time phases

over the entire cardiac cycle (one scan every 50ms) resulting in approximately 160 short-

axis 2D scans of the heart [4]. Figure 2.3 depicts six slices from the apex to the base. As

Figure 2.3: Six short-axis slices of heart from apex to the base using bright blood tech-
nique (image reproduced from [8])

one can imagine, manual analysis of this 3D+T, or better said 4D dataset, is prohibitive

and exhaustive, not to mention error-prone and subjective. This expensive and lengthy

process certainly poses problems for widespread use of CMR, despite its great capabilities

and potential. The need for semi- or fully-automatic methods to extract useful clinical

measurements from this data has led to an extensive amount of research in the field of

cardiac imaging. Segmentation of the left ventricle can be thought of as the first step in

the derivation of ventricular volume or EF. The next section presents a summary of some
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computer vision methods and how they have been adapted to address this particular

problem.

2.3 Literature Review

Numerous methods for segmentation and/or tracking of cardiac MRI in general, and left

ventricle in particular, have been proposed in the past decade. A collection of these

techniques are reviewed in [11]. In this section, we present a summary of these methods,

categorized based on the fundamental computer vision algorithm applied.

2.3.1 Thresholding Methods

Higgins et al. [12] devised a semi-automatic method for segmentation of the left ventri-

cle in 3D cardiac CT images. They utilise edge-preserving smoothing filters to reduce

random noise while maintaining sharp edges and image features. Sanchez-Ortiz et al.

[13] employed a thresholding technique to detect LV boundaries in 2D slices of 3D car-

diac ultrasound (US). A fixed threshold value is set based on image intensities while a

connected-component algorithm is executed on the 3D surface to identify the LV bound-

ary. Lynch et al. [14] have also utilised intensities in a threshold clustering technique.

These methods are efficient and easy to implement, however they are susceptible to in-

tensity variations and low gradients associated with most medical images. At each image

point, the gradient is defined as a 2D vector with components representing intensity

derivatives in horizontal and vertical directions. Large intensity changes at a boundary

result in large gradient magnitudes at the points on the boundary. Having consider-

able intensity variations at boundaries in an image is one of the main requirements of

the edge-based methods, which poses a challenge for CMR, which does not offer great

variations in intensity values between various tissue types.



Chapter 2. Background 12

2.3.2 Contour-based Methods

Originally formulated by [15], an active contour, also known as snake, is a specific type of

deformable model. A snake is a deformable open or closed curve, often represented by a

set of control points. A snake glides towards image features while maintaining continuity

and smoothness of the curve. Using edges as image features to attract the active contour

is a common approach, although the choice of features is application-specific [16]. The

energy of the contour, E(s), expressed as a function of control point indices s is defined

as [17]:

E(s) =
∑

s




αEcontinuity(s) + βEcurvature(s)

︸ ︷︷ ︸

internal forces

+ γEimage(s)
︸ ︷︷ ︸

image-based force




 (2.3)

The snake is deformed by minimizing a pre-defined energy function based on internal

and external forces. While internal forces control continuity and smoothness of the con-

tour, external forces drive the contour towards image features. Numerous segmentation

methods for cardiac MRI have been developed based on active contours. Terzopolouos

and McInerney [18] along with Davis [19] provide a detailed report on application of

deformable models in medical imaging. In the case of 3D cardiac data, the snake is

manually initialized by an expert, using a priori knowledge of the shape constraints at

the segmentation problem. A user’s interaction may be needed to fine-tune the curve in

areas of high curvature. A good initial estimate for one slice is used as an initialization

for the next slice in the sequence. Therefore, good initialization is required to obtain

good segmentation performance. Spreeuwers & Breeuwer [20] propose to estimate posi-

tion of epi- and endocardial contours jointly using active contours. A set of concentric

radial lines are defined which meet approximately at the centre of the LV. The intensity

profile along a radial line from the centre to the end of the line is derived. The active

contour nodes are assigned to points that have significant intensity variation along this
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profile as shown in Figure 2.4. The transitional intensity model is initialized for all the

radial lines of the first frame. This model is propagated through a time series, and the

reference profile is translated and scaled to adjust to new contours at each time frame.

Joint-estimation of contours makes this method more robust to low-contrast boundaries.

We employ the idea of joint contour estimation, as well as using radial lines in our design.

Figure 2.4: Intensity profiles used in joint boundary detection (image reproduced from
[20])

Level-set methods, initially introduced by Osher and Sethian [21], have been utilised

in numerous areas of computer vision including medical imaging. Level-sets are implicitly

defined contours which evolve in time based on intrinsic geometric measures of the image

and some speed function. The curve in 2D is defined as an isocontour of a 3D surface, i.e.

a level-set. Due to their dynamic nature, these curves are capable of adapting to different

topologies; so connectivity of contour regions is not a limiting factor in curve evolution

[22]. Additionally, contour curvature at each point is utilized to impose smoothness

constraints on the displacement of each point. These characteristics make level sets a

promising approach in contour tracking. Caselles et al. [23] regard the boundary detection

problem as finding a curve of minimal weighted length, or a geodesic active contour, in

the level set framework. This is an iterative method which converges once the contour

reaches a steady state. For high quality images with high-contrast boundaries, this
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technique yields good results for the LV segmentation problem. However this method

is slow with high computation cost, and the convergence criteria may not be met if the

boundary is low-contrast or non-existing.

2.3.3 Model-based Methods

One of the shortcomings of deformable models, discussed in Section 2.3.2 is that they are

attracted towards high gradient edges, which causes problems in data frames with a lot

of spurious edges. In order to make segmentation more robust to this noisy environment,

prior knowledge is used to impose restrictions on the shape of the object. Active Shape

Models (ASMs) [24], address the problem of locating objects with known shapes. Hand-

annotated segmentation of an aligned set of cardiac data is used as the training set

required in this method. Principle Component Analysis (PCA) is applied to represent

the training set as a mean shape and common modes of shape variation. A global search is

performed on a test image to match the mean shape to image features. This shape is then

deformed based on the model’s variation modes to better capture local characteristics

of the object in the test image. Active Appearance Models (AAMs) [25] follow the

same idea, with the exception that appearance characteristics such as intensity values or

textures are used to construct the training set. Different research groups [26, 27, 28, 29]

have applied either ASMs, AAMs, or a combination of both to the problem at hand.

Considering the fact that the curve can only deform according to shape variations in

the model, having a comprehensive model is key to the accuracy of these approaches.

One of the disadvantages of such models is the manual segmentation required for the

development of the training set which, in addition to being subjective, is a cumbersome

and labour-intensive task. Additionally, the preprocessing step needed to perform PCA

and align the test image to the training set increases the computational time of the

algorithm.
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2.3.4 Probabilistic Methods

In order to avoid the overhead introduced by the generation of a training set in model-

based methods, probabilistic methods have been proposed to tackle the segmentation

problem. Dias et al. [30] derive an estimation for position and thickness of the my-

ocardium in sequences of echocardiographic images. A likelihood function is derived

based on radial scan lines as previously seen in [20]. However in this case, the epi-

and endocarial borders are derived disjointly. Additionally, the assumption is that three

distinct regions along each scan line are identified: (a) centre point to endocarium, (b)

myocardium, (c) outer myocardial boundary to the end of scan line. Maximum a poste-

riori (MAP) criteria is applied in finding the borders. Although the focus of this work

is on echocardiographic images, the algorithm is also applicable to MRI, and we employ

some of these ideas in our design. Weng [31] also uses intensity values in learning-based

ventricle detection in cardiac MR images. Critical points along each scan line’s intensity

histogram are identified and used in maximum-likelihood (ML) estimation. In both of

the above-mentioned techniques, the assumption is that intensity is roughly constant in

each region, which does not necessarily holds true in cardiac data. Recent learning-based

approaches like the ones proposed by Sun et al. [32], and Sénégas et al. [33] are more

inclined towards using shape and motion models in a Bayesian framework. Both methods

rely on estimations at each frame of a sequence to predict the boundaries in subsequent

frames in a sample-based approach; however, they both require constructing an initial

training set to be used for the shape model. Therefore, in order to achieve good segmen-

tation results with these techniques, a large number of samples should be used to capture

a wide variety of shape deformations, adding to the computational cost of the algorithm.
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2.3.5 Thesis Contribution

In this thesis, we present a novel approach in segmentation and tracking of the left

ventricle in a probabilistic framework. We have developed an algorithm to estimate

inner and outer boundaries of the left venctricle on a set of radial lines, similar to the

approach taken by Dias et al. [30]. The estimations for each line are propagated to

the next line using particle filters. Motivated by the idea of joint boundary derivation

using coupled active contours [20], the initial estimated boundaries from all the lines are

refined in an iterative step. Finally, the final estimate of each frame is propagated to the

subsequent frame, resulting in full segmentation of a 2D+T dataset.

2.4 Probabilistic Framework

In this section, we introduce the probabilistic framework which is applied in many com-

puter vision problems. In the field of computer vision, where 2-D image data are the

main source of information, inference of scene data from noisy images is a challenging

task. Bayesian approaches combine the image data and prior knowledge about scene

characteristics to infer the scene data, often referred to as state information.

2.4.1 Bayesian Formulation

The idea behind Bayesian approaches is to deploy prior knowledge about the scene to

infer state information from observation (image) data. For the sake of formulation,

observation data is defined as Z whereas the state is represented as X. The objective of

using a Bayesian framework is to compute the conditionl probability p(X|Z), frequently

referred to as the posterior probability distribution in the literature. The prior, p(X),

embeds prior knowledge about the scene or state vector. Based on Bayes theorem:

p(X|Z) =
p(Z|X)p(X)

p(Z)
. (2.4)
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Since p(Z) is derived based on image data and is independent of state information, it is

treated as a normalizing factor resulting in a posterior:

p(X|Z) ∝ p(Z|X)p(X). (2.5)

Computation of p(X|Z) given p(X) and p(Z|X) is called Bayesian inference, where the

distribution p(Z|X) is appropriately called the likelihood function, representing the like-

lihood that the state X generated the observed data Z.

2.4.2 Recursive Bayesian Framework

As described in the previous section, the Bayesian framework can be established to

provide information regarding scene data. The same process is applicable to sequences

of images recursively. Using this approach, the posterior probability distribution from

the previous iteration serves as the prior for the current iteration.

A tracking problem in computer vision can be thought of as estimating state values

from noisy observations or measurements. The state is normally a vector of multiple

variables and it is defined based on the application. For instance, in our design we define

the state as a two-dimensional vector, containing the parameters of boundary positions

to be determined. In tracking applications the state to be determined is usually the

trajectory, velocity, or position of moving objects. Observations, on the other hand,

depend on the image data.

Let us first introduce the unknown state vector xt as a n-dimensional vector contain-

ing variables to be estimated. Additionally, state history is defined as Xt = {x1, · · · ,xt}

which represents the sequence of target states up to time t. Similarly the set of image fea-

tures or observations from which we estimate the state is defined as Zt, with observation

history represented by Zt = {Z1, · · · ,Zt}.
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The goal of probabilistic formulation is to estimate the posterior distribution given

observations, p(Xt|Zt). As defined by [34], the marginal posterior, or filtering distribution,

at the current time is given by:

p(xt|Zt) =

∫

x1

· · ·
∫

xt−1

p(Xt|Zt). (2.6)

Using Bayes’ rule, the posterior distribution can be written as

p(Xt|Zt) =
p(Zt|Xt)p(Xt)

p(Zt)
. (2.7)

The posterior Equation 2.7 is reformulated as

p(Xt|Zt) ∝ p(Zt|Xt)p(Xt) (2.8)

assuming that the observation history is independent of states. Assuming a first order

Markov model for dynamic states, which only considers the immediate preceding state,

results in:

p(xt|Xt−1) = p(xt|xt−1) (2.9)

which results in defining the sequence prior p(Xt) as

p(Xt) =
( t∏

j=2

p(xj|xj−1)
)

p(x1). (2.10)

Additionally, if we assume conditional independence of observation data, the sequential

likelihood can be written as

p(Zt|Xt) = p(zt|xt)p(Zt−1|Xt−1)

=
t∏

k=1

p(zk|xk).
(2.11)
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Substituting for prior and likelihood terms from Equations 2.10 and 2.11 in the pos-

terior distribution relation defined in Equation 2.8 results in

p(Xt|Zt) ∝ p(Zt|Xt)p(Xt)

=

t∏

k=1

p(zk|xk)p(x1)

t∏

j=2

p(xj|xj−1)

∝ p(zt|xt)p(xt|xt−1)p(Xt−1|Zt−1)

(2.12)

which is a recursive expression for the posterior distribution. The filtering distribution

can also be represented recursively as

p(xt|Zt) =

∫

x1

· · ·
∫

xt−1

p(Xt|Zt)

= cp(zt|xt)p(xt|Zt−1),

(2.13)

where c is a normalizing constant, and the prediction distribution is

p(xt|Zt−1) =

∫

xt−1

p(xt|xt−1)p(xt−1|Zt−1). (2.14)

The recursive nature of Bayesian inference is advantageous in the sense that there is

no need to store all previous data; the past posterior, in addition to current measure-

ments, is sufficient to infer the current probability distribution. Considering the Bayesian

formulation discussed above, the recursion occurs in two stages: prediction (propagation)

and observation (measurement). As depicted in Figure 2.5, the prediction stage involves

dynamic motion of the state, whereas observation stage computes the likelihood of ob-

servation data given a certain state.



Chapter 2. Background 20

Figure 2.5: Recursive Bayesian Inference (image reproduced from [34]).

2.4.3 Particle Filter

In the previous section we established a probabilistic framework used in many computer

vision applications. In this section we discuss the particle filter, a heuristic algorithm

based on the Bayesian framework.

If the process is noise free then the states can be exactly determined based on the

observational data. In reality, the observational data are almost never noise-free, and

the posterior is estimated heuristically. If the posterior density at every time step is

Gaussian, hence representable by its mean and variance, the recursive posterior density

and filtering distribution in Equations 2.12 and 2.13 becomes a Kalman filter. In addition

to the Gaussian density assumption, the Kalman filter also requires an assumption of

linear dynamics to hold. Due to such restrictions practical applications of Kalman filters

in non-Gaussian process estimations are limited. The Extended Kalman Filter (EKF)

was developed to handle some of the short-comings of the Kalman filter [35]. Motion

dynamics can be linear or non-linear in the EKF. It effectively approximates the non-

Gaussian density as a Gaussian. If the true density is non-Gaussian, the approximation
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will be a poor representation of the underlying density function. In such cases, Sequential

Monte Carlo (SMC) methods will yield better performance [36].

As defined by Ristic et al. [37], Sequential Importance Sampling (SIS) is a general

Monte Carlo integration method that performs estimation based on a point mass or

“particle” representation of probability densities. The key idea of a particle filter is to

approximately represent the posterior distribution by a set of random samples and their

associated weights. Better approximation to the density function can be achieved by

increasing the number of samples or particles.

CONDENSATION Algorithm

Isard and Blake [38] first introduced the “CONDENSATION” algorithm in 1998. CON-

ditional DENSity propagATION (CONDENSATION) algorithm aims to estimate state

variables in sequences of images taken at successive times. The state of the object at

time t is denoted as xt with its history defined as Xt = {x1, · · · ,xt}. Similarly, the

image observations or measurements are denoted Zt with history Zt = {Z1, · · · ,Zt}.

The posterior distribution at iteration t − 1 is represented by the weighted sample set

SSt−1 =
{

(s
(n)
t−1, w

(n)
t−1), n = 1, · · · , N

}

. The s
(n)
t−1 value represents the state (position) of

the nth particle on the distribution at time t − 1, whereas the weight, w
(n)
t−1, defines the

likelihood of each state.

The prediction, following by the observation stage, discussed in Section 2.4.2 are ap-

plied to this sample set, resulting in posterior density estimation for the current iteration

as shown in Figure 2.6. During the prediction stage, the particles are subjected to the

motion model, which normally consists of a drift and a diffusion component as displayed

in Figure 2.6. The likelihood function is applied to update the weights of the new par-

ticles based on p(Zt|xt). In addition to the two steps mentioned above, resampling is

performed to achieve more efficient sampling. The resampling stage involves selecting

particles based on their weights; particles with higher weights may be selected multiple
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Figure 2.6: Particle Filter Progression (image reproduced from [38])

times, while particles with smaller weights may not be selected at all. The purpose of

resampling is to ensure that there are enough particles to represent the distribution in

the regions of high probability. In the next chapter we apply this framework in the

segmentation of the LV in CMR images.
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Methodology

In this chapter we provide a detailed description of our algorithm used in segmentation

and tracking of the LV. In order to do so, both endocardial and epicardial borders, also

known as inner and outer borders, should be detected. Each sequence contains one slice

of short-axis cardiac MRI in 20 phases. Each instance of a 2D scan is referred to as a

frame, and these frames are captured at 50ms per frame. Strong temporal correlation

between frames enables us to propagate the boundary estimation results from one frame

to the next in a recursive Bayesian framework. In traditional approaches, the boundaries

on the first frame are manually initialized. However, in our design we use particle filters in

automatic estimation of the contours in the first frame with high efficiency and minimal

user interaction. The design is decomposed into two main stages: (a) primary contour

derivation (PCD), (b) iterative contour refinement (ICR). Figure 3.1 depicts a diagram

of the overall system design. A set of radial lines are defined which meet roughly at the

centre of the LV. The initial prior density is generated based on the user’s selection of

boundary points on the first line. The algorithm continues by propagation of sample sets

from one line to the next in the same frame (spatially), or from a line to the same line in

the next frame (temporally). Both the PCD, and ICR modules are implemented based

on the particle filter algorithm, discussed in Section 2.4.3. Initially, particle filters are

23
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used in estimating boundary points on each line using image gradients as observation

data. All lines are visited once and the intersection of each line with endocardial and

epicardial boundaries are estimated. Once we have an initial estimate for every line,

boundary positions are adjusted based on continuity and smoothness constraints imposed

by neighbouring lines. The refinement step is iterative and probabilistic as well. In order

to avoid systematic errors, the starting line and traversal direction– clockwise (CW) or

counter clockwise (CCW)– for each iteration is chosen randomly.

3.1 System Initialization

The contour estimation problem is reformulated as estimating a set of points on each

of the inner/outer boundaries and using spline fitting to derive the entire contours. A

formal definition of radial lines and sample sets are discussed in this section.

3.1.1 Definition of Radial Lines

As part of the initialization step, the user is prompted to specify two points; the first point

O = [xc, yc]
T is selected roughly at the centre of LV while the second point, R, is chosen

randomly outside the epicardium. Distance between the centre and the external point

determines a radius ρ. We also define an angular sampling parameter ∆ω as the angular

separation between each two adjacent lines. Assuming polar coordinates centred at the

origin O, each radial line in this system is represented by li = [ρ, θi] where θi = i ∗ ∆ω

for i = 0, 1, · · · , L− 1, where L =
⌊

360
∆ω

⌋
is the total number of radial lines in the image.

This assumes that the initial line defines θ = 0 in the defined coordinate system. For the

images shown in this chapter ∆ω = 15◦, resulting in L = 24.

In addition to line specification, intersection of the first line with the inner and outer

wall, xp = [rp, dp], are selected by the user. An example of these lines and boundary

initializations on the first line are shown in Figure 3.2.
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Figure 3.2: State Initialization on the First Line

3.1.2 Prior Density Generation

We covered the basis of the recursive Bayesian framework and particle filters in Sec-

tion 2.4. The variable to be estimated is referred to as the state. For our design, we

define the state to be x = [r, d]T where r is the distance from centre to endocardial

(inner) ventricle boundary, and d is the myocardium thickness (distance from the inner

to the outer boundary). Equivalently, the state can be defined as x = [r, r′]T where

r′ = r + d represents the distance from the centre to the outer boundary. Based on the

specific application and ease of use, these two state definitions are used interchangeably

throughout this document. We start with formal introduction of some of the notation
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used in our algorithm description. By definition, subscripts of sample set SSt,f
i,l , repre-

sent lth iteration of line i, while superscripts denote f th iteration of time frame t. A

compact representation of sample set is denoted SSk where k = (i, l, t, f). Additionally,

SSk =
{

sk
(j), w

(j)
k

}

with sk
(j) denoting particle jth and w

(j)
k representing weight of jth

particle at iteration k.

The user-selected initial state xp = [rp, dp], containing the initial state information

of the first line, is used to construct the initial sample set, or prior density, of line

one, SSk0, with k0 = (1, 0, 1, 1). For the sake of simplification, SSk0 is represented

as SS0 =
{

s
(j)
0 , w

(j)
0

}

for j = 1, 2, · · · , N , where each particle s
(j)
0 =

[

r
(j)
0 , d

(j)
0

]T

is

constructed in two steps:

• the r
(j)
0 value is drawn randomly from a Normal distribution N (µr; σr) with µr = rp

and parameter σr = 5 pixels, and

• the d
(j)
0 value is drawn randomly from a Rayleigh distribution R(α) with parameter

α defined as α = dp

√
2
π
.

Smaller values of σr create more localized distribution, whereas larger values of it will

cause more divergence in the particle states. In order to ensure that values of d are

always positive, we are randomly selecting them from a Raleigh distribution. The same

Normal distribution used for r can be applied in deriving d as well, however that requires

adding a verification step to make sure values of d never become negative. In addition to

position states, we need to initialize weights for each particle. A uniform prior is assumed

for initial weights resulting in w
(j)
0 = 1

N
for each sample j = 1, 2, · · · , N . The total num-

ber of particles, N , is a user-specified parameter. Theoretically, increasing the number

of particles will yield a better approximation to the true underlying density function.

However, since computation time is directly influenced by the number of particles used,

we limit ourselves to N = 50 in this specific application. More details on selection of N

and how it effects the overall performance are discussed in the Chapter 4.
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3.2 Primary Contour Derivation (PCD)

Starting from line i = 1, the posterior distribution is calculated for the line, using the

three stages of the Condensation algorithm, as described in Section 2.4.3. Through

an iterative procedure, diffusion of sample set SSk−1 results in new state positions. The

posterior density, or sample set, SSk is formed by calculating weights of the new particles

based on the likelihood function. This new set is resampled, and used in the next iteration

of the algorithm. The iteration for each line continues until the convergence criteria are

met. The posterior distribution of line i, once converged, is used as the prior for line i+1,

traversing in CCW direction. This process continues until all the lines are visited once.

A flowchart, demonstrating sequences of events in this module, is depicted in Figure 3.3.

A more detailed description of each stage is reviewed in this section.

3.2.1 Prediction

As depicted in Figure 2.5, the prediction stage involves two steps: a deterministic drift,

and stochastic diffusion. Prior knowledge of some motion model determines the amount

of drift from one iteration to the next, whereas stochastic diffusion includes inherent

noise and uncertainties of the motion model. Whether prediction is performed on a

single line or from one line to the next, there is no appropriate deterministic motion

model known for our case. Therefore, our prediction stage only consists of stochastic

diffusion, modeled using Gaussian noise. This approach is sometimes called a “random

walk” motion model. Each particle s
(j)
k−1 =

[

r
(j)
k−1, d

(j)
k−1

]T

, with weight w
(j)
k−1=

1
N

, in

sample set SSk−1 is subjected to a prediction stage to give way to s
(j)
k =

[

r
(j)
k , d

(j)
k

]T

as
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follows

s
(j)
k = s

(j)
k−1 + nk−1 nk−1 = [ηr, ηd]

T

r
(j)
k = r

(j)
k−1 + ηr ηr ∼ N (0; σr)

d
(j)
k = d

(j)
k−1 + ηd ηd ∼ N (0; σd) (3.1)

where σr, and σd are user-defined parameters and are set to 5 and 3 pixels respectively.

Selecting larger σ values creates more diffusion in the sample set.

3.2.2 Observation

The likelihood function p(Z|x) assigns weights to particles based on observation data Z.

The directional derivative D along each radial line serves as the underlying measurement

used in this application. Intensity changes along a line result in peaks and troughs on the

derivative D along that line. In order to calculate Di along line li = [ρ, θi], we compute

the directional derivative at each pixel (x, y) in the direction of θi as

Di = Ix cos(θi) − Iy sin(θi), (3.2)

where Ix and Iy are estimates of image gradients in the x and y directions respec-

tively. These gradients are calculated by convolving the image with a-first-derivatives-

of-Gaussian kernel in the x, and y directions. In order to preserve low-contrast edges,

a small standard deviation of σg = 2 is selected for the Gaussian smoothing function.

Recalling from Section 3.1.1, each line is identified by a θ and a ρ. In order to find the

points on the line li, we transform the polar coordinates to the cartesian coordinates at

evenly spaced values of ρ as

x̄ = ρ cos(θi)

ȳ = ρ sin(θi)

(3.3)
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where x = bx̄c, and y = bȳc. To find the value of directional derivative at a specific

radius corresponding to (x̄, ȳ), we perform bilinear interpolation based on Di as

Dint,i = Di(x, y)(x+ 1 − x̄)(y + 1 − ȳ) +Di(x + 1, y)(x̄− x)(y + 1 − ȳ)+

Di(x, y + 1)(x+ 1 − x̄)(ȳ − y) +Di(x + 1, y + 1)(x̄− x)(ȳ − y) (3.4)

For the sake of simplification, the interpolated derivative for the line i is denoted Di. An

example of a directional derivative, with ∆ρ = 1 is depicted in Figure 3.4.

Derivative values with magnitude below a certain threshold, displayed as dashed lines

in Figure 3.4, are surpressed. This threshold is initially set to 15% of |Di|max, although it

is dynamically reduced to allow for less significant peaks, if deemed necessary. Since the

transition from the ventricular cavity to myocardium is a bright to dark transition, the

endocardial (inner) boundary intersection is assumed to be on a negative peak (trough).

The outer boundary, on the other hand, could be on a negative or positive peak depending

on whether it is adjacent to the right ventricle or to other organs. Observation data Zi

pertaining to line i is derived from derivative measurements of that line as the set

Zi =
{
[z, z′]T s.t. z ∈ Zn, z′ ∈ Za, and z′ ≥ z + Tmin

}
(3.5)

where Zn is the set of negative peaks (troughs) in the derivative profile, and Za is the

set of all peaks and troughs. The minimum allowed myocardium thickness, Tmin, can be

approximated from an end-diastole scan of a dataset, and is defined as 7 pixels in our

application.

Once the observation set is constructed, particle weights are updated based on the

likelihood function w
(j)
i = p(Zi|x = s

(j)
i ) as derived in Section 2.4.3. This likelihood

function is derived based on probabilities of all M = | {Zi} | observation data given
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particle x, and is calculated as

p(Zi|x) = γ +
1 − γ

M

∑

m=1:M

p(zm|x) (3.6)

where γ is included to account for outlier probabilities and dominates when observation

data is weak or non-existing. Choosing an appropriate value for γ is a challenging prob-

lem, as the observation data vary from one line to the next. Therefore, we are setting

γ = 0 in our experiments. Instead, in the case of weak observation data, we assign

uniform weights to the particles.

Observation density for each measurement zm,i = [zm, z
′

m] ∈ Zi, given particle s
(j)
i =

[

r
(j)
i , r

′(j)
i

]T

, is obtained based on the joint probabilities of each state element, i.e. r

and r′ as

p
(

zm,i|x = s
(j)
i

)

= pr(zm|r(j)
i )pr(z

′

m|r
′(j)
i ), (3.7)

and pr(z|r) is computed using a Gaussian with mean r and standard deviation ψ(r, z),

defined shortly. This results in

pr(z|r) =
c ∗ h(z)√
2πψ(r, z)

exp
{
− (z − r)2

2ψ(r, z)2

}
(3.8)

where c is a normalizing constant, and h(z) is the normalized magnitude of the derivative

at peak position z. For a set containing all choices of the first peaks, Z1 ⊆ Zn, the peak

function h(zm) for each zm ∈ Z1 is defined as

h(zm) =
|Di(zm)|

∑

zm∈Z1
|Di(zm)| . (3.9)

We have included h(z) in our formulation to favour peaks with higher magnitude, hoping

these peaks are located around the inner/outer boundaries. Alternatively, h(z) can be

defined as the normalized log of magnitude of derivative peaks. We have deployed the first

formulation in our design considering the small range of magnitudes. Another function
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introduced in Equation 3.8 is ψ(r, z), which provides a “range of effect” for each element

of a particle, depending on particle’s relative position to observation data and to other

particles in the sample set. A large value of ψ(r, z) is assigned if a particle’s distance to

its nearest peak is larger than the distance of other particles to their respective nearest

observation peaks. Using this function, the particles that are farther away from the

observation data are also assigned some weight, even though these weights will be small.

Mathematically, in order to find the range of effect of r, the first element of particle

s
(j)
i =

[

r
(j)
i , r

′(j)
i

]T

, where the set containing the first elements of observation data is

represented by Z1, we define q(r) as

q(r) = [q1, q2, · · · , qN ] for j = 1, · · · , N

qj = min
{
vm,j| vm,j = |zm − r(j)| for each zm ∈ Z1

}
(3.10)

Vector q(r) represents the distance between value r of all particles to their respective

nearest measurement peak. Elements of this vector are linearly mapped to a constant

sigma range [σmin, σmax] to yield the ψ function as

ψ(r(j)) =
qj − minq(r)

max q(r) − minq(r)
(σmax − σmin) + σmin (3.11)

Weights derived based on the likelihood function of Equation 3.6 are normalized

and assigned to particles to construct the new sample set representing the posterior

distribution for this stage.

3.2.3 Resampling

A common problem with standard particle filter recursion is its degeneracy problem

[37]. Without a resampling stage, weights from the previous step are carried to the next

step, multiplied by the weights calculated in that iteration. This sometimes leads to

the problem that after a few recursive steps, all but a few particles will have negligible
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weights. This is known as the degeneracy phenomenon, and it is remedied—at least to

some extent— by adding a resampling step. Resampling eliminates particles with small

weights, whereas particles with high weights may be selected multiple times, which will

be diffused during the prediction stage. Since particles are resampled based on weights

it makes sense to use cumulative distribution function (CDF) of weights to simplify the

task of particle selection. Having sample set SSk =
{

s
(j)
k , w

(j)
k

}

, we can build cumulative

weights as follow [16]:

c
(0)
k = 0,

c
(j)
k = c

(j−1)
k + w

(j)
k for j = 1, · · · , N

(3.12)

Resampling is then performed in four steps:

• Draw random number u from uniform distribution: u ∼ U [0, 1]

• Find the smallest j for which c
(j)
k ≥ u

• Set s′
(n)
k+1 = s

(j)
k

• Assign uniform weights, w
(n)
k+1 = 1

N

In a noisy environment such as our MR images, where the observation data consist

of multiple hyphotheses, the particles sometimes represent an incorrect density. If the

degeneracy problem is not corrected, the faulty distribution is propagated to the next

iteration, decreasing the chances of recovering from the error. We have experimented with

the idea of enhanced resampling, which consists of manual insertion of particles at the

observation data during the resampling phase. This method proved to be useful in some

cases, where the density of particles around the true boundary was small. However, we

should not forget the negative effect of this process, as the noisy observations dominate

the distribution.
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3.2.4 Line Convergence Criteria

Even though observation data of an individual line does not change from one iteration to

the next, the random diffusion and resampling steps create a different set of particles at

each iteration. Given that the particle filter is a heuristic approach, we hope that after

a few iterations, the sample set will converge to a close approximation of the density.

Kullback-Leibler (KL) distance or asymmetric divergence [39] gives a measure of the

‘distance’ or divergence between two distributions p(x) and p̃(x) as

KL = −
∫

p(x) ln
p̃(x)

p(x)
(3.13)

where p(x) is assumed to be the true density. Even though this method provides a

quantitative measure for comparing densities, there are two issues with applying it to

our case. First, particle filters do not represent a continuous density function explicitly.

The density can be computed based on the distribution of particles, but it is a slow

process. The second problem is related to the fact that the KL-divergence considers

p(x) to be the true density, which does not hold true for our problem. In other words,

if the posterior from the previous iteration p(x) is noisy, the algorithm will converge if

the current posterior p̃(x) has the same noise pattern as the previous one. Therefore,

we have proposed an alternative convergence criteria based on particle weights. At each

iteration if a large percentage of particle weights fall below a certain weight threshold

the algorithm converges. Mathematically put, the iteration stops if

∣
∣
∣

{
w

(j)
i |w(j)

i ≤ 0.5 × max(wi)
}
∣
∣
∣ > 0.8N. (3.14)

3.2.5 Line Propagation

After the convergence, we have a probability distribution for line i, represented by sample

set SSi =
{

s
(j)
i , w

(j)
i

}

. This discrete distribution is stored before it is subjected to the
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resampling step. The small angular separation ∆ω between adjacent lines enables us to

use the posterior sample set from the previous line as the prior density of the current line.

Therefore, our sample set is propagated to the next line in counter clockwise direction

and the same iterative process is performed to converge to a posterior estimation for the

next line and so on. This process continues until all lines have been visited once and

we have stored SSk =
{

s
(j)
k , w

(j)
k

}

where k = (i, l, 1, 0) for each line i. Even though

we obtain a probability distribution for each line during the primary contour derivation

stage, we do not choose specific particles representing the boundaries. Instead the top

A highest-weighting particles are saved to be used for the contour adjustment stage.

Having higher weights increases the chances of getting selected during the resampling

stage discussed in Section 3.2.3. The final boundary position determination based on

sample sets is postponed to after the contour refinement step, discussed below.

3.3 Iterative Contour Refinement (ICR)

In the previous section we discussed different stages of a recursive probabilistic framework

for estimation of density distributions for each radial line in the first frame.

In this section, we build upon our initial estimate to further refine probability distri-

butions by utilizing state information from neighbouring lines. Figure 3.5 represents a

flowchart, containing different steps of the ICR. Initially, we randomly choose a line i in

frame t, and a traversal direction, CW or CCW. If it is the first iteration of the ICR, the

sample set from the primary contour derivation stage is used as the prior for line i; other-

wise, the posterior of the previous iteration is used. Each iteration of this stage involves

traversing the radial lines and computing a revised probability distribution for each line,

propagating density functions from one line to the next as described before. During

this process, the same prediction and resampling steps, discussed in Sections 3.2.1 and

3.2.3 are applied. However, the observation stage is somewhat different as the likelihood
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Figure 3.5: Iterative Contour Refinement Flowchart
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function considers both measurements on the current line, i.e. derivative profile, and

the top A states on the immediate neighbouring lines. Due to spatial coherence between

neighbouring lines, we can impose continuity and smoothness constraints as previously

reviewed in the active contour framework, Section 2.3.2. The next section provides a

more in-depth description of our updated observation stage.

3.3.1 Coupled Observation Density

In the previous section we discussed the derivation of the likelihood function considering

only the data measurements (i.e. intensity derivative peaks) for each line, resulting in

updating weights based on w
(j)
i = p(Zi|x = s

(j)
i ). In this section we introduce another

measurement parameter Yi for each line. Assuming that the likelihood probabilities

for the two set of measurements Zi and Yi are independent, the likelihood function for

particle s
(j)
i results in weight updates as

w
(j)
i = p(Zi|x = s

(j)
i )p(Yi|x = s

(j)
i ) (3.15)

where p(Zi|x) is derived the same way as Equation 3.6, but how do we define Yi for each

line? Recall from the previous section we carry along the top A (defined as 4 in this case)

estimates, resulting in

Ei =
{
e

(a)
i =






r
(a)
i

r
′(a)
i




 for a = 1, · · · , A

}
. (3.16)

We can construct the observation data set Yi by forming quadruple vectors, each

vector defined based on a unique permutation of state elements in the top A candidates
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in the previous and next lines. In other words

Yi =
{
(r

(a1)
i−1 , r

′(a2)
i−1 , r

(a3)
i+1 , r

′(a4)
i+1 )

}
for different permutations of a1, a2, a3, a4 = 1, · · · , A.

(3.17)

The total number of observations is proportional to the number of selected particles,

and is given by My = A4, considering the four elements of the quadruples. The likelihood

of Y observations given sample x = s
(j)
i is given by

p(Yi|x = s
(j)
i ) =

My∑

b=1

p(yb|x). (3.18)

Each triple of particles—two on the adjacent lines and particle j on the current line—

are evaluated with regards to two criteria, the continuity constraint and the smoothness

constraint. The continuity constraint poses limitations on variations of state positions r

and r′ from one line to the next, whereas the smoothness constraint ensures that each of

the inner/outer boundaries are relatively smooth, without rough edges or corners. The

probability distribution of each measurement yi = (r
(a1)
i−1 , r

′(a2)
i−1 , r

(a3)
i+1 , r

′(a4)
i+1 ), is taken as

p(yi

∣
∣x = s

(j)
i ) = pc(yi

∣
∣s

(j)
i )ps(yi

∣
∣s

(j)
i ). (3.19)

Recall that the continuity constraint controls deviations of the current estimate with

neighbouring lines. The continuity function C for r (or r′) values on three consecutive

lines i− 1, i, i+ 1 is defined as:

C(ri−1, ri, ri+1) =
1

2

[
(ri − ri−1)

2 + (ri − ri+1)
2.
]

(3.20)

Since the continuity constraint C(·) is always positive, a half Gaussian distribution (note

the normalizing factor of two in the numerator) is used to derive the continuity probability
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pc for each contour

pc(yi

∣
∣s

(j)
i ) = pc(r

(a)
i−1, r

(a)
i+1|r(j)

i )pc(r
′(a)
i−1, r

′(a)
i+1|r

′(j)
i )

pc(r
(a)
i−1, r

(a)
i+1|r(j)

i ) =
2√

2πσc

exp
{
−C(r

(a)
i−1, r

(a)
i+1, r

(j)
i )

2σ2
c

}

pc(r
′(a)
i−1, r

′(a)
i+1|r

′(j)
i ) =

2√
2πσc

exp
{
−C(r

′(a)
i−1, r

′(a)
i+1, r

′(j)
i )

2σ2
c

}

(3.21)

Equation 3.21 indicates that the chosen probability is a Gaussian distribution in C(·)

with zero mean and standard deviation σc. The density function favours smaller values

of the continuity constraint, defined above. The effect of the continuity constraint on the

overall likelihood calculation is controlled by the user-defined parameter σc. While large

values of σc allow more variations in state positions vs. neighbouring lines, smaller values

limit particle positions to be close to the states of adjacent lines.

In addition to the continuity constraint defined in Equation 3.21, we also define the

smoothness probability distribution ps as

ps(yi

∣
∣s

(j)
i ) = ps(r

(a)
i−1, r

(a)
i+1|r(j)

i )ps(r
′(a)
i−1, r

′(a)
i+1|r

′(j)
i )

ps(r
(a)
i−1, r

(a)
i+1|r(j)

i ) =
1√

2πσα

exp
{
−(αin − αm)2

2σ2
α

}

ps(r
′(a)
i−1, r

′(a)
i+1|r

′(j)
i ) =

1√
2πσα

exp
{
−(αout − αm)2

2σ2
α

}

(3.22)

where αin and αout are illustrated in Figure 3.6. The mean and standard deviation of this

Gaussian distribution, i.e. αm and σα are parameters that are derived based on empirical

results and analysis of hand-segmented data. In general, left ventricle inner and outer

contours present smoothness angles of around αm = 170◦. The standard variation, σα,

is defined as 50◦ to allow for various inner contour smoothness angles. The effects of

varying σα are discussed in more details in Chapter 4.

For ∆θ = 15◦ and L = 24, the expected smoothness angle for a circle is equal to

αm = 165◦. This number will increase to αm = 170◦ for ∆θ = 10◦.
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Figure 3.6: Smoothness Angles

3.3.2 State Estimation

Based on the iterative process described in Section 3.3, all the radial lines are visited

and state density for each line is determined. The density estimate for the first line of

the current frame is used as the prior for PCD stage of the subsequent frame. The same

refinement step is performed, resulting in derivation of contour positions for each frame

in a dataset. However, we still need a way to estimate the position of boundaries based

on these distributions. The weighted average of top A particles after each iteration is

used to represent the final state for each line. The frame iteration converges if none of

the final estimates moves more than a certain threshold from one iteration to the next.

This threshold is defined as 4 pixels in our design. Spline fitting is performed to connect

the points around the inner and outer borders, yielding a complete contour derivation

for all the frames.
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Results

We provided a detailed description of our overall design and its various components in

Chapter 3. In this chapter we demonstrate some of the results obtained by running our

algorithm on short-axis cine MRI data sets. Each complete data set contains 12 slices

of short-axis MR images, each slice captured at 20 phases or frames. Unless otherwise

specified, the presented results are generated using the second slice (Z2) of the sample

data set (C1). The original size of each 2D scan is 256× 256 pixels; however, zooming in

the region of interest yields image sizes of roughly 100×100 pixels. Processing each frame

with around 10 iterations takes approximately 100s on Pentium V, 2.67GHz, running

Linux. All simulations are in Matlab, and an optimized performance can be achieved

by implementing the algorithm in C++. Qualitative results are mainly presented by

visualization of a 2D scan, overlaid by the top three candidates for the boundary positions

on each line. Section 4.1 illustrates boundary estimations using only the primary contour

derivation method. The effect of adding the continuity and the smoothness constraints

are demonstrated in Section 4.2. Finally, quantitave measures, comparing our method

with the hand-segmented data are presented in Section 4.3.

43
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4.1 Primary Contour Derivation Results

The initial boundaries are calculated using the primary contour derivation algorithm

discussed in Section 3.2. However, as we mentioned before, the output of this stage is

a set of particles that carry the highest weights for each line. Figure 4.1 depicts some

of these results for various frames of our selected data set. In each figure, the top-three

ranking particles are displayed with red, cyan and green colours respectively.

We also make a distinction between the estimates for the inner and outer bound-

aries by using diamond markers for the inner boundary estimates, and circle markers

representing the outer boundary estimates. Angular sampling of ∆ω = 15◦ and a total

number of samples N = 50 is used to generate these results. As shown, at least one of

the particles is a true representation of the boundary in most of the lines. The papillary

muscles (the two black areas in the ventricular cavity) have similar intensity values as

the myocardium and differentiating them from the LV wall poses a great challenge to

all vision-based algorithms. The effect of these muscles is best seen around lines 16–19,

where one or all of the particles are displaced, as shown in Figure 4.1.c.

The same frames are tested using an enhanced resampling stage, and the results are

presented in Figure 4.2. Recall from Section 3.2.3 that the original resampling stage is

enhanced by inserting a particle at each one of the observation locations manually.

Qualitative comparison of the frames in both Figure 4.1 (without adjustments) and

4.2 (with adjustments) reveals that while enhanced resampling improves the estimates

in some cases, such as lines 20–23 in frame 15, it introduces noisy estimates in other

cases, such as lines 16–19 of the same frame. Considering our data, it is likely to have

spurious observation data due to noise or image artifacts. Therefore, we do not believe

that introducing the enhanced resampling will be advantageous to us. The rest of the

results presented in this chapter, are derived based on the original resampling rather than

the enhanced version of it.
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Primary state estimations, frame 10
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Figure 4.1: Primary contour derivation results using N = 50 particles, for (a) frame 1,
(b) frame 5, (c) frame 10, and (d) frame 15, with high to low weights shown in red, cyan
and green respectively

Figure 4.3 presents the same frames using N = 200 particles. Comparison of Fig-

ure 4.1 using N = 50 particles, and Figure 4.3, using N = 200, indicates that we do not

gain significant accuracy by increasing the number of particles in this case.
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Primary state estimations, frame 10

1

2

3

4

5
678

9

10

11

12

13

14

15

16

17
18 19 20

21

22

23

24

Primary state estimations, frame 15

1

2

3

4

5
678

9

10

11

12

13

14

15

16

17
18 19 20

21

22

23

24

(c) (d)

Figure 4.2: Primary contour derivation results using enhanced resampling for (a) frame
1, (b) frame 5, (c) frame 10, and (d) frame 15, with high to low weights shown in red,
cyan and green respectively

For the sake of comparison, we have tested our algorithm on the third slice (Z3) of

another data set, which we refer to as C2. The lower range of intensities and more motion

artifacts in the images make the segmentation process more challenging and less accurate

as depicted in Figure 4.4.
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Primary state estimations, frame 10
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Figure 4.3: Primary contour derivation results using N = 200 particles for (a) frame 1,
(b) frame 5, (c) frame 10, and (d) frame 15, with high to low weights shown in red, cyan
and green respectively

As shown in Figure 4.4.c, most of the estimates for the outer boundary are displaced,

due to small intensity variations at the epicardial borders. Even the estimates for lines

20–24 are erroneous, despite having high-gradient edges at these lines. This can be
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Primary state estimations, frame 2
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Primary state estimations, frame 8
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Primary state estimations, frame 14

1

2

3

4

5
678

9

10

11

12

13

14

15

16

17
18 19 20

21

22

23

24

Primary state estimations, frame 20
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Figure 4.4: Primary contour derivation results for C2, using N = 100 particles for (a)
frame 2, (b) frame 8, (c) frame 14, and (d) frame 20, with high to low weights shown in
red, cyan and green respectively

associated with having small σr in the prediction stage, discussed in Section 3.2.1, which

makes it hard to recover from incorrect estimates.



Chapter 4. Results 49

4.2 Iterative Contour Refinement Results

In this section, we further refine the position of particles on each line by coupling them

to particles on adjacent lines. The top A = 4 particles on neighbouring lines provide ad-

ditional constraints that are employed in better representation of the probability density

of the current line. We only demonstrate the top three particles, although the data are

calculated based on A = 4. We first discuss the effect of adding each of one the continu-

ity and smoothness constraints—as described in Section 3.3.1—exclusively. Finally, we

present the results for an integrated system including both measures. All the results of

this section are obtained using the slice Z2 of C1, with N = 60.

4.2.1 Continuity Constraint

In this section we experiment with including the continuity constraint in our likelihood

function. Figure 4.5 depicts the results of including the continuity constraint in our

formulation and estimating the boundary positions iteratively. Qualitative comparison

of estimates in frame 1 after the PCD step, Figure 4.1.a, and after the ICR step, Figure 4.5

demonstrates how particles are converged towards the true boundary positions using the

continuity constraint.

Figure 4.6 depicts the results for frame 10, using two different values of σc. Larger

values of σc allow the particles to move more independently from their neighbouring

particles; whereas the particles are strongly coupled when a small continuity variance is

used.

4.2.2 Smoothness Constraint

This section demonstrates the effect of adding the smoothness constraint exclusively.

Different values of σα are tested for the iterative contour refinement step, and the results

are depicted in Figure 4.7.
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Refined state estimations, frame 1
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Refined state estimations, frame 5
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Refined state estimations, frame 7
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Refined state estimations, frame 10
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(c) (d)

Figure 4.5: Iterative contour refinement results, using σc = 7, for (a) frame 1, (b) frame
5, (c) frame 7, and (d) frame 10

While smaller values of σα have an oversmoothing effect on the boundaries, larger

values, as depicted in Figure 4.7.b give the contour the flexibility to latch on to intensity

derivative peaks. The oversmoothing effect is evident around lines 13–18 in all the frames

in Figure 4.8, when using σα = 30◦ to derive the boundary estimates. In order to improve

the elasticity of our contours, we have chosen σα = 50◦ as our default.
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Refined state estimations, frame 10
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Figure 4.6: Iterative contour refinement results for frame 10, using continuity constraint
with (a) σc = 10, (b) σc = 2

4.2.3 Combined Refinement

At this stage, we use the combination of the above-mentioned measures, i.e. continuity

and smoothness, in our formulation of the likelihood function. In order to make the

comparison easier, we use the same frames that were used in Figure 4.1. As shown in

Figure 4.9, the oversmoothing effect, although still present, is less significant than the

previous case when only the smoothness constraint was used.

Different combination of σc and σα are used in our experiments with iterative contour

refinement. Figure 4.10 demonstrates boundary estimations in frame 10, using various

constraint values.
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Figure 4.7: Iterative contour refinement results for frame 10, using smoothness constraint
with (a) σα = 20◦, (b) σα = 50◦

4.3 Quantitative Comparison with Hand-Segmented

Data

Unfortunately, there are not any standard data sets which can be used to provide compar-

ative analysis of our approach versus other methods described in Section 2.3. Therefore,

we limit ourselves to comparing the accuracy of our method versus the hand-segmented

data—provided by Ontario Consortium for Cardiac Imaging—for a sample slice. These

data include a set of points around the boundary. The hand-segmented data are inter-

polated, specifying the boundary positions on each line. The error or distance is simply

defined as the absolute value of the difference between the true and the estimated bound-

ary positions for each contour. We have demonstrated the error values for a few sample

frames, after the ICR step, in Figure 4.11. The spikes at line 5 in both frames of Fig-

ure 4.11, are associated with the fact that the epicardial border at this particular line is

so low-contrast that no observations are found at this boundary location.
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Refined state estimations, frame 7
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Refined state estimations, frame 10
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Figure 4.8: Iterative contour refinement results, using smoothness constraint with σα =
30◦ for (a) frame 2, (b) frame 5, (c) frame 7, and (d) frame 10

The boundary positions for all 20 frames in this slice Z2, are estimated based on our

algorithm and compared with the hand-segmented counterpart in terms of root mean

squared error (RMSE). The RMSE after the ICR step, is presented both per frame and

per line as illustrated in Figure 4.12.
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Refined state estimations, frame 5
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Refined state estimations, frame 10
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Refined state estimations, frame 15
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Figure 4.9: Iterative contour refinement results, using σα = 50◦, and σc = 10, for (a)
frame 1, (b) frame 5, (c) frame 10, and (d) frame 15

The same results for the primary contour derivation stage are presented in Figure 4.13.

As it is evident from this figure, the erros in estimating inner and outer contours are

strongly correlated, which is a direct result of the coupled estimation. The errors from one

boundary normally affect the other as well and we can identify this as one of the problems

of our method. Based on these values, more than 90% of frames have RMSE ≤ 5 after
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Refined state estimations, frame 10
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Refined state estimations, frame 10
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Figure 4.10: Iterative contour refinement results for frame 10, using (a) σα = 20◦, σc = 10,
(b) σα = 20◦, σc = 5, (c) σα = 50◦, σc = 10, (d) σα = 50◦, σc = 5

the ICR. Meanwhile, more than 80% of all the lines have RMSE ≤ 5. Considering

Figure 4.12, lines 5 and 15 have the most effect on the RMSE, one due to low-contrast

boundaries and the other due to the papillary muscles as was discussed before.

Combining the estimations from all the lines and frames, we represent the occurence

frequency of absolute errors for inner and outer boundaries using histograms. These
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Figure 4.11: ICR - Estimation errors for all the lines in frame (a) frame 11, (b) frame 16.
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Figure 4.12: ICR - Root mean squared error (RMSE) of boundary estimation (a) for all
the frames (b) for all the lines

histograms are depicted in Figures 4.14, and 4.15 for PCD and ICR steps, respectively.

Based on these data, more than 70% of all estimates fall within 2.5 pixels distance of the

groundtruth data.

We use spline interpolation to derive the final contour from the estimated boundary

positions. Figure 4.16 compares the final contour derived using our method versus the

hand-segmented contours. As it is evident from the figure, there is a good correlation

between the two methods, except for some oversmoothing observed in Figure 4.16.c.
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Figure 4.13: PCD - Root mean squared error (RMSE) of boundary estimation (a) for all
the frames (b) for all the lines
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Figure 4.14: PCD - Histograms representing the occurence frequency of each error value
(a) inner contour, (b) outer contour
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Figure 4.15: ICR - Histograms representing the occurence frequency of each error value
(a) inner contour, (b) outer contour
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Hand−segmented (red) vs. Calculated (yellow) Boundary for Frame 4 Hand−segmented (red) vs. Calculated (yellow) Boundary for Frame 8

(a) (b)
Hand−segmented (red) vs. Calculated (yellow) Boundary for Frame 13 Hand−segmented (red) vs. Calculated (yellow) Boundary for Frame 18

(c) (d)

Figure 4.16: Comparing derived contour (shown in yellow) with hand-segmented contour
(shown in red) for (a) frame 4, (b) frame 8, (c) frame 13, (d) frame 18.
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Conclusion

Cardiac MR images generally have better resolution and contrast than other imaging

modalities such as ultrasound. Additionally, they have the potential to provide valuable

clinical information such as cardiac structure and function measurements. However,

there are some limitations in widespread use of MRI in clinical applications, the most

important of all being the fact that during each cardiac MRI acquisition, more than 100

static 2D scans are generated. In order to evaluate cardiac function measures such as

ejection fraction, one has to segment the LV in each of the slices and time frames. Manual

segmentation of the LV is very labour-intensive and it is considered to be the bottleneck

of the MRI process. Therefore, any application that faciliates semi- or fully automatic

segmentation of CMR images will be beneficial to the medical imaging community.

In this work, we developed an algorithm to segment and track the left ventricle in

a set of cine MRI, consisting of multiple slices of heart from the apex to the base, each

in 20 phases. The focus of our work is to track the LV in a 2D+T data set, consisting

of consecutive time frames of a single slice. Some of the challenges of working with MR

images include:

• low-contrast in some areas of pericardium adjacent to the lungs and fatty tissue,

• quality degradation by artifacts due to blood flow or respiratory motion, and

60
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• papillary muscles which are located close to the LV and have similar intensity as

the myocardium.

Due to these challenges, it is hard to derive estimates based on gradient information

alone. We have taken a novel appraoch to this problem, making use of particle filters in

a Bayesian framework. A set of radial lines are defined, starting at approximately the

centre of the LV. The objective is to estimate intersection of inner and outer boundaries

with each one of the radial lines, with particles representing the underlying density prob-

abilities for each line. The algorithm is divided into two main phases, primary contour

derivation and iterative contour refinement. The particles are weighted based on a like-

lihood function, which is defined using the directional derivative values along each line

of the frame. The probability distribution estimated from the first phase, is used as a

prior to the iterative phase. We also employ the estimates for neighbouring lines from

the previous iteration to impose some constraint on the estimation process in the current

iteration. We have demonstrated that, given the right set of parameters, the inner and

outer contours are detected correctly in most of the frames. We believe that with some

minor modifications, this algorithm can be fully automated. In general, our algorithm

yields good performance and it is comparable with hand-segmented data.

Contrary to other methods, such as contour-based or shape-based models discussed

in Section 2.3, our method does not rely on a complete manual initialization of the first

frame. Instead, only the boundary positions of the first line are specified. We also do not

make use of training sets or models in our approach. As mentioned earlier, performance

of level set methods is degraded by poor image qualities and non-existing boundaries,

as the iteration may not converge. We address this problem by coupling the boundary

estimations for each line with its neighbours, compensating for low-gradient boundaries.

Additionally, level set methods update all the points on the contour at each iteration

which makes them slow compared to our method.
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Performance of our system depends on a lot of factors, including the number of

particles used and more importantly the number of iterations involved in each case. The

number of particles depends on the resolution of the image and the length of the defined

radial lines. We observed that increasing the number of particles from 60 to 200 did

not have a major impact on the overall performance of the system. One of the major

challenges of this project was finding a set of parameters that would work in every single

case. We have experimented with different set of parameters and presented the effects of

varying such parameters in the results chapter. Generally, most of these parameters were

found intuitively or experimentally. Learning from our current method, we believe that

some of these parameters can be dynamically adjusted based on various measurements.

We also tested different methods or enhancements at various stages of our project. For

instance, while sampling enhancement might yield great results on a certain line, it may

have the opposite effect on another line of the same frame, or another frame. Therefore,

we do not believe that the current sampling enhancement is suited for our application.

We also experimented with KL-divergence as the line convergence criteria and did not

find it sufficient for our case either. Another lesson learnt from our implementation is

that since we are estimating the two boundaries jointly, an erroneous estimate for one

contour has a direct effect on estimates for another contour as shown in Figure 4.12.

In the future, we can try to assign confidence measures to each one of the estimates

individually, and adjust the level of joint contour estimations based on these confidence

measures.

5.1 Future Work

We discussed some of the advantages and disadvantages of our project in the previous

section. There are numerous ideas that can be implemented based on the current frame-

work. We assume that the data we are processing is causal and we provide boundary
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estimations using previous frames in forward propagation manner. If this analysis is

performed offline, a more comprehensive smoothing in both forward and backward di-

rections could be implemented. Having structured noise, such as papillary muscles, may

necessiate use of a model for future stages of the project.

Currently, a stochastic motion model is used in prediction stage of particle filters.

Having a model of heart motion would certainly have a positive impact on the perfor-

mance of this system. We also believe that the current convergence criteria should be

improved. An extension of the KL-divergence, or other convergence criteria maybe worth

while investigating.

This thesis can be extended to analyze 4D data sets, including the previous and past

slices available for the refinement step as well. Software capabilites like parallel processing

or multithreading can be utilized to improve the performance of the system significantly.
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