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Abstract

Expanding Stereo-Disparity Range in an FPGA-system While Keeping Resource

Utilisation Low

Divyang K. Masrani

Master of Applied Science

Graduate Department of The Edward S. Rogers Sr. Department of Electrical and

Computer Engineering

University of Toronto

2006

We present the design and implementation of a Field-Programmable Gate Array

(FPGA) based dense stereo depth measurement system that is capable of handling a very

large disparity range. The throughput of the system is 60 frames/second on 640 × 240

images. Image rectification and consistency check improve accuracy of the results. The

system is based on the Local Weighted Phase-Correlation algorithm [?] which estimates

disparity using a multi-scale and multi-orientation approach. Though FPGAs are ideal

devices to exploit the inherent parallelism in many computer vision algorithms, their

finite resource capacity poses a challenge when adapting a system to deal with large

image sizes or disparity ranges. We utilise the temporal information available in a video

sequence to design a novel architecture for the correlation unit to achieve correlation

over a large range while keeping the resource utilisation very low as compared to a naive

approach.
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Chapter 1

Introduction

The goal of a computational vision system is to automate the task of generating a descrip-

tion of a given scene through an analysis of captured images of the scene. The description

of the scene can consist of information such as the location of single or multiple objects

in the scene, the identity of objects, or even any actions an object is performing.

The task of building a general purpose computational-vision system is a “grand-

challenge” due to the compute-intensive nature of many vision algorithms. However,

researchers have been successful in designing algorithms and building systems that deal

with some specific tasks of the human vision system. One important feature of the

human vision system is its ability to perceive depth of a viewed scene. This ability to

perceive depth, known as stereo vision, or stereopsis is made possible by the difference in

viewpoints of the scene when sensed by our left and right eyes. The information about

depth in a scene is of great importance because it helps us navigate in a three-dimensional

environment and aids us in recognising objects of interest, among other tasks.

In computer based stereo-vision systems, a stereo-rig is a pair of cameras placed

side-by-side, much like our eyes, to capture the left and right images. The processing

required to extract depth information from the image pair may seem second nature

when performed by the human brain due to its immense and complex computational

1



Chapter 1. Introduction 2

capabilities. In a stereo-vision system, this processing is carried out using a computing

platform that can be based on software, hardware, or a mixture of the two. The depth

information is encoded in the disparity, defined as the difference in pixel locations of

corresponding points in the image pair. The disparity is inversely proportional to the

distance of an object from the cameras, so the disparity increases as objects get closer

to the cameras. The estimation of this disparity then becomes the primary task of a

stereo-vision system.

In the simplest setup of a stereo-rig, where the optical axes of the two cameras are

parallel and the vertical axes are aligned, corresponding pixels lie at the same vertical

coordinate in the image pair. The search for the corresponding pixel is therefore limited

to the same scanline in the image pair, which allows processing of each scanline as they

arrive. In the more general case where the cameras are not aligned as described above, the

search for corresponding pixel may span across numerous scanlines and this increases the

computational load of the system. When the cameras are not in the ideal setup, Image

rectification of input images can be performed. rectification is the process by which the

input image pair is warped to resemble the output from an aligned stereo-rig.

Often, when viewing a scene from different viewpoints as in a stereo setup, objects

visible in one image may not be visible in the other image. A foreground object hides,

or occludes, different parts of the background in the left and right views, a phenomenon

known as occlusion. In addition, the information present at the left edge of the image

captured by the left camera is not available in the right image and vice-versa as this part

of the scene falls outside the viewing area of the other camera. This further complicates

the task of accurate disparity estimation because pixels visible in one image may not

have a corresponding match in the other image of the pair.

Many stereo-vision applications require the depth information for every single pixel,

which translates to finding a dense disparity estimate, the estimation of disparity for

every single pixel in the image. Some of the most commonly used cameras today capture
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images that are 640 × 480 pixels in dimension at a rate of 30 frames per second (fps).

To bridge the gap between the desired frame-rate response and the actual performance

that general purpose computing platforms can provide, appropriate hardware accelerators

need to be used.

Dense stereo-vision algorithms based on a technique called correlation have inherent

parallelism which can be exploited to achieve significant improvements in the execution

time of the algorithm. Hardware accelerators in the form of Digital Signal Processors

(DSPs), reconfigurable devices such as Field Programmable Gate Arrays (FPGAs), and

Application Specific Integrated Circuits (ASICs), all provide a viable alternative to take

advantage of inherent parallelism as opposed to the use of expensive and large-scale

parallel computers for a similar task.

DSPs are commonly used to speed up the computation of many signal and image

processing algorithms. Though easy to program, DSPs have a fixed architecture that

limits the kind of operations that can be performed. DSPs therefore do not provide a

system-on-a-chip solution which is a drawback when space and mobility are a concern.

ASICs on the other hand provide the greatest amount of flexibility in designing the

architecture but suffer from a long and tedious design process. Furthermore, the high

cost of designing and fabricating an ASIC can make it prohibitive to use.

Reconfigurable devices such as FPGAs provide a middle ground. The design process

is shorter and cheaper than for an ASIC and they provide much greater flexibility than

DSPs making it possible to develop a variety of algorithms from start to end on the

FPGA. Another important advantage of FPGAs is that they are reconfigurable, a process

that can be completed in a span of milli-seconds, so that the same chip can be used for

different algorithms. This makes FPGAs ideal for computer-vision tasks which often

require the result from multiple algorithms to accurately make a decision. Take the case

of image segmentation. Methods used for image segmentation rely on information such

as texture, depth, and colour. No one method will accurately perform segmentation in
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every scenario, but a combination of information provides the best solution. An FPGA

can be easily reconfigured with these different algorithms as needed.

While designing with FPGAs is faster than designing Application Specific ICs (ASICs),

it suffers from the problem of fixed resources. In an application based on a serial CPU

or DSP, one can typically add memory or disk space to allow the algorithm to handle a

larger version of the same problem, for example larger image sizes or increased disparity

ranges in the case of stereo. System performance in terms of timing may suffer, but

the advantage of such serial implementations is that the new system still runs. In the

case of FPGA-based systems, there is a finite amount of logic available, and when this is

exhausted the only solution is to add another device or modify the algorithm. Not only is

this costly from the design point of view, but may also involve the additional design issue

of how to partition the logic algorithm across several devices which is non-trivial. Apart

from finding logical partitions in the algorithm, issues with transferring large amounts

of data from one FPGA to another in the limited bandwidth between available between

FPGAs and also meeting strict timing requirements make this a challenging task. Keep-

ing this in mind, it is important to devise a suitable architecture for the vision system

on hand for a successful implementation on FPGAs.

1.1 Thesis Objectives and Contribution

Stereo disparity estimation is a prime application for a hardware accelerated computer

vision system. Since stereo can provide depth information, it has potential uses in nav-

igation systems, robotics, object recognition and surveillance systems, just to name a

few. Due to the computational complexity of many stereo algorithms, a number of at-

tempts have been made to implement such systems using hardware [?, ?, ?, ?], including

reconfigurable hardware in the form of FPGAs [?, ?, ?, ?, ?]. One of the more recent

attempts at developing a stereo-vision system is described in [?]. The system is based
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on the Local Weighted Phase Correlation (LWPC) algorithm [?] and is implemented on

the Transmogrifier-3 reconfigurable computing platform [?]. Though the system provides

dense disparity estimates at 30 fps, it has several major limitations. The amount of logic

resources required by the system is directly proportional to the largest disparity that the

system can support. The system is capable of handling a maximum disparity of only 20

pixels, which for the particular set-up of the system does not generate accurate depth

information for objects closer than 2 meters from the camera. This is a severe hinderance

to the use of the system in many applications such as autonomous navigation. Further-

more, the system does not attempt to rectify the input images, which affects the accuracy

of the results, and it supports an image size of only 256 × 360 pixels.

In this work, we address the specific limitations of the previous system mentioned

above. The goal of this work is to develop a versatile real-time stereo-vision platform

with various salient features; capability to handle very large disparities, improved accu-

racy by pre-processing (input image rectification), and the ability to handle larger images.

The highlight of the work is the development of a novel architecture that can handle the

correspondence task for scenes with very large disparities, but without increased resource

usage on the FPGA, as compared to [?]. The key to achieving large disparity correspon-

dence matches is the use of shiftable correlation windows that track the disparity estimate

for each pixel over time, as well as secondary roving correlation windows that explore the

correlation surface outside the range of the shiftable tracking window in order to detect

new matches when the tracking window is centred on an incorrect match. In our work,

the shiftable tracking window is termed the Primary Tracking Window (PTW) and the

window that performs roving correlation as the Secondary Roving Window (SRW). The

basic assumption in our approach is that, in most cases, disparity values do not change

radically between frames, thus allowing some of the computation to be spread over time.

The thesis is organised as follows. Chapter 2 describes the relevant background in

stereo-vision and reconfigurable computing systems. In Chapter 3 we present the main fo-
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cus of this thesis; development of hardware architectures for image rectification, expanded

disparity range support, and consistency check of stereo disparity estimates. Chapter 4

compares the stereo-system in this work with others in the literature and disparity results

from the system are also presented. We conclude in Chapter 5 with a summary and a

discussion of possible directions for future work.



Chapter 2

Background

In Chapter 1 we established the focus of this work; developing a novel architecture for

a stereo-vision system that is capable of supporting very large disparity range without

a corresponding increase in the logic resource usage. In order to achieve this with the

limited resources offered by FPGAs, an understanding of the various stereo matching

algorithms and knowledge of the hardware technology that will be used is required.

This chapter first provides an overview of binocular stereo vision, the options avail-

able for stereo-matching and a justification for the selected technique for this work in

Section 2.1. Section 2.2 gives an introduction to FPGA technology and the reconfigurable

computing platform used in this work. Finally, in Section 2.3, a brief review of previous

work in hardware-based computer vision and image processing is presented.

2.1 Theoretical Basis

Stereopsis is the process in visual perception leading to perception of depth or distance

of objects. Depth from stereopsis, in particular binocular stereopsis, arises from the

difference in the viewpoints of the two cameras that view the scene. This process is

known as triangulation and is illustrated in Figure 2.1. In the case of binocular stereo,

a scene point (point in the 3-D world space) is projected on the two image planes of

7



Chapter 2. Background 8

the camera pair; these projected points are knows as image points. Given the centre of

projection of the two cameras, two rays are formed that go through the the centre of

projection of each camera and image point of the respective camera. The location of the

scene point is at the intersection of the two rays.

Projection, Cr

Right Centre of
Left Centre of

Scene point, P

Projection, Cl

Figure 2.1: Given the projections of a scene point in both the left and right image, the
three-dimensional location of the scene point can be determined by triangulation.

From a computational standpoint, a stereo system must solve two problems [?]. The

key to performing triangulation is to first establish point correspondences, or in other

words, for each point in one image, find the point in the other image that is a projection of

the same scene point if it exists. This task of solving for stereo correspondence is the first

problem of stereo and because it involves searching for matching points in the binocular

image pair, it is often termed stereo matching. The search for corresponding points need

only be performed along a one-dimensional line rather than a two-dimensional search

area if the stereo images have been rectified. The surety of finding the corresponding

point along the line is guaranteed by the epipolar constraint which says that given an

image point pl, its corresponding point pr in the other other image is constrained to lie
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along the epipolar line which is formed by the intersection of the plane formed by P,Cl,

and Cr and the image plane, where P is the scene point and Cl and Cr are the camera

centres of the left and right cameras as illustrated in Figure 2.2.

Baseline, T

pl

pr

P

Cl Cr

Figure 2.2: The epipolar constraint guarantees the location of a corresponding image
point along the epipolar line in the image pair.

The simplest binocular stereo system is one whose optical axes are parallel, vertical

axes are aligned and with each camera having identical focal lengths. In such a configu-

ration, the epipolar lines coincide with the scanlines of the images, thus simplifying the

search. For a scene point P having corresponding image points pl at (u, v) and pr at

(u′, v′) one in each image of the pair, the vertical positions are the same, that is, v = v ′

as shown in Figure 2.3. The difference in the horizontal locations of the corresponding

image points

d = u′ − u (2.1)

is termed the binocular disparity, or simply the disparity. The horizontal locations, u

and u′ are measured relative to the the respective image centres.
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v = v′

Left image Right image

u u u′

pl

(u, v) (u, v) (u′, v′)

pr epipolar line

Figure 2.3: Epipolar constraint in parallel camera configuration. pl and pr are point
correspondences of the same scene point. pl and pr lie along the same scanline (same
vertical position).

Given the camera calibration parameters, the depth of a point P in 3-D space can be

obtained using similar triangles as shown in Figure 2.4. The depth z is calculation using

the equation

z = f
T

d
(2.2)

where f is the focal length of the camera, and T =‖ Cl−Cr ‖ is the baseline of the stereo

system. The computation of this depth is the second problem of stereo, also known as

the problem of reconstruction. This is a more challenging problem when the cameras are

in a general position.

2.1.1 Stereo Rectification

The problem of finding correspondence in an image pair taken from cameras in a general

position can be simplified by rectifying the image pair before proceeding to find the

matches. Rectification is the process by which the two images taken from cameras in

a general position are reprojected onto a common image plane that is parallel to the

baseline of the stereo-rig. This is illustrated in Figure 2.5. The rectified images can be

thought of as acquired by a new stereo-rig, obtained by rotating the original cameras

around their optical centres.
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x′

T

Z

P

c c’

f

p p′

Cl Cr

(camera)

(camera)

z z′

x

y y′

Figure 2.4: Given the stereo rig calibration parameters and the disparity measure, the
depth, Z, of a scene point, P , can be determined. T is the baseline of the stereo rig and
f is the focal length of the cameras.

Mathematically, the reprojection can be described by a 3×3 projection or homography

matrix H. The matrix H represents the transformation of coordinates from the original

image to the reprojected image as follows:

















x′

y′

z′

















= H

















x

y

1

















(2.3)

The stereo pair can then be rectified by applying two appropriate homographies Hl

and Hr to the two images. Hl and Hr are computed from the position and orienta-

tion of the two cameras given that the stereo-rig has been calibrated and its intrinsic

and extrinsic parameters are known. Further information on this process is given in

Appendix A.
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p′r

P

Cr

Cl

Hl

Hr

p′l

pl

General setup

Simple setup

pr

Figure 2.5: The simple stereo geometry can be derived from a general setup by repro-
jecting the two images onto a plane parallel to the baseline.

The actual rectification is performed using backward mapping by re-sampling the

original images. For each pixel (x′, y′) in the rectified image, the corresponding pixel

(x, y) in the original image is computed using H−1. This backward mapping produces

real-valued coordinates in the original image so the intensity value of each pixel in the

rectified image must be interpolated from pixels in this neighbourhood. One method of

obtaining the intensity values for the rectified image is through bilinear interpolation,

which computes the intensity value from a neighbourhood of four pixels.

2.1.2 Stereo Matching

According to [?], stereo matching algorithms, in general, can be broken down into the

following four steps:
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1. matching cost computation: some common ones include squared intensity differ-

ences (SD), absolute intensity differences (AD), normalised cross-correlation, and

binary matching costs based on features such as edges. The Locally Weighted

Phase Correlation (LWPC) algorithm used in this work is similar to normalised

cross-correlation;

2. cost (support) aggregation: the summing or averaging of the matching cost over a

support region, which is normally in the neighbourhood of the pixel;

3. disparity computation / optimisation: refers to selecting the best disparity estimate

based on the aggregated cost and in some cases the subsequent improvement of the

estimate with respect to some criteria; and

4. disparity refinement: in certain situations, there might be a need to obtain disparity

estimate at sub-pixel accuracy using methods such as iterative gradient descent or

fitting a curve to the matching costs at discrete disparity levels.

Specific algorithms may alter the sequence of the steps, combine steps, or skip some of

the computation altogether.

Stereo matching algorithms can be classed into two categories; one that generate

sparse disparity maps and another that generate dense disparity maps. Algorithms that

generate sparse disparity maps rely on features such as edges or corners for matching

and this matching is commonly known as feature based matching. A detailed survey of

many sparse algorithms is available in [?] and will not be discussed here. Many vision

applications require dense disparity estimates and we focus on this class of algorithms in

this work. Dense disparity estimates can be generated from a sparse map by interpolation,

but this approach requires several assumptions about the scene geometry, and is burdened

with difficulties. More important is the class of algorithms that generate dense disparity

maps directly without the need for interpolation.
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Stereo matching algorithms that generate dense disparity maps can further be clas-

sified into local (window-based) or global depending on the optimization performed in

Step 3 of the above described steps. The computational emphasis of local methods is

put on matching cost computation and on the cost aggregation steps. The optimisation

is a local “winner-take-all” optimization at each pixel [?] limited to the extent of the

correlation window. Despite the drawback of only local optimization, the fact that these

algorithms use a local support area, commonly known as the correlation window means

they exhibit regular computational structures that allow for efficient parallel implemen-

tation on hardware such as DSPs, ASICs, and FPGAs. A number of local algorithms

have been implemented on various types of hardware and a survey of these can be found

in Section 2.3.

The computational focus of global algorithms, on the other hand, is on the optimiza-

tion step. These algorithms seek to optimise a global energy function consisting of a

“data term” and a “smoothness term”,

E(d) = Edata(d) + λEsmooth(d). (2.4)

The data term, Edata(d), gives a measure of the the likeness between the input image

pair and the disparity function d. The smoothness assumptions made by the algorithm in

the viewed scene are encoded in the smoothness term, Esmooth(d). Global algorithms use

several different methods to achieve minimisation of the energy function. These include

simulated annealing [?], relaxation labeling [?] and non-linear diffusion of support [?].

More recently, algorithms based on graph-cuts [?] have been developed, and represent

the state of the art for accuracy.

It is worth noting that though global algorithms provide more accurate dense dispar-

ity measurements compared to local algorithms, they have much higher computational

costs, where the 2-D optimisation of (global equation) is often NP-hard [?], that ren-

der this class of algorithms unsuited to frame-rate applications. With current hardware
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technology, it is a challenge to even implement local algorithms that use complex match-

ing techniques. It is the focus of this work to first design an efficient architecture for

hardware implementation of local algorithms.

2.1.3 Locally Weighted Phase Correlation

The system implemented in this work is based on the “Local Weighted Phase Correlation”

(LWPC) algorithm [?], which estimates disparity at a set of pre-shifts using a multi-scale,

multi-orientation approach. A version of this algorithm was implemented in [?] but that

system is limited to handling a maximum disparity of 20 pixels due to resource limitations

on the FPGA, and has no input image rectification.

The LWPC algorithm has four major steps. A three-scale Gaussian pyramid is first

created from the original images, sub-sampled at each level by a factor of two horizon-

tally and vertically. Each level of the pyramid is decomposed into three orientations by

applying quadrature-pair G2-H2 filters , tuned to orientations 0o, +45o, and−45o [?]. G2

is the second derivative, δ2

δx2 G(x, y; µ, σ), of a Gaussian and H2 is the Hilbert transform

of G2. G2-H2 filters of any orientation can be synthesised as linear combination of a set

of “basis filters”; three basis filters for G2 and four for H2 are needed.

Correlation is then performed on each filtered pair of images at a set of pre-shifts.

The correlation scores for a pair of images at each of these pre-shifts is collectively known

as the confidence measure function. The confidence measure is then summed across all

the scales and orientations so that spurious peaks are attenuated while the true peaks

are re-inforced. The correlation results for the coarser scales must be interpolated to

have the same resolution as the original scale before performing the summation. Finally,

the peak must be located in the combined confidence measure function for each pixel.

This peak is the estimate of the disparity for the particular pixel. The algorithm can be

summarised as follows:
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1. Create a Gaussian pyramid with total number of scales S for both left and right

images. Apply spatially-oriented quadrature-pair filters [?] to each scale of the

pyramid at F orientations. If Kj(x) is the filter impulse response of the jth orien-

tation, then we can write the complex-valued output of the convolution of Kj(x)

with each scale of the left and right images, Il(x) and Ir(x), as

Ol(x) = ρl(x)eiφl(x) = Kj(x) ⊗ Il(x) and

Or(x) = ρr(x)eiφr(x) = Kj(x) ⊗ Ir(x)

in polar representation, where ρ(x) = |O(x)| is the amplitude and φ(x) = arg [O(x)]

is the phase of the complex response.

2. For each scale and orientation, compute local voting functions Cj,s(x, τ) in a window

centred at τ as

Cj,s(x, τ) =
W (x) ⊗ [Ol(x)O∗

r(x + τ)]
√

W (x) ⊗ |Ol(x)|2
√

W (x) ⊗ |Or(x)|2
, (2.5)

where W (x) is a smoothing, localized window and τ is the pre-shift of the right

filter output.

3. Combine the voting functions Cj,s(x, τ) over all orientations, 1 ≤ j ≤ F , and scales,

1 ≤ s ≤ S, where F is the total number of orientations, to get the cumulative voting

function

V (x, τ) =
∑

j,s

Cj,s(x, τ) .

4. For each image position x, find the τ value corresponding to the peak in the real

part of V (x, τ) as an estimate for the true disparity.

The reason for basing our work on this algorithm is two-fold. First, the LWPC

algorithm is one of the more complex and recent local algorithms. The results obtained

using this algorithm have greater accuracy than simpler local algorithms such as ones

based on sum-of-squared-differences (SSD) [?, ?, ?] or sum-of-absolute-differences (SAD)
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[?]. The second is that a previous implementation [?] of this algorithm exists, but is

limited to a maximum disparity of 20 pixels, which in the set-up of that system means any

objects closer than 2 meters from the camera will not have accurate disparity estimates.

It is our hope that by creating a hardware stereo system based on this algorithm without

significant loss of features, as compared to its software version, and at the same time

providing frame-rate performance we can encourage computer scientists who develop

stereo, and in general, vision algorithms, to steer their work towards hardware based

algorithms. At the same time, we hope that we can also encourage hardware designers

to break from a traditional approach of designing some common arithmetic components

so that more of the complex algorithms have implementations on hardware.

2.2 Reconfigurable Systems

A reconfigurable system is a computing system that can be reprogrammed to perform

many different tasks, often to support future upgrades and enhancements. Reconfigurable

systems have at their core single or multiple interconnected FPGAs that act as the main

processing unit of the system. FPGAs, by nature, are reconfigurable and thus provide

this functionality to the system. In addition to the FPGA(s), a reconfigurable system

may also provide various means of supplying input to the system, such as audio or video

signals, and also the ability to capture the results of the system. The communication

with other systems and peripherals are through interfaces such as Peripheral Component

Interconnect (PCI) bus, Universal Serial Bus (USB), or even network-based.

2.2.1 Field Programmable Gate Arrays

An FPGA is an array of logic elements whose behaviour can be programmed by the

end-user to perform a wide variety of logical functions, and which can be dynamically

reconfigured as requirements change. FPGAs generally consist of four major compo-
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nents: 1) Logic blocks/elements (LB/LE); 2) I/O blocks; 3) Logic interconnect; and

4) dedicated hardware circuitry. The logic blocks of an FPGA can be configured to

implement basic combinatorial logic (AND, OR, NOR, etc gates) or more complex se-

quential logic functions such as a microprocessor. The logic interconnect in an FPGA

consists of wire segments of varying lengths which can be interconnected via electrically

programmable switches. The density of logic blocks used in an FPGA depends on the

length and number of wire segments used for routing.

The Altera Stratix S80 device used in this work contains a two-dimensional row-

and column-based architecture to implement custom logic. The smallest unit of logic in

the Stratix device is called a Logic Element (LE). Each LE contains a four-input LUT,

which is a function generator that can implement any binary-valued function of four

binary variables. In addition, each LE contains a programmable register and carry chain

with carry select capability to facilitate fast implementation of arithmetic components.

The architecture of the Stratix LE is shown in Figure 2.6. A set of 10 LEs make up a

Logic Array Block (LAB) [?].

Look-up Table
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Figure 2.6: Simplified LUT architecture of Stratix chip.

Most modern FPGAs also have various dedicated circuitry in addition to the pro-

grammable logic. These come in the form of high-speed and high-bandwidth embedded

memory, dedicated DSP blocks, Phase-Locked Loops (PLLs) for generating multiple

clocks, and even general purpose processors. The FPGA we are using in our system, the

Altera Stratix S80, comes with three different memory block sizes; 512 bits, 4 Kbits, and
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512 Kbits for a maximum of 7 Mbits of embedded memory and 22 DSP blocks consisting

of multipliers, adders, subtractors, accumulators, and pipeline registers. Figure 2.7 shows

an overview of the Altera Stratix S80 chip [?].

Figure 2.7: Advanced features of the Altera Stratix FPGA [?].

The combination of memory and DSP blocks make the Stratix family of FPGAs

ideal for image processing applications as they can efficiently implement many com-

mon image processing tasks such as finite impulse response (FIR) filters, discrete cosine

transform (DCT), colour space conversion (CSC), and MPEG-related operations among

others. Each DSP block, illustrated in Figure 2.8, is optimised to interface with the spe-

cialised memory structures in Stratix devices for memory-intensive and high-precision

DSP applications. Each DSP block can implement four 18 × 18-bit signed or unsigned

multiplications using dedicated multiplier circuitry. The blocks can also be configured to

support eight 9× 9-bit multiplication or one 36× 36-bit multiplication. In addition, the

adder/subtractor/accumulator unit can switch between adder and subtractor function-

ality, acting as a 9-bit, 18-bit, or a 36-bit unit as necessary. In the accumulator mode,

the unit acts as a 52-bit accumulator that can be used to implement operations such as

convolutions.
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Figure 2.8: DSP Block architecture of Altera Stratix S80 FPGA [?].

2.2.2 FPGA Design Options

FPGA designers have several options for implementing algorithms on the device. The

circuitry can be designed by connecting logic gates to generate the desired output, a

technique known as gate-level design. Gate-level designs result in optimised designs, but

the learning curve is considered prohibitory for most engineers, and these designs also

suffer from portability issues across FPGA architectures. A more common approach is

to design at a higher level using Hardware Description Languages (HDLs). HDLs can

efficiently describe the structure and behaviour of digital logic designs for creating ASICs

or implementation on FPGAs.

HDLs provide support for describing concurrent event to take advantage of FPGAs’

inherent ability to perform multiple operations concurrently. This feature differentiates

HDLs from other high-level languages which are primarily intended for software design.

HDLs also support inclusion of technology-specific modules, which come in the form

of cores from FPGA or third-party vendors, for most efficient synthesis to FPGAs. IP

(intellectual property) cores are generally parameterisable to suit the user’s design and are

often designed to provide optimised performance on a particular device or architecture.

These cores allow IP to be easily distributed and help in speeding-up the design process.

A number of HDLs currently exist, some of which are proprietary, but two of the most

widely used are Verilog HDL, or simply Verilog, and VHSIC (Very High Speed Integrated
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Circuit) HDL, or simply VHDL. Verilog, a former proprietary language, was originally

intended as a simulation language. It has since been updated to be used in synthesis

of hardware designs and made into an open standard. VHDL, an open IEEE standard,

first appeared in 1987 as IEEE standard 1076-87. VHDL is intended to support the

design, verification, synthesis, and testing of hardware designs. A second update, IEEE

1076-93, came out in 1993, and it is currently being considered for a third update. The

third update has a number of features specifically suited for implementation of arithmetic

algorithms. These include explicit support for variable bit-width floating and fixed point

operations, which helps a designer manage these operations in the design better.

The choice of which language to use is arbitrary and depends solely on the designer’s

familiarity with the language. Geographically, Verilog is more popular on the west-coast

of North America, whereas VHDL is the preferred language on the east-coast of North

America and in Europe. The language chosen in this work is VHDL and the design is

fully compliant with the IEEE standard for VHDL.

2.2.3 Design Approach

A successful large-scale hardware design requires extensive simulation and verification

before a designer can validate the circuit. Designing arithmetic components in hardware

often requires that the data be converted to fixed-point format because a floating-point

version of the algorithm may not fit on the device. Implementation of floating-point

arithmetic on hardware takes up a lot more logic resources than fixed-point operations.

However, there is a trade-off between the accuracy of the system and hardware resource

usage: greater accuracy requires larger bit representation and therefore more logic re-

sources on the device. In addition, the concurrent nature of hardware design means that

the designer must also make sure that the data-flow in a pipelined design is synchronised

with the clock-cycle it is intended for. This means that validation must be performed

both at bit-true and cycle-true levels.
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MATLAB was used extensively to facilitate the smooth flow of design and verification

of bit-true results. Modifications and extensions to the LWPC algorithm were tested in

MATLAB first because it is optimised for matrix operations and provides a platform for

a fast implementation. The design approach is shown in Figure 2.9. The figure shows

the interaction between the hardware and software phases of the design process. The

software phase is on the left side and the hardware phase is on the right side of the

diagram. The verification and validation phases are shown in the middle of the diagram.
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Figure 2.9: Hardware design approach taken in this work.

Once a satisfactory algorithm was developed, a “hardware emulation” version of the

algorithm was coded in MATLAB to produce bit-true results for all components along the

data-path. While a matrix-manipulation software program and a hardware implementa-

tion are fundamentally different, they should produce the exact same results, provided

that care is taken in the hardware design. After completing the emulation version of

the algorithm in MATLAB, the hardware design was created component by component.

Each component is tested for functionality and cycle-true results using the ModelSim

simulator tool. Bit-true results are checked by importing the results from ModelSim into
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MATLAB and comparing with the results generated from the emulation version. When

all components required for a module have been completed, the module is synthesised and

a bit-stream is generated. The bit-stream is then downloaded onto the FPGA and the

design is verified by providing it with the same input image pairs that were used for the

emulation and ModelSim simulation versions. Any errors encountered in the simulation

stage were debugged by analysing the signal waveform in ModelSim. Similarly, discrep-

ancies found in the hardware were debugged using the SignalTap on-chip logic-analyser

from Altera Corporation. The design was created and verified module by module, which

were then all connected to create the complete system.

2.2.4 Transmogrifier-4 Reconfigurable System

The Transmogrifier-4 [?] is a general-purpose reconfigurable prototype board contain-

ing four Altera Stratix S80 FPGAs. The board has specific features to support image

processing and computational vision algorithms; these include dual-channel NTSC and

FireWire camera interfaces, video encoder/decoder chip, and 2GB of DDR RAM con-

nected to each FPGA. Each FPGA is also connected to the other three FPGAs and an

interface is provided to communicate with the board over a network. This can be used

to send control signal or for debugging. The board is shown in Figure 2.10.

Figure 2.10: Transmogrifier-4 reconfigurable computing board.
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2.3 Previous Work

A variety of reconfigurable stereo machines have been reported [?, ?, ?, ?, ?]. The PARTS

reconfigurable computer [?] consists of a 4 × 4 array of mesh-connected FPGAs with a

maximum total number of about 35,000 4-input LUTs. A stereo system was developed on

PARTS hardware using the census transform, which mainly consists of bit-wise compar-

isons and additions [?]. Kanade et al.[?] describe a hybrid system using C40 digital signal

processors together with programmable logic devices (PLDs, similar to FPGAs) mounted

on boards in a VME-bus backplane. The system, which the authors do not claim to be

reconfigurable, implements a sum-of-absolute-differences along predetermined epipolar

geometry to generate 5-bit disparity estimates at frame-rate.

In Faugeras et al.[?], a 4 × 4 matrix of small FPGAs is used to perform the cross-

correlation of two 256× 256 images in 140 ms. In Hou et al.[?], a combination of FPGA

and Digital Signal Processors (DSPs) is used to perform edge-based stereo vision. Their

approach uses FPGAs to perform low level tasks like edge detection and uses DSPs

for higher level integration tasks. In [?] a development system based on four Xilinx

XCV2000E devices is used to implement a dense, multi-scale, multi-orientation, phase-

correlation based stereo system that runs at 30 frames/second (fps).

It is worth noting that not all previous hardware approaches have been based on

reconfigurable devices. In [?], a DSP-based stereo system performing rectification and

area correlation, called the SRI Small Vision Module, is described. ASIC-based designs

are reported in [?, ?, ?] and in [?] commodity graphics hardware is used.
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Design

In this chapter we first analyse a previous implementation of the LWPC based stereo

algorithm to point out the shortcomings of the system. We then describe the design

of pre- and post-processing modules in Section 3.2 and Section 3.4 respectively that

improve the general accuracy of a stereo algorithm. The highlight of this work is the

development of a novel architecture for performing the phase-based correlation which

can support a very large disparity range without a corresponding increase in the logic

resource requirements as described in Section 3.3. Finally, we show an architecture of a

stereo-vision system that incorporates these modifications in Section 3.5.

3.1 Stereo Vision System on Transmogrifier-3

The previous stereo system based on the LWPC algorithm was implemented on the

Transmogrifier-3 board. The TM-3 board has four Xilinx Virtex 2000E FPGAs. The

system was a straight forward implementation of the LWPC algorithm described in Sec-

tion 2.1.3. A high-level architecture of this system is shown in Figure 3.1.

Two key steps taken to successfully implement the algorithm on the TM-3 board

were:

25
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Figure 3.1: High-level architecture of LWPC based stereo-vision system on the TM-
3 board.

1. Modification of the voting function (Step 2 of the LWPC algorithm) to share the

normalisation operation and Gaussian filtering for all the pre-shifts τ . This reduces

the number of multiplication, division, and addition operations by 65% so that the

algorithm can be implemented in the FPGAs. A detailed look at this modification

and its effects is given in Appendix B.

2. Conversion of the computation from floating-point to fixed-point.

The above-mentioned modifications are retained in the work. Even with these mod-

ifications, the previous system supported a disparity range of only 20 pixels. Moreover,

the system was limited to using two orientations instead of the suggested three in [?].
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It is important to note that the LWPC algorithm as described in [?] and its previous

hardware implementation [?] compute the disparity of each frame from scratch at every

frame. No attempt is made to use the fact that in most situations, the disparity of a pixel

will not change drastically from one frame to the next when an image sequence is being

captured at 30 frames per second. In this work, we successfully use this information and

develop an architecture that is capable of handling very large disparities in the limited

resources on the FPGA which we describe in Section 3.3. Section 3.2 describes the design

of an image rectification unit which improves the accuracy of the disparity results, and

Section 3.4 discusses the design of a post-processing unit to perform a consistency check

in the disparity map.

3.2 Image Rectification Module

Rectification of an image requires the synthesis of a new image through warping of the

original image. The theory of image rectification is described previously in Section 2.1.1.

In practice, image rectification is achieved through an inverse mapping strategy—each

pair of integer pixel coordinates in the rectified image is mapped to a pair of coordinates,

not necessarily integer, in the original image. The pixel value for the warped image can

be found through bilinear interpolation of the pixel values in the neighbourhood of the

mapped coordinates.

There are two main issues to be aware of when implementing image rectification in

hardware. First, since this is an inverse mapping process, we do not have prior infor-

mation on what exact input is required at each time instance. This means some sort of

buffering of the input image is required. In addition, bilinear interpolation requires four

input pixels for each output pixel, whereas only one pixel can typically be read out at a

time from the buffer. In order to keep up with the rate of incoming pixels one solution

would be to store four copies of the incoming pixel stream in separate buffers. This allows
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all four pixels, one from each of the buffers, to be read at the same time. The incoming

pixel rate for our system is about 13.5 MHz which is significantly lower than the full

potential of the Stratix S80 FPGA. This gives us another option to achieve real-time

performance; by designing a multi-clock system. In a multi-clock design, each hardware

module is clocked by one of the two or more clocks used in the system which makes it

possible to achieve a high-performance design. In this work, the image rectification unit

is designed to run on a clock that is set to at least four times the frequency of the camera

clock, so that the four pixels needed for bilinear interpolation can be read and processed

in the time it takes for a single new pixel to arrive from the camera.

The second issue is efficient implementation of the inverse warping operation to com-

pute the source pixel coordinate in the original image. The inverse warping operation

(Equation 2.3) requires a matrix multiplication and two scalar division operations to con-

form to homogeneous coordinates and is expensive to implement in hardware. Instead,

we have modeled this with a second-order polynomial which approximates the inverse

homography matrix as follows:

x = a0 + a1x
′

+ a2y
′

+ a3x
′2 + a4x

′

y
′

+ a5y
′2

y = b0 + b1x
′

+ b2y
′

+ b3x
′2 + b4x

′

y
′

+ b5y
′2 , (3.1)

where x and y are real-valued source image coordinates and x′ and y′ are integer-valued

coordinates of the rectified image. The coefficients ai and bi are computed offline.

The integer parts of x and y are used as the index of the source pixel for bilinear

interpolation. The fractional parts are used as weights for bilinear interpolation. The

values for the image coordinates, x and y, can be obtained by one of the following two

approaches:

1. Look-Up Table - The image coordinates can be calculated in advance by evaluating

the polynomials and storing the results in look-up tables which can be referenced
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at run-time. Only one bilinear interpolation for each pixel needs to be carried out

at run-time.

2. Real Time Computation - The image coordinates are computed by evaluating the

polynomials at run-time and then bilinear interpolation is performed to determine

the intensity of each pixel.

For an image that is 640 pixels wide, at least 10 bits are needed to index these pixels.

The fractional part is represented by 6 bits bringing the total to a 16-bit representation.

The Look-Up Table approach would require 600 KB of memory for storing each of the

four coordinates for a total of 2400 KB to rectify both the left and right images. The

Stratix S80 FPGA has 9 blocks of 64 KB of on-chip memory for a total of 576 KB. This

on-chip memory is insufficient for the size of this problem. The off-chip memory on the

TM-4 board can be used but it would require the design of a cache on the FPGA because

it is not possible to read a value from the off-chip memory in a single clock cycle. In

comparison, real-time computation of the polynomial requires 13 multiplication and 10

addition operations. We have chosen to compute these coordinates in real-time.

A fixed-point representation is employed for computing Equation 3.1. Figure 3.2 (a)

shows the expected orientation of the warped image. The warped image is represented

by the gray area. Figure 3.2 (b), (c), (d), and (e) show the resulting warped orientations

obtained when the fractional part of the coefficients in Equation 3.1 is represented by

4, 8, 16, and 32 bits respectively. The root-mean-square error (RMSE) based on the

resulting orientation is shown in Figure 3.3. There is no significant improvement in the

RMSE when representing the coefficients with more than 16 bits so we chose this as the

precision for the the coefficients ai and bi.

The architecture of the Image Rectification Unit is illustrated in Figure 3.4. A

stereo-setup with a worst-case vertical misalignment of 16 scanlines between the left and

right image is assumed, which requires buffering of 32 scanlines of both the left and

right images. The Image Buffer stores the incoming pixels and the Controller keeps
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Figure 3.2: Comparison of the expected warped image (a) with the resulting warped
images when computing Equation 3.1 with 4 (b), 8 (c), 16 (d), and 32 (e) bits of precision
for coefficients ai and bi.

track of the latest source line that arrives into the buffer. If all the lines required for

the next output line are available, the Controller generates the output indices for pixels

in the scanline. The Address Generator then computes the source address for the four

neighbouring pixels required for bilinear interpolation for each pixel in the scanline. The

integer part of the source address is used to read out the required pixels from the buffer.

The fractional parts of the source address are used as weights for bilinear interpolation.

A warped image is not in general contained in the same region of the image plane as the

original image resulting in some “missing” pixels typically at the edges of the warped

image. A 1-bit flag is generated to indicate these missing or invalid pixels.
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Figure 3.5: There is a direct relationship between the epipolar search band and the
expected depth of objects in a scene that can be recovered.

3.3 Expanding the Disparity Range

A simple and straightforward solution to expanding the disparity range can be achieved by

increasing the size of the correlation window to correlate pixels at greater disparities. This

increases the size of the epipolar search band, which is the area along the image scanline

within which a corresponding match is searched for. There is a direct relationship between

the search band range and the depth in a scene that can be recovered, as illustrated in

Figure 3.5. However, considering that the resource usage on the FPGAs is proportional

to the size of the correlation window, it is not an optimal solution because finite device

resources pose a restriction.

In addition, in [?] it is shown that the probability of an incorrect stereo match P Total
m

is given by :

P Total
m = P a

m + P b
m + P c

m (3.2)

where P a
m is the probability of mismatching a pair of features when neither feature has

its correct match detected in the other image, P b
m is the probability of mismatch when

one feature has had its correct match detected and P c
m is the probability of mismatch
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when both features have had their correct matches found in the other image. P a
m, P b

m

and P c
m are each proportional to the mean number of candidate matches, and mutually

exclusive, and thus P Total
m is proportional to the epipolar search area considered during

matching.

3.3.1 The Tracking Correlation Window

We saw above that increasing the size of the correlation window is not a viable solution

from either an algorithmic point of view or a hardware implementation point of view.

However, in many practical situations, such as when an object gets closer to the cameras,

it becomes necessary to be able to handle a larger disparity range.

Fortunately, the input to real-time stereo-vision systems is from cameras that stream

images at a rate of 30 fps or higher. At this rate, a large amount of temporal coherence

is expected in most real-life image sequences. By modeling and predicting the movement

of pixels in an image, we can restrict the epipolar search to a limited area at a particular

time frame. The correlation window can shift accordingly along the epipolar line (which

for the case of rectified images is the same as a scanline) and perform localised correlation

rather than performing a blind search over a much larger range, much of which has a

very low probability of having the match of interest.

Keeping this in mind, we have modified the original LWPC algorithm to encapsulate

the correlation algorithm within a temporal loop. This change is reflected in Step 2 of

the LWPC algorithm initially mentioned in Section 2.1.3 as follows:

2. For each scale and orientation, compute local voting functions Cj,s(x, τ) in a window

centred at τc as

Cj,s(x, τ) =
W (x) ⊗ [Ol(x)O∗

r(x + τc)]
√

W (x) ⊗ |Ol(x)|2
√

W (x) ⊗ |Or(x)|2
, (3.3)

where W (x) is a smoothing, localized window and τc is the pre-shift of the right

filter output centred at the disparity of the pixel from the previous frame.
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This is implemented as the Primary Tracking Window (PTW) and its hardware im-

plementation is discussed in Section 3.3.3. The tracking algorithm is currently a very

simple one; the window is centred at the estimated disparity from the previous frame for

a given pixel. Since images are received at a rate of 30 frames per second or higher, we

assume that the disparity of a given pixel will not change drastically from one frame to

the next. This allows us to reduce the size of the correlation search area, which results

in reduced hardware resources as well as a reduced probability of mismatch assuming we

are close to the correct match.

In correlation-based stereo algorithms such as this one the recovered object boundaries

tend to be located away from the real ones, a problem known as boundary over-reach.

Boundary over-reach occurs when the correlation window straddles an object boundary

so that part of the window is on an object at one depth and part of it is on an object at

another depth. The system in this work also exhibits this phenomenon, but the shiftable

nature of the window can be used to overcome this problem in a future version of the

system as will be discussed briefly in Section 3.3.5.

3.3.2 System Initialisation

When propagating disparity estimates between frames, it is necessary to consider that

such algorithms suffer from the risk of getting stuck in a local minima (wrong matches)

[?], especially during the initial frames. This problem can be overcome by performing

system initialisation using one of the following two methods:

1. Coarse-to-fine strategy.

2. Stochastic search strategy.

The idea behind a coarse-to-fine strategy is to gradually increase the resolution at

which correlation is performed. This performs the initial exhaustive search that is re-

quired to give a temporal stereo algorithm a good seed point from which to start. Pro-
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cessing the initial few frames at a much coarser scale (say 25% or 50% of their original

size) allows the correlation algorithm to search a greater range of disparity in a given

time. The main advantage of using a coarse-to-fine strategy is that a valid disparity

map is generally available from the first frame. This approach is ideal for a software

implementation because it does not increase the computational load. In a hardware im-

plementation though, this approach is less appealing because it requires decision making

regarding which scale to use at a specific time, though its potential uses can be considered

for a future addition to the system. Furthermore, using results from only a particular

scale would mean losing the essence of the LWPC algorithm, which combines results

across scales for improved accuracy. This is discussed later in the section.

Stochastic search applies an exhaustive search over a period of time. It normally takes

a few frames before complete initialisation of the scene under consideration is achieved.

A second correlation window, in addition to the primary window that performs temporal

correlation, is required to perform this search. In a software implementation, this means

an increase in the computational load. In hardware, the secondary window can operate

in parallel with the primary window so that there is no increase in the computation time.

We chose to employ this method because this secondary window can also be used after

the initialisation stage to help the system recover from mis-matches as discussed below.

This is an advantage over the coarse-to-fine strategy. A coarse-to-fine strategy would

require frequent reinitialisation and computation of the entire scence at coarser scale to

recover from mis-matches whereas the stochastic search approach treats individual pixels

separately and is able to recover from a mis-match without switching the computation

between coarse and fine scales.

In [?] it is claimed that a coarse-to-fine strategy is preferred over an initialisation

stage that uses a window to incrementally search over a wider range, but from our

experiments on real image sequences we have found that a secondary correlation window
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that performs disparity calculations at regularly spaced intervals in successive frames,

similar to the initialisation stage employed in [?], gives good results, as will be shown.

Figure 3.6 shows the results from the initialisation stage for the scene shown in Fig-

ure 3.6(a). Figure 3.6 (b) shows the disparity map that the LWPC algorithm would

generate if it had no limitations on the maximum disparity. Figure 3.6 (c) to (g) show

the settling of the disparity map into the expected disparity of Figure 3.6(b). The Root

Mean Square Error (RMSE) between the expected disparity map and the disparity map

generated by our modified algorithm steadily decreases at each progressive frames and

tends to zero at the fifth frame for this particular scence as shown in Figure 3.6 (h).

We call this second correlation window the Secondary Roving Window (SRW). The

main advantage of using this approach is that the SRW also aids in recovery from a

mismatch after the initialisation stage. In situations where a new object enters the

scene, or a region is dis-occluded, the SRW will pick up this new information, typically

within a few frames, and provide a disparity estimate with higher confidence value than

the PTW, which can then latch on to this new estimate as illustrated in Figure 3.7. This

provides better results as well as much better utilisation of the hardware resources.

There is a trade-off between the stochastic search area and the time to recovery using

this approach. The further that the SRW has to search over, the greater number of frames

it would require to recover should the PTW be stuck at a wrong match. In Figure 3.8 we

show the difference in recovery time for the cases when the secondary correlation window

is shifted up to a disparity of: i) 140 pixels and ii) 60 pixels. Figure 3.8 (a) shows

frame 11 for case (i); the results start to deteriorate as the subject moves to the left and

pixels to the right of the subject are dis-occluded. The system completely recovers by

frame 15, Figure 3.8 (b). For case (ii), the results deteriorate at frame 12, Figure 3.8 (c),

and are already recovered by frame 13, Figure 3.8 (d), though the results get noisier as

the maximum disparity of the system increases. When the maximum disparity expected
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Figure 3.6: The disparity map at successive time instances are shown in (c) to (g) obtained
using our modified temporal algorithm. The expected disparity map is shown in (b) and
our modified algorithm reaches this expected disparity by the fifth frame (g) for this
particular set-up. The error during the initialisation stage shown in (d) converges to
zero.
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Figure 3.8: The recovery time for the system with a maximum secondary shift of 140
pixels is shown in (a) and (b). This can be reduced by using a smaller maximum shift,
e.g. 60 pixels as shown in (c) and (d). In the latter case, recovery occurs in one frame as
opposed to four.

is known in a particular environment, the roving distance of the SRW can be restricted

to minimise the recovery time and noise in the disparity map.

Furthermore, performing disparity calculations at all three scales(1, 2, 4) and in three

orientations (−45o, 0o, +45o), the results of which are summed across scale and orien-

tation, acts as a built-in error-correction feature of the LWPC algorithm. The expected

interval between false peaks is approximately the wavelength of the filters applied at each

scale. Thus the false peaks at different scales occur at different disparities and summa-

tion over the scales yields a prominent peak only at the true disparity [?] as shown in

Figure 3.9.
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3.3.3 Comparison of the traditional and new architecture

The use of temporal information to seed the correlation windows increases the epipolar

search area while keeping the probability of mismatches and the use of hardware logic

to a minimum. Nonetheless, it is a challenging task to implement the shiftable window

correlation in hardware. FPGAs are well suited for processing data in a serial-shift or

systolic dataflow fashion. The traditional textbook approach to designing a correlation

unit, one which was followed in the the stereo-system on the TM-3 board, follow a
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Figure 3.10: Traditional architecture of the correlation unit with fixed window.

serial-shift dataflow and this only allows for a fixed-window correlation architecture.

This architecture, used in [?], is illustrated in Figure 3.10. The correlation, W (x) ⊗

[Ol(x)O∗

r(x + τ)], is performed by supplying the left image input of the unit with a new

pixel value every cycle and delaying the right image input by 1 to D cycles for each of

the D correlation values. For D = 20, this results in a latency of 20 cycles for the first

correlation result to appear, after which a new correlation value is generated every cycle.

In the traditional fixed-window correlation architecture the maximum disparity is

equal to the actual number of voting function / correlation blocks used. The resource

usage is linearly proportional to the maximum disparity that the correlation unit can

support making it prohibitive to use in scenarios with large disparities.
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Figure 3.11: Modified correlation unit with two shiftable windows.

To efficiently implement the shiftable window correlation architecture that was dis-

cussed previously, we need to take into account the resources available on the specific

hardware we intend to use. In the modified correlation algorithm, the data no longer

flows in a serial-shift fashion. We do not have a priori information on where the window

will be located at a particular time instance but we can set the maximum distance over

which the correlation might be performed, which we have set to 128 for this work. This

requires buffering of partial lines corresponding to the maximum search range.

The correlation is carried out at three scales for both the PTW and SRW. We have

set the width of the correlation window to 9 pixels at the original scale, requiring nine

voting function units. Five voting function units at 50% scale (Scale 2) and three voting

function units at 25% scale (Scale 4) are required. We need to buffer n copies of one

input, where n corresponds to the number of voting function units at each scale, in order

to keep up with the rate of incoming pixels. High-bandwidth M4K memory blocks of the

Altera Stratix S80 chip are used to buffer these incoming pixels.
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In our modified architecture (Figure 3.11), one of the incoming data streams is stored

in partial line buffers; the right input stream for a left-to-right correlation and the left

input stream for a right-to-left correlation. A left-to-right correlation treats the left input

as the reference and the right input is shifted to search for the best match, and vice-

versa for a right-to-left correlation. The maximum disparity is determined by the size

of these buffers whereas the number of voting function units are fixed; 9 for PTW and

9 for SRW. Once all the required pixels for the next correlation operation are available

in the buffer, the controller generates an address to read out the required pixel for the

current correlation window. To minimize the resource usage on the FPGA, the partial

line buffers are implemented using true dual-port memories so that two pixel values can

be independently read from the buffer each cycle, one for each of the correlation windows.

The SRW centres at a disparity of 9 for the first frame, and shifts in increments

of L = 9, the correlation window length, for the successive frames until it reaches a

disparity value of 128, or some other user-specified maximum. At the next frame, the

window centres at 0 disparity, after which it circles back to being centred at 9 and the

cycle continues. The effective range of disparity that our system can handle is 128 pixels

but this can easily be increased to accommodate larger disparity. There is a tradeoff

between the time to recovery from a mismatch and the maximum disparity that the

system can handle, as discussed earlier. For a maximum disparity of 128 pixels with

increments of 9 pixels per frame for the SRW, the worst-case time to recovery is 433

milliseconds corresponding to a wait of 13 frames.

A comparison of the relative resource requirements for a traditional architecture

against our modified architecture is shown in Table 3.1. These are calculated for perform-

ing the correlation in three orientations at three scales. The number of normalisation

units remains the same in both architectures. The number of voting function units, the

core of the correlation module, required for the modified architecture is actually less

than that required for a traditional architecture (102 v.s. 105) for a significantly larger
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# of Altera On-chip 9-bit

Unit Blocks LEs M4K DSP

RAM Elements

Normalisation 18 (18) 29,070 - 72

Partial Row buffers 60 (0) - 120 -

Voting function 102 (105) 21,726 - -

Controller 1 (0) ≤ 1,000 - -

Available 79,040 364 172

resouces on S80

Table 3.1: Resource consumption of modified Phase Correlation Unit on Altera S80
FPGA. The number of corresponding blocks required for the architecture described in
[?] are shown in parentheses for comparison purposes.

support of disparity (128 v.s. 20). In fact, the number of voting function units remains

the same no matter what the maximum disparity is set to. This represents a significant

savings in resource usage and opens up a wide variety of uses for the modified correlation

architecture. Our modified architecture requires a significant amount of on-chip memory

for buffering and ways to achieve the same or better disparity estimates with reduced

on-chip memory usage are discussed in Section 5.1.

3.3.4 Architecture Limitations

The original LWPC algorithm uses a 5 × 5 pixel 2-D Gaussian mask to compute the

voting function C(x, τ) given in Equation 3.3, but in this work C(x, τ) is computed using

a 1 × 5 pixel 1-D Gaussian mask. The accuracy of correlation based stereo-matching

algorithms is inherently dependent on the amount of texture available in the image pair.

The use of a 1-D Gaussian mask reduces the texture information available for correlation
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Figure 3.12: Pixels where the disparity estimate using a 1-D Gaussian mask differ from
the disparity estimate using a 2-D Gaussian mask are shown in white.

as the texture information in the vertical direction is ignored causing some degradation

in matching performance.

In our implementation, the amount of on-chip memory is not sufficient to buffer

multiple incoming scanlines needed for a 2-D mask, as the architecture requires multiple

copies of each line. The impact of the use of a 1-D mask is shown in Figure 3.12 for a

sample frame. The white pixels indicate where the disparity estimates differ between the

use of of 1-D mask and a 2-D mask. Though most of these estimates differ by a single

value of disparity (some differ by over 20 disparity values), the difference is compounded

when used in a temporal algorithm such as ours and we expect some degradation in the

results. A difference of one disparity value per frame can cause the tracking window to go

off-track over time. The architecture can be modified in a future version to accommodate

a 2-D Gaussian mask as discussed in Section 5.1.

3.3.5 Flexibility of Modified Correlation Unit

A number of variations of the design can be achieved without having to make any changes

to the correlation unit. Instead of the simple tracking algorithm that we are currently

using for the PTW, an algorithm based on a constant-velocity motion model can be used

to achieve better tracking. The velocity estimate can be obtained by taking the difference
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between disparities in the previous two frames, vt = dt−1−dt−2, where vt is the predicted

disparity velocity for the current frame. Similarly, the location of the secondary window

can be computed using a probabilistic likelihood estimate instead of the pre-determined

roving locations.

Other options include the possibility of concatenating the two correlation windows

after the initialisation stage so as to support greater movement of objects from one frame

to the next. The decision of when to concatenate the windows and when to use them

individually in parallel can be made by a simple count of the number of invalid disparity

estimates after the validation check phase. This can be done for the whole image, region

by region, or even for individual pixels. The issue of boundary overreach in correlation

based algorithms [?] discussed earlier in Section 3.3.1 can also be solved by simply shifting

the correlation windows by ±L/2, where L is the length of the correlation window, so

that the window does not cross over an object boundary. All of these modifications

require the implementation of a post-processing stage that generates the appropriate

input parameters for the correlation unit without having to make internal changes to the

correlation unit itself.

The use of the correlation unit is not limited to a stereo-system. It can also be used

in other systems such as object recognition using template matching, for e.g., appearance

models for object recognition. The two correlation windows can be used independently

to search different regions of an image thereby speeding up the search process or they

can be combined to support a larger template.

3.4 Consistency Check Unit

Dense stereo disparity algorithms based on correlation such as the LWPC algorithm used

in this work generate a disparity value for every single pixel. When the two images are

taken from different viewpoints there invariably are pixels that are visible in one image
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Figure 3.13: The two rows represent pixels along two epipolar lines of I1 and I2 and the
arrows go from a point in one of the images towards the point in the other image that
maximises the correlation score. The match on the left is consistent because correlation
from I1 to I2 and from I2 to I1 yields the same match, unlike the matches on the right
that are inconsistent.

but not in the other, a condition known as occlusion. The matching algorithm will still

attempt a best guess as an estimate for the disparity resulting in erroneous results. We

have employed a mechanism called a left-right, right-left (LR-RL) consistency check to

identify these and other irregularities in the disparity estimates. This validation measure

is illustrated in Figure 3.13 and can be defined as follows:

Given a point P1 in I1, let P2 be the point of I2 located on the epipolar line

corresponding to P1 so that an optimal correlation score is achieved. P1 is the

reference point of correlation and the window that shifts along the epipolar line

is centred on P2. The match is valid if and only if the correlation score is also

maximised when P2 is the reference point of correlation and the window that shifts

along the epipolar line of I1 corresponding to P2 is centred on P1.

We implement this check by performing the correlation twice; namely left-to-right

(L-R) correlation where the left image is the reference input and a match is searched

for in the right image and right-to-left (R-L) correlation where the right image is now

the reference input. Both correlations are performed in parallel and one row of disparity

estimates from each of the correlation units are buffered. The size of this buffer needs
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Figure 3.14: Architecture of Consistency Check Unit.

to correspond to the maximum disparity that the system is designed for, which in our

case is 128 pixels. The architecture of the Consistency Check Unit is illustrated

in Figure 3.14. A controller reads out the appropriate disparity value from the R-L

correlation based on the disparity value of the L-R correlation. The values are then

checked for consistency which is determined by a threshold level. The threshold level for

our system is set so that a difference greater than 2 pixels values in disparity is classified

as an invalid result, but this can be easily modified to a different level. A 1-bit flag is

generated for each invalid disparity result.

3.5 Stereo-Vision system Architecture

In the previous sections, we discussed the design of pre- and post-processing blocks for

image rectification and LR-RL consistency check respectively that improve the overall ac-

curacy of the stereo-system as well as the development of a novel correlation architecture

with shiftable windows. We now present a stereo-system based on the LWPC algorithm
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that utilises these developments. Hardware design techniques for implementing common

signal and image processing tasks such as filtering and implementing a system across

multiple FPGAs are also discussed.

The high level architecture of the proposed system is shown in Figure 3.15. It consists

of six major units: Video Interface unit, Image Rectification unit, Scale-Orientation

Decomposition unit, Phase-Correlation unit, Interpolation and Peak Detection unit, and

Consistency Check unit.

The Video Interface Unit receives video signal from a stereo-rig with NTSC cam-

eras (Figure 3.16). NTSC cameras output 640 × 480 images at 30 fps but the odd and

even field of each frame are captured with a time difference of (1/60)th of a second. The

even field consists of even rows (rows 0,2,4,. . . ) and the odd field consists of odd rows

(rows 1,3,5,. . . ) of the image. This leads to a serious problem of “jagged edges” when

2-D separable filters are applied to these images. To avoid this problem, we treat the

odd and even fields as separate frames, which results in the system processing 640× 240

images at 60 fps. The processing capabilities and resource usage of the system in this

mode exactly mimic that of the system if it were processing 640 × 480 images at 30 fps.

The system can be easily adapted to process 640×480 images by designing a compatible

video interface unit that accepts input from a progressive-scan camera.

The acquired pixel data is sent to the Image Rectification Unit as it arrives without

any buffering. This unit runs on the same clock as the camera, called the camera clock,

which can be different and asynchronous to the system clock that clocks the rest of the

modules in the system.

The Image Rectification Unit, described previously in Section 3.2, warps both the

left and right input images. The output from this unit resembles that of a stereo-rig in

a simple set-up. Border pixels that are no longer part of the image due to warping as

discussed earlier in Section 3.2 are indicated by a 1-bit flag.
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Figure 3.16: The stereo-rig with two NTSC cameras. The separation between the optical
centres of the two cameras is approximately 70mm.

A synchroniser circuit is designed to handle glitch-free transfer of data between the

Video Interface Unit, which runs on the camera clock, and the Image Rectification Unit

that, like the rest of the system, runs on the system clock. The system clock is set at a

higher frequency than the camera clock. When transferring a single-bit signal, such as

the control signals from the Video Interface Unit, from a slow clock to a fast clock, two-

levels of flip-flop can be used to synchronise the signal and avoid metastability issues.

The synchroniser is illustrated in Figure 3.17. The transfer of pixel values, which are

multi-bit signals known as a bus, cannot be achieved with a two-stage flip-flop. We

synchronise the bus transfer by configuring the input image buffer to support dual-clock

operations. The write operation from the Video Interface Unit to the buffer is performed

on the camera clock and the read operation from the buffer to the Image Rectification

Unit occurs on the system clock.

The Scale-Orientation Decomposition Unit first builds a three-level Gaussian

Pyramid by passing the incoming right and left images through low-pass filters and sub-

sampling. The pyramids are then decomposed into three orientations (-45o, 0o, +45o)

using G2/H2 steerable filters [?]. G2/H2 filtering is implemented using a set of seven

basis filters. By choosing a set of proper coefficients for the linear combination of the
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Figure 3.17: The synchroniser circuit uses two-stages of flip-flop to synchronise 1-bit
signals that cross between the camera clock and the system clock.

basis filters, filter output of any arbitrary orientation can be synthesised. Since G2/H2

filters are X-Y separable, they require considerably less hardware resources than non-

separable filters. The filter output is reduced to a 16-bit representation which is then

sent to the Phase-Correlation unit.

Filtering is a standard signal and image processing operation. There are standard

architectures [?] to realise specific filtering operation in hardware, some of which we

describe here. A 2-D, X-Y separable filter can be realised by implementing it as two

separate 1-D filters. This reduces the complexity of the filter to O(N) whereas a regular

(unseparable) 2-D filtering operation has a complexity of O(N 2). When multiple filters

need to be applied to an image, such as the seven basis filters to implement G2/H2

filtering, maximum efficiency in hardware can be achieved by performing the vertical (Y)

filtering first followed by the horizontal (X) filtering. This allows us to share the vertical

(Y) buffer across all the filters. The size of the Y buffer for an N -tap Y-filter is equal

to (N − 1) · W , where W is the number of pixels in one scanline of the image. Only

N − 1 delay elements are needed for each of the horizontal filters so it is considerably

less expensive to have separate buffering in the horizontal direction. The architecture of

2-D X-Y separable filter is illustrated in Figure 3.18.

Furthermore, all but one of the seven basis filters are either symmetric or anti-

symmetric 7-tap finite impulse response (FIR) filters. An FIR filter with co-efficents

C1, C2, ..., C7 can be implemented in hardware as illustrated in Figure 3.19 (a). This

requires 7 multipliers and 6 adders. Symmetric and anti-symmetric FIR filters with
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 =
 6

Input pixel stream

Figure 3.18: Performing vertical filtering first allows sharing of the Y-buffer for all the
seven basis filters resulting in considerable resource savings.

coefficents C1 = ±C7, C2 = ±C6 and C3 = ±C5 can be implemented as shown in Fig-

ure 3.19 (b) which reduces the number of multipliers required from 7 to 4. The number

of adders remain the same.

The Phase-Correlation Unit computes the real part of the voting function Cj,s(x, τ)

as mentioned in Eq. 3.3 for all 1 ≤ s ≤ S, 1 ≤ j ≤ F , Dmin ≤ τ ≤ Dmax, where S is

the total number of scales, F is the total number of orientations, and D is the disparity

range of the correlation window. The epipolar search area for correlation is nine pixels

wide for scale 1, five pixels wide for scale 2, and three pixels wide for scale 4 at any time

instance.

The Interpolation/Peak-Detection Unit interpolates the voting function results,

Cj,2(x, τ) and Cj,4(x, τ), from the two coarser scales, in both x and τ domains such

that they can be combined with the results from the finest scale, Cj,1(x, τ). Quadratic

interpolation is performed in the τ domain and constant interpolation in the x domain.
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Figure 3.19: (a) Regular architecture of a 7-tap FIR filter. The number of multiplier
required can be reduced for symmetric and anti-symmetric FIR filters using the archi-
tecture shown in (b).

The interpolated voting functions are then combined across the scales and orientations

to produce the overall voting function C(x, τ). The peak in the voting function is then

detected for each pixel as the maximum value of C(x, τ).

The Consistency Check Unit receives the estimated disparity results from both

left-right and right-left correlations and performs a validity check on the results. The

disparity value is accepted as valid if the results from the two correlation windows do not

differ by more than two pixels. The checked disparity values are then sent back to the

video interface unit to be displayed on a monitor or otherwise made available as output.

The rejected disparity estimates are assigned a special flag for display purposes.

3.5.1 Stereo-vision system on Transmogrifier-4

The stereo-vision system described is too large to be implemented on a single FPGA. The

system is partitioned across four FPGAs on the TM-4 board as illustrated in Figure 3.20.
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Figure 3.20: Partitioning of the algorithm and data transfer on the TM-4 board.

The partitioning of the algorithm is dependent on the resources available on each FPGA,

the communication bandwidth between FPGAs, and external peripherals support on

each FPGA. FPGA #0 contains the Video Input / Output, Image Rectification, and

Consistency Check units. FPGA #1 contains the Scale/Orientation Decomposition Unit

and the Normalisation module of the Phase-Correlation Unit. The remaining modules of

the Phase-Correlation Unit, Interpolation, and Peak Detection modules are implemented

on FPGA #2 that outputs a disparity map with the left image as the reference image.

FPGA #3 is reserved to perform the same operations as FPGA #2 but with the right

image as the reference. The disparity values from each of these would be checked for

consistency on FPGA #0. Note that at the time of this work, the TM-4 board still has

some bugs rendering FPGA #3 unusable. The complete system has been extensively

simulated with real video sequences. The major units have also been tested on the TM-

4 board and system integration is underway. Simulation results are shown in Chapter 4.
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Figure 3.21: The data to be transfered is time multiplexed on the sending FPGA and
de-multiplexed on the receiving FPGA, allowing large amounts of data to be transferred
on a limited width data bus.

FPGA #1 is connected to FPGA #2 and FPGA #3 with a bus that is approximately

100-bits wide, but the number of bits that need to be transferred between these FPGAs

is much larger. Eight bits are retained after normalisation for the real and imaginary

components of the phase at each orientation for each scale. A total of 288 bits, 16 bits

for each of the three orientations (−45o, 0o, +45o) at each scale (1,2,4) for both the left

and right images, need to be transferred between the FPGAs. We use Time Division

Multiplexing to handle this transfer as illustrated in Figure 3.21.

3.6 Summary

Many vision algorithms are computationally expensive and require specialised hardware

to run at frame-rate. The design of hardware systems for these applications require more

than simply porting the software version of the algorithm to hardware due to the limited

logic resources on hardware devices. In this chapter we saw that a traditional approach

to implementing the correlation unit is not the most efficient solution for a hardware

realisation of the LWPC stereo algorithm. A novel architecture for the correlation unit

with shiftable correlation windows was developed in this work to exploit the temporal co-
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herence present in real-life sequences. The architecture uses two correlation windows, one

to perform localised correlation in an area of the image where a corresponding match is

expected by tracking disparities in the time domain, and the other to perform a stochas-

tic search over a wider search band over time. The maximum disparity can easily be

increased or decreased by setting the maximum limit for the roving window without

any changes in the logic resource usage except an appropriate amount of memory usage

corresponding to the number of pixels that need to be buffered.

In addition, an image rectification unit was designed to warp the incoming stereo

images so that the epipolar lines in the image pair are horizontal and aligned, to improve

the accuracy of the disparity estimates. The design of a consistency check unit is also

discussed. This consistency check invalidates erroneous disparity estimates by performing

consistency checks on the left-right and right-left disparity estimates. Finally, a complete

architecture of the LWPC-based vision system on the TM-4 board was presented and

design techniques and architectures used to implement this system were discussed. In

Chapter 4, we compare the performance of our system to others in the literature and

present results from our system.



Chapter 4

Results

4.1 System Performance

The stereo system presented in this work performs multi-scale, multi-orientation disparity

estimation up to 128 pixels using roughly the same amount of hardware resources as the

system in [?] that is capable of handling disparities of only 20 pixels. A dense disparity

map is produced at the rate of 60 fps for an image size of 240 × 640 pixels (which is

equivalent to 480 × 640 pixels at 30 fps).

A common metric to measure the performance of a stereo-system in terms of through-

put is the Points × Disparity per Second (PDS) defined as follows:

PDS =
n × m × D

T
(4.1)

where n×m is the image size, D is the range of disparities evaluated and T is the time it

takes to evaluate the disparities. It must be noted that the PDS metric does not take into

account algorithm complexity, or accuracy of the results, but rather is a measure of all

possible disparity values that are calculated by the algorithm in a specified time frame.

For our system, we use D = 18 in the above equation because eighteen unique disparities

are computed in each frame; nine disparity values are computed by the primary window

58
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T PDS

System n × m D (msec) (×106) algorithm platform

INRIA 256 x 256 32 280 7.5 Intensity PeRLe-1 board

[?] (23 Xilinx

Correlation XC3090 FPGAs

PARTS 240 x 320 24 23.8 77 Census 16 Xilinx

[?] 4025 FPGAs

CMU 200 x 200 30 33 36 sum of absolute C40 DSP +

[?] difference real-time

processor

UofT- 256 x 360 20 33 55 LWPC TM-3A board

TM3 [?] (4 Xilinx Virtex

(Phase-based) 2000E FPGAs)

Our 240 x 640 128 16.5 165 Temporal TM-4 board

system (480 x 640) (33) LWPC (4 Altera Stratix

S80 FPGAs)

Table 4.1: Comparison of various reported real-time stereo vision system performance.

and nine by the secondary window. The system designed in this work is capable of

achieving a performance of over 330 million PDS when both the left-right and right-left

correlation units are implemented, which is considerably greater than the any of the

others listed [?, ?] some of which are listed in Table 4.1. Even with single directional

correlation the system has a performance of 165 million PDS.

Compared to the other systems in Table 4.1, our system is capable of handling the

largest disparity range without a similar increase in the resource usage over [?]. We

achieved this by utilising the temporal coherence in real-life video sequences and designing

a shiftable correlation window whereas the previous system in [?] uses a traditional

fixed-window architecture for correlation. The system does not have a “hard limit” on
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the maximum disparity; this can be easily increased by setting the maximum distance

for the SRW to a higher value. But, at the same time, there is a trade-off between

time to recovery from a mis-match and maximum disparity as discussed previously in

Section 3.3.2. The logic resource usage of the Phase-Correlation module remains the

same except an increase in the size of the partial-line buffers. A software implementation

of this algorithm in MATLAB requires over 25 minutes to generate the disparity map for

a pair of images on a LINUX 3 GHz machine with 4 GB of memory. This is because the

correlation windows do not follow a regular pattern so it is not possible to take advantage

of MATLAB’s matrix computation features. If multiple copies of the data are stored like

in the hardware version, there will be a speed-up in the computation time but it will still

not be close to the frame-rate performance of the hardware implementation. A C/C++

implementation may offer speed-up over the MATLAB implementation, and though no

tests have been carried out, even this is not expected to match the hardware performance.

4.2 System Results

In this section, we present results from various stages in the system. First, we look at the

output from the image rectification unit. Next, the output from the scale / orientation

decomposition unit is presented. Finally, disparity estimates before and after performing

left-right consistency check from a pre-captured and pre-rectified sequence are presented.

The image size used in this work is 240 scanlines in height and 640 pixels in width. Each

image is either the odd or even field of a frame captured by an NTSC camera, but no

subsampling is performed in the horizontal direction so the image appear to be stretched

horizontally.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: The original images from the left and right cameras are shown in (a) and (b).
The rectified left and right images obtained using a second order polynomial (c) and (d)
compare favourably to the expected rectified images (e) and (f).

4.2.1 Image Rectification

The incoming images from the camera are first warped so that corresponding pixels in

the image pair appear on the same scanline. The original left and right input images are

shown in Figure 4.1 (a) and (b) respectively. The warped left and right camera outputs

from the hardware computed using a second order polynomial are shown in Figure 4.1

(c) and (d). In Figure 4.1 (e) and (f), we show the expected results obtained from a

software implementation using a matrix inverse transformation.

The rectified images obtained using a second order polynomial are very similar to the

expected rectified images. The difference in the results is negligible at the top left of the

image (pixel coordinates (0,0)), but increases with increasing pixel co-ordinates in the
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x- and y-axes. An error analysis of the warped image obtained using the second order

quadratic with fixed-point precision was shown earlier in Section 3.2. The results can

be improved by computing the coefficients for the warping polynomial with the centre of

the image set as pixel coordinates (0, 0) and then normalising the pixel indices so that

the width of the image (pixels 1 to 640) and the height of the image (pixels 1 to 240) are

each represented between (−1, 1). The actual calibration of the cameras was done using

[?], a freely available online calibration toolbox for MATLAB. We do not compensate for

radial distortion currently but the stereo-rig can be recalibrated to compensate for radial

distortion. A second order quadratic such as the one used in this work to approximate the

homography is capable of compensating for radial distortion so long as pixel coordinate

(0, 0) is mapped to the calibrated optic centre of the camera. The stereo-rig would also

have to be recalibrated if there is any disturbance to the stereo-rig setup that would

change the position or orientation of one camera with respect to the other. The new

co-efficients obtained from a recalibration can simply replace the existing coefficients in

our system and the VHDL recompiled without any need to modify the rest of the image

rectification unit.

4.2.2 Scale and Orientation Decomposition

The next step in the LWPC stereo algorithm is to create a Gaussian pyramid of the

input image and apply steerable G2-H2 filters to the image pyramid to obtain phase

information in the images. The Gaussian pyramid generated by the scale decomposition

block is shown in Figure 4.2. The H2 filter outputs at the original scale (Scale 1) tuned

to −45o, 0o, and +45o are shown in Figure 4.3.

4.2.3 Disparity Results

The last two major components of stereo system are the phase-correlation unit and the

peak-detection unit that generates the best estimate of the disparity value for each pixel.
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(a)

(b)

(c)

Figure 4.2: Output of the scale decomposition block is a Gaussian pyramid at Scale 4
(a), Scale 2 (b) and Scale 1 (c).

This last unit is still undergoing integration on the TM-4 board so we present results

from a ModelSim simulation of the system.

A pre-rectified captured sequence is used for this simulation. Frames 1, 7, and 15 from

the sequence captured by the left camera, MDR-1, are shown in Figure 4.4. The sequence

consists of a person in the foreground and poster boards serving as the background in

the image. The person is standing still and the camera is moving from left to right as

well as slightly diagonally. Another way to think of this is that the cameras are still and

the person is moving to the left.

Figure 4.5 shows the disparity results using left-to-right correlation for the first 15

frames of the sequence. The maximum disparity in this sequence is around 40 pixels.

The system is currently configured so that the SRW searches for a corresponding match

in the range of 5 to 13 pixel disparities during the first frame, 14 to 22 pixel disparities

during the second frame and so on. The initialisation stage for this particular sequence

spans the first three frames, as illustrated in Figure 4.5 (a) to (c) and the system settles
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(a)

(b)

(c)

Figure 4.3: Normalised H2 filter output at −45o (a), 0o (b) and +45o (c) on scale 1 image
of the Gaussian pyramid.

(a) (b) (c)

Figure 4.4: Frames 1 (a), 4 (b), and 15 (c) from the left camera of the MDR-1 pre-
captured stereo sequence.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.5: Disparity maps for frames 1 to 15 of the MDR-1 sequence using left-to-right
correlation are shown in (a) to (o) respectively.

into a steady state by frame 4 as illustrated in Figure 4.5 (d). The PTW is then able to

track the disparities over subsequent frames as illustrated in Figure 4.5 (e) to (o).

As the person moves to the left, parts of the background become disoccluded to the

right of the person. Because there is no previous disparity estimate for these disoccluded

regions, they tend to have inaccurate disparity estimates during the first frame that the

regions become visible as illustrated in Figure 4.5 (g). The algorithm recovers accurate

disparities for these disoccluded regions over the course of next few frames with the help
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(a) (b) (c)

Figure 4.6: Disparity map of frames 1 (a), 11 (b), and 15 (c) of the MDR-1 sequence
generated from the golden version of the LWPC algorithm running on a Linux processor.

of the SRW as can be seen in Figure 4.5 (j). Another important observation is the level

of noise in the disparity estimate for different frames of the sequence. The disparity

map for certain frames (for example frame (o)) has greater amount of noise than others

(for example frame (k)). This is because we use a 1-D 1 × 5 pixel Gaussian mask for

computing the voting function in Equation 3.3 which can handle horizontal translation,

but since any depth discontinuity (in this case introduced by the small vertical motion

in the sequence) disrupts tracking, the quality of the disparity estimate suffers. The

architecture can be modified to accommodate a 2-D Gaussian mask (such as a 3 × 3

pixels mask) to improve performance, as discussed later in Section 5.1.

The disparity estimates from the golden version is shown in Figure 4.6 for comparison

purposes. The golden version is a software (MATLAB) implementation of the LWPC

algorithm as described in [?] using floating-point arithmetic. The golden version is con-

figured to support the maximum disparity in the scene under consideration using a single

fixed correlation window at every frame.

4.2.4 Consistency Check Results

The last step that the system performs is a consistency check of the disparity estimates.

This is used to improve the accuracy of the system by comparing the disparity estimates

from the left-to-right correlation and right-to-left correlation and rejecting disparity es-

timates that differ by more than 2 pixel values. The rejected pixels are set to black for
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(a) (b)

(c) (d)

Figure 4.7: Binary map showing valid matches in white and rejected disparity estimates
in black for frame 2 (a) and frame 11 (b). (c) and (d) show the disparity maps for the
two frames. In (c) and (d), the black pixels do not actually have a disparity value of
zero, but are rather pixels for which no good disparity estimate exists.

display purposes and the accepted disparities are assigned the disparity estimate from

the left-right correlation.

A binary map obtained after rejecting invalid matches for frame 2 of the MDR-1

sequence is shown in Figure 4.7 (a). The “white” pixels represent pixels that passed

the left-right consistency check and the “black” pixels represent pixels that failed the

consistency check. Fewer pixels pass the consistency check test during the initialisation

frames as expected. The pixels that pass the consistency check belong mainly to the image

background because they have a smaller disparity which are recovered early. Once the

system has settled into steady-state the accuracy of the system improves as illustrated

in Figure 4.7 (b) for frame 11. The disparity maps for the two frames after rejecting

invalid disparity estimates are shown in Figure 4.7 (c) and (d). The accepted disparity

estimates are assigned the disparity values obtained from left-right correlation.
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4.2.5 Analysis of Disparity Results

In this section, we analyse the performance of our system by comparing the disparity

estimates obtained from our work with the disparity estimates from the golden version.

However, before we present the analysis, it should be noted that the disparity estimates

after consistency check are quite sparse as some of the estimates are rejected due to

the noise in the results. In addition to the use of fixed-point arithmetic as opposed to

floating-point, our system computes the voting function using a 1 × 5 pixel Gaussian

mask instead of a 2-D n × n mask so we expect some degradation in results as we had

earlier mentioned in Section 3.3.4.

The consistency check phase eliminates erroneous disparity estimates that are a result

of occlusion or lack of texture in the captured image. The occluded areas of the image

pair in Figure 4.7 (d), left edge of the person and a vertical band area at the left edge of

the image, are rejected after consistency check. Correlation based stereo-matching have

an inherent limitation in that they are able to successfully estimate disparities only in

regions with texture. A 1-D mask for correlation such as the one we have used in this

work does not integrate texture information in the vertical direction. This lack of texture

information results in the disparity estimates of some of the background regions as well

as regions in the middle of the person to be rejected.

To get a quantitative sense of the accuracy of the disparity estimates, we look at two

key performance areas: i) results of the left-right consistency test, and ii) accuracy of the

accepted disparity estimates in comparison to the golden version.

Performing a left-right consistency check is a standard method of validating disparity

estimates. Pixels or other image features whose disparity estimates do not differ by

more than a certain threshold between the left-right correlation and right-left correlation

are treated as having accurate disparity estimates. Table 4.2 shows the percentage of

accepted versus rejected pixels for the MDR-1 sequence. The total percentage of pixels

that pass the consistency test for frames 4 to 15 combined is just over half the pixels
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Frames Frames

Percentage of: 4 to 15 10 to 12

Accepted 53% 62%

Rejected 47% 38%

Accepted with disparity

difference ≤ 10% 85% 85%

from golden version

Table 4.2: Percentage of disparities accepted and rejected disparities after left-right con-
sistency check. The last row shows the percentage of accepted pixels that have a difference
of 10% or less in disparity value from the golden version.

in the image at 53%. This number increases to 62% when only frames 10 to 12 are

considered which have less noise in the disparity estimates. Frames 10 to 12 do not

have a significant vertical component in scene motion, hence the horizontal matching

window is able to handle the situation better. For pixels that pass the consistency check,

approximately 85% have disparity estimates with a difference of 10% or less from the

golden version disparity estimates.

A histogram provides a better sense of the performance of the disparity estimates.

Figure 4.8 shows the histogram for the difference in disparity values between the system

in this work and the golden version for (a) the accepted pixels and (b) the rejected pixels

for frames 4 to 15 of the MDR-1 sequence. Eighty-five percent of the accepted pixels have

a difference of 10% or less from the golden version and most of the remaining accepted

pixels fall within 20% of the golden version disparity estimates. The use of a 1-D Gaussian

mask explains the few accepted pixels that have a greater difference as compared to the

golden version. The rejected disparity estimates tend to have much greater difference as

compared to the golden version. Similar observations are made for the results of frames

10 to 12, as shown in Figure 4.9.
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Figure 4.8: Histogram of difference in disparity estimates between our system and golden
version for (a) accepted pixel and (b) rejected pixels. The values are computed using
results from frames 4 to 15 inclusive.
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Figure 4.9: Histogram of difference in disparity estimates between our system and golden
version for (a) accepted pixel and (b) rejected pixels. The values are computed using
results from frames 10 to 12 inclusive.
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Figure 4.10: The five 5 × 5 pixel blocks used to compute the disparity estimate error in
Table 4.3 are numbered and indicated by the arrow.

Block 1 2 3 4 5

% error 1.03 1.80 1.90 5.60 6.73

Table 4.3: Percentage of error as compared to the golden version disparities for the
numbered 5 × 5 blocks showing in Figure 4.10. The blocks are shown inside the white
circles.

The second area of analysis is to compare the actual difference in disparity estimates

for a given pixel. The disparity estimates obtained from the golden version are compared

to the disparity estimates obtained from our temporal algorithm using fixed-point arith-

metic. Table 4.3 shows the average error in percent of the disparity estimates of five 5×5

pixel blocks. These blocks are shown and numbered in Figure 4.10. Blocks 1, 2, and 3

are used from frame 11 and blocks 4, and 5 from frame 15 to get a sense of the error in

frames with various levels of noise in the results. Frame 15 has greater amount of noise

present in the disparity map as compared to the disparity map from Frame 11. The error

in disparity estimates is between 1% and 2% for frames with less noise and between 5%

and 7% for noisier frames. This is comparable to the system in [?] which reports errors

of between 3% and 13%.
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4.3 Summary

In this chapter we first compared the performance of our system with other real-time

stereo systems using the PDS metric. Then the results of image rectification, Gaussian

pyramid, and G2/H2 filtering from the implementation on the TM-4 board are shown.

Disparity estimates and consistency check results are provided from a ModelSim simu-

lation of the system. Finally, a detailed analysis of the disparity estimates pointing out

where the system performs well and where it requires improvements is presented.

In the next chapter, we discuss ways to to improve the accuracy of the system.

This includes a modification of the line buffers used in the phase-correlation unit to

accommodate a 3 × 3 Gaussian mask for computing the voting function as well as the

use of other post-processing options to improve the disparity estimates.



Chapter 5

Conclusions and Future Work

As discussed in Chapter 2, FPGAs are ideal for many vision tasks as they allow us to take

advantage of the inherent parallelism of vision algorithms. However they have limited

resources. Though larger and more complex designs can be realised using devices with

greater resources such as ASICs or even larger FPGAs, it may not be an ideal solution

due to higher costs. Also, many algorithms require devices with much greater resources

than currently available. It is a challenging task to develop complex vision systems with

these resource constraints, and this differentiates the designing of hardware-based system

from software-based systems. We need to take advantage of the information present in

the data to be processed to develop efficient architectures for the system at hand rather

than simply taking a software implementation and “porting” it to hardware.

Keeping these ideas in mind, we have presented in this work an FPGA-based, frame-

rate stereo system with the following salient features:

1. Ability to handle very large disparities using limited hardware resources by design-

ing a novel architecture for performing correlation in hardware.

2. Improved accuracy by including an image rectification unit to pre-process the im-

ages and a consistency check unit to remove invalid disparity estimates.
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3. Capability to handle image sizes of 240 × 640 pixels at 60 frames per second. The

system is also capable of handling 480 × 640 images at 30 frames per second if a

suitable video interface is available, as discussed later in Section 5.1.

The system captures views of its surroundings using a stereo-rig and generates dense

disparity maps. The results of the disparity map provide depth information and can be

used to construct a 3D map of the viewed scene. This information is useful in a variety of

vision tasks such as object recognition, autonomous navigation, and surveillance among

others.

The highlight of this work is the design of a correlation unit with shiftable correlation

windows. This a departure from the traditional fixed window correlation architecture

that hardware designers are accustomed to, and we have not found a shiftable window

architecture in the present literature. This allows our design to use temporal coherence to

track disparities over time and perform localised correlation. Our architecture is able to

support a disparity range of 128 pixels with the same amount of hardware logic resources

for the correlation unit as the system in [?] which is limited to a disparity of 20 pixels.

The range of our system can easily be increased but there is a trade-off between the

maximum disparity that the system can support and the recovery time from a mismatch.

In addition, the correlation unit can be configured easily to accommodate various

correlation search strategies as discussed in Section 3.3.5. The use of the correlation unit

is not limited to a stereo-vision system. The flexibility of the correlation windows means

that the unit can be used as a platform for correlation based algorithms that allow vision

researchers to implement and experiment in hardware with minimal development time.

5.1 Future Work

The LWPC algorithm used in this work performs correlation in three orientations at

three scales, a task requiring significant resources. Though we have been successful in



Chapter 5. Conclusions and Future Work 76

developing an architecture for the correlation unit that handles large disparities with

limited logic resources for the arithmetic operations, the operations were limited to a

1 × 5 correlation for this work. This has had an impact on the accuracy of the disparity

estimates by introducing noise in the results. The main limitation of our architecture is

that it needs to store multiple copies of the input image stream preventing the buffering

of multiple lines at a time that are needed for correlation with an n× n Gaussian mask,

such as 3 × 3 or 5 × 5 pixel masks, due to the limited on-chip memory. The simplest

way to accommodate an n × n Gaussian mask is to support smaller image sizes and

use only two orientations as in [?] instead of the suggested three. With an image width

of 320 pixels and correlation using a 3 × 3 mask, a total of 240 out of the 364 M4K

memory blocks are required to store multiple copies of three rows at a time. For larger

image widths, the line buffers need to be modified as shown in Figure 5.1 so that three

adjacent pixels from the same row can be accessed in a single clock cycle. For a 3 × 3

mask, nine pixels, three adjacent pixels from three rows, are required for each correlation.

In addition the voting function needs to be computed at a maximum of nine locations

corresponding to the epipolar search band at Scale 1. This can be achieved by designing

a multi-rate system. The input stream arrives at approximately 13.5 MHz which means

the correlation unit in a multi-rate design would have to run at 9 times that speed or

121.5 MHz to maintain frame-rate. Only a single copy of three rows needs to be buffered

at a time using this modification. Each row requires six M4K memory blocks at Scale 1

and three M4K blocks each at Scales 2 and 4. A total of 216 out of 364 available M4K

blocks are required to store a single copy of three rows at three different orientations for

both the left and right images.

Another possibility is to use off-chip memory to buffer the output of the Scale/Orientation

Decomposition block and design an on-chip cache to rapidly access the required pixels.

The use of off-chip memory also requires the design of memory controller to interface with

the off-chip memory blocks. For a complex design such as this, board-level simulation
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Figure 5.1: Modified buffer to store three rows of phase information. This would eliminate
the need to store multiple copies of the same row when used in conjunction with a multi-
rate system.

models that include the interaction between the FPGAs and off-chip memories will be

needed for a rapid design process.

Other possibilities for future work include:

• Design of a de-interlacer module to eliminate the “jagged edges” issue with NTSC

cameras so that the system can operate on the desired image size of 480 × 640

pixels. Alternatively, a compatible module to interface with FireWire cameras can

be designed. FireWire cameras provide a progressive-scan output so the “jagged

edges” are not a concern with the filter sizes used in this design.

• Instead of choosing the maximum of the voting function as the disparity estimate,

information contained in the curvature of the peak can be used to determine the

best disparity estimate. The curvature information can be used to differentiate two

peaks with the same magnitude but different levels of confidence in the estimate.

A narrow peak may correspond to greater confidence in the disparity estimate than

a broader peak.
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• Development of post-processing blocks to experiment with various correlation strate-

gies as suggested in Section 3.3.5 which are mentioned briefly below:

– Use of an elaborate tracking algorithm such as one using a constant-velocity

model.

– Computing location of SRW using a probabilistic likelihood estimate instead

of pre-determined locations.

– On-the-fly decision to concatenate the two correlation windows after initiali-

sation stage.

– Shifting the correlation windows so that they do not straddle object bound-

aries.

Finally, as pointed out in Chapter 2, global stereo-matching algorithms are funda-

mentally better in terms of accuracy and quality of results than local algorithms. The

implementation of a hardware-based stereo system that uses global matching needs to

be explored.



Appendix A

Stereo Rectification

In this appendix, we briefly describe the mathematical background on perspective pro-

jection and the rectification technique we use for our stereo system.

A.1 Camera model

Each camera in our stereo-rig is modeled, using the classic pinhole model, by its optical

centre C and its image plane R and a 4 × 3 perspective projection matrix P .

Let w = [x y z]T be the coordinates of a 3-D world point W in the world reference

frame and let its projection onto the image plane, M , have the coordinates m = [uv]T

in the image plane. The mapping from 3-D coordinates to 2-D coordinates is a linear

transformation in homogeneous coordinates. This is a perspective projection and is given

(up to a scale factor) by the matrix P̃ as follows:

m̃ ' P̃ w̃, (A.1)

where m̃ = [u v 1]T and w̃ = [x y z 1]T are the homogeneous coordinates of M and

W respectively. The camera is therefore modeled by this perspective projection matrix

(PPM) P̃ , which can be decomposed into the product, P̃ = A[R|t] using QR factorisation.
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The matrix A depends only on the intrinsic parameters of the camera and has the

form:

A =

















fx γ u0

0 fy v0

0 0 1,

















(A.2)

where fx and fy are the focal length of the camera in the horizontal and vertical directions

respectively, (u0, v0) are the coordinates of the principal point, and γ is the skew factor

that models non-orthogonal u − v axes.

The extrinsic parameters that represent the camera position and orientation are given

by the 3× 3 rotation matrix R and translation vector t which bring the camera reference

frame onto the world reference frame.

A.2 Rectification

Assuming each of the cameras in the stereo-rig has been calibrated and therefore their

PPMs, P̃ o1 and P̃ o2, are known, the idea behind rectification is to define two new PPMs

P̃ n1 and P̃ n2 and defining a rotation matrix Rrect that transforms the original image

to conform with the new PPMs. The new PPMs are obtained by rotating the old ones

around their optical centres so that the epipolar lines in the two image planes are parallel.

In addition, to have horizontal epipolar lines as is preferred, the baseline of the stereo-rig

must be parallel to the horizontal axes of the two cameras. The new cameras must also

have the same intrinsic parameters to ensure that coupled points have the same vertical

coordinates.

The steps for obtaining Rrect given the baseline of the stereo-rig ~T and the rotation

R between the left and right camera views are as follows:
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1. CHOOSE

~e1 =
~T

‖~T‖
(A.3)

to make the epipole of the left camera perpendicular to the optic axis

2. CHOOSE

~e2 = ~e1 × ẑ =
[−Ty, Tx, 0]

T

√

T 2
x + T 2

y

(A.4)

to make ~e2 perpendicular to both ~e1 and the optic axis.

3. ~e3 = ~e1 × ~e2 (no choice here)

4. CREATE the rotation matrix

Rrect =

















~eT
1

~eT
2

~eT
3




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









(A.5)

The points in the left image are remapped by applying the transformation Rrect and

points in the right image are remapped using RrectR
T . The points from the original

image plane will not lie in the new image plane so we need to re-apply projection of f/Z ′

to both image transformations.



Appendix B

Simplification of Voting Function

In this appendix, we reproduce the discussion on the simplifications made to the voting

function in [?] and its effects on the disparity estimates.

The voting function in the original LWPC algorithm is computed as follows:

Cj,s(x, τ) =
W (x) ⊗ [Ol(x)O∗

r(x + τ)]
√

W (x) ⊗ |Ol(x)|2
√

W (x) ⊗ |Or(x)|2
, (B.1)

The voting function C at location x for a candidate disparity of τ is computed by con-

volving the Gaussian window W (x) with the inner product of Ol(x) and O∗

r(x + τ),

where Ol(x) is the complex-valued G2/H2 filter output for the left image and O∗

r(x + τ)

is the conjugate of the right image G2/H2 filter output shifted by τ pixels horizontally.

The result is then divided by square root of convolution of W (x) with the square of the

amplitude of both Ol(x) and (Or(x).

In practice, only the real part of C(x, τ) needs to be computed because at the true

disparity the real part is at its maximum and the imaginary part is close to zero. The

disparity is then estimated by finding the peak in the real part of C(x, τ). The Gaussian

window, w, and denominator in Equation B.1 are always real-valued. The real part of

Ol(x)(O∗

r(x + τ)) is computed as follows:

<[Ol(x)O∗

r(x + τ)] = <[Ol(x)]<[Or(x + τ)] −=[Ol(x)]=[Or(x + τ)] (B.2)
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The hardware architecture for computing <[C(x, τ)] is illustrated in Figure B.1. It

requires seven multipliers, one square root block, one divider, three adders and three

Gaussian windowing blocks. A parallel implementation requires multiple implementa-

tions of this block. A phase-correlation unit that covers an epipolar search area of p

pixels at a single time instance requires p copies of this block at Scale 1, dp/2e at Scale 2,

and dp/4e at Scale 4 for each of the three orientations. An epipolar search band of twenty

pixels would then require 105 of these voting function blocks and any savings made in

the logic resource usage of the voting function block will be magnified 105 times.

Gaussian Window

Gaussian Window

w

w

Gaussian Window

w

Divider

| Ol |^2

| Or |^2

Re[Ol.Or*]

sqrt

Re(Or)

Im(Or)

Im(Ol)

Re(Ol)

Ol

Or

Re(c)

w * (Re[Ol]Re[Or] − Im[Ol]Im[Or])

sqrt([ w * |Ol| ][ w * |Or| ])

Figure B.1: Realisation of the real part of the original voting function. Courtesy of [?].

The approach taken in [?] is illustrated in Figure B.2. The Gaussian window is first

moved to after the divider block resulting in one Gaussian windowing block instead of

three per voting function block so that for p = 20, the number of Gaussian window blocks

required are reduced to 105 from 315. Since Gaussian filtering is a linear operation, they

further reduce the number of Gaussian window blocks required by performing Gaussian

filtering on the sum of the correlation results from all three orientations. This reduces

the number of Gaussian window blocks required to 35.



Appendix B. Simplification of Voting Function 84

Re(Or)

Im(Or)

Im(Ol)

Re(Ol)

Ol

Or

Re[Ol.Or*]

w

Gaussian Window

Divider

Divider

Divider

Divider

sqrt

sqrt | Or |
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Figure B.2: Modified voting function unit with shared Gaussian window and normalisa-
tion unit. Courtesy of [?].

Normalisation is another resource intensive operation. To achieve resource savings,

the normalisation block is moved outside the voting function unit so that a single nor-

malisation unit is shared across all voting function blocks. Further, the normalisation is

performed using an L1 norm instead of an L2 norm. The L1 norm of a 2-D vector A is

given by:

‖A‖1 = |<(A)| + |=(A)| (B.3)

and the L2 norm of the 2-D vector A is given by:

‖A‖2 =
√

<(A)2 + =(A)2. (B.4)

Table B.1 compares the number of blocks required with and without these modifica-

tions. Sharing the normalisation block and changing the location of Gaussian window
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Original Modified

Architecture Architecture

Multipliers 735 210

Dividers 105 36

Square roots 105 -

Adders 210 123

Gaussian Windows 210 35

Table B.1: Summary of the number of basic blocks required for an epipolar search band
of 20 pixels in three orientations for the original and modified voting function units.
Courtesy of [?].

reduces the total number of multipliers, dividers and square roots in the correlation unit

by over 65 %.

The effects of these modification on the disparity map are showing in Figure B.3. The

stereo image pair is showing in Figure B.3 (a) and (b). The depth map using the original

voting function unit is shown in (c) and the depth map from the modified voting function

is shown in (d). In most of the regions, the two maps have the same depth values, but

the depth map in (d) contains slightly more noise compared with (c).
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(a) (b)

(c) (d)

Figure B.3: Effects of using L1 norm instead of L2 norm, sharing the normalisation
operation and changing the location of the Gaussian window on the final depth map of
the ‘books’ stereo images. (a) Left image. (b) Right image. (c) Depth map from the
original voting function. (d) Depth map from the modified voting function. Courtesy of
[?].
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