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Abstract

This thesis describes a system of neural networks that performs harmonic

analysis on musical compositions. The system is split into four groups of Net-

works: Key Network, Root Network A (used to detect secondary functions),

Root Network B, and Quality Network. The system is trained on 20 J.S.

Bach chorales and tested on another 18 Bach chorales. Accuracies of over

90% were obtained for all four groups of Networks. Comparison with a mod-

ified version of Krumhansl’s key-finding algorithm indicates Key Network

outperforms it by more than 16% in overall accuracy. This work has poten-

tial for extension into music of other composers or genres. Also, this work can

be used by a computer accompanist to determine the key of an improvising

soloist.
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Chapter 1

Introduction and Motivation

In music, harmonic analysis is done by a music theorist on a piece of music

to gain an in-depth understanding of it. Music can be appreciated in many

ways; harmonic analysis is one of the more technical ways. It helps the

analyst to understanding the tools and techniques that the composer used

in writing that piece of music. Music, at least so-called classical music, is

very structured. There are a lot of rules that a composer needs to follow.

However, one thing that sets a great composer apart from mediocre ones

is that a great composer knows how and when to bend intelligently these

rules. Normally, when musical rules are broken, a trained ear reacts with

displeasure. However, when this is done by a great composer, who has superb

skills, a trained ear reacts with joy and amazement. Harmonic analysis is a

way for a trained eye to react the same way as a trained ear would.

Harmonic analysis is not an easy task. It requires a solid background in

musical rudiments. It is natural to ask the question: is there an algorithm

to perform harmonic analysis? A search through literature revealed only

1
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two serious attempts at harmonic analysis ( [22], [17]). Both use essentially

rule-based techniques. The general disadvantage of rule-based techniques in

solving a complex problem such as harmonic analysis is that the solution

space is big, and it is hard to devise a finite set of rules to cover it properly.

This thesis proposes a neural network solution to the harmonic analy-

sis problem. Neural networks are good at solving problems which have no

apparent and easy rule-based solutions. In effect, a neural network learns

and internalizes the rules when it is repeatedly shown many instances of the

problem and the corresponding solutions. In other words, a neural network

learns by example. The input to the system of this thesis is the music; the

output is the harmonic analysis. The system will be repeatedly shown dif-

ferent instances of music and their corresponding harmonic analyses. In the

end, it is hope that when the system is shown a new instance of music, it

will have learned well enough to produce the correct harmonic analysis.



Chapter 2

Background

This Chapter is divided as follows. Section 2.1 gives a background on certain

musical concepts, starting from basic definitions and working towards the

concept of harmonic analysis. Section 2.2 gives a background on neural

networks. Section 2.3 is a literature review on relevant topics.

2.1 Overview of Certain Musical Concepts

In order to understand and appreciate harmonic analysis fully, it is imperative

to have a thorough background in music theory. This section will provide

some of this background, enough for the reader to understand the task at

hand. For a more complete treatment, or for information on how to read

music, please consult a music theory textbook, such as [12].

3
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2.1.1 Musical Styles

Music exists in practically all cultures of the world. Amongst other things,

it is a way to express one’s emotions. Different cultures have developed their

own styles of music. Thus, Chinese music is different from Indian music,

which is different from African music. Although some musical concepts dis-

cussed in this Section apply to all musical styles, the general style of music

referred to in this thesis is Western music, which can be said to be the musi-

cal idiom that existed in Europe from 1650 to 1900. Such famous composers

as Johann Sebastian Bach (1685-1750), Wolfgang Amadeus Mozart (1756-

1791), and Ludwig van Beethoven (1770-1827) all belonged to this style.

2.1.2 Definitions of Basic Musical Terms

Any music consists of two main components: pitch and rhythm. Pitch is the

frequency of a sound. Rhythm is the durations of different pitches. Thus, in

the plainest terms, a piece of music consists of a sequence of combinations

of sounds at different frequencies for different durations. Two pitches are

said to be an octave apart if the frequency of one pitch is twice that of the

other. To the human ear, two pitches an octave apart sound very similar [16].

An interval is the difference in frequency between two pitches. In Western

music, the octave interval, or plainly the octave, is divided into twelve equal

intervals. Pitches are labeled using the first seven letters of the Western

alphabet. Their locations on a keyboard are shown in Figure 2.1.

Pitches that differ by multiples of an octave are given the same label. By

convention, the first A pitch above middle C is known as “concert A” and is
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Figure 2.1: Keyboard with letter names shown.

set at 440Hz. (Middle C is the C that is nearest to the center of the piano.)

The rest of the pitches are set such that two notes that are one semitone

apart (e.g. A and A♯) have a frequency ratio (e.g. freq(A♯)/freq(A)) of 21/12.

In almost all pieces of Western music, not all of the twelve pitches within

an octave appear equally frequently. A mode is a particular subset of these

twelve pitches. An example of a mode is major. The major mode consists

of seven pitches. The sequence of pitches in a mode is called a scale. There

is only one sequence per mode. A scale is labeled by its first pitch. Define

a semitone to be the interval between two neighbouring pitches. Thus, C

and C♯ are a semitone apart, as are E and F. Define a wholetone to be twice

the interval of a semitone. Given the first pitch X1, the X1 major scale

is the sequence {X1, X2, X3, X4, X5, X6, X7}, with I12 = whole tone, I23 =

whole tone, I34 = semitone, I45 = whole tone, I56 = whole tone, I67 = whole

tone, where Iab is the interval between pitches Xa and Xb, Xb being the pitch

with the higher frequency. This definition is illustrated in Figure 2.2. As an

example, the C major scale is the sequence {C, D, E, F, G, A, B}. Looking
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Figure 2.2: Illustration of the relationships between the seven pitches of a major

scale. A semitone is the frequency difference between two neighbouring pitches.

A whole tone is two semitones. The pitches are ordered from lowest to highest

frequencies.

at the keyboard, these are all the white keys. Another mode is the minor

mode. There are three variations to the minor mode; only one of them,

the natural minor, will be looked at here. Given the first pitch X1, the X1

natural minor scale is the sequence {X1, X2, X3, X4, X5, X6, X7}, with I12

= whole tone, I23 = semitone, I34 = whole tone, I45 = whole tone, I56 =

semitone, I67 = whole tone, where Iab is the interval between pitches Xa and

Xb, Xb being the pitch with the higher frequency. For example, the A natural

minor scale is the sequence {A, B, C, D, E, F, G}. While the C major and

the A natural minor scales contain the same pitches, the difference between

the two is that the ordering of the notes is different. Note that scales can

start on any of the twelve pitches. Given the starting pitch, the rest of the

scale can be constructed using one of the above definitions. One rule about

naming the pitches in a particular scale is that the letter names must be

used in succession (the letter following G is A). Thus, the D major scale is

the sequence {D, E, F♯, G, A, B, C♯} and cannot be {D, E, G♭, G, A, B,
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C♯} nor {D, E, F♯, G, A, B, D♭}, even though the letter names refer to the

same sequence of pitches. Two letter names that refer to the same pitch are

said to be enharmonically equivalent. Thus, F♯ and G♭ are enharmonically

equivalent.

A note is the sounding of a particular pitch for a particular duration.

A chord is the simultaneous sounding of two or more notes. A sonority is

“the set of all sounding notes that are present whenever any note is artic-

ulated.” [20, page 22] The difference between chords and sonorities is that

chords are usually taken to mean some pre-defined combination of notes (e.g.

those discussed in Section 2.1.11), while sonorities can be any arbitrary com-

bination of notes.

2.1.3 Key

The concept of key is loosely defined as follows: a piece of music is said to

belong to key X if pitch X is most prominent in this piece of music. Pitch

X is prominent due to two reasons: 1) the pitch X appears frequently; 2)

other pitches which have a close relationship with pitch X appear more often

than those pitches which do not. The concepts of key and mode are greatly

intertwined. A piece of music is said to belong to X major (minor) if the

pitch X appears frequently, and the (other) pitches of the X major (minor)

scale appear more often than other pitches. Another way to view this is to

say that the notes of a piece of music in key X “revolves around” or “pulls

toward” pitch X. For example, the famous Moonlight Sonata by Beethoven

belongs to C♯ minor. If one looks at its musical score, one finds that the note

C♯ appears frequently, and the (other) notes of the C♯ minor scale appear
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more than other notes not belonging to this scale. If one were to listen to

this music and had perfect pitch (the ability to recognize the letter names of

pitches by ear), one would hear C♯ featured prominently throughout.

2.1.4 Modulation

The fact that a piece of music belongs to a certain key does not preclude it

from visiting other keys somewhere in the middle. Modulation is the change

of key within a piece of music. This means that within a certain passage in

the piece, the most prominent pitch changes from the one the piece started

with to another one. For example, while the overall key of the Moonlight

Sonata is C♯ minor, there is a passage within it where modulation occurs,

and the new key is B minor. Modulation can occur many times throughout

a composition. In the Moonlight Sonata, in addition to the aforementioned

modulation, the key changes several more times. However, in almost all

pieces of Western music (and in the Moonlight Sonata as well), no matter

what keys the piece has modulated to, the key it ends on is the same key it

started with.

2.1.5 Tonicization

Simply put, tonicization is a “mini-modulation.” The musical passage tem-

porarily visits a foreign key but does not stay long enough there for a listener

to perceive a modulation. The word tonicization means the tonic chord (de-

fined below in Section 2.1.8) of a certain foreign key is emphasized. The

difference between modulation and tonicization is quite subjective [12]. The
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most important difference is time. The longer a passage stays in the foreign

key, the more likely a listener will perceive it as having modulated.

2.1.6 Transposition

Transposition is the manual shifting of an entire piece of music from one

key to another. A piece of music is written in a certain key, but it can

be transposed into any arbitrary key. The relative positions of the notes

in the piece are maintained when it is transposed. Other than being an

academic exercise, transposition is useful because a piece may be easy to

play on instrument A in key X, but, in order for it to be easy to play on

instrument B, it needs to be transposed into key Y. Moreover, for the same

instrument (e.g. piano), a piece may be easier to play in key X rather than

key Y, so the composer may opt for one or the other depending on whether

that added difficulty is desired.

2.1.7 Triads

Define the nth degree of scale X as the nth term in its sequence. For example,

the first degree of the C major scale is C, while the fifth degree of the same

scale is G. Given n, the triad built upon the nth degree of scale X is the chord

consisting of the three notes {Xn, X(n+2)mod7, X(n+4)mod7}. For example, the

triad built upon the first degree of the C major scale is the chord consisting

of the three notes {C, E, G}; the triad built upon the fifth degree of the same

scale is the chord {G, B, D}. Triads are used extensively in Western music

because when played, they give a harmonious sound.
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Degree Ordinal Degree Name

1st tonic

2nd supertonic

3rd mediant

4th subdominant

5th dominant

6th submediant

7th leading note

Table 2.1: The degree names for each of the seven notes of both the major

and minor scales.

2.1.8 Names for the degrees of the scale

There are seven degrees to both the major and minor scales. Each degree

is given a name. The first degree is called tonic; second, supertonic; third,

mediant; fourth, subdominant; fifth, dominant; sixth, submediant; seventh,

leading note. This is also presented in Table 2.1. The meaning of each name

is beyond the scope of this overview. Thus, instead of saying “the triad built

upon the first degree of the C major scale is the chord {C, E, G},” it is

equivalent to say “the tonic chord of C major is {C, E, G}.” Each of the

seven triads is notated with the Roman numeral corresponding to the scale

degree the triad is associated with. Hence, the above phrase can also be

expressed as “the I chord of C major is {C, E, G}.” The different triads

within a given key serve distinct musical functions. It is these functions that

are interesting to analyze.
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2.1.9 Secondary Functions

In addition to the I...VII chords defined above, there are also chords involved

in tonicization that need labeling. Tonicization usually involves two chords:

1) the tonic chord of a foreign key; 2) the dominant chord of the same foreign

key, which immediately precedes the tonic chord of the foreign key. Now, the

tonic chord of the foreign key can always be analyzed in the current key.

For example, imagine that there is a chord with notes {C, E, G}, and the

current key is A minor. Then, this chord is the tonic chord of the foreign key

of C major, while in the current key of A minor, it would be the mediant, or

III, chord. The chord preceding this would be the dominant, or V, chord of

the foreign key of C major; hence, in the current key of A minor, this chord

is notated as the dominant chord of the mediant chord, or, more briefly,

a V of III or a V/III chord. This type of chord is called the secondary

function because, in the context of the current key, these chords serve a

function of another key. This is a device commonly used by composers to

make a passage sound more interesting by giving hints of another key but

not actually modulating there.

2.1.10 Functional Analysis

Consider any piece of music. It contains a certain number of sonorities. Each

sonority belongs to a certain key (except at points of modulation, where it can

belong to two keys at once). Loosely, given the key of each sonority of a piece

of music, functional analysis is the classification of each sonority into one of

the seven different triads of the given key of that sonority. Strictly speaking,
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however, in certain situations, certain degrees of the scale (especially minor

scale) are raised (i.e. one semitone higher than normal) or lowered (one

semitone lower than normal), and triads can be built upon them, so there

are more than seven triads possible. Also, an extra note can be placed on top

of a triad, making it a four-note chord, and functional analysis must include

these chords as well.

2.1.11 Qualities of Chords

The quality of a chord is the set of intervals between the notes of the chord.

In Western music, nine chords with different qualities commonly occur. They

are listed in Table 2.2.

It is understood that the notes of the chord are ordered from lowest to

highest frequency. The root of the chord is defined to be its 1st note. A

chord can be distinguished by its root and quality. Thus, the C major chord

is {C, E, G}; the E dominant 7th chord is {E, G♯, B, D}.

2.1.12 Harmonic Analysis

Essentially, harmonic analysis is 1) the determination of key of each sonority,

and 2) functional analysis. Neither of these is an easy problem to solve. The

first is difficult because one cannot just arbitrarily select a passage, count

which note occurs most often, and doggedly claim that all sonorities in this

passage belong to that key. There is some literature that describe algorithms

for finding keys for a piece of music (more on this in Section 2.3). The second

is difficult because in some sonorities, their notes do not correspond to any of

the common chords. The common chords consist of at least three notes, but
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Quality Interval from Interval from Interval from

1st to 2nd note 2nd to 3rd note 3rd to 4th note

(semitone) (semitone) (semitone)

Major 4 3 N/A

Minor 3 4 N/A

Diminished 3 3 N/A

Augmented 4 4 N/A

Dominant 7th 4 3 3

Major 7th 4 3 4

Minor 7th 3 4 3

Diminished 7th 3 3 3

Half-diminished 7th 3 3 4

Table 2.2: Commonly occurring qualities of chords. The quality of a chord is

the set of intervals between the notes of the chord. Other qualities do exist,

but they do not have names.
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a sonority may contain two, or four, or even five. Conversely, a sonority may

contain all the notes of a particular common chord, but depending on the

metrical importance (explained in Section 2.1.15) of this sonority relative

to the sonorities surrounding it, as well as on the notes of the sonorities

surrounding it, it may not be classified as that particular common chord.

The harmonic analysis described up to this point is what this thesis at-

tempts to perform. Harmonic analysis can be taken further to include other

information. One such piece of information is the classification of non-chord

tones. A non-chord tone is a note of a sonority that does not belong to that

sonority’s chord classification. For example, if a sonority has notes {C, E, F,

G} and is classified as a I chord in the key of C major, then the note F is

a non-chord tone. There are many classes of non-chord tones. A non-chord

tone can generally be classified according to the relative positions of the notes

in the same voice, or part (defined below in Section 2.1.13), in its previous

and subsequent sonority. Another piece of information that can be part of

harmonic analysis is inversion analysis. Inversion analysis determines which

note of the chord is positioned lowest in the musical score. These two tasks

are relatively straightforward and hence omitted from the harmonic analysis

of this thesis.

2.1.13 Four-Part Chorales

Chorales are Protestant hymns that came into being during the Reforma-

tion [16]. A leading figure in the Reformation, Martin Luther, wrote many

chorales. By itself, musically speaking, a chorale only consisted of a melody

tune. In order to make chorales sound richer harmonically, later composers,
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notably Johann Sebastian Bach, undertook the task of harmonizing some of

these chorales. Harmonizing a chorale tune means adding several, typically

three, parallel tunes to the original tune, so that several voices, typically two

voices of women and two voices of men, can each sing a different tune (but

with the same words), yet together would sound harmonious and pleasing

to the ear. The new tunes added would typically be lower than the origi-

nal, so that the original, being highest in pitch, would still be heard clearly.

Almost all of the chorales that Bach harmonized, and all that were trained

and tested in this thesis, consist of four voices, or parts. The higher voice

for women is called soprano; the lower voice for women is called alto; the

higher voice for men is called tenor; the lower voice for men is called bass.

Each voice has his/her own range in pitch, and, while the different ranges

do overlap one another, for any given sonority, the order of voices appearing

in it, from highest to lowest, is usually soprano-alto-tenor-bass. A part of a

Bach chorale, together with its harmonic analysis, is given in Figure 2.3.

2.1.14 Application of Harmonic Analysis

Performing harmonic analysis on a piece of music will uncover many musi-

cal techniques that the composer used to make the piece sound the way it

does. Many musical effects can be dissected using harmonic analysis. For

example, upon hearing a passage of music, one detects that modulation has

occurred; however, it may be difficult to pinpoint where or how the modu-

lation occurred. By going to the score and performing harmonic analysis on

it, one may see that the composer used a special type of chord, and it is at

this point that the passage has, very smoothly and subtly, gone to the new
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Figure 2.3: A passage from Bach chorale #28 of the Kalmus [4] edition with

harmonic analysis included. The small letter ‘g’ indicates that this passage is in

the key of G minor (G major would be denoted ‘G’). The Roman numerals embed

some of the quality information. Capital Roman numerals generally indicate major

chords and small Roman numerals generally indicate minor chords, except when

other symbols are added. For example, the ‘o’ to the right and above of ‘vii’

indicates this to be a diminished 7th chord. The ‘6’ is inversion information (not

relevant to the purposes of this thesis). The numbers above the score are the

sonority numbers and are not part of the score nor the harmonic analysis.
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Figure 2.4: Hierarchy of beats in a 4/4 meter. More dots means higher in

the hierarchy.

key. Being able to perform harmonic analysis offers another way of appreci-

ating a piece of music. It also offers a way of comparing compositions by the

same composer, or even different composers. For example, one can compare

the frequency of usage of different chords in compositions by Bach versus

Beethoven.

Goldman [8] has given an excellent reason why learning harmonic analysis

is relevant today. He wrote, “The student today is in all probability not going

to compose in the idiom of the Bach chorales... In some respects, he no longer

needs traditional or classical harmony as a technique. What he does need is

an understanding of, and a feeling for, the harmonic principles that form the

basis of his artistic heritage.”

2.1.15 Representation of Metrical Structure

When hearing a piece of music, the listener detects the regular occurrence of

musical events. These events are called beats, and they are marked by such

physical actions as nodding heads, clapping hands, or tapping feet. Not all

beats are equal; some are stronger (i.e. given more emphasis) while others
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are weaker (i.e. given less emphasis). These patterns of strong and weak

beats are called meter [15]. For example, in a 4/4 meter, it is commonly

understood that the strongest beat in the bar is the first beat, followed by

the third beat, followed by the second and fourth beats. Here it is seen

that there are three levels of beats. To represent these beats, in Lerdahl’s

book [15], a number of dots are placed at the occurrence of each beat. The

beats at the lowest level are represented by one dot; the beats at subsequent

higher levels are represented by one more dot than the beats at the previous

lower level. The hierarchy of beats in a 4/4 meter is thus represented as in

Figure 2.4.

2.2 Overview of Neural Networks

2.2.1 Their Structure

A neural network is “a computing system made up of a number of simple,

highly interconnected processing elements, which processes information by its

dynamic state response to external inputs.” [7, page 47] Unlike a conventional

computer, which has separate units of CPU and memory, a neural network

processes and stores everything at its many nodes. The word “neural” in

neural network comes from the fact that the structure of a neural network is

in some ways similar to that of the brain. The brain consists of many neurons;

the neurons communicate with each other via electrical pulses. Since storage

in a neural network is decentralized, no single neuron would contain critically

important information. If a hard drive had a bad sector, all data in that sector

would be inaccessible. In contrast, if some neurons in a neural network were
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Figure 2.5: Structure of a neuron. A neuron takes as input p1, ..., pR. Each input

pi has an associated weight wi. A neuron may also have a bias input pb and an

associated weight wb. The sum is computed as s =
∑R

i=1 wipi + wbpb. The sum

goes through a transfer function f , and the output of the neuron is computed as

T = f(s). T may go to one or more other neurons in the network.

turned off, then the overall performance would drop, but no specific area

would be severely affected.

In any neural network, there are three types of neurons: those that receive

information from the outside world are called input units; those that provide

information to the outside world are called output units; those that both

receive and provide information within the neural network are aptly labeled

hidden units.

The structure of a single neuron is as follows [3]. A neuron takes in a

certain number, R, of inputs, each a real number. Label these as p1, ..., pR.

Associated with each input pi is a weight wi, also a real number. Optionally,

a neuron may also have another input, called a bias input. Label it as pb.

The bias input also has an associated weight wb. The value of pb is fixed.
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The sum s is computed of all the weighted inputs (including bias):

s =
R
∑

i=1

wipi + wbpb. (2.1)

s is not the final output of the neuron. The final output T is obtained by

taking s through a transfer function f :

T = f(s). (2.2)

Depending on the type of network, f is chosen differently. Unless the neuron

is an output neuron, the output of the neuron becomes the input of one or

more other neurons in the network. This is illustrated in Figure 2.5. When all

the neurons in the neural network work together, mathematically speaking,

it computes a function F , F : Rm 7→ Rn, where m is the number of input

neurons, and n is the number of output neurons.

2.2.2 Network Training

In order for a network to be useful, it needs to be trained. Training is the

process of updating a network’s weights, so that the function F it computes

is as close as possible to some desired function F ′. The network usually starts

off with random weights; there exist algorithms that iteratively update the

weights when training data is repeatedly presented to the network. One such

common algorithm, known as gradient descent [6], is outlined below. The

idea is that the network attempts to learn the underlying F ′ given its sample

points represented by the training data. If the network has trained well, when

given completely new testing data, it would closely imitate the behaviour of

F ′.
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There are two types of training: supervised and unsupervised. Supervised

training is what is described above: the training data includes both the input

and the corresponding expected output. In unsupervised training, only input

data is provided, and the network infers pattern from them directly. The

problem of harmonic analysis is, by nature, suited to supervised training.

The training data includes the expected output of key, mode, and the like, of

each sonority. Hence, networks that perform unsupervised training will not

be further discussed.

2.2.2.1 Gradient Descent

Essentially, gradient descent updates the weights of the network in the direc-

tion of the negative gradient of the error function. The error function of the

network is a measure of how much the current actual outputs of the network

are away from the training outputs. At the beginning of each iteration, the

error function is computed. Then, its gradient is determined (typically by

the error backpropagation algorithm, outlined in Section 2.2.2.3). Finally,

the weights are updated by a scale-factor of the negative gradient. This

scale-factor is known as the learning rate. Fixing the learning rate has two

problems: 1) it is difficult to tell beforehand a good learning rate for the

particular network at hand; 2) a different learning rate may be suitable for

different areas of the error surface. Hence, an improvement over the standard

gradient descent is to allow the learning rate to vary. A further improvement

is to add a momentum term. This takes the changes to the weights in the

previous iteration into account. This has the advantage of being able to carry

the descent over small “valleys,” or dips in the error surface.
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2.2.2.2 Scaled Conjugate Gradient

The scaled conjugate gradient [6] algorithm is a training algorithm that has

been shown to be more powerful than gradient descent. Scaled conjugate

gradient is based upon conventional conjugate gradient, which in turn is one

algorithm in the class of parameter optimization strategies known as line

search. Iteratively updating the weights of a network is the same thing as

taking a sequence of steps through a weight space. Two parameters are in-

volved when each step is taken: 1) the direction; 2) the distance. In gradient

descent, the distance taken is determined by the learning rate parameter and

the magnitude of the gradient (and, possibly additionally, the momentum).

In line search, the distance taken along a given direction is determined by

minimizing the error function along the given direction. In conventional con-

jugate gradient, the distance taken is done in this manner. The direction

is taken such that the component of the direction’s gradient parallel to the

previous direction must remain zero (to lowest order). The scaled conjugate

gradient algorithm improves upon conventional conjugate gradient by avoid-

ing the line-search procedure, and hence can sometimes offer a significant

improvement in speed [6].

2.2.2.3 Error Backpropagation

The goal of error backpropagation is to determine the derivative of the error

function with respect to each and every weight in the network. First, for unit

j, define

δj ≡
∂En

∂sj
, (2.3)
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where En is the error function for training pattern n, and sj as defined in

equation 2.1. The backpropagation formula is

δj = f ′(sj)
∑

k

wkjδk, (2.4)

where f ′() is the derivative of the transfer function for unit j, wkj is the

weight for the connection to unit k from unit j. Since δj is dependent on

a weighted sum of the δk’s, which are from the units δj outputs to, the

errors are propagated backwards through the network, hence the name of

the algorithm. As can be seen, this is a recursive formula. The base case is

an output unit k:

δk ≡
∂En

∂sk
= f ′(sk)

∂En

∂yk
(2.5)

where yk = f(sk). Finally, the derivative of the error function with respect

to each and every weight is as follows:

∂En

∂wji
= δjsi. (2.6)

These are the derivatives for one error function. This is repeated for each

training pattern, and the derivatives are summed:

∂E

∂wji
=
∑

n

∂En

∂wji
, (2.7)

where E =
∑

n En is the error function for all training patterns. This is ex-

actly the gradient in weight-space needed in the training algorithms described

above in Sections 2.2.2.1 and 2.2.2.2.

2.2.3 Applications of Neural Networks

Neural networks are designed to solve problems that conventional, rule-based

algorithms have a hard time solving. As its name implies, a rule-based algo-
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rithm would not solve very well a problem that is very hard to break down

into lists of rules. Many problems in real-life fall into this category because

1) one does not know where to begin, and 2) even if one came up with a set

of rules, there would almost always be exceptions or special cases that were

missed. One broad class is pattern recognition and classification. How is

handwriting recognized? How is a face recognized as being a familiar one, a

look-alike of a familiar one, or an altogether unfamiliar one? It is not imme-

diately apparent how one might design a rule-based algorithm to solve these

problems. However, when neural networks are trained on known instances of

handwriting or faces, they would be able to recognize distinctive features of

different letters or faces, store these features in the weights, and predict to a

high degree of accuracy new instances of letters or faces.

The problem of harmonic analysis is a problem of pattern classification.

For example, out of many possible keys a sonority may belong to, the network

picks the one most likely to be correct.

2.2.4 Different Kinds of Neural Networks

The kind of network most commonly used is called a feed-forward network. In

a feed-forward network, the placement of neurons and their interconnections

are completely arbitrary, with one exception: there must be no feedback

loops. This means that if successive numbers were attached to the input,

hidden, and output units, each unit (except input) would only receive con-

nections from units with a smaller label [6]. A special class of feed-forward

networks is layered feed-forward networks. Such networks contain zero or

more layers of hidden units, in addition to the input layer of units and the
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output layer of units. There are interconnections between every unit in one

layer and every unit in the next layer; otherwise, there are no other intercon-

nections.

Two types of transfer functions are generally used in a feed-forward

network: linear and logistic sigmoid. Linear transfer functions have the

form f(s) = as + b. Logistic sigmoid transfer functions have the form

f(s) = 1/(1 + exp(−s)). (The hyperbolic tangent (‘tanh’) function is also

commonly used; it is actually equivalent to the logistic sigmoid if two linear

transformations were applied, once at the input and once at the output.) Sig-

moidal transfer functions are important in the following way. A feed-forward

network with one layer of hidden units, if the transfer functions of the hidden

units are sigmoidal, “can approximate arbitrarily well any functional (one-

one or many-one) continuous mapping from one finite-dimensional space to

another, provided the number M of hidden units is sufficiently large.” [6, page

130] A corollary of this property is that this kind of network, if dealing with

a problem of pattern classification, can approximate any decision boundary

to any arbitrary accuracy. A decision boundary is simply a boundary in

multi-dimensional space that separates one class of inputs from another. In

feed-forward networks with one or more hidden layers, if the transfer function

used in the output units is the logistic sigmoid, and if the class-conditional

densities belong to the family of exponential distributions, then the output

of the network can be considered as posterior probabilities. This provides

a theoretical background for the choice of the networks used in this thesis

to perform harmonic analysis. Most of the networks used in this thesis are

feed-forward networks with one hidden layer; given a large number of hid-
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den units, the networks can approximate the decision boundary to a high

degree; the output of the networks can be taken to mean the probability of

this sonority being in a certain key, for example.

A second type of neural networks commonly in use is the radial basis

network. In a radial basis network, the interconnections are feed-forward in

nature, and typically there is only one layer of hidden units. However, the

transfer functions of the hidden units are different from those in the feed-

forward networks. In a radial basis network, the transfer function in each

hidden unit is termed a basis function; the parameters of the basis functions

are determined during training. For example, the Gaussian is commonly used

as a basis function:

φj(x) = exp

(

−
‖x − µj‖

2

2ρ2
j

)

(2.8)

where, for hidden unit j, x is the vector of inputs from the input layer, µj

is the vector that determines the center of basis function φj, and ρj is the

variance. As can be seen, input close to the center of the basis function will

cause a large activation from this hidden unit. Also, different inputs which

are the same distance away from the center of the basis function will cause

equal activation from the hidden unit.

The outputs of the network are a linear combination of the outputs of

the basis functions:

yk(x) =
M
∑

j=1

wkjφj(x) (2.9)

where, for output unit k, wkj is the weight corresponding to hidden unit j,

and M is the total number of hidden units.

Both the feed-forward and the radial basis neural networks offer similar

potential for performing well in the problem of harmonic analysis. However,
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due to time constraints, only one was chosen for further investigation. Train-

ing a feed-forward network is less complicated than training a radial basis

network. Training a radial basis network requires two stages, while training

a feed-forward network requires only one. Both types of networks need the

number of hidden units specified. However, the radial basis network needs,

in addition, the parameters of each basis function specified as well. Also,

because of the localized nature of the basis functions, a trained radial ba-

sis network can give unstable performance on new test data. These are the

reasons feed-forward networks were chosen over radial basis networks.

A third and final type of network to be discussed is an Elman network [3].

An Elman network is very similar to a feed-forward network, except that it

contains feedback loops from the output of the hidden units to the input of

the hidden units. Because the input contains information from the previous

time-step, this type of network is capable of learning temporal, in addition

to spatial, patterns. Music very much exists in the temporal domain, and

therefore it is thought that using this type of network in the problem of

harmonic analysis may be helpful.

2.2.5 Committee of Networks

An often-used technique to improve the prediction accuracy of neural net-

works is to train different instances of networks and to combine them in the

form of a committee [6]. The different instances may be of different network

architectures or modeling of the problem. Bishop [6] describes the output of

the committee to be an average or weighted average outputs of the members

of the committee. For a classification problem, such as the one being dealt
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with in this thesis, a further step is to take the largest output unit as the

output of the committee. For the case where the output of the committee is

simply an arithmetic average of the outputs of the members of the commit-

tee, the sum-of-squares error from the intended function f of the output of

the committee can be reduced as much as by a factor of N from the average

error of the members of the committee, where N is the number of members

in the committee. In most cases, however, the error is reduced by much less

than a factor of N ; this is because the errors of the members are usually

highly correlated. Hence, the challenge is to pick networks whose errors are

similar in magnitude but are quite uncorrelated.

As shall be explained in the Chapter 4, a slight modification of the com-

mittee technique was employed. The modification is as follows. First, pick

the largest output of each member network. Then, from these largest out-

puts, pick the output that occurs the most. For example, if the committee

contains three member networks, and the largest output for network 1 and 2

is G major, and the largest output for network 3 is C major, then the output

of the committee is G major. If some or all of the largest outputs occur

equally often, then the output of the committee is randomly chosen among

the largest outputs that occur equally often. For example, if the largest out-

put for network 1 is C major, for network 2 is G major, and for network

3 is A minor, then the output of the committee is randomly chosen among

these three outputs. From the trained networks, five sets of committees of

3 were randomly chosen, and it was found that an average of only 0.8% of

the outputs fall into this last case. A more sophisticated extension to this

scheme would be to pick the network whose largest output is the largest
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amongst all member networks of the committee. For example, if the largest

output for network 1 is C major and has a value of 0.7, for network 2 is G

major and has a value of 0.75, for network 3 is A minor and has a value of

0.8, then the output of the committee is A minor. However, it is not clear

whether this extension works better than the original random scheme. Due

to time constraints, this extension was not tried, but it can be deduced that

the performance gain can be no more than 0.8% − 0.8%
3

= 0.53%.

This new form of the committee is reasonable in the context of the present

problem. Because of the network architecture, the output of the network can

be taken to represent posterior probabilities. And, since this is a pattern

classification problem where only one pattern is chosen, the most natural

procedure is to select the largest unit, representing the most likely occurring

one, among all the output units. Finally, a vote is taken from all networks,

and the majority of the votes is taken to be the output of the committee.

2.3 Literature Review

This section presents a review of some related works of this thesis.

There have been numerous works of musical application of neural net-

works. Some examples are [19], [5], and [14]. In particular, two works that

are closely related to the present study are presented in [10]. In [10], the

authors present two neural networks, called HARMONET and MELONET.

HARMONET produces and recognizes harmonization of chorales according

to the styles of specific composers. Harmonization of a chorale has been

dealt with in a previous section. HARMONET produces harmonization of
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chorales on the level of an improvising organist [9]. Given that the style

of the chorale harmonization is from one of three composers, HARMONET

correctly identifies the composer of the chorale harmonization in 66 out of

68 cases. HARMONET takes input from a window; that is, for the output

at sonority n, the input includes melodic information from sonorities n − 1

to n + 1 inclusive, as well as information on the harmonic function from

sonorities n − 3 to n − 1 inclusive. This idea of a window is also used in

this thesis. MELONET composes melodic variations to a voice of a chorale.

Melodic variations is a technique musicians use, in which a simple melody is

embellished and decorated with other notes, making the melody sound more

interesting. The structure of the original melody is not changed. As deciding

that how well a melodic variation sounds is subjective, an objective result is

that the output of MELONET adheres well to the underlying harmonic con-

text. One weakness of the network is that, due to its structure, it is unable

to compose melodic variations where some of the notes are chromatic (i.e.

not belonging to the current key).

A general key-finding algorithm is described by Krumhansl [13]. The

algorithm works as follows. The input to the algorithm is a 12-dimensional

vector; each of the 12 values represents the total durations (in number of

beats) of a different pitch within an octave in a given musical passage. (Recall

that an octave is divided into 12 equal intervals.) Enharmonically equivalent

pitches are not distinguished. This input is correlated with 24 pre-defined

12-dimensional vectors, for each of the 12 major and 12 minor keys. Each

of these pre-defined vectors describes the extent that each of the 12 pitches

in an octave relate to the key this vector represents. Naturally, one of the
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ways to use the results of the correlations is to pick the pre-defined vector

that has the highest correlation with the input vector, and to state that the

key that the pre-defined vector represents is the key of this musical passage.

In terms of performance, in one test, the algorithm was given as input the

first 4 tones of each of the 48 Preludes of J.S. Bach. Except for 4 cases,

the algorithm was able to determine the correct overall key of the piece. In

another test, one of the aforementioned Preludes was analyzed in its entirety.

A key was assigned in a per-measure basis, for every measure in the piece.

The input was taken from the current measure, the previous measure, and

the subsequent measure. One extension to this algorithm, in the context of

harmonic analysis, would be to increase the precision of analysis. Ideally, a

key should be assigned in a per-sonority basis, so that if modulation occurs

in the middle of a measure, or even in the middle of a beat, the algorithm

can detect it. This thesis finds keys in a per-sonority basis.

A root-finding algorithm is described by Temperley [21]. In this algo-

rithm, no information about key is found; instead, for every sonority, it

outputs the letter name of the root of the chord that fits the most. No

information about the quality of the chord is found, however. This is a sim-

pler problem than the problem this thesis attempts to solve. For example,

a sonority labeled “G” by this algorithm is equivalent to both V of C major

and IV of D major. This algorithm uses five preference rules to determine

the output. The author is “pleased with the results.” However, there are

some places where the algorithm performs poorly. For example, the algo-

rithm has no notion of diminished chords. This illustrates the shortfall of a

generic rule-based algorithm: there would most likely be corner cases that
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defy the rules and cause the algorithm to fail. In contrast, a trained neu-

ral network has a better chance to cover more cases, given that it has had

sufficient examples to train with.

An algorithm described by Taube [20] performs tonal analysis. Tonal

analysis, as defined in [20], outputs the same type of information as the

harmonic analysis performed in this thesis. However, the outputs represent

different things. Tonal analysis does not imitate a human expert in trying to

figure out what key every sonority belongs to. Instead, the algorithm searches

throughout the piece for places of evidence of dominance of certain pitches.

These places are called tonal centers. Then, between these tonal centers, the

algorithm tries to analyze the piece according to the nearby tonal centers.

The difference in the outputs between tonal and harmonic analysis is that

in tonal analysis, the key appears to change more often than in harmonic

analysis. Whereas a sonority may have a secondary function (e.g. V/V of

C major) in harmonic analysis, the same sonority would have experienced

a sudden key change (e.g. V of G major) in tonal analysis. Tonal analysis

does not analyze as a human would; only harmonic analysis does. In a test

suite of 10 J.S. Bach chorales that provide particular analytical challenges,

this algorithm for tonal analysis produced essentially correct results.

Two works that precisely perform harmonic analysis are Maxwell [17] and

Winograd [22]. In Maxwell [17], the algorithm consists of 55 rules. Of these,

36 are used to determine which sonorities are chords; the rest of the rules

determine the key of every chord. Only chords are analyzed; the sonorities

between chord A and chord B would receive the identical analysis as either

chord A or B. The performance of this algorithm is generally good. One area



CHAPTER 2. BACKGROUND 33

where the algorithm performs poorly is that it fails to take melodic patterns

into account. Melodic patterns are helpful in harmonic analysis. Another

problem area is that in the examples given, modulation seems to occur a

little bit early. According to the rules of harmonic analysis, when there is a

modulation, if there is a chord at the transition point that belongs to both

the old and new key, then that chord is called a pivot chord [12]. However,

the pivot chord at some places has turned into a pivot function lasting as

long as more than two measures. In one instance, the transition from the

old to the new key took more than two measures and involved four different

chords. The algorithm in this thesis assigns only one pivot chord at the point

of modulation.

The approach taken by Winograd [22] was to describe a grammar for

tonal harmony. As can be imagined, the tonal harmony language is highly

complex and ambiguous. For any given passage, many possible ways of pars-

ing are possible. In short, the most meaningful way of parsing the passage

is taken to be the correct way. To give a highly contrived example: the pro-

gression VI→V in C major is equivalent to II→I in G major, but the first

progression (VI→V) is more meaningful, according to the rules of harmonic

analysis. Since the number of ways of parsing grows exponentially with the

length of the piece, the paper describes heuristics to keep the possibilities

to a reasonable number. One main problem with this approach of perform-

ing harmonic analysis is that the melodic ideas are completely ignored, and

sometimes these ideas are necessary in determining the correct analysis. The

lack of melodic information sometimes result in analysis that is overly com-

plicated in order to achieve a “meaningful” parsing. The approach in this
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thesis uses melodic information since the actual notes are the inputs to the

neural networks. In Winograd [22], the notes are present at first, but they

are lost when they are parsed into chords, before the system decides which

chord progressions are most meaningful.

2.4 Summary

This Chapter has discussed the background necessary to understand the rest

of the thesis; namely, the concepts of harmonic analysis and neural networks.

This Chapter also presented a literature review of topics related to either

neural networks or harmonic analysis.



Chapter 3

Methods

This Chapter is broken down as follows. Sections 3.1 to 3.5 discuss the meth-

ods relevant in a global sense; namely, the type of music chosen, the types

of networks chosen, the particular Bach chorales chosen, the simulation tool

used, and an overview of network architecture. Sections 3.6 to 3.9 discuss the

details of each of the four sub-networks, namely Key Network, Root Network

A, Root Network B, and Quality Network. Section 3.10 gives an algorithm

for determining pivot chords. Section 3.11 tells how the sub-networks are

linked together.

3.1 Type of Music Chosen

The type of music chosen for harmonic analysis was J.S. Bach chorales. There

are three reasons for this choice. First, they are relatively easy to analyze,

and hence provide a good starting point. Music theory students often learn

harmonic analysis through Bach chorales. Second, they are stylistically con-

35



CHAPTER 3. METHODS 36

sistent. This means that the neural networks only need to learn one style.

Third, they are abundant. Bach harmonized almost 400 chorales. This pro-

vides ample training and testing data.

3.2 Types of Networks Chosen

As mentioned in the Background section, the feed-forward and Elman net-

works were chosen for use in this thesis. All networks have one layer of

hidden units. For the feed-forward networks, the transfer function used in

both the hidden units as well as the output units is the logistic sigmoid. For

the Elman networks, the transfer function used in the hidden units is the

hyperbolic tangent. The hyperbolic tangent was used instead of the logis-

tic sigmoid because training with the former generalized much better than

training with the latter. The transfer function for the output units is the

logistic sigmoid.

3.3 Chorale Selection

Twenty J.S. Bach chorales were randomly selected as training data to the

neural networks. They are numbers 5, 28, 33, 34, 44, 54, 64, 65, 75, 77, 79,

80, 111, 112, 126, 128, 159, 166, 192, and 378 from the Kalmus Edition [4].

There are a total of 1507 sonorities in these 20 chorales.
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Figure 3.1: Overall network architecture block diagram. The entire network is

divided into four smaller Networks: Key Network, Root Network A, Root Network

B, and Quality Network. Analysis begins with the Key Network taking the notes

information; it ends when the Quality Network gives its output.

3.4 Simulation Tool

MATLAB version 6.0 and the associated Neural Network Toolbox version

4.0 were used for training, testing, and simulating the neural networks.

3.5 Overview of Network Architecture

Figure 3.1 is a block diagram of the network architecture of this thesis.

The Key Network takes the notes of the current and surrounding sonori-

ties and produces the key and mode of the current sonority. The Root Net-

work A takes the notes of the current and surrounding sonorities and the

output of the Key Network and produces the root that the current sonority

tonicizes, if applicable. The Root Network B takes the notes of the current

and surrounding sonorities and the outputs of Key Network and Root Net-

work A and produces the root of the current sonority. The Quality Network

takes the notes of the current and surrounding sonorities and the outputs of
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Key Network, Root Network A, and Root Network B and produces the qual-

ity of the current sonority. Each of the four Networks is trained separately

(i.e. each receives the correct input, not input from the output of a previous

Network in the chain).

3.6 Key Network

3.6.1 Details of Training Inputs

3.6.1.1 Transposition of Chorales

The 20 chorales were written in different keys. Some keys occurred more

often than others. If the chorales were fed as-is into the neural networks

for training, the result would be that the keys occurring more would receive

favourable treatment compared to the keys occurring less. To ensure that

all keys are treated equally, each chorale is transposed 12 times, so that

each chorale is found in the same 13 keys. Since there are twelve tones

in an octave, the 13 keys cover all tones, with one tone covered by two

enharmonically equivalent keys. Almost all, if not all, of the Bach chorales

exist in one of these 13 keys. The number of elements in the training set of

the Key Network is 1507 × 13 = 19591.

3.6.1.2 Parameters of Training Inputs

The Key Network has the task of determining the key of a particular sonority.

It is given the same information as a human analyst would have: the notes

of the sonority and those surrounding it; the metrical importance of the
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sonority; and whether the sonority is at a cadence point. In Bach chorales,

a cadence point indicates the end of a phrase.

3.6.1.3 Input Window Size and Position

It is clear that the key of a sonority cannot be determined from that sonority

alone. Context is needed. However, how much context is necessary? Would

too much context confuse the networks and degrade the performance? Con-

text consists of sonorities from ahead and behind. Would having the input

window centered on the current sonority be the best? Or would shifting the

window front or back be better? Different input window sizes and positions

were tried. For labeling purposes, the window size and position are referred

to by the symbol αpβn, standing for inclusion of α previous sonorities and β

next, or subsequent, sonorities, in addition to the current sonority. Various

window sizes from 7p7n to 11p11n were tried.

3.6.1.4 Inclusion of Metrical Information

Would including the metrical information of the sonorities inside the input

window be beneficial in determining the key? It is initially thought that

inclusion of metrical information would be beneficial because the metrically

weak sonorities would be less important than the metrically strong sonorities

in determining the key. It is highly likely that a metrically weaker sonority

would belong to the same key as the preceding metrically stronger sonority

(e.g. the sonorities are within the same beat). Both inclusion and exclusion

of metrical information were tried. The symbol for inclusion of this scheme

is DUR.
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3.6.1.5 Inclusion of Cadential Information

Would including the cadential information of the sonorities inside the input

window be beneficial in determining the key? It is initially thought that

inclusion of cadential information would be beneficial because the key at the

cadence point is very clearly heard and is always the same as the key at the

preceding sonority. Both inclusion and exclusion of cadential information

were tried. The symbol for inclusion of this scheme is CAD.

3.6.1.6 Coding

Each training input vector is split into n equal parts, n being the total number

of sonorities in the input window. For each of the n parts, the coding scheme

is as follows. The notes of the sonority in question are coded in a 4-of-m

scheme, where m = 27 is the total possible number of notes. (Recall there

are only 12 actual notes; the rest are enharmonic equivalents. In theory, for

any given note, there is an infinite number of enharmonic equivalent notes.

For the keys the chorales were transposed into, the 27 notes incorporate all

the notes of the chorales that will be encountered.) This means that for each

possible note, if it appears in the sonority, the corresponding position of the

vector is assigned a value of 1 (except where it sometimes received a value

of 2; this is described below in Section 3.6.1.7); otherwise, the corresponding

position of the vector is assigned a value of 0. This means that if a note

appears twice in the sonority, the corresponding position in the vector is

still assigned 1. An alternative is to increment the value every time the

note appears. The symbol for this alternative scheme is DT (standing for

doubling-tripling). Both ways were tried. Another alternative (that was
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not attempted) is to represent each voice in a 1-of-m scheme. This was not

attempted because this would represent a fourfold increase in the length of

each training input vector. This would take too long to train, given time

constraints. If the input window stretches further back than the beginning

of the piece or further ahead of the end of the piece, the respective “empty”

sonorities are coded with all 0’s. The metrical information of the sonority is

coded as follows. All sonorities falling at the beginning of any beat receive a

value of 3; those falling at the middle of any beat receive a value of 2; those

falling at the quarter-point or third-quarters point receive a value of 1. For

the cadential information, if the sonority is at a cadence point, it is assigned

a value of “1,0”; otherwise, it is assigned a value of “0,1”.

3.6.1.7 Different Weights in Different Voices

It is possible that some voices are more important in determining the key

than other voices. Therefore, it was interesting to try coding the inputs in

such a way that puts more weight on certain voices. As a starting point, it

was decided to try two different weight values: 1 and 2. Since there are four

voices, and having the four voices assigned all 1’s or all 2’s are equivalent,

there are in total 24 − 1 = 15 different combinations of weights. This scheme

is labeled with the first letter of the voice(s) that is/are assigned a weight of

2. For example, if the soprano and alto voices are assigned a weight of 2,

then the symbol is ‘sa’. This scheme yielded some interesting results, which

will be presented later in Chapter 4. Note that this scheme was not used in

conjunction with the scheme where the value is incremented every time the

note appears in the sonority (DT).
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3.6.1.8 Other Alternate Coding Schemes

Two other coding schemes dealing with the notes of the sonorities were tried.

One was to take only the sonorities with metrical level 3 and ignore all other

sonorities with smaller metrical levels. In the Bach chorales, this translates to

taking all the sonorities occurring at the beginning of the beat and ignoring

all others that follow in the rest of the beat. It was assumed that the key

is the same for the entire duration of a beat. This scheme is labeled with a

symbol of QRT. The other coding scheme was similar, except that instead of

ignoring the sonorities in the rest of the beat, they are superimposed on the

sonority at the beginning of the beat. This scheme is labeled with a symbol

of QRTMERGE.

3.6.2 Hidden Units

Values from 10 to 160 in increments of 10 were tried for the Key Network.

Different values were tried in order to locate approximately the minimum

number of hidden units required to learn the task at hand relatively well. It

is expected that the accuracy will rise as the number of hidden units increases,

up to a certain number of hidden units. After this, as the number of hidden

units continues to increase, the accuracy will either remain the same or even

decrease slightly.

3.6.3 Details of Training Output

The training output vector is coded in a 1-of-m scheme, where m = 35 is

the total number of keys considered by the Key Network. The keys are
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distinguished by modes. Thus, C major is distinguished from C minor, and

each is represented at a separate position. Alternately, another attempt is

to split the Key Network into two parts, A and B. Key Network A takes the

notes of the sonorities as input and outputs the mode (in a 1-of-2 scheme) of

the current sonority. Key Network B takes the notes of the sonorities and the

output of Key Network A as input and outputs just the key of the current

sonority.

3.6.4 Method of Training

3.6.4.1 Training Function

The primary training function used is gradient descent with adaptive learning

rate and momentum. This is implemented by the function TRAINGDX in-

side MATLAB Neural Network Toolbox. Another training function that was

tried was scaled conjugate gradient (TRAINSCG inside MATLAB Neural

Network Toolbox).

3.6.4.2 Number of Epochs Trained

For TRAINGDX, training was stopped and restarted every 500 epochs. Ini-

tial results showed that performance almost always decreased after 1500

epochs. Therefore, all the networks were trained for up to and including

1500 epochs. It seemed that MATLAB was unable to remember the learning

rate and momentum constant after training was stopped. When training

restarts, the learning rate and momentum constant are reset to their default

values. It was necessary to stop training in order to test the network. There
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was a function in MATLAB which allowed the user to specify a validation

set, and MATLAB would test the network after every epoch against this val-

idation set, and if performance decreases for a user-defined number of times

consecutively, training would stop. However, given the large amount of time

that the network already takes to train, and that it did not seem that there

was much gain in using this functionality, it was not used. For TRAINSCG,

training was done for 250 and 500 epochs.

3.7 Root Network A

3.7.1 Details of Training Input

After the Key Network has figured out the key and mode of every sonority

in the piece, the next step is to determine whether a sonority is tonicizing

another chord. Compared to the Key Network, this network (and those fol-

lowing) is much smaller in size. This is because the key has been determined,

and everything from now onwards is determined relative to the key, so there-

fore all the training input can be transposed into two common keys: one for

major (C major), and one for minor (C minor). It is no coincidence that

both keys are of the same letter name. It is done this way to reduce the

dimensionality of the input space and to improve generalization. The dimen-

sionality is reduced because these two keys share many notes in common;

it improves generalization because many chords in the two scales share the

same root. For example, the V chord of C major and V chord of C minor

share the same root, G.

So the training input to Root Network A consists of the notes of the
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current sonority and surrounding sonorities transposed to C major or C mi-

nor, depending on the mode. The window size for this network (and those

following) is also much smaller in size. This is because the determination

of tonicization of another chord is very much local in nature. The window

sizes 0p0n (meaning just the current sonority is taken as input), 1p1n, and

2p2n were tried. There are cases where the key changes somewhere inside

the input window (this is referring to before the transposition to C). The

key of the current sonority is taken to be the key of the entire input window,

before the entire input window is transposed to C. The other alternative is

to leave the key of each sonority as-is. While this approach would probably

reduce the dimensionality of the input space, the input window is transposed

from two different keys and so is not a true transposition from the original

version. As a result, some important information might be lost.

3.7.2 Hidden Units

Values from 10 to 60 in increments of 10 were tried for Root Network A.

3.7.3 Details of Training Output

The training output is coded in a 1-of-7 scheme. The 7 possible outputs are

I, II, III, IV, V, VI, and ♭VII (one semitone below VII). The output I is for

the sonority that is not tonicizing any chord (this actually represents over

90% of all outputs). The other outputs represent the chord of the scale the

sonority is tonicizing. For example, the output V means that the sonority is

tonicizing the V chord of the given key.
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3.7.4 Method of Training

The training function TRAINGDX was used. The numbers of epochs at-

tempted were 500, 1000 and 1500. The network performing the best will be

shown.

3.8 Root Network B

3.8.1 Detail of Training Input

The training input is identical to that for Root Network A, with one excep-

tion. If the output of Root Network A for the sonority in question is not I,

then the key of this sonority is not solely determined by the Key Network; it

also needs to take the output of Root Network A into account. For example,

if the output of the Key Network for the sonority in question is A major,

and the Root Network A’s output for this sonority is V, then the key of this

sonority is V of A major, which is E major. The window sizes/positions

attempted are 1p1n, 1p2n, 2p1n, and 2p2n.

3.8.2 Hidden Units

Values from 20 to 60 in increments of 10 were tried for Root Network B.

3.8.3 Detail of Training Output

The training output is coded in a 1-of-9 scheme. The 9 possible outputs are I,

II, III, IV, V, VI, VII, ♭VI (one semitone below VI), and ♭VII. This represents

the sonority’s harmonic function within the given key. For example, if the
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key of a sonority is D major as determined by the Key Network, and the

output of Root Network A is V, and the output of Root Network B is V,

then it is said that this sonority’s harmonic function is V/V in D major. As

another example, if everything is the same as the previous example, except

that the output of Root Network A is I, then it is said that this sonority’s

harmonic function is V in D major. It is possible to say V/I in D major, but

this is redundant (since I in D major is D major) and hence omitted.

3.8.4 Method of Training

The training function TRAINGDX was used. The numbers of epochs at-

tempted were 500, 1000, and 1500. The network performing the best will be

shown.

3.9 Quality Network

3.9.1 Detail of Training Input

The training input is identical to that for Root Network B, except for two

things. First, the key of the current sonority is not taken as the key of the

entire input window. Each sonority is transposed according to its own key.

Second, the output of Root Network B is included in the input. Now, it

is actually necessary to transpose each sonority according to its own key

because the output of Root Network B, the harmonic function, is relative to

the key of the sonority. Leaving out the output of Root Network B is not a

good idea because it helps in the determination of the quality of the sonority.
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Window sizes/positions of 1p1n, 1p2n, and 2p1n were attempted.

3.9.2 Hidden Units

The values from 20 to 60 in increments of 10 were tried for Quality Network.

3.9.3 Detail of Training Output

The training output is coded in a 1-of-9 scheme. The 9 possible qualities of a

sonority are major, minor, augmented, diminished, dominant 7th, diminished

7th, major 7th, minor 7th, and half-diminished 7th. These are the same

qualities listed in Table 2.2 on page 13.

3.9.4 Method of Training

The training function TRAINGDX was used. The numbers of epochs at-

tempted were 500, 1000, and 1500. The network performing the best will be

shown.

3.10 Determination of Pivot Chord

The algorithm for determining pivot chords is fairly straightforward. Assume

that sonority n is in key X and sonority n+1 is in key Y. Then, sonority n−k

to sonority n inclusive are considered pivot chord if all of these hold: 1) these

sonorities are of the same harmonic function in key X; 2) these sonorities,

if analyzed in key Y, have a harmonic function in key Y. The pivot chord

receives functional analysis in the context of both key X and Y. In Bach
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chorales, the pivot chords are very short: k = 0 or 1 are common values.

Sometimes, if the key changes abruptly, there may not be a pivot chord at

all. As this is a simple algorithm and has no bearing with the testing results

from the neural networks, it will not be further discussed.

3.11 Putting Them Together

The input to the first Network is the set of ordered notes of the piece. At

the end, the harmonic analysis is complete, including key, harmonic function,

and quality for every sonority. During testing, the output of each Network

is manipulated as follows, before being passed on to the next Network: the

largest value of the output vector is set to 1, and the rest of the values are

set to 0.

3.12 Summary

This Chapter has presented the methods used to perform harmonic analysis.

It has been seen that the entire network was divided into Key Network,

Root Network A, Root Network B, and Quality Network, each trained to

perform a specific part of harmonic analysis on Bach chorales. Each Network

(except Key Network) requires input from other Network(s). Different coding

schemes are tried for the Key Network. The two types of network architecture

used are feed-forward and Elman.



Chapter 4

Results

This Chapter is divided as follows. Section 4.1 gives information on what

music the test suite consists of. Section 4.2 presents results for Key Network.

Section 4.3 presents results for Root Network A. Section 4.4 presents results

for Root Network B. Section 4.5 presents results for Quality Network.

4.1 Test Suite

The networks were tested with a test suite of 18 Bach chorales. They are

numbers 7, 9, 26, 30, 32, 50, 57, 91, 93, 138, 154, 175, 189, 201, 206, 211, 224,

and 284 from the Kalmus Edition. Of these, 8 were also chorales chosen to be

tested in [20]. These chorales were chosen because they “provide particular

analytical challenges.” [20, page 29] The other 10 chorales were randomly

selected. These 18 Bach chorales represent 1362 sonorities in total.

50
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4.2 Key Network

Figure 4.1 shows the results obtained by putting the test suite through net-

works that include/exclude cadential and metrical information. The window

size/position for all was fixed at 8p8n. The type of network was feed-forward

(FF). The number of hidden units for all networks in this figure is 90. The

voice weight scheme is none, meaning all four voices received equal weight.

From this graph, concerning the point of including or excluding cadential

and metrical information, it can be seen that the network that neither in-

cludes cadential nor metrical information performed the best. For the other

networks tested in this section, they all include both cadential and metrical

information because many networks were already trained with the inclusion

of both cadential and metrical information before the other schemes were

thoroughly tested. Figure 4.1 also shows the results of splitting the Key

network into two, one to handle the key and the other to handle the mode.

As can be seen, it is clearly not a good idea. The accuracy rate is down

sharply. This suggests that the learning of key and mode is interdependent.

As well, the scheme of considering just the sonorities at the beginning of

beats (QRT) or the scheme of merging sonorities from the same beat into

one sonority (QRTMERGE) produces sub-par results. It is reasoned that

QRT does not work well because a sizeable fraction of sonorities is gone,

thus hurting the generalizing ability of the networks; it is thought that QRT-

MERGE does not work well because too much information is packed into one

sonority, thus increasing the input space. The scheme of showing the possi-

ble doubling or tripling of the same note in the same sonority (DT) appears

here to be slightly better than representing repeated notes as one note. The
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Figure 4.1: Comparison of Performance of Various Schemes of Key Network

networks that follow do not use the scheme DT because most of the networks

were already trained with DT before the discovery that DT works slightly

better.

Training using TRAINSCG was done on a 9p7n(FF) network with 120

hidden units and schemes CAD and DUR included. After 250 epochs, the

network performed at an accuracy of 86.6%. This, compared with TRAIN-

GDX, which takes up to 1500 epochs to achieve the same level of accu-

racy, indicates that TRAINSCG converges faster than TRAINGDX. How-

ever, all other networks in this Chapter were trained with TRAINGDX be-

cause TRAINSCG was used at a late stage of development when the bulk of

the training was already completed using TRAINGDX.

Figure 4.2 shows the results obtained by putting the test suite through

networks that have the same window size/position (9p7n), are of the same
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Figure 4.2: Performance of Different Number of Hidden Units of Key Network

type (FF) and voice weight scheme (none), but have different number of

hidden units. From this figure, it can be seen that at 50 hidden units, the

network’s performance is almost as good or greater than the performance

of the network at higher numbers of hidden units. Theoretically, a network

with a larger number of hidden units can do no worse than one with a smaller

number of hidden units when only training data is considered; however, it is

easier for the larger network to overfit the training data and hence do worse

than the smaller network on new testing data [6]. From this test, it seems

that 50 hidden units are sufficient. The highest accuracy obtained was with

120 hidden units; in the networks that follow, they were all trained with 120

hidden units.

Figure 4.3 shows the results obtained by averaging the results of all 15

voice weight schemes for each window size/position. (The results for each
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Figure 4.3: Average Performance of Each Window Size/Position

window size/position can be found in Appendix A.) The symbol (EL) means

that the network is an Elman network. From the graph, the FF networks

that had its window position centered on the current sonority (i.e. window

size/position = αpβn where α = β), 8p8n performed the best. Therefore, it

seemed reasonable to attempt shifting the position around. From the graph,

it can be seen that both 9p7n(FF ) and 7p9n(FF ) did better than 8p8n(FF ),

with 9p7n(FF ) coming out on top. The reason that 9p7n(FF) does slightly

better than 7p9n(FF) could be that past information is a slightly greater

key-determinant than future information. Performance dropped when the

window position was shifted to 9p6n (but, as shall be seen, these networks

are valuable under a different context). The Elman networks gave compara-

ble level of performance as their feed-forward counterparts of equal window

size/position. It was initially thought that the Elman networks would per-
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Figure 4.4: Average Performance of Each Voice Weight Scheme

form better than the feed-forward networks because of their ability to learn

temporal patterns. The results do not indicate this. The reason could be

that the temporal patterns are already learned by having such a large win-

dow size. It is speculated that a slightly smaller window size for the Elman

networks would give slightly better results; this can be subject to further

investigation.

Figure 4.4 shows the results obtained by averaging the results of all 11

window sizes/positions for each voice weight scheme. The fact that there

are significant differences among the voice weight schemes strongly suggests

that certain combinations of voices are better key-determinants than others.

From the graph, it can be seen that the voice weight scheme ‘sb’ performs

the best. From a musical point of view, this makes sense. The soprano line

and the bass line, being the topmost and bottommost voice, respectively, are
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Figure 4.5: Performance Gain from Committees of Different Voice Weight

Schemes of Same Window Size/Position

the two voices that are most easily heard. Hence, it would make sense for

the composer (in this case, Bach) to place notes that emphasize the current

key in these ‘outer’ voices rather than the ‘inner’ voices (i.e. alto and tenor),

unless, of course, the composer writes in a style that gives the impression

of unstable keys. But this is not the style of the Baroque-era Bach [16]. It

would be interesting in the future to train the networks on the chorales of

another composer, and see whether emphasizing the soprano and bass line

also turns out to be the best.

Figure 4.5 shows the results obtained by placing networks with the same

window size/position but different voice weight schemes into committees.

Committees of 3, 5, and 7 were formed. Since there are a total of 15 net-

works per window size/position, the total number of possible committees of
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n is
∑n

k=1

(

15
k

)

. Note that this sum includes the combinations where more

than one member of the committee comes from the same network (otherwise

it would just be
(

15
n

)

). For n = 7, the sum amounts to 16383. For each

n, the committee that performed the best is compared with the best per-

forming single network for that window size/position. As can be seen, the

best committee of 3 has a significant improvement over the best performing

single network. For the committee of 5 and the committee of 7, their further

improvement is marginal. For two window sizes/positions (11p11n(FF ) and

9p7n(EL)), their best committee of 5 did not do better than their best com-

mittee of 3. For 9p9n(FF ), its best committee of 7 did not do better than

its best committee of 5. The best committee of 7 of 8p8n(FF ) obtained an

accuracy of 90.0%, the best overall in this figure.

A compilation of which voice weight schemes appeared in the best com-

mittees of 3, 5, and 7 is given in Figure 4.6, 4.7, and 4.8 respectively. A voice

weight scheme receives 1/n point for each time that it appears in the best

committee for a window size/position, if n committees achieved the highest

accuracy. Clearly, the scheme ‘sb’ is involved in the best committees more

than any other scheme. This indicates that the networks trained in this

scheme not only achieve a higher accuracy than networks trained in other

schemes; it also indicates that a lot of breadth (i.e. predicts those sonorities

correctly where other networks do not) is covered with this scheme. A coun-

terexample is the scheme ‘none’, which after ‘sb’ is the highest performing

scheme on average (see Figure 4.4). However, as seen in Figures 4.6 to 4.8,

few of these networks make it on the best committees. This means that these

networks do not cover a lot of breadth.
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Figure 4.6: Scores for occurrence of voice weight schemes in the best committees

of 3. The score is calculated as follows: given that n committees achieved the same

highest accuracy, a voice weight scheme receives 1/n point for each time that it

appears in the best committee for a window size/position.
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Figure 4.7: Scores for Occurrence of Voice Weight Schemes in the Best Com-

mittees of 5

It was mentioned in Chapter 2 that the output of the committee is ob-

tained by taking the most frequently appearing largest output from the mem-

ber networks. Early results had indicated that this form of the committee is

better than that described in [6], which is taking the largest output of the

average of the outputs of the member networks. However, late in the devel-

opment process, it was found that the form of the committee described in [6]

is generally superior. In the case of committee of 3 7p9n networks, the best

combination using the scheme from [6] is 0.5% better than the one currently

used. A possible reason why early results had contradicted later results is

that the early results were from forming a committee whose member networks

had the same scheme of inputs but different initial weight values, while the

later results were from forming a committee whose member networks had
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Figure 4.8: Scores for Occurrence of Voice Weight Schemes in the Best Com-

mittees of 7

different input schemes.

Figure 4.9 shows the results obtained by placing networks with the same

voice weight scheme but different window sizes/positions into committees. As

can be seen, the scheme ‘sb’ once again comes out on top, with an accuracy of

89.7% from its best committee of 7. The improvement of the best committees

are measured with respect to the best performing window size/position for

that voice weight scheme. The trend of significant improvement from best

committee of 3 and marginal improvement from best committee of 5 and best

committee of 7 remains. For the scheme ‘sat’, there was no improvement in

its best committee of 5 over its best committee of 3.

A compilation of which window sizes/positions appeared in the best com-

mittees of 3, 5, and 7 is given in Figure 4.10, 4.11, and 4.12 respectively.
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Figure 4.9: Performance Gain from Committees of Different Window

Sizes/Positions of Same Voice Weight Scheme

The scoring is similar to that in Figures 4.6 to 4.8. A surprising result is

that the window size/position 9p6n(FF) did the best in all three sizes of

committees. It is surprising because the average performance of 9p6n(FF)

networks is the second lowest amongst all window sizes/positions (see Fig-

ure 4.3). The reason seems to be that these networks cover cases other

window sizes/positions do not. The 9p6n window position is the most un-

balanced in terms of the number of previous sonorities and the number of

subsequent sonorities. In the future, it may be fruitful to try other such

unbalanced window sizes/positions, like 6p9n, 10p7n, or 7p10n. The next

highest scoring window size/position is 9p7n(FF). This is expected because

it is the highest scoring window size/position in Figure 4.3.

Additional gains to the accuracy were made when the best committees of
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Figure 4.10: Scores for Occurrence of Window Sizes/Positions Schemes in

the Best Committees of 3

7 in Figure 4.5 were further put into committees, thus forming committees

of committees. The best committee of committees (henceforth referred to as

bestcom key) achieved an accuracy of 91.7%, thus improving upon the previ-

ous record of 90.0% by 1.7%. The best committee of committees formed from

those in Figure 4.9 had a slightly lower accuracy of 91.4%. The best perform-

ing single network was the one with window size/position of 9p7n(FF ) and

voice weight scheme of none; it produced an accuracy of 88.5%. Thus, just

by combining networks that were each trained a little differently (albeit by

exhaustively trying every combination), the accuracy had gone up by more

than 3%.
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Figure 4.11: Scores for Occurrence of Window Sizes/Positions Schemes in

the Best Committees of 5

4.3 Root Network A

The results in this section are obtained assuming the accuracy of Key Net-

work is 100%. Figure 4.13 shows the performance of Root Network A when it

was trained in 4 different window sizes/positions and with 6 different num-

bers of hidden units. For each combination of window size/position and

number of hidden units, three networks were trained, each with different

initial weights (this also applies to Root Network B and Quality Network,

below). Figure 4.13 shows the best performing network. As can be seen,

the networks trained with no context (i.e. window size/position of 0p0n)

perform the best. This is in agreement with the fact that tonicization is a

local effect, so local that it involves only one sonority most of the time. As
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Figure 4.12: Scores for Occurrence of Window Sizes/Positions in the Best

Committees of 7
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Figure 4.13: Performance of Root Network A
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for the number of hidden units, as little as 10 hidden units is sufficient. The

best result of 97.5% comes from six different combinations of hidden unit and

window size/position. This might seem to be a great number; however, recall

that over 90% (93.8%, to be exact) of the sonorities in the test suite are not

involved in tonicization. Hence, it is just obtaining an increased accuracy

of 3.7% over a naive algorithm which states every sonority is not involved

in tonicization. A committee of committees, bestcom rootA, was made in

the following manner. First, a set of committees is made from all possi-

ble combinations of three of all the networks trained with the same window

size/position and number of hidden units, for every possible combination of

window size/position and number of hidden units. The best out of each set

is further put into the next level of committees. Again, all combinations of

three committees are tried. The best combination becomes bestcom rootA.

It yielded a 0.6% increase in overall accuracy. Further analysis of the perfor-

mance of this network appears in Chapter 5.

4.4 Root Network B

Similar to the previous section, the results in this section are obtained as-

suming perfect accuracy of the Key Network and Root Network A. Fig-

ure 4.14 shows the performance of Root Network B when it was trained in

4 different window sizes/positions and with 5 different numbers of hidden

units. The window size/position 1p1n seemed to be the best for this net-

work. Also, at least 30 hidden units seemed to be needed, as three of the

four cases with 20 hidden units had the lowest accuracy for their own window
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Figure 4.14: Performance of Root Network B

size/position. The best performing network had a window size/position of

1p1n and 40 hidden units; it obtained an accuracy of 93.0%. A committee of

committees, bestcom rootB, was made in the manner similar to that which

made bestcom rootA. It obtained a 1.2% increase in overall accuracy over

the best performing single network. Further analysis of the performance of

bestcom rootB appears in Chapter 5.

4.5 Quality Network

The results in this section assume perfect outputs from the previous Net-

works. Figure 4.15 shows the performance of Quality Network when it was

trained in 3 different window sizes/positions and with 5 different numbers

of hidden units. There was a network trained in each of the 3 window
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Figure 4.15: Performance of Quality Network

sizes/positions that did very well. From the graph, it is difficult to say

which window size/position is the best. The best performing single network

was the one with window size/position of 2p1n and 40 hidden units; it ob-

tained an accuracy of 94.4%. The committee bestcom quality was obtained

in a similar manner to that which made bestcom rootB. This committee

performed a further 1.7% better in overall accuracy than the best perform-

ing single network. Further analysis of the performance of bestcom quality

appears in Chapter 5.

4.6 Summary

This Chapter has presented the results of testing each of the four Networks

on unseen chorales. For Key Network, results for different coding schemes
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were presented. In particular, it has been seen that the window size/position

9p7n(FF) and the voice weight scheme ‘sb’ perform the best when compared

with other window sizes/positions and voice weight schemes, respectively.

Committees of networks were put together to achieve significant gains in

some cases.



Chapter 5

Discussion

This Chapter is broken down as follows. Section 5.1 is an analysis of the

incorrect predictions made by each of the four Networks. Section 5.2 gives

the overall accuracy of the entire network. Section 5.3 is an analysis of a

musical passage by another composer using the Key Network. Section 5.4

is a comparison of the performance of the network of this thesis with other

published algorithms.

5.1 Analysis of Incorrect Predictions

5.1.1 Key Network

The best committee of committees (bestcom key) achieved an accuracy of

91.7% in the test suite of 18 Bach chorales. For the 8.3% that were analyzed

incorrectly, 3.7% involved modulation at a different place than where the

author deemed it should, and a further 3.2% involved sonorities that were

analyzed as being in closely related keys. Generally speaking, the exact place

69
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of modulation is sometimes open to different interpretation. One person

might view it as occurring at a certain place; another might think that it

occurs at an earlier or later place. For the purposes of this thesis, every time

modulation occurs in a piece, there is only one place for modulation where it

would be deemed “correct.” Nonetheless, analysis of the errors indicates that

nearly half of the errors are due to modulation occurring at a different place

than that allowed. This type of error should not be considered a severe one.

The keys that are closely related to key X are 1) its relative major/minor; 2)

the keys that differ from key X by only one in their key signatures and which

are of the same mode as key X. If key X is major (minor), then its relative

minor (major) is the minor (major) key that has the same key signature as

key X. For example, the closely related keys of C major are A minor, G

major, and F major. This type of error is genuine; however, it can be argued

that, in these cases, the network’s prediction is not far off from the correct

answer. During training, the network learns to associate certain patterns

of notes to certain keys. It is likely that the network learns to distinguish

between different patterns of notes by the occurrence/absence and frequency

of different notes. This is likely because keys are different by virtue of their

usage of different subsets of the 12 notes in an octave, and also by how often

certain notes in the subset are used (for example, the tonic note is most

frequently used). It is reasonable to assume that the network learns this to

a certain extent. The closely related keys of key X differ from key X by at

most two notes. Let key Y be a closely related key of key X. Assume that

the network has learned to associate a collection of patterns Px = Px1, ..., Pxn

with key X, and respectively Py = Py1, ..., Pyn with key Y. During testing,
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the inputs that resemble any pattern Pxi will be assigned the output key X.

However, it is not unreasonable to assume that some of these inputs have

an intended output of key Y, even though they contain Pxi. Essentially, this

means that for some i and j, Pxi = Pyj . The network has not learned to

distinguish between the two. However, since key X and Y are closely related

and differ by at most two notes, arguably some of their patterns are quite

similar also and difficult to distinguish.

Therefore, only 8.3% - 3.7% - 3.2% = 1.4% of testing inputs were assigned

outputs that are seriously wrong. Another measure of merit for the Key Net-

work is that for the members of bestcom key, at least one member predicted

the correct answer 95.6% of the time. This demonstrates the diversity of the

members of bestcom key.

5.1.2 Root Network A

The committee bestcom rootA achieved an accuracy rate of 98.1%. Its per-

formance breakdown is shown in Table 5.1. The roots are shown in decreasing

order of frequency as they appear in the training set. As mentioned before,

the vast majority of sonorities are not involved in tonicization (indicated by

the root I). This makes it difficult for the network to learn the other roots.

One way to increase further the accuracy of Root Network A is to make all

roots equally frequent in the training set. This would mean picking some

parts of a chorale for training and discarding the rest.
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RootA Total Training Total Testing # Correct Accuracy (%)

Sonorities Sonorities

I 1394 1277 1271 99.5

IV 30 31 22 71.0

V 27 26 24 92.3

III 19 5 3 60.0

VI 19 14 13 92.9

bVII 12 8 2 25.0

II 6 1 1 100.0

Total 1507 1362 1336 98.1

Table 5.1: Breakdown of performance of bestcom rootA. A simple calculation

shows that the prediction accuracy for non-tonicizing sonorities is 65/85 =

76%.
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5.1.3 Root Network B

The committee bestcom rootB achieved an accuracy rate of 94.2%. Further

analysis revealed that an additional 2.0% of sonorities should also be con-

sidered correct. As this is analysis of music, there is a subjective part to

it. Hence, although one answer is correct, another might also be. In this

particular case, roots of sonorities can be different depending on the level

of analysis. One may choose to analyze at a very high level to obtain a

grand picture and flow of the entire piece of music. Alternatively, one may

choose to analyze at a granular level to obtain root information of every sin-

gle sonority. In this thesis, the chorales were trained with root information

at a fairly granular level; during testing, a very slight variation on the level

were allowed, hence the additional 2.0%.

Table 5.2 is an analysis breakdown of bestcom rootB. The roots are

ranked in decreasing order of frequency in the training set. As can be seen,

the most frequently occurring roots in the training set achieve the highest

accuracies in the testing set. The roots in the last four rows of Table 5.2

did not occur in the training set; so, it is natural that the network cannot

recognize them.

5.1.4 Quality Network

The committee bestcom quality achieved an accuracy rate of 96.1%. Further

analysis (along the same line of reasoning as that for Root Network B) in-

creased the rate to 96.4%. As an example, there is a sonority that can be

labeled either as minor or as minor 7th. Table 5.3 is an analysis breakdown
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RootB Total Training Total Testing # Correct Accuracy (%)

Sonorities Sonorities

I 498 480 472 98.3

V 492 419 416 99.3

IV 175 162 155 95.7

II 106 92 88 95.7

VII 94 98 86 87.8

VI 56 49 44 89.8

III 45 29 23 79.3

bVI 30 20 18 90.0

bVII 11 9 8 88.8

bII 0 1 0 0.0

#VI 0 1 0 0.0

#II 0 1 0 0.0

Gr6 0 1 0 0.0

Total 1507 1362 1310 96.2

Table 5.2: Breakdown of Performance of bestcom rootB
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Quality Total Training Total Testing # Accuracy (%)

Sonorities Sonorities Correct

Major 731 656 653 99.5

Minor 402 354 351 99.2

Dominant 7th 194 161 155 96.3

Diminished 74 65 61 93.8

Minor 7th 39 45 39 86.7

Diminished 7th 28 27 23 85.2

Half-diminished 7th 20 42 29 69.0

Major 7th 18 8 2 25.0

Augmented 1 4 0 0.0

Total 1507 1362 1313 96.4

Table 5.3: Breakdown of Performance of bestcom quality
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Figure 5.1: Performance of Each Network and Entire System

of bestcom quality. The accuracies of the qualities follow in the exact order

of the frequencies with which they occur in the training set.

5.2 Overall Accuracy

Figure 5.1 shows the accuracies of the best results obtained for each Network,

as well as the overall accuracy when the Networks are linked serially and

tested from beginning to end. The accuracy for the overall results is for the

sonorities which had the key, mode, root, and quality all correct. This is a

reasonable number considering that the results are obtained serially through

four different Networks. All four Networks obtained accuracies over 90%.
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5.3 Analysis of Music from Another Com-

poser

It is interesting to see what would happen if music from another composer

were fed into the networks trained on Bach chorales. The piece of music se-

lected for testing is Mozart’s Piano Sonata in C major, K545 (1st movement).

The first 11 bars of this music was fed into the Key Network with window

size/position of 8p8n(FF), 120 hidden units, and a voice weight scheme of

none. The accuracy obtained was 43.8%. This result was not unexpected.

There are several reasons why a low score was achieved. First, the texture

of music is different. In Bach chorales, there are four notes in every sonor-

ity; some notes are repeated. This means that to the network, it expects

every sonority to have three or four distinct notes to its input. However, the

Mozart example has a simpler texture. Except for very few sonorities, the

entire passage is in two parts. To the network, this means that most of the

time a sonority only consists of two notes (and sometimes even one if the two

notes are identical), which is not what the network is trained with. Second,

in the Mozart example, the harmony is more drawn out. This means that

the harmonic function stays the same longer. The harmony in Bach chorales

changes rather quickly. Not so in this Mozart example. When the network

is fed with music with its harmony more drawn out, it does not adapt to the

music; rather, it is ready to change keys at the first hint of a foreign key. In

the passage, there is an entire bar of running sixteenth notes on the D minor

scale. The correct analysis of this bar is C major; the whole bar should be

labeled as II in C major. However, the network thinks the piece has gone to
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D minor.

Can the network be re-trained to score higher in this Mozart example?

The answer is yes. The network can be re-trained on Mozart piano sonatas.

However, some changes would be necessary in order for the re-trained network

to perform as well as the network trained on Bach chorales. One change would

be to increase the number of hidden units. Amongst themselves, Mozart

piano sonatas have a greater variation in style than Bach chorales. Since

style is a vague term, consider this thought experiment. The experimenter

plays five Bach chorales to a subject (the subject does not know that they

are Bach chorales). Then, the experimenter plays a sixth Bach chorale to the

subject (again, the type of music is not known to the subject). The subject

is asked to rate on a scale the similarness of the sixth piece to the first five.

This experiment is repeated on another subject, but this time with Mozart

piano sonatas. After testing on many different subjects, the result should

be that the score for the Bach chorales is higher. Since the network has to

generalize from less similar things, more hidden units would be necessary.

Another change would be to increase the window size. Since the harmony is

more drawn out, the network needs a greater context to understand properly

what is going on in the piece. A third change would be to devise a way

to combine cleverly several sonorities into one, so as to reduce the size of

the input of the network. This was tried on the Bach chorales (recall the

scheme labeled QRTMERGE), but this particular scheme did not work well.

However, this scheme, or some variation on it, may work well on Mozart

piano sonatas.
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5.4 Comparison with Other Algorithms

Krumhansl’s key-finding program [13] formed the basis of another key-finding

program found on the Internet [2]. There are several differences between [13]

and [2]. First, the values of the pre-defined vectors for keys are different.

Second, distinction is made between enharmonically equivalent notes. Third,

in forming the input vector, instead of summing the total duration of each

note in the current segment, a value of 1 is assigned to the corresponding

element if the note is present; otherwise, a value of 0 is assigned. Fourth,

there is a way of handling modulation.

This modified algorithm’s [2] performance was directly compared with

bestcom key. After changing a few of the provided user parameters, the best

result obtained was a mere 75.1% on the same test suite of Bach chorales.

(Recall that bestcom key reached 91.7%.) While not all parameters were

changed and tested, it is not immediately clear how they can be changed to

improve the accuracy by a considerably large margin. Even if it is possible to

obtain over 90% in accuracy, the time taken to find the right set of parameters

to achieve this accuracy would make this algorithm not user-friendly.

Taube’s work [20] performs tonal analysis, which is slightly different from

harmonic analysis. However, its root-finding and quality-finding parts are

comparable to the Root Network B and Quality Network of this thesis. On

the same set of Bach chorales, Taube’s root-finding and quality-finding al-

gorithm performed at 98.2%. Note that as Taube’s output was provided

statically [1], the two parts of root-finding and quality-finding could not be

analyzed separately. The algorithm greatly utilizes lookup tables. By the

information given in [20], and also by making some reasonable assumptions
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where information is missing, it is shown (in Appendix B) that one Root

Network B combined with one Quality Network use only 74% of the space

taken up by the lookup tables. Hence, by giving up a few percent of accuracy,

significant storage is saved.

5.5 Summary

This Chapter has first presented an analysis of incorrect predictions made

by each of the four Networks. Then, it has stated the overall accuracy of

the entire network. After this, an analysis of another musical passage from

another composer was presented. Finally, comparison was made with other

published results.



Chapter 6

Conclusion

6.1 Contributions

This thesis has pushed ahead the state of the art of computerized harmonic

analysis. First of all, by using neural networks, it is a novel way of performing

harmonic analysis. Previous attempts relied on rule-based methods. Second,

the overall performance obtained in this thesis is better than other published

results that could be found. In particular, the Key Network performed 16%

better than the results found in [2].

This thesis has several practical applications; they will be presented in

Section 6.2. One of the pleasant surprises found in this thesis is that the voice

weight scheme ‘sb’ does better than all other voice weight schemes. This is

in conformance with the style of Bach chorales which places emphasis on the

outer voices. Another discovery was the numerous times the networks with

the window size/position of 9p6n(FF) made it into the best committees (i.e.

the committees with the highest accuracies), even though these networks by
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themselves did not achieve relatively high accuracies.

6.2 Application of this Work

This thesis has successfully demonstrated the use of neural networks in per-

forming harmonic analysis. This work has potential educational value. It

can be used to generate automatically analysis of many musical pieces; mu-

sic theory students can submit their own analysis online, and they can get

immediate feedback as to how their own analysis compared with the cor-

rect analysis. Harmonic analysis is a tedious task; from the point of view

of a music theory instructor, it is advantageous to have the analysis done

automatically. Even if minor corrections to the automatic analysis were to

be made, there is still a saving of time and energy. Having such a network

online is also an advantage to a music theory student who lives nowhere close

to a music theory instructor. In this case, the network is the instructor. In

addition to providing a direct comparison, it can be made to provide intel-

ligent feedback on the types of mistakes the student commonly makes. For

example, the network might inform the student that “you usually modulate

too soon,” or “you often mislabel a II chord as a IV chord.” Although it

might be a little impersonal, at least the student has access to an expert of

some kind.
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6.3 Future Work

This thesis has focussed on a particular set of pieces of a particular composer.

The networks can be trained to perform harmonic analysis on a wide range

of composers and styles. In order to perform well on a broader set of pieces,

careful selection of the training set is necessary. To be sure, if one were to

spend time in expanding the networks to include more composers, one might

learn many important truths about what style is.

A measure of style can be carried out by the following experiment. N

networks are trained for harmonic analysis, each on pieces of a distinct com-

poser. Then, test all N networks with previous unseen pieces of the same

composers. It is reasonable to assume that test pieces of composer A should

do the best on the network trained on composer A. However, which of the

other networks achieve the next highest score? Assume it is composer B’s.

This may indicate that the styles of composers A and B are similar. An

experiment somewhat similar to this one was described in [10].

Another interesting extension to this thesis is to incorporate the key-

detecting ability found in this thesis into a computer accompanist. An ac-

companist follows a soloist, and usually the accompanist knows what music

to play beforehand. All the accompanist has to do is to keep up with the

possibly varying speed of the soloist. However, if the soloist is improvising

(i.e. making up and playing music on the spot), the accompanist has no

score and has to rely on his/her own ear and playing ability to follow along.

If a computer were to imitate such an accompanist, the Key Network in this

thesis can act as a key-detecting agent, while a second set of neural networks

can decide a suitable accompaniment to play, and a third module can deter-
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mine the rhythmic information. One major obstacle to overcome is speed,

since simulating neural networks is quite slow compared to the speed needed

for the computer accompanist to output in real-time.

A final future application of this thesis is as a way of indexing musi-

cal databases. A program to index musical databases, called the MUSART

Thematic Extractor, is found in [18]; an application that uses this program

appeared recently [11]. Potentially, the Key Network of this thesis can deter-

mine the key(s) that each piece of music in a certain set has visited. Then,

using the key information as index, a user can find out, for example, which

pieces had visited C major and G major, but not C minor. This type of

information may be useful to investigate into a possible key preference of a

composer. Also, the key information can be used in conjunction with other

types of information, such as melodic information [18], to aid a user to search

for a particular piece of music in a large database.
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Appendix A

Performance of Voice Weight

Schemes in Various Window

Sizes/Positions (of Key

Network)

This Appendix presents the graphs for the performance of Key Network for

every voice weight scheme of every window size/position attempted. Each

graph gives the performance of every voice weight scheme for a particular

window size/position.
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Figure A.1: Performance of Each Voice Weight Scheme in 8p8n(FF) Networks
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Figure A.2: Performance of Each Voice Weight Scheme in 9p7n(FF) Networks
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Figure A.3: Performance of Each Voice Weight Scheme in 7p9n(FF) Networks
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Figure A.4: Performance of Each Voice Weight Scheme in 9p6n(FF) Networks
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Figure A.5: Performance of Each Voice Weight Scheme in 7p7n(FF) Networks
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Figure A.6: Performance of Each Voice Weight Scheme in 9p9n(FF) Networks
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Figure A.7: Performance of Each Voice Weight Scheme in 10p10n(FF) Networks

none s a t b sa st sb at ab tb sat sab stb atb
0.83

0.84

0.85

0.86

0.87

0.88

0.89

Different Voice Weight Schemes
(Window size/position: 11p11n(FF))

Voice weight scheme

F
ra

ct
io

n 
C

or
re

ct

Figure A.8: Performance of Each Voice Weight Scheme in 11p11n(FF) Networks
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Figure A.9: Performance of Each Voice Weight Scheme in 8p8n(EL) Networks
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Figure A.10: Performance of Each Voice Weight Scheme in 9p7n(EL) Networks
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Figure A.11: Performance of Each Voice Weight Scheme in 7p9n(EL) Networks



Appendix B

Derivations

B.1 Table Size of Taube’s Algorithm

An overview of Taube’s algorithm is found in Section 2.3. There are two

tables involved. The first table takes notes of the sonority and maps them

into root letter and quality. For example, the sonority {C, E, G, B} is mapped

to {C, +7}. Since the paper [20] states all intervals from doubly diminished

to doubly augmented up to an octave are accounted for, this is a total of

38 intervals, and hence the system accounts for 38 distinct notes/roots. For

each root, 19 types of sonorities are accounted for: 9 common qualities (as

defined in Chapter 2), four 7th chords with the 5th missing, two triads with

the 5th missing, and four 7th chords with the 3rd missing. The number of

entries in the first table is therefore 38 × 19 = 722. For each entry, the root

can be encoded in 6 bits, while the quality can be encoded in 3 bits (the

system seems only to differentiate between 3 types of 7th chords, for a total

of 7 qualities; this thesis’ tells apart 5). The index takes up 6 bits/note × 4
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notes = 24 bits. Each entry therefore uses 6 + 3 + 24 = 33 bits. This table

uses 722 entries× 33 bits/entry = 23826 bits.

The second table takes the root of the sonority and the current tonal

center and maps them into an interval. The table size is 38 × 38 = 1444.

Each entry takes up 6 bits for the interval and 11 bits for the index, for a

total of 17 bits. This table uses 1444×17 = 24548 bits. The total size of the

two tables is 48374 bits.

In contrast, consider Root Network B with 20 hidden units and window

size/position 1p1n. There are 19 notes/sonority × 3 sonorities = 57 units in

the input layer (plus a bias), 20 units in the hidden layer (plus a bias), and 9

units in the output layer. The total number of weights is 58× 20 + 21× 9 =

1349. Assume that each weight falls in the range [-1, 1], and the precision is

3 decimal places. Each weight then can be represented in 11 bits (10 bits for

the mantissa + 1 sign bit). The size of the network is 1349 × 11 = 14839.

Quality Network’s derivation is identical, except that the input layer contains

9 extra inputs per sonority from Root Network B. The total for Quality

Network comes out to 20779. Therefore, the two networks combine for a

total of 35618 bits. And 35618/48374 = 0.74. Granted, given the relatively

small sizes, this is just a theoretical comparison.


