
Multi-Resolution Graph Cuts for Stereo-Motion
Estimation

by

Joshua A. Worby

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of The Edward S. Rogers Sr. Department of
Electrical and Computer Engineering

University of Toronto

Copyright c© 2007 by Joshua A. Worby

Abstract

Multi-Resolution Graph Cuts for Stereo-Motion Estimation

Joshua A. Worby

Master of Applied Science

Graduate Department of The Edward S. Rogers Sr. Department of Electrical and

Computer Engineering

University of Toronto

2007

This thesis presents the design and implementation of a multi-resolution graph cuts

(MRGC) for stereo-motion framework that produces dense disparity maps. Both stereo

and motion are estimated simultaneously under the original graph cuts framework [8].

Our framework extends the problem from one to five dimensions, creating a large increase

in complexity. Using three different multi-resolution graph cut algorithms, LDNR, EL

and SAC, we reduce the number of pixels m and the number of labels n that limit

the α − β swap algorithm (with complexity O(mn2) required from the definition of

our semi-metric smoothness function. This results in a reduction of computation time

and the ability to handle larger images and larger label sets. The choice of the three

MRGC algorithms to use in computation determines the appropriate level of accuracy

and computation time desired.

ii

Dedication

To my family, especially my grandparents, who always stress the value of education.

iii

Acknowledgements

I am sincerely grateful to my supervisor, Professor W. James MacLean, for his in-

valuable guidance and support that was vital to the success of this thesis. His patience

and understanding created the best environment for my personal success and learning.

I would like to express my thanks to my colleagues and friends in the Vision and Image

Dynamics Lab and at the university, who were a source of support and encouragement

throughout the project. They provided for some very useful discussions both on matters

related to the project and to life outside the university. Without them, I most likely

would not have my sanity, my health or my knowledge of what the city of Toronto has

to offer.

The University of Toronto and MDA are also acknowledged for their financial and

equipment support. In particular, I would like to acknowledge my supervisor at MDA,

Piotr Jasiobedzki, without whom the opportunity for an internship, with interesting

computer vision problems and access to a calibrated stereo system, would not have been

possible.

Above all, I am deeply grateful to my family and friends who have made this journey

possible for me. Their support throughout the whole two and half year journey, always

ensured that I was on track.

iv

Contents

Abstract . ii

Acknowledgements . iv

List of Tables . viii

List of Figures . xi

1 Introduction 1

2 Background 4

2.1 Image Formation: The Pinhole Camera 4

2.2 Matrix Projection Model . 6

2.3 Motion Field and Optical Flow . 7

2.3.1 Optical Flow Component Velocities 9

2.3.2 The Aperture Problem . 10

2.3.3 Parametric Models for Optical Flow Computation 11

2.3.4 Non-Parametric Optical Flow Computation 12

2.4 Stereo . 13

2.4.1 Epipolar Geometry . 15

2.4.2 Stereo Rectification . 16

2.4.3 Stereo Matching . 18

2.5 Graph-Based Energy Minimization . 19

2.5.1 A Bayesian Framework for Vision Problems 19

v

2.5.2 The General Form of Energy Functions 21

2.5.3 Multiway Cut Formulation . 23

2.5.4 Multiway Cut Minimization . 26

2.6 Maximum Flow . 28

2.7 Literature Review . 30

2.7.1 Stereo and Motion . 30

2.7.2 Combining Stereo and Motion . 32

2.8 Summary . 33

3 Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 35

3.1 Stereo Vision Using Graph Cuts . 36

3.1.1 The Data Term . 36

3.1.2 The Smoothness Term . 38

3.2 Motion Estimation Using Graph Cuts . 39

3.2.1 The Data Term . 40

3.2.2 The Smoothness Term . 41

3.3 Extending Graph Cuts to Use Combined Stereo and Motion Constraints 42

3.3.1 The Data Term . 44

3.3.2 The Smoothness Term . 44

3.3.3 The Complete Energy Function 45

3.4 System Overview . 45

3.5 Image Pyramid Stage . 47

3.6 Move Space Stage . 47

3.6.1 Graph Building . 48

3.6.2 Minimizing the Energy Function 50

3.7 Upsampling and Disparity Propagation Stage 52

3.8 Various Multi-Resolution Graph Cuts (MRGC) Algorithms For Stereo-

Motion . 53

vi

3.8.1 Label Disparity Neighbourhood Restricted MRGC (LDNR) 55

3.8.2 Expanding Label Disparity Neighbourhood at Every Iteration MRGC

(EL) . 59

3.8.3 Swap All Combinations LDNR-MRGC (SAC) 60

3.9 Summary . 62

4 Results 64

4.1 Gaussian Pyramids . 66

4.2 Number of Labels . 67

4.3 Accuracy . 74

4.3.1 Disparity Results . 75

4.3.2 Analysis . 84

4.4 Summary . 99

5 Conclusions and Future Work 100

5.1 Future Work . 102

References 104

vii

List of Tables

3.1 Alpha-beta swap edge weights . 50

4.1 System input parameters . 66

4.2 Labels versus time for all graph cuts algorithms 72

4.3 Accuracy versus time for stereo disparity maps 85

4.4 Accuracy versus time for motion disparity maps 86

4.5 Energy values for stereo-motion algorithms 97

viii

List of Figures

2.1 Pinhole camera . 5

2.2 World coordinate system to camera coordinate system 6

2.3 Optical flow component velocities . 10

2.4 The aperture problem . 11

2.5 Triangulation . 14

2.6 Simple stereo system . 15

2.7 Epipolar geometry . 16

2.8 Stereo Rectification . 17

2.9 4-point neighbourhood system . 23

2.10 Smoothness priors . 24

2.11 Multiway cut graph . 25

2.12 Move space algorithm . 27

2.13 A simple directed weighted graph . 28

3.1 Example of image sampling . 37

3.2 Stereo data image sampling insensitivity 38

3.3 Motion data image sampling insensitivity 40

3.4 Four image representation . 43

3.5 System overview diagram . 46

3.6 Image pyramid . 47

3.7 Structure of a 1D two-terminal graph . 48

ix

3.8 Search trees . 51

3.9 Improved augmenting path algorithm . 52

3.10 Upsampling and disparity propagation 53

3.11 Label disparity neighbourhood . 56

3.12 Label error propagation between pyramid levels 59

4.1 Tsukuba sequence . 65

4.2 Tsukuba ground truth maps . 67

4.3 Image pyramids for stereo or motion . 68

4.4 Image pyramids for combined stereo-motion algorithms 69

4.5 Labels versus time for stereo algorithms 70

4.6 Labels versus time for motion algorithms 71

4.7 Labels versus time for all graph cut algorithms 73

4.8 Total execution time graph for a sample combined stereo-motion algorithm 73

4.9 Disparity map for the normal stereo graph cuts algorithm 76

4.10 Disparity map for the normal motion graph cuts algorithm 76

4.11 Disparity maps for multi-resolution graph cuts for motion 77

4.12 Level disparity maps for LDNR stereo-motion graph cuts 78

4.13 Disparity maps for LDNR stereo-motion graph cuts 79

4.14 Level disparity maps for EL stereo-motion graph cuts 80

4.15 Disparity maps for EL stereo-motion graph cuts 81

4.16 Level disparity maps for SAC stereo-motion graph cuts 82

4.17 Disparity maps for SAC stereo-motion graph cuts 83

4.18 Accuracy versus time for all graph cut stereo algorithms 85

4.19 Accuracy versus time for all graph cut motion algorithms 86

4.20 Distribution of pixel error and inaccurate labels for stereo graph cuts . . 88

4.21 Distribution of pixel error and inaccurate labels for motion graph cuts . . 89

4.22 Distribution of pixel error and inaccurate labels for LS motion graph cuts 89

x

4.23 Distribution of pixel error and inaccurate labels for LDNR motion graph

cuts . 90

4.24 Distribution of pixel error and inaccurate labels for EL motion graph cuts 90

4.25 Distribution of pixel error for LDNR stereo-motion graph cuts 91

4.26 Inaccurate label map for LDNR stereo-motion graph cuts 92

4.27 Distribution of pixel error for EL stereo-motion graph cuts 93

4.28 Inaccurate label map for EL stereo-motion graph cuts 94

4.29 Distribution of pixel error for SAC stereo-motion graph cuts 95

4.30 Inaccurate label map for SAC stereo-motion graph cuts 96

4.31 Total energy graph for stereo-motion SAC graph cuts algorithm 98

xi

Chapter 1

Introduction

The goal of computer vision is to design an artificial system that models the world

through the analysis of information from images. In general, researchers have had success

interpreting this information via statistical or geometric techniques to produce complex

computer vision systems. Nowadays, systems exist that are able to perform difficult

tasks such as object recognition, object tracking, scene reconstruction, image restoration,

navigation, robotics and medical applications.

In order to perform these tasks, a focus in computer vision has been placed on devel-

oping algorithms to handle stereo-vision and motion estimation. Stereo algorithms infer

depth of perceived scene points from two images taken from different viewpoints. Motion

algorithms determine scene structure from two temporally separated images. A key issue

in both cases is the problem of correspondence: determining matching elements (scene

points, features, lines) between images. The position difference between corresponding

features is defined as the disparity. Disparity estimates for every single pixel in an image

form a dense disparity map.

In general, when determining visual correspondence, we assume that the scene con-

tains Lambertian surfaces without specularities, reflective surfaces or transparent objects.

These assumptions allow for intensity based frameworks, where it is assumed that corre-

1

Chapter 1. Introduction 2

sponding pixels’ intensity is constant. However, many problems arise in this framework.

When images are taken from two different viewpoints or at two different instances in time,

lighting conditions may vary or camera sensors may induce noise into the system. Scene

points captured across multiple pixels cause problems with image blurring. Textureless

regions do not provide enough information, requiring information to be propagated from

surrounding pixels through spatial smoothness constraints. However, depth discontinu-

ities break these smoothness constraints. Occlusions cause foreground objects to hide

different parts of the background between the two images, causing pixels in one image to

have no corresponding pixels in the other. With all these problems, determining a dense

disparity map becomes difficult, with many candidate solutions possible.

To evaluate the large number of candidate solutions, we can use an optimization

approach to identify the best solution. There are two steps involved when using the opti-

mization approach. The first step is to define an objective function that encapsulates the

constraints of an acceptable solution and provides a measure of goodness for a solution.

Smaller values of the objective function relate to better solutions. Thus, we attempt

to find the the global minimum, or the optimal solution, of the objective function. The

second step is to develop a mechanism to determine the optimal solution by minimizing

the objective function. Often, a compromise is required between steps one and two to

simplify the optimization task. This compromise sometimes makes it difficult to reach

the optimal solution.

The optimization approach provides a Bayesian framework for many vision problems.

We are able to formalize constraints of the problem and global properties of the system

by encoding them in the objective function. However, the optimization approach is

computationally expensive. Minimization of the objective function is generally a NP-

hard problem, making it impossible to find the global minimum.

Graph cuts [6, 7, 8, 5, 18, 28] is an example of an optimization approach that com-

putes visual correspondence. The method incorporates a global energy function and a

Chapter 1. Introduction 3

maximum flow technique to provide very accurate results. However, like most optimiza-

tion approaches, it has a high computational cost. The technique depends greatly on

the number of pixels in the image, or image size, and the size of the disparity range,

which translates directly to the number of labels. Nowadays, image sequences are gener-

ally 640 × 480 pixels in size or greater and typically contain scenes with large object or

camera motion, making this method intractable and very slow.

In this work, we address the limitations of the graph cuts technique described above.

The goal of this work is to provide a framework to compute visual correspondence, or

dense disparity maps, with increased speed, reduced computational cost and the ability

to handle larger images and disparities, all the while maintaining high accuracy. The

key to achieving our goals is the implementation of a multiscale technique for graph cuts

that encodes both the combined stereo and motion constraints. The basic assumption is

that a multiscale approach allows for a method to quickly initialize the objective function

closer to the global minimum than if it were left to its own devices. This speeds up the

minimization step and allows for larger disparities and larger images. To improve the

accuracy, imposing both stereo and motion constraints should result in greater accuracy

than using only stereo or motion constraints separately.

This thesis is organized as follows: Chapter 2 describes the relevant background

information necessary for a combined stereo-motion approach. The chapter begins with

a discussion of the image formation process, motion analysis and stereo-vision. We next

explain the graph cuts technique and the method in [5] to minimize the objective function.

Chapter 3 provides a detailed description of the design of an objective function that

encodes both stereo and motion constraints and the methodology involved in creating a

multiscale method. We present the resulting disparity maps and their analysis in Chapter

4, with Chapter 5 providing conclusions and possible directions for future work.

Chapter 2

Background

In Chapter 1 we established the focus of this work; to provide a framework to compute

dense disparity maps, with increased speed, reduced computational cost and the ability

to handle larger images and disparities, with improved accuracy when compared to the

traditional graph cuts approach. In order to achieve this, this chapter introduces some

of the concepts applied throughout the thesis. We begin with a brief description of the

image formation process and the matrix projection model in Section 2.1 and Section

2.2, respectively. Section 2.3 discusses the motion field and optical flow, which is then

followed by a description of stereo-vision in Section 2.4. Next, we present the graph

cuts technique for stereo computation of dense disparity maps, with focus on the graph

creation and objective function formulation in Section 2.5 and a possible energy mini-

mization technique used in Section 2.6. Finally, Section 2.7 provides a literature review

of stereo algorithms and motion algorithms, with emphasis on methods that combine the

two.

2.1 Image Formation: The Pinhole Camera

Image formation is the process in which a three dimensional scene is projected onto a

two-dimensional surface. In the case of a typical camera aimed at a real-world scene,

4

Chapter 2. Background 5

Y

fZ

y

Real−world object

Pinhole aperture
Image plane
object

Figure 2.1: Example of a pinhole camera with focal length f , illustrating the projection
of a real-world object of height Y and at depth Z from the aperture. This results in an
object height of y in the image plane.

the two-dimensional surface coincides with a light-sensitive sensor. This sensor records

light reflected from each point in the target scene to produce a corresponding “image”

that can be reproduced at a later time. This description of the image formation process

indicates a need for a one-to-one correspondence between visible scene points and image

points, so that each image point records only the light emitted by its corresponding scene

point. Developing a model of this geometric projection will aid our understanding of the

image formation process.

The most common geometric model for this image formation process is the pinhole

camera, illustrated in Figure 2.1. Light in the scene passes through a pinhole sized

aperture onto the image plane where light in the real-world scene is recorded. Typically,

we assume the camera origin to coincide with the camera’s aperture. We can formalize

the resulting scene geometry by the following image point to scene point relationships:

x = f
X

Z
(2.1)

y = f
Y

Z
. (2.2)

Chapter 2. Background 6

� �� �

Yw

Xw

~Pw

Zc

Zw

~Pc

Xc

Yc

~T

R

Figure 2.2: Transforming from the world coordinate system to the camera coordinate
system requires a rotation R and a translation T .

2.2 Matrix Projection Model

To further formalize the geometric model presented in the previous section, we charac-

terize the parameters of the underlying camera models. We begin by assuming some

knowledge of the camera’s characteristics, known as the camera’s extrinsic and intrinsic

parameters. These parameters define the transformations from a world reference frame

to an image’s pixel coordinate system.

The extrinsic parameters define the transformation from the world coordinate system

to the camera coordinate system, which involve a rotation, R, and a translation, ~T ,

illustrated in Figure 2.2. The translation describes the offset between the origin of the

two systems, while the rotation brings into alignment the axes of the two systems. We

represent the external matrix, Mext, as

Mext = [R,−R~T] . (2.3)

Similar to the extrinsic parameters, the intrinsic parameters define a transformation

between two coordinate systems, the difference being a transformation from the camera

coordinate system to the pixel coordinate system. These parameters formally characterize

Chapter 2. Background 7

the optical, geometric and digital characteristics of the viewing camera. In a pinhole

camera model, we need to specify the focal length, f , the location where the optical

axis intersects the image plane, known as the image centre, (ox, oy), the pixel width and

height scale factors, Sx and Sy respectively, and the skew introduced by the alignment

of the camera optics, γ. We represent the intrinsic transformation matrix as

Mint =













f

Sx
γ ox

0 f

Sy
oy

0 0 1













(2.4)

resulting in the following linear matrix equation describing perspective projections












x1

x2

x3













= MintMext













Xw

Yw

Zw













(2.5)

with image coordinates specified by

xim =
x1

x3

(2.6)

yim =
x2

x3
. (2.7)

2.3 Motion Field and Optical Flow

Motion analysis studies the changes in the spatial and temporal domains discovered in an

image sequence. Difficulties arise when attempting to determine which elements of one

frame correspond to which elements of the next frame in a sequence [26], often known as

the correspondence problem. The second major problem posed in motion analysis is the

problem of reconstructing the 3D motion and structure of the scene given corresponding

elements.

To tackle these problems, we introduce the notion of an idealized representation of

visual motion termed the motion field. The motion field, often referred to as 2D motion,

Chapter 2. Background 8

is the resulting projection of the 3D velocity field onto the two dimensional image plane.

Given a known focal length f , image points ~p, and scene points ~P , we represent the

motion field equation as

~u =
d~p

dt
=

f

P3













1 0 −p1

f

0 1 −p2

f

0 0 0













{~T + ~Ω × ~P}

=













1 0 −p1

f

0 1 −p2

f

0 0 0



































f

P3













T1

T2

T3













+













Ω2f − Ω3p2

−Ω1f + Ω3p1

Ω1p2 − Ω2p1



































(2.8)

where ~T is the instantaneous translation velocity and ~Ω is the rotational velocity.

Many instances occur where the motion field is not recoverable from an image se-

quence alone. For example, picture a mirror-textured, rotating sphere in a stationary

environment. From the point of view of the image sequence, there is no change in terms

of intensity values on the surface of the sphere, which reflects the scene points even

though the sphere continues to rotate.

Rather than projecting from the scene to the image plane, we can rely on the informa-

tion provided by the image sequence alone, such as image intensity values, to recover the

motion field. The idea is to use image motion to approximate a recovery of the motion

field, producing a 2D motion field termed the optical flow field. We estimate the optical

flow field under the assumption that a scene’s point intensity value will remain constant

while in motion. This assumption is named the Brightness Constancy Constraint (BCC)

[9, 16], and states that the intensity values, I(x(t), y(t)), of a particular scene point,

(x(t), y(t)), do not change over short time intervals, ∆t. Formally, the BCC is expressed

by

dI(x, y, t)

dt
= 0 . (2.9)

Chapter 2. Background 9

Using the chain rule for differentiation, we express this relation with respect to spatial

and temporal partial derivatives:

dI(x, y, t)

dt
=

δI

δx

dx

dt
+

δI

δy

dy

dt
+

δI

δt
= 0 . (2.10)

To simplify the notation, we use

ux = dx
dt

, uy = dy

dt
(2.11)

Ix = δI
δx

, Iy = δI
δy

, It = δI
δt

(2.12)

resulting in

Ixux + Iyuy + It = 0 (2.13)

or in vector notation

~∇IT
~x ~u + It = 0 , ~∇I~x =







Ix

Iy






(2.14)

or

~∇IT







~u

1






= 0 where ~∇I =













Ix

Iy

It













and ~u =







ux

uy






. (2.15)

We are now able to discern image motion given the spatiotemporal gradients (Ix, Iy, It)

of an image sequence. However, there are still many problems to be addressed in regards

to the computation of optic flow. Optical flow is an ill-posed problem, due to the Aperture

Problem described in Section 2.3.2, and does not always coincide with the motion field.

Other difficulties relate to violations of the BCC equation due to scene lighting conditions

and object surface characteristics (such as untextured image regions), temporal aliasing,

occlusions and errors in gradient estimates caused by the aggregation of information over

a finite area.

2.3.1 Optical Flow Component Velocities

We introduce optical flow in terms of its component velocities. Figure 2.3 illustrates

optical flow in terms of its two component vectors, ~u‖ and ~u⊥. The component of the

Chapter 2. Background 10

~u

Real-world object

~u⊥

~u‖

Figure 2.3: The motion of a real world object is represented by an optical flow vector, ~u.
This optical flow vector can be broken down into two orthogonal vectors, ~u‖ and ~u⊥.

optical flow parallel to the object contour is described by ~u‖, while ~u⊥ gives the component

of the optical flow perpendicular to the object’s contour.

2.3.2 The Aperture Problem

The main complication with the BCC equation is that the equation has only one con-

straint for the two unknowns of velocity, forming an ill-posed problem. We best illustrate

this fact by isolating the measurable quantities in Equation 2.13 to arrive at

~u⊥ = −
It

‖∇I‖
. (2.16)

.

This problem is known as the Aperture Problem and can best be visualized in Fig-

ure 2.4. Given the viewable region of the circle and an edge of a moving square at time

t (thick line) and at time t + 1 (thin line), we are only able to visualize a motion per-

pendicular to the image gradient, Figure 2.4(a), with no ability to retrieve the motion

parallel to the image gradient, Figure 2.4(b).

To overcome the aperture problem, we estimate motion by grouping component veloc-

ities, requiring a minimum of two non-parallel component velocities. Therefore, motion

estimation now becomes a matter of recovering these components accurately and then

Chapter 2. Background 11

edge at time t

edge at time t+1

edge at time t
edge at time t+1

~u
~u‖~u⊥

~u⊥

Figure 2.4: The aperture problem where (a) BCC only able to derive ~u⊥ given a small
viewing region while (b) shows the actual motion vector, ~u of the moving square.

grouping then in an intelligent manner. Methods attempting to solve this problem are

still areas of current research in computer vision.

2.3.3 Parametric Models for Optical Flow Computation

One method to compute optic flow vectors is to assume an underlying motion model

for the image or some region. This way, we reduce the number of parameters needed

to estimate the optic flow, making them less sensitive to noise. However, we still have

the dilemma of deciding how large a region over which to group the optic flow vectors.

If we use too large a region, we run the possibility of grouping optic flow vectors from

two or more objects moving in different directions. For example, a region crossing an

object boundary contains BCC’s that are unrelated, thereby contaminating our motion

estimates.

Typical parametric motion models are the constant motion model, the affine motion

model, the projective motion (or planar) model and higher order parametric motion mod-

els. The constant motion model represents the optic flow vectors as simple translations

over the entire region, where each location undergoes the same translation. The resulting

Chapter 2. Background 12

motion, ~u, moves the image point ~x to ~x′ via

~x′ = ~x + ~u or







x′

y′






=







x

y






+







ux

uy






. (2.17)

A second parametric model, the affine motion model, represents the possible motion

an object can undertake as translation, shearing, scaling and rotation over the region.

We represent the affine motion model as

~x′ = A~x +~b or







x′

y′






=







A11 A12

A21 A22






+







b1

b2






. (2.18)

Higher order parametric models, such as the projective motion model, are outside the

scope of this chapter and are left for the reader to explore at their own discretion.

2.3.4 Non-Parametric Optical Flow Computation

Originally, Horn and Schunck [16] estimated optic flow without an underlying motion

model. Since the BCC equation 2.13 was an ill-posed problem, they imposed a second

global constraint, known as the smoothness constraint, requiring neighbouring pixels to

be spatially coherent.

Their approach utilized the following cost function:

C =

∫ ∫

R

(αζ2
c + ζ2

b)dxdy (2.19)

where α is a constant greater than 0. α determines the relative importance of the BCC

term ζb, represented as

ζb = Ixux + Iyuy + It = 0 (2.20)

and the ζ2
c term enforces the smoothness constraint via:

ζ2
c =

dux

dx

2

+
dux

dy

2

+
duy

dx

2

+
duy

dy

2

. (2.21)

Chapter 2. Background 13

Problems with this method arise in regions of the image where the optic flow may

be discontinuous. Solving Equation 2.19 for a minimum value requires the calculus of

variations, and may be non-trivial to solve for more general cost functions that can deal

with discontinuities [24].

2.4 Stereo

In the field of visual perception, stereopsis is the process where we infer the depth, or

distance of objects. Given multiple images of a scene taken from different viewpoints

and known intrinsic and extrinsic parameters, we are able to discern the depth of an

object through the process of triangulation. In the case of binocular stereo, we perform

triangulation on the resulting images from two cameras in order to obtain the location

of 3-D scene points. We illustrate this process in Figure 2.5 where we determine a scene

point’s location by the intersection of two rays. Each ray originates from the centre of

projection of its respective camera, passes through its image point, and intersects with

the ray from the other camera at the location of the scene point. In general, the two

rays will not intersect in space so we estimate their point of intersection as the point of

minimum distance from both rays in a least squares manner.

Stereo vision is similar to motion analysis in that it must solve the two main problems

of correspondence and reconstruction. The difference between the two methods is in their

respective setup. While motion has one camera creating two images separated temporally,

stereo has two cameras, separated by some baseline distance, taking images at the same

instance in time. Therefore, correspondence now becomes a search for matching points

in the binocular image pair, often termed stereo matching.

Reconstruction, on the other hand, often deals with the interpretation of disparities of

all the corresponding image points, where a disparity is defined as the difference between

the location of a pixel in the left image and the location of its corresponding pixel in the

Chapter 2. Background 14

P

pl
pr

Cr~T
Cl

Figure 2.5: Triangulating a scene point’s location from the intersection of two rays,
originating from camera centres Cl and Cr.

right image. By grouping all the resulting disparities into a disparity map, we are able to

create 3D map of the viewed scene. In the simplest case of a binocular setup, where the

optical axes are parallel and perpendicular to the baseline, and the focal lengths f for

both cameras are the same, we can use similar triangles to compute the distance to the

scene point P . This is best illustrated in Figure 2.6 where we are given corresponding

points in the left image xl and in the right image xr, the optical centres Cl and Cr for

the left and right cameras respectively and the baseline T . Using similar triangles, we

obtain

Z

Z − f
=

T

T − xr + xl

=
T

T − d
(2.22)

where disparity is d = xr − xl. The resulting distance Z is

Z = f
T

d
. (2.23)

In this simple geometry, the disparity always lies along the scanline (a row with the

same y value) of an image, thereby simplifying the correspondence search from a two-

dimensional search (as in motion analysis) to a one-dimensional search.

Chapter 2. Background 15

f

P

Z

xl xr

CrCl T

Figure 2.6: Given camera centres Cl and Cr, focal length f , baseline T and known point
correspondences xl and xr, we are able to obtain distance Z to point P using similar
triangles.

2.4.1 Epipolar Geometry

In the most general case of a stereo system, we get the system shown in Figure 2.7. The

figure shows two pinhole cameras, their respective projection centres Cl and Cr and the

baseline ~T = Cl − Cr. The scene point P is referenced by two vectors ~Pl = [Xl, Yl, Zl]
T

and ~Pr = [Xr, Yr, Zr]
T , which pass through their respective image planes at image points

~pl = [xl, yl, zl]
T and ~pr = [xr, yr, zr]

T . The relation between ~Pl and ~Pr is

~Pr = R(~Pl − ~T) (2.24)

and between a scene point and its projected points in the image planes is

~pl = fl

Zl

~Pl ~pr = fr

Zr

~Pr . (2.25)

Chapter 2. Background 16

Epipolar Plane

P

Epipolar Line Epipolar Line

~el

~pl

~er

~pr

Cl

Crbaseline, ~T

Figure 2.7: The epipolar geometry of the most general case of a stereo system.

The importance of epipolar geometry lies in the relationship between the epipolar

plane, defined by Cl, Cr and P , and its lines of intersection with each image planes,

called epipolar lines. The corresponding points pr and pl both lie on corresponding

epipolar lines, thus rendering the search one-dimensional again. This is known as the

epipolar constraint.

2.4.2 Stereo Rectification

To create the simple system of Figure 2.6 from the general system in Figure 2.7, we

use a process known as stereo rectification. This process aligns the epipolar lines of the

binocular image pairs, reducing the search for corresponding points down to the same

row in the image.

The general idea is to rotate each camera around their optical centres, as shown in

Figure 2.8. Each rotation is described as a non-singular 3× 3 projection, or homography

Chapter 2. Background 17

P

Cl Cr

Hl

change of basis

Hr

Figure 2.8: Stereo rectification.

matrix H, reprojecting pixels from an initial image to a transformed image according to













x′

y′

z′













= H













x

y

1













. (2.26)

In this case, the initial stereo pair of images are rectified by applying two appropriate

homographies, Hl and Hr. We compute Hl and Hr knowing the position and orientation

of the two cameras given known camera intrinsic and extrinsic parameters. Applying

the two homographies to the original images, we obtain the new image pair of rectified

images. For each pixel (x′, y′) in the rectified image, its corresponding pixel (x, y) in

the original image is computed using H−1. This results in real-valued (non-integer)

image coordinates, thus requiring a method to determine a pixel’s intensity value, such

as bilinear or biquadratic interpolation, from a neighbourhood of pixel intensity values.

Chapter 2. Background 18

2.4.3 Stereo Matching

In [23] stereo matching algorithms generally follow these four steps:

1. Matching cost computation: some common ones include squared intensity differ-

ences (SD), absolute intensity differences (AD), normalised cross-correlation, and

binary matching costs based on features such as edges.

2. Cost (support) aggregation: the summing or averaging of the matching cost over a

support region in the neighbourhood around the pixel.

3. Disparity computation / optimisation: selecting the best disparity estimate based

on some cost function or error measure.

4. Disparity refinement: improving disparity estimates to sub-pixel accuracy.

The actual sequence of steps may vary and as such, depends on the specific algorithm

used.

Stereo algorithms take two forms: (1) sparse methods; and (2) dense methods. Sparse

methods reduce the search for correspondence to a distributed set of discrete features,

such as edges or corners, producing sparse disparity maps. Dense methods, on the other

hand, produce disparity values at every pixel. Typically they can be classed into local or

global methods depending on the measure used in step 3 above. Local methods place more

importance on the matching cost computation and cost aggregation steps, resulting in a

greedy approach at each pixel. A classic example of a local method is performed by Lucas

and Kanade [20] where a local constant motion model is determined by a weighted least

squares solution. Global methods make explicit smoothness assumptions and then solve

an optimization problem. This emphasizes the search for a disparity computation (step

3) that minimizes a global cost function, which combines data (step 1) and smoothness

terms. This is best demonstrated in the original paper on optic flow by Horn and Schunck

Chapter 2. Background 19

[16]. Their global method uses a smoothness constraint and second order derivatives in

an iterative process to determine optic flow.

2.5 Graph-Based Energy Minimization

Many computer vision problems can be viewed as labeling problems. To specify a labeling

problem, we have a set of n sites, P , and a set of k labels, L, with the problem lying in

the assignment of a specific label to every site. Thus a labeling is a mapping from P to

L.

In this section, we discuss the steps involved in a specific type of graph-based energy

minimization technique called graph cuts. The first step involves formulating a global

energy function based on a Bayesian framework using Markov Random Fields (MRF’s).

MRF theory was first introduced to the vision community by Geman and Geman [13].

It provides a basis for modeling contextual constraints in visual processing and inter-

pretation in the form of an energy function, thus enabling us to develop optimal vision

algorithms when using optimisation principles. It is assumed that knowledge of MRFs is

known by the reader and will not be covered in this thesis.

The use of MRFs to formulate an energy function lends itself nicely to a maximum

a posteriori (MAP) estimation. Estimates are obtained by solving a multiway minimum

cut problem on a graph. Methods that provide good approximations are two different it-

erative algorithms, called α-expansion and α-β swap. Finally, we discuss these algorithms

and their design implications.

2.5.1 A Bayesian Framework for Vision Problems

Geman and Geman [13] introduced Markov Random Fields to the computer vision com-

munity. An MRF is composed of a set P = {1, 2, ..., n} of pixel sites p, a neighbourhood

system N = {Np|p ∈ P} where each Np is a subset of pixels in P describing the neigh-

Chapter 2. Background 20

bours of p, and a set of random variables F = {Fp|p ∈ P}. Each Fp is assigned a value

in the label set L.

In [19], the Hammersley-Clifford theorem proves the equivalence between MRF’s and

Gibbs random fields. This theorem defines a clique as a set of sites where each member

is a neighbour of all the other members. That way a Gibbs random field can be specified

by the Gibbs distribution

P (f) = Z−1 exp

(

−
∑

c∈C

Vc(f)

)

(2.27)

where C is the set of all cliques, Z is the normalizing constant and Vc(f) are functions

from a labeling to a real number, called clique potential functions. Assuming a four-point

neighbourhood system N , we create clique potentials involving pairs of neighbouring

pixels. We denote f = {fp|p ∈ P} as a particular configuration of the field F . Thus,

probability of a particular configuration P (f = F), abbreviated by P (f), in the joint

event {F1 = f1, ..., Fm = fm}, gives the joint distribution

P (f) = Z−1 exp



−
∑

p∈P

∑

q∈Np

Vp,q(fp, fq)



 . (2.28)

In general, since the field F is not directly observable, we have to estimate its realized

configuration based on the observation O. This is related to f by means of the likelihood

function P (O|f) via maximum a posteriori (MAP) estimation, which consists of maxi-

mizing the posterior probability P (f |O). Bayes law tells us that the posterior probability

can be represented as

P (f |O) =
P (O|f)P (f)

P (O)
(2.29)

resulting in the following MAP estimate

P (f |O) ∝ arg max
f∈F

(P (O|f)P (f)) . (2.30)

All we require is a model for our likelihood function P (O|f), usually given in our model

for sensor noise. Given the observation Op at pixel p, we assume that

P (O|f) ∝
∏

p∈P

p(Op|fp) (2.31)

Chapter 2. Background 21

holds when pixel noise is independent. If we further assume that

P (Op|f) = Cp · exp(−Dp(f)) for f ∈ L , (2.32)

where Cp is the normalizing constant and Dp is the data function that models the sensor

noise of our system, then our likelihood function is

P (O|f) ∝ exp

(

−
∑

p∈P

Dp(fp)

)

, (2.33)

where Dp(·) is a data function that models the sensor noise of our system.

Our MAP estimate 2.30 now becomes

P (f |O) = arg max
f∈F

exp



−
∑

p∈P

∑

q∈Np

Vp,q(fp, fq) −
∑

p∈P

Dp(fp)



 (2.34)

resulting in the final form of the energy equation

E(f) =
∑

p∈P

Dp(fp) +
∑

p∈P

∑

q∈Np

Vp,q(fp, fq) . (2.35)

2.5.2 The General Form of Energy Functions

Equation 2.35 fits the form of an energy equation used in many vision applications

E(f) = Edata(f) + λEprior(f) (2.36)

with λ controlling the importance of both energies. A smaller λ places more weight to

the data energy term while a larger λ puts more emphasis on the prior energy term.

The most common constraint in vision applications is the data constraint, represented

by the data energy term, Edata(f). Typically, we assign a small cost to labelings close to

the data and a large cost to labelings that do not agree with the data, thereby, fitting

the noise model of our imaging system. As is apparent from 2.35 and 2.36, our data

term is

Edata(f) =
∑

p∈P

Dp(fp) . (2.37)

Chapter 2. Background 22

A common data energy term in visual correspondence models the difference in pixel

intensities between two corresponding pixels in both images. Given corresponding pixels

p and p′ in the primary and secondary images, respectively, let Ip and I ′
p be their pixel

intensities. Thus, a common data energy term used is (Ip − I ′
p)

2 when determining the

correctness of a correspondence match. However, as is evident from the data energy term,

unless the pixel intensities are quite close in range, the cost of the data term increases

rapidly the more the intensities values vary.

Why not use our preconceived ideas of an ideal solution, which we know contains

some structured patterns, in constraining the results further rather than relying solely

on the data energy? Our prior knowledge might make some labelings likely while others

unlikely. It is this prior knowledge that is encoded in the prior constraint, represented

by the prior energy term, Eprior(f) in 2.35. We assign a heavy cost to the labelings f

which do not fit our prior knowledge.

Designing the prior energy term is rendered more difficult in that it depends on the

problem at hand. Most vision problems try to enforce some spatial constraint, such as a

smoothness constraint [16], which ensures our estimate is smooth everywhere. However, in

such systems, difficulties arise when there is an abrupt change, such as object boundaries,

thus requiring different smoothness priors. Many different kinds of priors exist, but in

this work we concentrate on smoothness priors. Therefore, we now refer to the prior

term, Eprior, as the smoothness energy term, Esmooth(f).

Smoothness terms generally model the interactions between a pixel p and its neigh-

bourhood, Np. For the purpose of this paper, it is assumed that we are using a four

neighbourhood system illustrated in Figure 2.9 modeling clique pairs rather than quads.

Given this neighbourhood system, the smoothness energy term takes the form

Eprior(f) = Esmooth(f) =
∑

{p,q}∈N

Vp,q(fp, fq) (2.38)

where Vp,q(fp, fq) is called the neighbour interaction.

Chapter 2. Background 23

pa

b

c

d

Figure 2.9: A 4-point neighbourhood system for pixel p. p’s neighbourhood consists of
pixels a, b, c, d and is represented as Np = {a, b, c, d}.

In [28], three types of smoothness priors are discussed: (1) everywhere smooth prior;

(2) piecewise constant prior; and (3) piecewise smooth prior. The everywhere smooth

prior (Figure 2.10a) assigns low cost to labelings which are smooth everywhere. Most

image sequences tend to have discontinuities, creating troubles for this type of approach

where results tend to be over-smoothed around discontinuities. The second prior, the

piecewise constant prior (Figure 2.10b), assigns low cost to labelings which consist of one

or several pieces with constant labels. However, this method is not expressive enough

because real data can vary smoothly within each piece. This differs from the piecewise

smooth prior (Figure 2.10c), which accounts for this deficiency. Penalties are allowed to

grow up to a maximum penalty, thus ensuring penalty assignments never grow too large

and allowing discontinuities to occur. Consequently, this approach lends itself to a wider

range of problems.

2.5.3 Multiway Cut Formulation

The simplest smoothness prior that allows discontinuities is the piecewise constant prior.

This is modeled as

Vp,q(fp, fq) = up,q · δ(fp 6= fq) (2.39)

Chapter 2. Background 24

fp − fq fp − fq fp − fq

0 0 0-1 1

(b) (c)(a)

Vp,q(fp, fq) Vp,q(fp, fq)Vp,q(fp, fq)

Figure 2.10: Graph of Vp,q(fp, fq) for (a) everywhere smooth prior, (b) piecewise constant
prior, and (c) piecewise smooth prior.

where

δ(fp 6= fq) =















1 if f(p) 6= f(q),

0 otherwise

(2.40)

and up,q is a constant. This results in the Potts model energy equation

EP (f) =
∑

p∈P

Dp(fp) +
∑

{p,q}∈N

up,q · δ(fp 6= fq) . (2.41)

According to [28, 7, 8], minimizing the Potts energy EP (f) can be solved by computing

a minimum cost multiway cut on a certain graph. For example, consider the graph

G = 〈V, E〉 in Figure 2.11(a) with non-negative edge weights and a set of terminals

L ⊂ V . A multiway cut C occurs when a subset of edges C ⊂ E completely separates

the terminals in the induced graph G(C) = 〈V, E−C〉, as shown in Figure 2.11(b) where

dotted lines indicate the cuts made. This multiway cut problem is a generalization of

the two-terminal graph cut problem.

To solve this multiway cut problem, we begin by constructing the graph in Fig-

ure 2.11a. Vertices in the graph are the set V = P ∪ L where the terminals are the

set of possible labels L = {l1, l2, ..., lk}, called l-vertices, while the pixels are elements of

P = {1, ..., p, q, ..., n}, called p-vertices. There are two sets of edges, t-links and n-links.

Chapter 2. Background 25

(a)

.

P1 P2

(b)

wp,q

p q

n-link

t-link

k21k21

P3
t-link

wp,l

Figure 2.11: An example of (a) a graph G = 〈V, E〉 with (b) illustrating the induced
graph by a multiway cut C where dotted lines indicate cut edges.

The latter is the set of edges connecting neighbouring pixels, EN , while the former, ET

connects terminals to p-vertices. Edge weights for n-links and t-links, respectively, are

wp,q = up,q and (2.42)

wp,l = Kp − Dp(l), (2.43)

where Kp is constant that is large enough to ensure positive weights (i.e. Kp > max Dp(l)).

Figure 2.11b demonstrates an induced graph from a multiway cut. The keys to the

graph are that each p-vertex is connected to at most one terminal, no two terminals are

directly connected and there is no direct path between any two terminals. Thus, edges

of the graph are E = EN ∪ ET .

A multiway cut C corresponds to the labeling fC which assigns the label l to all pixels

p which are t-linked to the l-vertex in G(C). Therefore, if C is a multiway cut on G, the

cost of the cut is

|C| = EP (fC) . (2.44)

Chapter 2. Background 26

The proof lies in the fact that the cost of the cut |C| is the sum of the weights of the

n-links and t-links in C. Given that fC(p) 6= fC(q), the sum of the n-links in C is

∑

{p,q}∈N

wp,q · δ(f
C(p) 6= fC(q)) (2.45)

and the sum of the t-links is

∑

p∈P

∑

l∈L
l 6=fC(p)

wp,l =
∑

p∈P

∑

l∈L
l 6=fC(p)

(Kp − Dp(l))

=
∑

p∈P

∑

l∈L
l 6=fC(p)

Kp −
∑

p∈P

∑

l∈L
l 6=fC(p)

Dp(l)

(2.46)

This can be rewritten as

(|L| − 1)
∑

p∈P

Kp −
∑

p∈P

∑

l∈L

Dp(l) +
∑

p∈P

Dp(f
C(p)) . (2.47)

Note that the first two terms are constants since only the last term depends on C.

Therefore, we obtain EP (fC) from 2.41 by adding the cost in 2.45 and 2.47.

2.5.4 Multiway Cut Minimization

Given the NP-hardness of the problem [7, 8, 28], an approximated solution is required.

The algorithms presented in this paper generate a cut C such that fC is a local minimum

of the posterior energy function in 2.41 with respect to very large move spaces. A move

space allows a large number of pixels to change their labels. This differs from the standard

move spaces, exhibited in algorithms such as simulated annealing [13], where only one

pixel’s label changes. Consequently, the algorithm approaches convergence at a faster

rate.

First, let us define a move space. Given a set of all labelings F , a move is a pair of

labelings (f, f ′) ∈ F × F . Therefore, a set of moves M ⊂ F × F is called a move space.

If (f, f ′) ⊂ M , then we say that f is within one move from f ′. A labeling is a local

minimum with respect to some move space M if E(f) ≤ E(f ′) for any (f, f ′) ⊂ M .

Chapter 2. Background 27

1. Start with an arbitrary labeling f

2. Set success = 0

3. For each possible move space

Find f̂ = arg min E(f ′) among f ′ within one move space of f

if E(f̂) < E(f), set f = f̂ and success = 1

4. If success == 1, go to step 2

5. Return f

Figure 2.12: General outline of the iterative algorithms (α-β swap and α-expansion).
Algorithm courtesy of [28].

We focus our attention on two types of move spaces for energy minimization: (1) the

alpha-beta swap move space; and (2) the alpha-expansion move space. The swap move

space is indexed by a pair of labels, (α, β) ⊂ L with the general idea being that that

some pixels labeled α change their label to β while some pixels labeled β change their

label to α. Meanwhile, the second move space, alpha-expansion, is indexed by a single

label α ⊂ L. Pixels in the graph are labeled α or ᾱ. The options in this move space are

for pixels to retain their current label or to change their label to α.

Both iterative algorithms are quite similar in structure, as summarized in Figure 2.12.

The algorithm starts with some arbitrary labeling f and continues searching for a labeling

f̂ within one move from f that gives the lowest energy among all labelings f ′ within one

move of f . The greedy nature of selecting the best solution at every cycle (steps 2-4) of

the algorithm results in fast convergence.

The difference in the two algorithms lies in their approach to graph creation. The

swap algorithm dynamically creates a separate two-terminal graph for every possible

label pairing (α, β) ⊂ L for every iteration (step 3). Each graph is composed a differing

number of nodes (pixels), labeled (α or β), connected to two terminals, the α terminal

and the β terminal. The result is the creation of |L|2 graphs. However, the expansion

Chapter 2. Background 28

p q p q

cut C

sink

source

(a) (b)

t

s s

t

Figure 2.13: Example of (a) a simple binary directed weighted graph with (b) a cut C
on the graph with cut edges denoted by dashed lines.

algorithm creates a two-terminal graph for every label α ⊂ L at every iteration. The

nodes are labeled α or ᾱ, resulting in |L| graphs. For further details of the graph creation

process, see Section 3.

2.6 Maximum Flow

In the previous section, we focused on the creation of directed weighted graphs from

energy functionals of the form

E(L) =
∑

p∈P

Dp(Lp) +
∑

{p,q}∈N

Vp,q(Lp, Lq) (2.48)

where L = {Lp|p ∈ P} is a labeling of image P , Dp(·) is a data penalty function, Vp,q

is an interaction potential, and N is a set of all pairs of neighbouring pixels. We will

concentrate on the case of graphs with two terminals, the source s and sink t, illustrated

in the simple example of Figure 2.13.

Chapter 2. Background 29

The desired s/t cut C partitions the nodes in the graph into two disjoint subsets S,

containing the source s, and T containing the sink t. The cost of the cut C = {S, T} is

the sum of the costs of the edges along the border between S and T with edge weights

calculated according to the move space implemented, either α-β swap or α-expansion

(discussed in further detail in Chapter 3). Finding a cut that has the minimum cost

among all possible cuts is known as the minimum cut problem.

A solution to the minimum cut problem can be likened to finding a maximum flow

from the source to the sink. The idea of maximum flow is analogous to finding the

maximum amount of allowable water flow passing through a network of pipes, with pipe

capacities equal to the edge weights, from the source to the sink. The theorem in [11]

states that a maximum flow from s to t saturates a set of edges in the graph, dividing the

nodes into two disjoint parts {S, T} corresponding to a minimum cut, thereby creating a

“duality” relationship between maximum flow and minimum cut. Therefore, the cut in

Figure 2.13 corresponds to an assignment of pixels (nodes) to labels (terminals), creating

a labeling with the energy minimized.

In general, maximum flow algorithms can be classed into two groups: (1) push-relabel

methods and (2) augmenting paths algorithms [25]. Push-relabel algorithms work in a

more localized manner than augmenting path algorithms by working on one vertex at a

time, looking only at the neighbours in the residual network. The key to the algorithm

is the height function of all vertices in the graph. Initially, the source’s height is equal to

the number of vertices, while the sink is assigned a height of zero. Flow passes through

the graph, from the source to the sink, in a downhill fashion, with excess flow gathering

in each node’s reservoir. If a node can no longer pass excess flow to nodes downhill from

it, the node is reassigned a height equal to its highest neighbouring node plus one. The

process continues until undeliverable flow drains back to the source, meaning that the

source and sink have been separated by saturated edges. The saturated edges signify the

minimum cut necessary on the graph.

Chapter 2. Background 30

On the other hand, augmenting path algorithms work on the entire network for max-

imum flow and depend on three important ideas: residual networks, augmenting paths,

and cuts. These algorithms are iterative and begin with no flow. At each iteration, the

flow is increased by finding an augmenting path from the source to the sink along which

we can send more flow. We then augment the flow along this path, saturating edges as

we go. This process is repeated until no further augmenting path exists, yielding the

maximum flow.

2.7 Literature Review

Stereo correspondence and motion analysis have long been central research problems in

computer vision, producing a large expanse of research. With most of the work being

placed on either method separately, it becomes difficult to gauge the progress of the

field. Previous surveys on stereo vision [23] and optical flow [1] provide a good jumping-

off point for an understanding of the algorithms already created, but little has been done

to review recent research that incorporates both methods. It is the purpose of this section

to provide an evaluation of these fused techniques.

Motivated by modern applications such as view synthesis and image-based rendering

that require disparity estimates in all regions, including occluded and untextured regions,

we focus our attention on dense methods for visual correspondence. We begin with a

discussion of the key research in motion analysis and stereo vision, followed by a discussion

of graph cuts. Finally, we survey previous techniques that have combined both stereo

and motion.

2.7.1 Stereo and Motion

In sections 2.3 and 2.4, we showed that stereo and motion handle similar problems with

motion viewed as a generalization of stereo. Motion performs a two-dimensional search

Chapter 2. Background 31

for correspondence while stereo searches in one dimension given rectified image pairs.

Therefore, we treat them as one and the same problem and provide a review on stereo

and motion methods as a whole.

There are two main classes of stereo and motion methods: (1) local methods; and

(2) global methods. Local methods, often called window-based methods or correlation-

based methods, find the optimal displacement of a fixed sized region between two consec-

utive frames. Typically, these methods compare intensities within the region according

to some likeness measure, assume a certain motion model, and select the best choice in

a greedy fashion. The main obstacles for local methods lie in the choice of window size

and the assumption as to which motion model to incorporate over the region. Shiftable

windows [4] and windows with adaptive sizes [21] are common techniques for varying the

window size. In perhaps the most well known local method, Lucas and Kanade [20] use a

local constant motion model for the optical flow and determine a weighted least squares

solution.

Global methods provide greater accuracy compared to local methods, but have the

disadvantage of creating a higher computation cost. Generally, they formulate a global

energy function composed of a data term and a smoothness term.

E(d) = Edata(d) + λEsmooth(d). (2.49)

Measuring the agreement between the disparity function d and the input image pair is

encoded in the data term, Edata(d). Meanwhile, the smoothness assumptions made by

the algorithm are embedded in the smoothness term, Esmooth(d), which is made more

tractable by restricting the smoothness term to only neighbouring pixels. In regularisa-

tion techniques [16], Horn and Schunck are able to overcome the aperture problem but

then encounter problems at object boundaries. Brox et al.[24] handle object boundaries

by employing robust estimators, developed by Black and Anandan [3], on both the data

and smoothness terms oftheir global energy function. This is the current state of the art

in optical flow computation. Other global methods use differing methods to minimize the

Chapter 2. Background 32

global energy function. Some methods are simulated annealing [13], highest confidence

first [10] and mean-field annealing [12].

In recent research, a promising method for global energy minimization has been de-

veloped, called graph cuts. Graph cuts, in cooperation with maximum flow techniques,

provides a graph-based method for energy minimization [6, 7, 8, 5, 18, 28] that is more

efficient than simulated annealing [13]. They handle discontinuities quite well, while

achieving 98% accuracy on real data with ground truth.

2.7.2 Combining Stereo and Motion

For the past twenty years [30], research has been performed on incorporating both stereo

and motion. This combined stereo-motion framework is based on four images of a stereo

sequence, which are two stereo image pairs separated temporally. We refer to this type

of framework as combined stereo-motion.

Most of the work to date focused on sparse image features. One approach to combined

stereo-motion is to use an iterative method on a sparse set of features. Wang and Duncan

[29] iteratively separated the dominant motion in the input set until they were left with a

set of outliers, thereby separating the motions present in the stereo sequence into separate

layers. They were able to attain sub-pixel accuracy of disparity estimates, absolute

structure and rigid body motions without a scale factor ambiguity. Another approach is

to use a probabilistic framework to disambiguate feature correspondences. Ho and Pong

[15], used a probabilistic method with relaxation labeling to integrate the four images in

the combined stereo-motion framework. They were able to obtain optical flow vectors

for their set of sparse features with less sensitivity towards noise than previous methods.

In contrast, dense methods for combined stereo-motion provide a disparity estimate

value for every pixel. Some approaches use an iterative method to segment the image

[29] into regions of motion. By assuming a single dominant motion in a data set, they

determine the dominant motion and view everything else as outliers. Another approach

Chapter 2. Background 33

is to use batch computation on the whole stereo image sequence [31] and [27] (scene flow).

This approach benefits from the temporal knowledge of the whole sequence simplifying

correspondence. However, both methods are heavily reliant on the computation of op-

tic flow and thusly, they inherit all optic flow computation problems. A probabilistic

framework [17] provides another approach for combined stereo-motion. By incorporating

a single coherent probabilistic framework on four images, they are able to incorporate

random variables for occlusions and discontinuities. The downside to their approach is

the high computational cost involved.

The key problem with all combined stereo-motion methods is that they are more

computationally expensive than computing stereo or motion separately. This is even

more pronounced for the dense methods considering correspondence must be performed

on every pixel for all four images.

2.8 Summary

This chapter introduces the concepts of motion and stereo in computer vision. Motion

studies the changes in the spatial and temporal domains in an image sequence to recover

a two-dimensional motion field called optic flow. We make the assumption that a pixel’s

intensity value remains constant while in motion, known as the Brightness Constancy

Constraint (BCC). Problems arise due to the Aperture Problem, the optical flow not

coinciding with the motion field, violations of the BCC equation, lighting conditions,

object surface characteristics and occlusions.

Stereo vision uses scene and camera geometry to infer the depth to objects. This

is done through the process of triangulation, given multiple images and known intrinsic

and extrinsic parameters. Given rectified images, the correspondence problem becomes a

one-dimensional search along the scanline. Finding corresponding points for every point

Chapter 2. Background 34

in the image, we obtain a dense disparity map, which helps infer distance from its inverse

relationship with disparity.

Both stereo and motion have local and global methods. One successful global method

is graph cuts, a graph-based energy minimisation technique based on a Bayesian frame-

work. Its energy function is the sum of a data energy function and a smoothness energy

function. The data energy function encodes the constraints of the data, while the smooth-

ness energy function encodes the smoothness assumptions made by the algorithm. Min-

imising the energy function is equivalent to finding a multiway cut on the graph. To find

this cut, maximum flows techniques are employed. In Chapter 3, we provide a detailed

description of the design of a multi-resolution graph cuts algorithm for stereo-motion.

Chapter 3

Multi-Resolution Graph Cuts

(MRGC) for Stereo-Motion

This chapter describes the implementation of a multi-resolution graph cuts (MRGC)

method that uses combined stereo and motion constraints for visual correspondence.

In Section 3.1, we begin with an analysis of existing graph cuts methods for stereo,

identifying areas for improvement. This will allow for an explanation of the changes

needed to the graph cuts framework to allow for motion estimation (Section 3.2).

Understanding the design decisions necessary to successfully implement graph cuts

for stereo and motion separately, we present a novel framework to extend the original

graph cuts technique to apply combined stereo and motion constraints (Section 3.3). We

will provide a high-level overview of the system in Section 3.4, with a break down of the

necessary stages in Sections 3.5, 3.6 and 3.7. Finally, we describe three possible algorithms

under the graph cuts framework to compute visual correspondence using combined stereo

and motion constraints (Section 3.8). They are (1) Label Neighbourhood Restricted

Multi-Resolution Graph Cuts (LDNR), (2) Expanding Label Neighbourhood at Every

Iteration Multi-Resolution Graph Cuts (EL) and (3) Swap All Combinations of LDNR

(SAC).

35

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 36

3.1 Stereo Vision Using Graph Cuts

In this section, we analyze the original graph cuts technique for stereo [6, 7, 8, 5, 18,

28]. We begin with a desciption of the energy function used. This energy function is

established in the general form of an energy equation used in computer vision as

E(f) = Edata(f) + λEprior(f) (3.1)

where f is a labeling of the image. Next, we look at the design of the data term Edata(f),

noting that it is less sensitive to image sampling. Lastly, we examine the smoothness term

Esmooth(f) (weighted by λ), paying attention to its formulation as a metric or semi-metric

and the effect that this has on the choice of graph building algorithm to use.

As we will see, the formulation of both the data term and smoothness are the two

key factors for a successful implementation of the original graph cuts technique.

3.1.1 The Data Term

The data term Edata in the energy function evaluates the level of correspondence between

values in the input image pair. In the original graph-cuts-stereo system, two key design

decisions were made to improve the system:

1. Rectified stereo image sequences were assumed. This reduced the search for stereo

correspondence from a two-dimensional search to a one-dimensional search along

the horizontal scanlines of an image, increasing the speed of the system.

2. The system was made less sensitive to image sampling effects of camera sensors.

This improved the accuracy of the system but had a negative effect of increasing

the computational expense of the system.

Making the system insensitive to image sampling [2, 28] affected the formulation of

the data term. Depending on the discretisation process of the differing cameras, pixel

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 37

intensity 250 intensity 250intensity 50intensity 50

pixel p pixel q

(a) (b)

Figure 3.1: Example of the discretisation of an image in (a) the left image and (b) the
right image. Corresponding pixels p and q get differing intensities even if there is no
camera noise.

intensities could vary greatly; for example, if a pixel were located along the border of

a scene patch with a high intensity gradient. Figure 3.1 shows this sampling effect if a

point p (in Figure 3.1a) corresponds to point q (in Figure 3.1b). There are two regions

with intensity values of 50 and 250. Pixel p overlaps the regions equally giving a pixel

intensity value of 150. Meanwhile, pixel q composes a quarter of the surface patch with

intensity value 50 with the rest lying in the region with intensity value 250 resulting in

a pixel intensity value of 200. The corresponding pixels’ intensity values differ by 50; a

value too large to be accountable due to camera noise.

Since the search is one-dimensional, measurements of how well p fits into the real

valued range of disparities (d − 1
2
, d + 1

2
) are found, as illustrated in Figure 3.2.

Cfwd(p, d) = min
d− 1

2
≤ x ≤d+ 1

2

|Ip − I ′
p+x| .

p + x stands for a pixel which has coordinates of p shifted by disparity x. I ′ represents

intensities in the right image. Fractional values I ′
p+x are obtained by linear interpolation

between discrete pixel values. For symmetry,

Crev(p, d) = min
p− 1

2
≤ x ≤p+ 1

2

|Ix − I ′
p+d| .

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 38

p p+d-1 p+d p+d+1

d

Left Right

Figure 3.2: Insensitivity to image sampling for stereo graph cuts method where pixel p
in the left image corresponds to pixel p + ~d in the right image.

Cfwd(p, d) can be computed with the following simple formulas which require a few com-

parisons:

L = min

{

I ′
p+d,

I ′
p+d+1 + I ′

p+d

2
,
I ′
p+d−1 + I ′

p+d

2

}

U = max

{

I ′
p+d,

I ′
p+d+1 + I ′

p+d

2
,
I ′
p+d−1 + I ′

p+d

2

}

Cfwd(p, d) = max{0, Ip − U, L − Ip}

Crev(p, d) can be computed similarly. Thus, a single data term is

D(p, d) = (min{Cfwd(p, d), Crev(p, d), const})2 . (3.2)

where const is a constant value that ensures robustness.

Even with the presence of the small negative effect of an increase in computation

time, both design decisions are retained in this thesis.

3.1.2 The Smoothness Term

The original graph cuts for stereo algorithm chose a piecewise constant prior as their

smoothness term Esmooth. Formally, given one-dimensional stereo disparity labels d1 and

d2, the smoothness term is defined as

Vp,q(d1, d2) = up,q · (1 − δ(d1 − d2)) (3.3)

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 39

where

up,q = U(|Ip − Iq|) =















2K if |Ip − Iq| ≤ τI

K if |Ip − Iq| > τI

(3.4)

with K as our penalty constant and τI as our intensity difference threshold. τI is found

experimentally with the optimal setting to 5. This function satisfies the three properties

of a metric [8], formally defined as

Vp,q(α, β) = 0 ↔ α = β [indiscernible]

Vp,q(α, β) = Vp,q(α, β) ≥ 0 [symmetry]

Vp,q(α, β) ≤ Vp,q(α, γ) + Vp,q(γ, β) [triangle inequality]

(3.5)

This allows the benefit of using the α-expansion algorithm to find a local minimum.

There are many benefits to using the α-expansion algorithm. First, there is a guar-

antee that this local minimum found is within a known factor of the global minimum.

Second, this algorithm is O(mn) where m is the number of nodes (pixels) and n is the

number of labels (disparities). This accounts for a constant computation time per iter-

ation (step 3 of Figure 2.12) given that the number of nodes in the graph are always

constant.

However, this fact also leads to one downside of the approach. This algorithm it

limited by the size of the images used and by the size of the disparity range. If we

wish to have a larger disparity range computation time increases. Another problem with

this algorithm is that it cannot handle more general cases of a smoothness function. For

example, α-expansion is not appropriate in cases where the smoothness function becomes

a semi-metric (satisfies only properties 1 and 2 from Equation 3.5).

3.2 Motion Estimation Using Graph Cuts

The big difference between stereo correspondence using graph cuts and motion estimation

using graph cuts is that disparities are now two-dimensional. This addition of an extra

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 40

Left Right

Left Right

p+(1,0)

p+(1,1)p+(0,1)

~d

~d
p

p p + ~d

p + ~d

p+(-1,0)

p+(0,1)

p+(1,0)

p+(0,-1)

(a)

(b)

Figure 3.3: Image sampling insensitivity for (a) our motion graph cuts method and (b)

the original graph cuts method where pixel p in the left image corresponds to pixel p + ~d
in the right image.

dimension to the search space has large effects on the formulation of both the data and

smoothness terms, as explained in the following subsections.

3.2.1 The Data Term

The data term is formulated in the same manner as the stereo algorithm in that it is

insensitive to image sampling. However, this insensitivity is now over two-dimensions

rather than a single dimension. Our implementation differs slightly from [8, 28]. We

calculate insensitivity over the four neighbourhood system of a pixel (Figure 3.3 a) as

opposed to the neighbouring lower right four pixel grouping of a pixel (Figure 3.3 b).

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 41

Given the two-dimensional disparity ~d = [dh, dv]T for pixel p, we begin by measuring

how well p fits into the two-dimensional range of disparities (dx
p−

1
2
, dx

p+
1
2
)×(dy

p−
1
2
, dy

p+
1
2
).

Cfwd(p, d) = min
dx

p−
1
2
≤x≤dx

p+ 1
2
, d

y
p−

1
2
≤y≤d

y
p+ 1

2

|Ip − I ′
p+(x,y)|

where superscript h and v denote horizontal and vertical components, respectively. We

get fractional values I ′
p+(x,y) by linear interpolation between discrete pixel values. For

symmetry, we also measure

Crev(p, d) = min
p− 1

2
≤x≤p+ 1

2
, p− 1

2
≤y≤p+ 1

2

|Ix − I ′
p+~d

| .

Crev(p, d) can be computed with a few comparisons:

L = min {Ip, A1, A2, A3, A4, A5}

U = max {Ip, A1, A2, A3, A4, A5}

where

A1 =
Ip+Ip+(−1,0)

2
A2 =

Ip+Ip+(1,0)

2
A3 =

Ip+Ip+(0,−1)

2
A4 =

Ip+Ip+(0,1)

2

A5 =
Ip + Ip+(−1,0) + Ip+(1,0) + Ip+(0,−1) + Ip+(0,1)

5
.

Therefore,

Crev(p, d) = max{0, I ′
p+d − U, L − I ′

p+d}

Cfwd(p, d) can be computed similarly.

3.2.2 The Smoothness Term

The smoothness term chosen for motion estimation using graph cuts is that of a piecewise

smooth prior. Formally, the interaction functional is

Vmotp,q
(dp, dq) = λ min(const, (dh

p − dh
q)

2 + (dv
p − dv

q)
2) (3.6)

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 42

where const causes robustness, λ restricts the influence of the smoothness term and the

superscript terms v and h denote the vertical and horizontal components of the motion

vector, respectively.

This smoothness equation does not satisfy the triangle inequality property of 3.5 and

as such, is a semi-metric. This forces us to utilize the more general α-β swap algorithm.

The swap algorithm is O(mn2) where m is the number of nodes (pixels) and n is the

number of labels (disparities). At every iteration (step 3 of Figure 2.12), the number

of graphs built is n2 with each graph having a variable number of nodes because pixels

labeled α or β make up the nodes rather than all the pixels in the image. As a result,

computation time increases. Moreover, this algorithm no longer guarantees that the local

minimum found is within a known factor of the global minimum, affecting accuracy.

3.3 Extending Graph Cuts to Use Combined Stereo

and Motion Constraints

Combining both stereo and motion constraints provides tighter constraints on the system

than either stereo or motion constraints used separately. In turn, this should have the

desired effect of improving accuracy. Assuming the input to the system consists of four

rectified images: Lt, Rt, Lt+1, Rt+1. These are, respectively, the left and right stereo

pairs at time t and t + 1 of a stereo video sequence.

Refer to Figure 3.4 where we establish Leftt as our reference frame. A point in our

reference frame pLt
is related to its corresponding points in the other images by the

following four relationships

pLt
+ dt = pRt

for stereo pair at time t

pLt
+ ~dL = pLt+1 for motion left pair

pLt+1 + dt+1 = pRt+1 for stereo pair at time t + 1

pRt
+ ~dR = pRt+1 for motion right pair

(3.7)

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 43

dt+1

dt

pLt pRt

pLt+1

~dL
~dR

Leftt+1 Rightt+1

Leftt Rightt

pRt+1

Figure 3.4: Example of two stereo image pairs ((Lt, Rt) and (Lt+1, Rt+1)) at times t and
t+1, respectively. A point pLt

in the reference frame Leftt is related to its corresponding

points in the other images via established disparity values dt, dt+1, ~dL and ~dR for stereo
pairs at time t, t+1, left-motion image pairs, and right-motion image pairs, respectively.

where disparity values dt, dt+1, ~dL and ~dR are stereo pairs at time t, t+1, left-motion image

pairs, and right-motion image pairs, respectively. Thus, we can impose the following

circular combined stereo-motion constraint.

0 = dt + ~dR − dt+1 − ~dL . (3.8)

This combined set of disparities (2 stereo and 2 motion) creates a large label set. The

number of labels is now equivalent to

|L| = stx × stx × (motx × moty) × (motx × moty) (3.9)

where stx denotes the number of possible labels for stereo computation in the horizontal

direction and motx and moty are the possible number of labels for motion in the horizontal

and vertical directions, respectively. The | · | notation signifies the number of elements

in the label set rather the absolute value function.

To index into this large six-dimensional set of labels, we have created a set of super-

labels. This new set of labels constitutes a combination of the four possible disparities

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 44

as

f = {f dt, f dt+1, ~f dL, ~f dR} (3.10)

where the superscript denotes the type of disparity. However, it is worth noting that

given rectified images, it is possible to reduce this down to five dimensions. Once we

obtain the vertical direction in one motion pair, we assume that the other motion pair

has the same vertical disparity. This would reduce the number of labels to

|L| = stx × stx × (motx × moty) × (motx) . (3.11)

3.3.1 The Data Term

Adhering to the combined stereo-motion constraint, we require two stereo estimations

and two motion estimations when choosing a data term for the global energy function.

As a result, it was only natural to combine the previous data term equations for graph

cuts calculation for stereo (from Section 3.1.1) or motion (from Section 3.2.1). The stereo

terms are Cst(pLt
, f dt

p) and Cst(pLt+1, f
dt+1
p), and the motion terms are Cmot(pLt

, f
~dL
p) and

Cmot(pRt
, f

~dR
p), Our resulting data term for pixel p given label fp is formulated in a similar

fashion to a L2 norm.

Dp(fp) = Dp(f
dt

p , f dt+1
p , f

~dL
p , f

~dR
p) = min(τDcutoff

, A) (3.12)

where

A =

√

Cst(pLt
, f dt

p)2 + Cmot(pRt
, f

~dR
p)2 + Cst(pLt+1, f

dt+1
p)2 + Cmot(pLt

, f
~dL
p)2

and τDcutoff
is a constant used to make the data term robust to outliers.

3.3.2 The Smoothness Term

We formulate the smoothness term Esmooth(f) in our energy function 3.1 in a similar

manner to what was done with the data term. Implementing our stereo-motion constraint

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 45

in our smoothness term, we arrive at

Vp,q(fp, fq) = λ min(τScutoff
, B) (3.13)

where

B =

√

Vst(f dt
p , f dt

q)2 + Vmot(f
~dR
p , f

~dR
q)2 + Vmot(f

~dL
p , f

~dL
q)2 + Vst(f

dt+1
p , f

dt+1
q)2 . (3.14)

The constant τScutoff
performs the same function as in the data term; providing robustness

to outliers, while the λ term weights the influence of the smoothness term. The stereo

interaction functions Vst(f
dt
p , f dt

q) and Vst(f
dt+1
p , f dt+1

q) are described in Equations 3.3 and

3.4 without the presence of their respective λ terms. The motion interaction functions

are taken from Equation 3.6.

3.3.3 The Complete Energy Function

We combine both the data energy term and the smoothness energy term from the previous

two subsections to obtain the global energy functional for combined stereo-motion. We

represent this energy functional as

E(fp) = Edata(f) + Esmooth(f)

=
∑

p∈P

Dp(fp) +
∑

p,q∈N

Vp,q(fp, fq) .
(3.15)

3.4 System Overview

In this section, we present a brief overview of the proposed multi-resolution graph cuts

using stereo-motion constraints system for visual correspondence. Figure 3.5 shows the

high-level design of the system. Initially, input images enter the system at the Pre-

Processing stage, which is designed to perform system initialisation. It receives the input

images and ensures they are the same size, sets up logging functionality, loads input

parameters from a scripting file and determines the number of possible labels in the label

set.

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 46

Pre-processing

Use multiscale? Image Pyramid

Move Space

Upsampling and

Disparity Propagation

Level = finest

level?

Post-processing

YES

NO

NO

YES

Figure 3.5: Flow diagram of multi-resolution graph cuts using stereo-motion constraints
system.

Following the Pre-Processing stage are the key modules of the system. These stages

deal with the implementation of the multi-resolution and graph cuts portions of the

system. First is the Image Pyramid stage, which handles the creation of the input

image pyramids. Second is the Move Space stage which builds the graphs that we find a

minimum cut of. Finally, we perform an Upsampling and Disparity Propagation stage to

upsample resulting disparity maps so that they help seed the next levels of the pyramid.

On the back end of the system, the Post-Processing stage handles all functions re-

quired for system shut down and results related activities. Resulting disparity maps and

image pyramids are saved, while all parameters are reset for next set of tests.

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 47

l0 Finest

Level

Coarsest

Original Image

lmax

Figure 3.6: Example of an image pyramid. Level 0 is the original image at the finest scale,
while lmax is the coarsest scale. Each level of the image is a blurred and downsampled
version of the image at the previous level.

3.5 Image Pyramid Stage

The Image Pyramid stage computes Gaussian Pyramids of an image as depicted in Figure

3.6. The original image is at the bottom of the pyramid, at level l0. Each level of the

pyramid represents a blurred and downsampled version of the image below it. We use

a two-dimensional Gaussian filter, where advantage is taken of separability to enhance

performance and to avoid aliasing.

Given a chosen sampling factor of 2, we require a Gaussian filter with a minimum

radius of 2. In all our cases, we chose a σ of 2, resulting in a filter radius of 6. This

ensures that no aliasing will occur in the image, giving the desired smoothing effect.

3.6 Move Space Stage

The Move Space stage builds many two-terminal graph structures that are minimized

using a maximum flow algorithm attempting to find the configuration with the lowest

amount of energy among all the possible labelings (Sections 2.5 and 2.6). Each two-

terminal graph G =< V, E >, with terminals α and β, contains a set of nodes S =

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 48

p q r s t

tαp

ep,q

t
β
p

α

β

Figure 3.7: Example structure for a one-dimensional two-terminal graph G with a set of
pixels p, q, r, s and t. Neighbouring pixels p and q are connected with a n-link ep,q. Pixel
p is connected to the terminals with t-links tα

p and tβp .

{p|fp ∈ α, β} that represent image pixels. Thus, the set of vertices is

V = {α, β} ∪ S . (3.16)

Edges in the graph are either t-links or n-links. t-links connect pixels p to terminals

α and β and are represented as tα
p and tβp , respectively. n-links ep,q connect neighbouring

pixel pairs p and q (i.e. {p, q} ∈ N). Thus, the set of edges is

E =

(

⋃

p∈S

{tαp , tβp}

)

∪









⋃

{p,q}∈N
p,q∈S

ep,q









. (3.17)

An example of a one-dimensional graph, for the sake of legibility, is given in Figure 3.7.

3.6.1 Graph Building

Building the graph requires assigning weights to the edges. This process, however, is

dependent on the structure of the smoothness term Esmooth. If the smoothness term

is a metric, we can perform the α-expansion algorithm. On the other hand, if it is a

semi-metric, we use the α-β swap algorithm to assign edge weights.

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 49

Expansion Algorithm

The expansion algorithm graphs contain two terminals, α and ᾱ. Therefore, the

number of nodes in the graph corresponds to the number of pixels in the image. In the

original papers on graph cuts [8, 28], the edge weights are assigned by inserting auxiliary

nodes between neighbouring pixels containing different labels. These auxiliary nodes

were later removed in [18] through a reformulation of the equations.

The idea behind the algorithm is that pixels are labeled as either α or ᾱ. After

finding the minimum cut on the graph, pixels will either retain their previous labels or

will change their label to α, whichever gives the least amount of energy in terms of the

energy function. Since labels are only α or ᾱ, the algorithm need only pass through

the label set once, determining the label configuration with the least amount of energy.

Hence, the algorithm is O(mn), where m is the number of pixels and n is the number of

labels.

Swap Algorithm

Due to the semi-metric nature of the motion and combined stereo-motion smoothness

terms discussed in Sections 3.2.2 and 3.3.2, we focus our attention on the α-β swap

algorithm. Terminals in the graph are α or β. Only pixels labeled α or β make up the

nodes in the graph. Therefore, a variable number of nodes are contained in each graph.

Edge weights are assigned according to Table 3.1.

The idea behind the algorithm is that pixels are labeled as either α or β. After finding

the minimum cut on the graph, pixels will either retain their previous labels or will swap

their label to the other label, whichever gives the least amount of energy in terms of the

energy function. In this manner, we need to compute every unique label combination in

the label set. That way, the algorithm is O(mn2), where m is the number of pixels and

n is the number of labels.

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 50

edge weight for

tαp Dp(α) +
∑

q∈Np

q 6∈S

Vp,q(α, fq) p ∈ S

tβp Dp(β) +
∑

q∈Np

q 6∈S

Vp,q(β, fq) p ∈ S

ep,q Vp,q(α, β)
{p, q} ∈ N

p, q ∈ S

Table 3.1: Edge weight assignments for the α-β swap algorithm. (Reproduced from [28].)

3.6.2 Minimizing the Energy Function

In [5] they present a new algorithm which improves upon the performance of standard

augmenting path techniques. Previous augmenting path algorithms use a breadth-first

search when all paths of a given length are exhausted, requiring the construction of a

new search tree. This process involves scanning the majority of the pixels in the image,

becoming computationally expensive when repeated numerous times.

The new algorithm solves this problem by building two search trees, one from the

source and another from the sink, and reusing them. They are never rebuilt from scratch.

The result is an algorithm that is several times faster in all applications where graphs are

2D grids. However, this algorithm is not without its shortcomings. There is no guarantee

that the augmenting paths found are necessarily the shortest ones.

The idea behind the algorithm is to maintain two search trees of nodes interconnected

by edges in order to find an augmented path AP from the source tree’s root node to the

sink tree’s root node, as illustrated in Figure 3.8. The two search trees S and T begin

with their root nodes at the source s and sink t, respectively. In tree S all edges from

the parent node to its children are non-saturated, while in tree T edges from children to

their parents are non-saturated.

The algorithm allows for three types of nodes: (1) free, (2) active A, and (3) passive

P nodes. Nodes that are not in tree S or T are free nodes. Active nodes are the border

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 51

P

P

P

P

P PP

P

PP

P P

PP

PA

A

A A

A

A

S T

Figure 3.8: Example of the search trees S (light grey) and T (dark grey) containing active
A and passive P nodes. All remaining nodes, free nodes, are empty (white) nodes. The
resulting augmenting path P found is in black. (Reproduced from [5].)

nodes of each tree that allow tree growth by acquiring new children from a set of free

nodes. Passive nodes are the internal nodes that were previously active nodes.

The improved augmenting path algorithm is summarized in Figure 3.9. This algo-

rithm iteratively processes three stages: (1) growth, (2) augmentation and (3) adoption

stages. During the growth stage, both trees try to grow by acquiring nodes from a set

of free nodes. A tree’s set of active nodes explores adjacent non-saturated edges acquir-

ing new children from the set of free nodes, which become active nodes. After having

explored all neighbouring nodes, an active node becomes passive, indicating an inability

to grow further. The growth stage terminates when an active node encounters an active

node from the other tree, signifying the creation of an augmenting path AP .

The augmentation stage augments the path found with the largest flow possible,

sometimes creating saturated edges and subsequently orphan nodes. Meanwhile, the

adoption stage finds parents for each orphan, ensuring that the parent be connected

through a non-saturated edge and belong to the same tree as the orphan. If we are

unable to find a parent node, the orphan node becomes a free node. This stage ends

when there are no more orphan nodes.

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 52

initialize S = s, T = t, A = {s, t}, O = 0

WHILE true

grow S or T to find an augmenting path AP from s to t

IF no more tree growth possible, terminate

augment path AP

adopt orphans in O

END while

Figure 3.9: Outline of the improved augmenting path algorithm. (Reproduced from [5].)

The algorithm runs until the search trees S and T can no longer grow, indicated by

no more active nodes, and the trees are separated by saturated edges. This is the point

where maximum flow is reached. The resulting minimum cut is the border between S

and T where all edges are saturated.

3.7 Upsampling and Disparity Propagation Stage

For the multi-resolution algorithm to work properly, disparity maps must propagate

between levels of the pyramid. These disparity maps seed the next level of the pyramid,

thereby giving a good initialisation point for the algorithm. Going from a coarser level to

a finer level of the pyramid, upsampling takes every pixel p and creates N ×N pixels, as

depicted in Figure 3.7. The disparity values for the pixels with known disparities at the

coarser scale are multiplied by the sampling factor used. However, there is a large set of

N ×N −1 new pixels that have no known label. Typically, algorithms perform some type

of linear or bilinear interpolation is done on the labels between pixels with known labels to

better approximate the values. However, this process adds an unnecessary computational

expense to the system given that the disparity map is generally piecewise constant and

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 53

upsample

d

b

c

a a b

c d

a

c d

d

b

b baa

dc c

Figure 3.10: Upsampling from a finer level li to a coarser level li−1 of the pyramid. Pixels
with known labels at li are multiplied by the sampling factor k = 2 to determine the
labels at li−1. Pixels with unknown labels are in grey. These pixels are assigned the same
label as their neighbour pixel that originated from the same group.

that graph cuts algorithm already computes all label combinations. Consequently, pixels

with unknown labels are assigned the label of the pixel that they were upsampled from.

3.8 Various Multi-Resolution Graph Cuts (MRGC)

Algorithms For Stereo-Motion

As is common in most stereo algorithms, there is a trade-off between computation time

and accuracy. Imposing tighter constraints on the system and increasing the number of

possible disparities are ways to improve accuracy. However, in the graph cuts framework

this change causes the undesirable effect of increasing computation time. Inversely, com-

puting on smaller label sets or reducing the number of pixels in the image are ways to

reduce computation time but also reduce system accuracy. The balance between these

two factors is an important design consideration when developing an algorithm.

Each algorithm in this section is a multi-resolution graph cuts (MRGC) algorithm.

The benefits of a multi-resolution approach to graph cuts are:

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 54

1. Reduced number of pixels: The image dimensions are reduced by the sampling

factor k at each level of the pyramid. This results in the number of pixels being

reduced by a factor of k2.

2. Reduced number of labels: Each dimension of the disparity range is reduced by

the sampling factor k at each level of the pyramid. Consequently, for image pairs,

the number of stereo labels decreases by k labels at each level of the pyramid, while

the number of motion labels decreases by k2.Thus, using our four image set of two

stereo-motion image pairs, the number of labels decreases by k6.

3. Improved computation time: Since each level has a smaller number of pixels

and labels, convergence at each level is faster. Similarly, the disparity maps found

at each level of the pyramid allow initialisation of the next level’s label configuration

closer to that level’s optimal minimum, resulting in the same effect. By the time

we reach the finest level of the pyramid, the configuration is closer to the overall

global minimum than the normal graph cuts initialisation for stereo-motion method.

Therefore, we reach convergence at a faster rate, reducing computation time in the

process.

The general form of the multi-resolution approach is described in Listing 1, called

the Level Seeding MRGC (LS) algorithm. Dmapi represents the disparity map obtained

for level i with Dmapfinal referring to the final solution obtained at the finest level. To

determine the disparity range for each level, we take the maximum disparities allowed

in both the vertical and horizontal directions and divide by the sampling factor. For

example, if the maximum disparity range is [16,16] for motion disparities at the finest

level (level 0), it becomes [8,8], [4,4] and [2,2] for levels 1, 2 and 3 respectively. The energy

minimisation algorithm (EMA in step 3c) is the step that varies among all the algorithms

described in this section. However, in this general level seeding approach steps 3a and

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 55

1 . Create Gaussian image pyramid

2 . Determine d i s p a r i t y range f o r each l e v e l o f the pyramid

3 . FOR i = numLevels−1 to 0

IF i = (numLevels−1)

3a . Dmap i = Normal s t e r eo−motion graph cuts a lgor i thm

ELSE

3b . Upsample d i s p a r i t y map

3c . Dmap i = EMA(Dmap { i +1})

4 . Dmap final = Dmap 0

Listing 1: General outline of all multiscale methods. Dmapi represents the disparity

map obtained for level i, while EMA refers to the energy minimization algorithm used

in computation.

3b do not vary. This approach has the property that each level of the pyramid seeds, or

initialises, the next finer level of the pyramid.

The rest of this section describes three algorithms developed using the MRGC frame-

work, each of which attempts to reduce the number of labels used during the EMA in

step 3c. We pay more attention to the α-β swap algorithm given that this is the necessary

algorithm (since our objective function is a semi-metric) for our combined stereo-motion

framework.

3.8.1 Label Disparity Neighbourhood Restricted MRGC (LDNR)

The key problem with the LS algorithm described above is that despite its beneficial level

initialisation ability, the label set is too large and as such, computation time becomes

very large. To remedy this problem, we have developed an algorithm, called Label Dis-

parity Neighbourhood Restricted MRGC (LDNR), that uses the notion of label disparity

neighbourhoods to restrict the size of the label sets.

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 56

-7 -2 -1 0-6 -5 -4 -3-8

-7 -2 -1 0-6 -5 -4 -3-8

presentx x x

(b)

xx xxx

presentx x x

(a)

1 2 3 4 5 6 7 80 z

d

1 2 3 4 5 6 7 80 z

d

Lz8
NLz4

NLz1
N

Figure 3.11: The (b) label disparity neighbourhood of (a) the labels present (in yellow).

A label disparity neighbourhood is defined as the set of label values that are within a

specified distance range of the disparity value of the current label z1. The labels cannot

have disparity values that are outside the allowable disparity range. The value of range

can be any scalar value desired, but in general we set range to 1. To help illustrate

this, we use a one-dimensional view of a sample label set L in Figure 3.11, where the

neighbourhood of label z1 with disparity value d is represented as Lz1
N . For example, the

label z1 corresponds to a disparity value d = −7 with a label disparity neighbourhood

LN
z
1 = [z0, z1, z2]. For motion labels, where disparities are two-dimensional, we take the

same approach but apply it in both dimensions. Therefore, the range = 1 size of the

label disparity neighbourhood is 9 as opposed to a maximum size of 3 for stereo labels.

For stereo-motion labels, this translates into a maximum size of 3 × 3 × 9 × 9 = 729

labels.

The idea behind this algorithm is to allow pixels with label z1 to swap labels with

pixels having a label in the label disparity neighbourhood Lz1
N of z1. This decreases the

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 57

number of α-β swaps from all label combinations to only combinations of a label and

those within its label disparity neighbourhood. For example, in the above case the dis-

parity range is [−8, 0], which gives 9 different labels and 81 label combinations (or α-β

swaps). However, we only require unique label combinations (due to the symmetry prop-

erty of metric Equation 3.5). Therefore, we only require the upper triangle of the 9 × 9

label combinations matrix minus the diagonal, resulting in 36 unique label combinations.

If the labels present were Lpresent = [z1, z4, z8], indicated in yellow, then the allowable

label combinations are:

1. For Lz1
N : (z1, z0), (z1, z1), (z1, z2)

2. For Lz4
N : (z4, z3), (z4, z4), (z4, z5)

3. For Lz8
N : (z8, z7), (z8, z8) .

We are left with 8 label combinations. If we take into account that swapping a label with

itself does nothing, we are down to 5 label combinations. Going from 36 unique label

combinations to 5 is a large reduction of α-β swaps to perform, thereby decreasing the

computation time.

The justification for reducing the label combinations to only the label disparity neigh-

bourhoods is that pixels label are assumed to already be close to their ideal label. Swap-

ping labels within their label disparity neighbourhood allows the refinement of the dis-

parity estimates, where labels travel a short distance. Over multiple iterations, however,

a pixel’s label can change by a value greater than range.

The implementation of LDNR uses the algorithm described in Listing 1 where the

energy minimisation algorithm EMA in step 3c is shown in Listing 2. Input to the al-

gorithm is the upsampled disparity map from the previous level of the pyramid. The

convergence condition tests if the current iteration’s energy is less than the previous iter-

ation’s energy. This energy value is determined by computing the current configuration

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 58

EMA fo r LDNR: INPUT = Dmap up

−−−

1 . Determine l a b e l s e t L { pre s ent } in Dmap up

2 . WHILE E cur < E prev

2a . E prev = E cur

2b . Perform one i t e r a t i o n o f SWAP

FOR each l a b e l l a in L { pre s ent }

Determine l a b e l neighbourhood L N of l a

FOR each l a b e l l b in L N o f l a

Dmap cur = SWAP(l a , l b)

2c . Compute E cur from Dmap cur

3 . SET Dmap final = Dmap cur

Listing 2: LDNR energy minimization algorithm.

of the disparity map with the global energy function. If the function has not converged,

the algorithm begins by determining all the labels present Lpresent in the upsampled dis-

parity map from the previous level (step 1). This label set does not change throughout

the entire operation of EMA. Then it performs one iteration of SWAP in step 2b. Recall

from Figure 2.12, that an iteration computes the configuration with the least amount of

energy among all label combinations withing one move space of the current configura-

tion. However, in the LDNR algorithm, this number of combinations is restricted. An

iteration in this algorithm iterates through the labels in Lpresent. For each one of these

labels la, it finds its label disparity neighbourhood Lla
N and performs α-β swap between

la and every label lb in Lla
N .

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 59

-20

0 0 0 0

0 -2

-2-200

0 0 0 0

0 0 0 0

0

-4

-4

0 0 0

0 0 0 0

0

0 0 0

00000000

0 0 0 0 0 0 0 0

0 0 0 0

0000

0 0 0 0

0000 -4 -4 -4 -4

-4-4-4

-4

-4 -4

-4 -4

-4 -4

0 0 0 0

0

-4

0 0 0

0 0 0 0

0

0 0 0

00000

0 0 0 0

0 0

00

0 0

00 -4 -4 -4

-4-4

-4

-4 -4

-4 -4

-2 -2 -2

-2-2-2

-2 -2 -2

-2-2-2

-2 -2 -2

-2-2-2

0

-4

0 0 0 0

0

-4

-4

0 0 0

0 0 0 0

0

0 0 0

00000

0 0 0 0 0

0 0

00

0 0

00 -4 -4 -4

-4-4

-4

-4 -4

-4

-1 -1 -1

-1-1-1

-1 -1

-1-1

-1

-1-1

-1

-3

-3

-3

-3

-4

upsample

(b) propagation error(a) ideal

level 3 level 2

Figure 3.12: After upsampling an disparity map from level 3 to level 2, we find the
presence of label error propagation between levels of the pyramid. The ideal solution
for level 2 should be (a). However, a disparity value of -2 is not in the label disparity
neighbourhood of disparity values of 0 or 4. Therefore, using LDNR, the disparity map
achieved at level 2 would be as in (b) where the disparity values of -1 (red) and -3 (yellow)
are errors that propagate to subsequent levels.

3.8.2 Expanding Label Disparity Neighbourhood at Every It-

eration MRGC (EL)

The decrease in the number of labels is the main benefit of the LDNR algorithm. However,

with such a large decrease, the accuracy will suffer. Therefore, we consider a second

algorithm that accounts for the problem of reducing the label set size by too large a

margin. This algorithm is called Expanding Label Disparity Neighbourhood at Every

Iteration MRGC (EL).

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 60

The cause of the loss in accuracy in the previous algorithm is due to the error propaga-

tion of invalid disparity values between levels of pyramids. This is due to the combination

of the upsampling function and the restriction that labels are only allowed to swap within

their own label disparity neighbourhood. See Figure 3.12 as a helpful illustration of this

problem. Figure 3.12 (a) represents the ideal solution with Figure 3.12 (b) showing the

disparity error propagation. At level 3, the disparity maps are found. They are upsam-

pled with the disparity values doubling and propagating to neighbouring pixels to get

the disparity maps at level 2. The problem begins with the newly created pixels. Some

of these pixels should be assigned a disparity value other than what they currently have;

for example, the red and yellow pixels in (b). However, these pixels are restricted to only

swap with labels in their label disparity neighbourhood, thereby never getting properly

assigned (pixels in orange in (a)). This error will then propagate to the next level and the

next, until we reach the finest level of the pyramid where the assigned disparity values

are no longer near their ideal values.

To remedy this problem, we allow the label set Lpresent to grow at every iteration,

shown inside step 2b of the EL algorithm in Listing 3. This label set remained constant

in the LDNR algorithm, restricting labels to swap only with labels in its label disparity

neighbourhood. By moving this step inside step 2b, we allow the label set to grow slowly.

Label swaps are still done between a label present in Lpresent and its label disparity

neighbourhood, but over time the disparity values slowly propagate towards their ideal

values. With this increased set of label swaps, the accuracy will increase, but computation

time increases.

3.8.3 Swap All Combinations LDNR-MRGC (SAC)

Another method to improve accuracy is to allow the swapping of more label combinations.

In the LDNR algorithm, α-β swaps were restricted to occur between a label and the labels

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 61

EMA fo r EL: INPUT = Dmap up

−−−

1 . Dmap cur = Dmap up

2 . WHILE E cur < E prev

2a . E prev = E cur

2b . Perform one i t e r a t i o n o f SWAP

Determine l a b e l s e t L { pre s ent } in Dmap cur

FOR each l a b e l l a in L { pre s ent }

Determine l a b e l neighbourhood L N of l a

FOR each l a b e l l b in L N o f L a

Dmap cur = SWAP(l a , l b)

2c . Compute E cur from Dmap cur

3 . SET Dmap final = Dmap cur

Listing 3: EL energy minimization algorithm.

in its label disparity neighbourhood. The new algorithm, called Swap All Combinations

LDNR-MRGC (SAC), removes this restriction.

The algorithm for SAC is found in Listing 4. Similar to LDNR, it determines the labels

present Lpresent in the upsampled disparity map (step 1a), without growing throughout

the algorithm. The next step involves determining the label disparity neighbourhoods for

each of the labels in Lpresent, adding these labels to the label set Ltodo (step 1b). This new

label set would correspond to the third row, “present”, of Figure 3.11. Then it computes

the α-β swaps for each of the label combinations of labels in Ltodo in step 1c.

In the case of stereo algorithms or motion algorithms, the label set could conceivably

become the full label set. In stereo-motion algorithms, however, the label set never

reaches the full label set. This is due to the impossibility of some disparity combinations

in the super labels. For instance, a super label f = {f dt, f dt+1, ~f dL, ~f dR} with values

f = [−16, 0, (−16, 0), (0, 0)] is unlikely to be supported by the data. This pixel has two

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 62

EMA fo r SAC: INPUT = Dmap up

−−−

1 . WHILE E cur < E prev

1a . Determine l a b e l s e t L { pre s ent } in Dmap up

1b . FOR each l i in L { pre s ent }

Determine l a b e l neighbourhood L N of l i

Add L N of l i to l a b e l s e t L todo

1c . Perform one i t e r a t i o n o f SWAP

FOR each l a b e l l a in L todo

FOR each l a b e l l b in L todo

SWAP(l a , l b)

2 . SET d i s p a r i t y map = cur r ent c on f i gu r a t i on

Listing 4: SAC energy minimization algorithm.

very different stereo disparities and two very different motion disparities. Nonetheless,

there is a large increase in label combinations, causing a large increase in computation

time. On the other hand, we also receive a valuable increase in accuracy.

3.9 Summary

The design of a multi-resolution graph cuts algorithm for stereo-motion requires deciding

what data and smoothness functions to use. The choice of a smoothness function has

a large influence on the computational expense of the system. A metric smoothness

function allows the use of the faster α-expansion algorithm in the graph building stage,

with a time complexity of O(mn) where m is the number of pixels and n is the number

of labels. However, if only a semi-metric smoothness function is possible, the use of the

α-β swap algorithm O(mn2) is required.

Chapter 3. Multi-Resolution Graph Cuts (MRGC) for Stereo-Motion 63

Given the known time complexity functions, reducing the number of pixels and the

number of labels is key to a faster algorithm. We used a multi-resolution approach to

accomplish this task, whereby a graph cuts algorithm for stereo-motion was performed at

each level of the pyramid, then seeding the next level of the pyramid. Seeding initialised

each level closer to its optimal solution, thereby improving computation time.

We also developed three different algorithms (LDNR, EL, SAC) that reduced the

number of labels. In the next chapter, we look at the results of these algorithms and

the overall system performance. In particular, we examine the trade-off between system

accuracy and computation time.

Chapter 4

Results

This chapter evaluates the performance of the Multi-Resolution Graph Cuts for Stereo-

Motion system in comparison to the original graph cuts for stereo technique of [6, 8, 5, 18,

28]. The system implementation was done in C++ on a Pentium IV 3GHz machine with

4GB of memory, running the Linux operating system. Table 4.1 shows the system input

parameters used to generate the results in this chapter. Input parameter representation

can be found with their associated equation, if applicable, shown in the third column.

The disparity range and the border size is divided by the downsampling/upsampling

factor for each level of the pyramid. For example, at level 0 of the pyramid, the border

is 18 pixels and the horizontal disparity range is [-16,0], while at level 1, the border is

18 ÷ 2 = 9 pixels and the horizontal disparity range is [-8,0].

Without the presence of any known ground truth data for stereo image sequences with

motion, we are forced to test all algorithms against ground truth data obtained from the

Middlebury Stereo webpage [22]. All image sequences are rectified stereo image sequences

that contain static scenes and robust objects. We test our algorithms using the Tsukuba

sequence, which is composed of five colour images of size 384 × 288 pixels, shown in

Figure 4.1. The camera motion is a simple translation from right to left. Ground truth

64

Chapter 4. Results 65

Figure 4.1: Tsukuba image sequence composed of 5 colour images of size 384 × 288
pixels.

data is also provided, accompanied by an occlusion map, a depth discontinuity map and

a textureless region map, which are shown in Figure 4.2.

Our stereo-motion framework is tested using three consecutive images of the sequence.

For example, the first stereo pair of images Lt and Rt correspond to images 3 and 4 from

Figure 4.1. The second stereo pair of images at time t + 1, Lt+1 and Rt+1, correspond

to images 4 and 5. Thus, the disparity value d1 corresponds to stereo pair at time t

(images 3 and 4), while d2 corresponds to stereo pair at time t+1 (images 4 and 5). The

motion disparity values dL and dR correspond to the left motion pair (images 3 and 4)

and the right motion pair (images 4 and 5), respectively. Therefore, our images exhibit

no vertical motion due to the images being rectified.

The rest of this chapter is organized as follows. Section 4.1 illustrates the Gaussian

pyramids created for the image sequence. Section 4.2 analyses the influence that label set

size has on the computation time of the system. Finally, Section 4.3 looks at the disparity

maps generated by each algorithm presented in Chapter 3 and compares accuracy against

computation time.

Chapter 4. Results 66

Parameter Value Equation

Disparity range:

[xmin, xmax] [−16, 0]

[ymin, ymax] [0, 0]

Border size (pixels) 18

Number of pyramid levels 4

Down/upsampling factor 2

Label disparity neighbourhood range +/ − 1

τDcutoff
1000 3.12

τI 5 3.4

τScutoff
1000 3.13

λ 20 3.13

K 1 3.4

Table 4.1: Values of the parameters used to compute the results in Chapter 4.

4.1 Gaussian Pyramids

The first major stage in the flow diagram of Figure 3.5 is the Image Pyramid stage

described in Section 3.5. This stage involves recursively blurring an image and then

downsampling it to get the next coarser level of the pyramid. For all algorithms imple-

mented in this paper, we used σ = 2 for the Gaussian filters and we downsampled the

images by a factor of two.

Both the MRGC stereo algorithms and the MRGC motion algorithms generate Gaus-

sian pyramids for two input images. Figure 4.3 shows a sample of these Gaussian pyra-

mids generated by the Image Pyramid stage. In the pyramid, the original input images

are shown at level 0. For stereo, image 1 and image 2 correspond to images Leftt and

Rightt, respectively. When computing motion, image 1 and image 2 correspond to the

Chapter 4. Results 67

 Range: [0, 224]
 Dims: [288, 384]

Tsukuba Ground Truth Image

 Range: [0, 1]
 Dims: [288, 384]

Tsukuba Occlusion Map

 Range: [0, 1]
 Dims: [288, 384]

Tsukuba Depth Discontinuities

 Range: [0, 1]
 Dims: [288, 384]

Tsukuba Textureless Regions

Figure 4.2: Ground truth disparity map (top left), occlusion map (top right), depth dis-
continuity map (bottom left) and textureless region map (bottom right) for the Tsukuba
image sequence.

imt and imt+1 image pairs, respectively. The border size for each of the levels, starting

at level 0, is [18,9,4,2], with the axes corresponding to image size.

Figure 4.4 shows an example Gaussian pyramid generated by the combined stereo-

motion algorithms described in Section 3.8. The input images for these algorithms are

shown at level 0 with the images Leftt, Rightt, Leftt+1 and Rightt+1 corresponding to

the two stereo image pairs from Figure 3.4.

4.2 Number of Labels

One of the most important measures of any system is its computation time. In the graph

cuts framework, factors influencing computation time are the number of pixels m and

the number of labels n. This is evident in the time complexity equations O(mn) for the

α-expansion algorithm and O(mn2) for the α-β swap algorithms.

Figures 4.5 and 4.6 show the results of varying the number of labels and their effect

on processing time. The number of labels represent the size of the allowable disparity

range or the number of possible disparity values that a pixel can be assigned. Figure 4.5

Chapter 4. Results 68

Figure 4.3: Two images are used to create the image pyramids above and are used as
input to the stereo (image 1 = Leftt and image 2 = Rightt) or motion (image 1 = imt

and image 2 = imt+1) graph cuts algorithms. From left to right, the images proceed up
the pyramid, passing from the finest to the coarsest level of the pyramid with each image
axis indicating the image dimensions in pixels. The border size for each of the levels,
starting at level 0, is [18,9,4,2], with the axes corresponding to image size.

compares the original stereo graph cuts algorithm to the LS stereo algorithm. Figure 4.6

does likewise, but compares results between the standard motion graph cut algorithm

and the LS motion version. As seen in the figures, there is a direct correlation between

the number of pixels and the computation times of each algorithm. As the number of

labels increases, the computation time increases. Everything to the left of the vertical

dotted lines appears to follow the time complexity equations for their respective graph

building algorithm. During computation, we only compute unique label combinations,

which explains the near linear curve of α-expansion O(mn) for stereo. For motion, it

appears to follow O(mn2) for the α-β swap algorithm. However, no regression analysis

has been done to confirm these interpretations. Also, we should note that everything to

the right of the vertical lines appears linear. This is explained by the fact that there are

only 16 possible labels attainable in the Tsukuba sequence. As such, extra computation

is added through a loop searching for pixels assigned the extra labels. Since there is an

absence of pixels assigned these extra labels, no time is spent building a graph and finding

the minimum cut. Also, another important result is that the LS algorithm for motion

Chapter 4. Results 69

Figure 4.4: Four images are used to create the image pyramids above and are used as
input to the combined stereo-motion graph cuts algorithms. From top to bottom, the
images correspond to the Leftt, Rightt, Leftt+1 and Rightt+1 of the two stereo pairs
in Figure 3.4. From left to right, the images proceed up the pyramid, passing from the
finest to the coarsest level of the pyramid with each image axis indicating the image
dimensions in pixels.

starts to out-perform the standard motion graph cuts algorithm in terms of computation

time once the label set sizes start to become large.

Table 4.2 and Figure 4.7 also demonstrate this characteristic for all algorithms imple-

mented, with Figure 4.7 being the graphical representation of the data in Table 4.2. The

term “Normal” in Table 4.2 refers to straightforward computation of the specific method.

The number of labels designate the final number of labels used for computation during

the final iteration before convergence. Despite the difference in the number of labels,

all rows with the same method solve the mentioned problem. In Figure 4.7, we can see

Chapter 4. Results 70

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50
Number of Labels vs Time(secs) for STEREO

Number of Labels

Ti
m

e
(s

ec
on

ds
)

Normal
LS−MRGC

Figure 4.5: The relationship between the number of labels and the time to convergence
for the original stereo graph cuts algorithm and the LS stereo graph cuts algorithm. The
dotted vertical line indicates the range of disparities known to be actually present in the
data.

that we exhibit near linear computation time for stereo graph cuts algorithms, while we

do better than quadratic computation time for the motion and combined stereo-motion

algorithms.

At the time of writing, using both the stereo-motion graph cuts algorithms “Normal”

and LS, the number of labels is too large. As a result, the experiments are still ongoing.

We estimate these algorithms to reach convergence in approximately 6 months, based on

interpolating the time it took for one iteration to complete. Thus, the value “A” in the

table is a very large, while the value “B” for LS for stereo-motion graph cuts is also large,

but most likely a number less than “A”. Using a multi-resolution framework initializes

the energy function closer to the minimum, thereby achieving convergence faster.

Figure 4.8 illustrates the influence of the number of pixels and the number of labels

on computation time. An iteration in the graph indicates when the algorithm has created

all possible label combinations, calculated the minimum energy of each graph for each

Chapter 4. Results 71

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400
Number of Labels vs Time(secs) for MOTION

Number of Labels

Ti
m

e
(s

ec
on

ds
)

Normal
LS−MRGC

Figure 4.6: The relationship between the number of labels and the time to convergence
for the motion graph cuts algorithms. The dotted vertical line indicates the range of
disparities known to be actually present in the data.

of these label combinations, and produced the configuration with the lowest amount of

energy. The graph shows a plot of iterations on the x-axis versus the time to completion

(seconds) on the y-axis. The vertical dotted lines in the graph indicate when a level

change has occurred in the algorithm. Going from left to right, these changes occur at

iterations 7 (from level 3 to 2), 15 (from level 2 to 1) and 25 (from level 1 to 0).

Level changes have two effects on the system: (1) the image dimensions increase by

the sampling factor (factor = 2 in all our cases); and (2) the disparity range increases by

this same factor. Therefore, the number of pixels increases by a factor of 22 = 4 at each

level change. Similarly, the number of labels increases by a factor of 2 for α-expansion

and by a factor 22 = 4 for α-β swap. The resulting effect is an increase in computation

time. This effect is visible in the increased computation time as we pass from a higher

(coarser) level of the pyramid to a lower (finer) level of the pyramid where the slope

increases for each level.

Chapter 4. Results 72

ID No. Method Algorithm No. Labels Time (secs)

1 Stereo Normal 17 23

2 Stereo LS 17 23

3 Stereo LNR 17 23

4 Stereo ELNEI 17 23

5 Motion Normal 17 99

6 Motion LS 17 48

7 Motion LNR 7 7

8 Motion ELNEI 14 11

9 Stereo-motion Normal 83521 A

10 Stereo-motion LS 83521 B

11 Stereo-motion LNR 251 294

12 Stereo-motion ELNEI 2890 2073

13 Stereo-motion SAC-LNR 10798 533593

Table 4.2: The relationship between the number of labels and the time to convergence for
all graph cuts algorithms. A is a very large time (estimated as approximately 6 months)
and B is also large and is less than A.

Chapter 4. Results 73

100 101 102 103 104 105 106
100

101

102

103

104

105

106

Number of Labels

Ti
m

e
(s

ec
on

ds
)

Number of Labels vs Time

Stereo Normal
Stereo LS
Stereo LDNR
Stereo EL
Motion Normal
Motion LS
Motion LDNR
Motion EL
Stereo−Motion LDNR
Stereo−Motion EL
Stereo−Motion SAC

Quadratic

Linear

Figure 4.7: The relationship between the number of labels used in an algorithm and the
time to convergence for all graph cut algorithms (stereo, motion and combined stereo-
motion).

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500
Total Execution Time = 2073 secs

Iteration

Ti
m

e
(s

ec
on

ds
)

Figure 4.8: Sample computation time graph for a multi-resolution graph cuts (MRGC)
algorithm. Vertical dotted lines indicate a change in level operation in the MRGC al-
gorithm. The first dotted line on the left begins at the highest (coarsest) level of the
pyramid operation, finishing with the lowest (finest) level of the pyramid. This example
begins at level 3 and finishes at level 0.

Chapter 4. Results 74

4.3 Accuracy

To provide a quantitative measure of system accuracy, we compare the disparity maps

obtained from each algorithm to the ground truth data provided by the Middlebury

Stereo webpage [22], shown in the top left image in Figure 4.2. Accuracy is computed

according to two measures:

1. Root mean square error (RMSE): Measured in pixel disparity units between

the estimated disparity map dest(x, y) and the ground truth disparity map dgt(x, y).

This is represented as

RMSE =

√

1

N

∑

(x,y)

|dest(x, y) − dgt(x, y)|2 (4.1)

where N is the total number of pixels.

2. Accuracy: The percentage of pixels that have the same disparity value as the

ground truth data. We represent this as

Accuracy =





1

N

∑

(x,y)

(|dest(x, y) − dgt(x, y)| < δd)



× 100 (4.2)

where δd is a disparity error tolerance. We set δd to 1.0 pixels.

Disparity values are only considered in regions of non-occlusion. Thus, we mask the

output disparity maps with the occlusion map in the top right image of Figure 4.2, where

white pixels indicate regions of non-occlusion. Error histograms are used to illustrate the

distribution of absolute value of the disparity error in pixels. Energy over time plots

are used to show the measure of accuracy of a solution. Lastly, we also provide maps

indicating the pixels the labels that have been labeled inaccurately.

The rest of this section is organized as follows. First, we show all disparity maps

obtained for each of the algorithms: stereo graph cuts algorithms, motion graph cuts

algorithms and combined stereo-motion graph cuts algorithms. Second, we analyze the

Chapter 4. Results 75

accuracy of each of the algorithms using the previously mentioned metrics. More im-

portantly, we compare the trade-off between the system accuracy against computation

time.

4.3.1 Disparity Results

The disparity map generated by the stereo graph cuts algorithms are all very similar.

The only differences are a few pixels along depth discontinuities having different labels.

The number of pixels having difficulties in these regions is too small to have a significant

effect, as evidenced by the accuracy values discussed in the Section 4.3.2. As a result, we

show only one disparity map from for all stereo algorithms (Figure 4.9).

For motion graph cuts algorithms, the disparity maps accuracy varied. Computing

motion graph cuts without any multi-resolution implementation resulted in the disparity

map in Figure 4.10. The disparity maps for the rest of the motion graph cuts algorithms,

those with ID# 6-8 in Table 4.2, are shown in Figure 4.11. Each column represents a level

in the pyramid, while each row corresponds to a different motion graph cuts algorithm.

The first row is the LS algorithm. The second row is the LDNR algorithm and the third

row is the EL algorithm.

The combined stereo-motion disparity maps contain four images, two stereo disparity

maps and two motion disparity maps, for each level of the pyramid. This results in sixteen

images per algorithm. The LDNR graph cuts method for stereo-motion disparity maps

are shown in Figures 4.12 and 4.13. The cause of the black regions in all four disparity

maps is a curious behaviour whose cause may be a bug in the code. Figures 4.14 and

4.15 show the disparity maps for the EL graph cuts for stereo-motion algorithm, which

are a great improvement over their LDNR stereo-motion algorithm counterparts. Lastly,

the most accurate set of disparity maps can be seen in Figures 4.16 and 4.17 for the SAC

graph cuts for stereo-motion algorithm.

Chapter 4. Results 76

 Range: [0, 240]
 Dims: [288, 384]

x_d1

Figure 4.9: Disparity map for the normal stereo graph cuts algorithm.

 Range: [0, 240]
 Dims: [288, 384]

x_d1

Figure 4.10: Disparity map for the normal motion graph cuts algorithm.

Chapter 4. Results 77

LS

Level 0

100 200 300

50
100
150
200
250

Level 1

50 100 150

20
40
60
80

100
120
140

Level 2

20 40 60 80

20

40

60

Level 3

20 40

10

20

30

LD
N

R

100 200 300

50
100
150
200
250

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

E
L

100 200 300

50
100
150
200
250

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

Figure 4.11: Disparity maps for multi-resolution graph cuts for motion algorithms. Each
column corresponds to a level in the pyramid operation, while each row corresponds to
a different algorithm where the rows are: (1) LS motion graph cuts, (2) LDNR motion
graph cuts and (3) EL motion graph cuts.

Chapter 4. Results 78

d1

Level 1

50 100 150

20
40
60
80

100
120
140

Level 2

20 40 60 80

20

40

60

Level 3

20 40

10

20

30

d2

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

dL

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

dR

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

Figure 4.12: Disparity maps for LDNR stereo-motion graph cuts. Each column corre-
sponds to a level of the pyramid, while each row corresponds to the resulting disparity
map, with two stereo disparity maps (d1 and d2) and two motion disparity maps (dL and
dR) per level of the pyramid.

Chapter 4. Results 79

 Range: [0, 240]
 Dims: [288, 384]

x_d1 level 0

 Range: [0, 240]
 Dims: [288, 384]

x_d2 level 0

 Range: [0, 240]
 Dims: [288, 384]

x_dL level 0

 Range: [0, 240]
 Dims: [288, 384]

x_dR level 0

Figure 4.13: Disparity maps for LDNR stereo-motion graph cuts. There are two stereo
disparity maps (d1 and d2) and two motion disparity maps (dL and dR).

Chapter 4. Results 80

d1

Level 1

50 100 150

20
40
60
80

100
120
140

Level 2

20 40 60 80

20

40

60

Level 3

20 40

10

20

30

d2

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

dL

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

dR

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

Figure 4.14: Disparity maps for EL stereo-motion graph cuts. Each column corresponds
to a level of the pyramid, while each row corresponds to the resulting disparity map, with
two stereo disparity maps (d1 and d2) and two motion disparity maps (dL and dR) per
level of the pyramid.

Chapter 4. Results 81

 Range: [0, 240]
 Dims: [288, 384]

x_d1 level 0

 Range: [0, 240]
 Dims: [288, 384]

x_d2 level 0

 Range: [0, 240]
 Dims: [288, 384]

x_dL level 0

 Range: [0, 240]
 Dims: [288, 384]

x_dR level 0

Figure 4.15: Disparity maps for EL stereo-motion graph cuts. There are two stereo
disparity maps (d1 and d2) and two motion disparity maps (dL and dR).

Chapter 4. Results 82

d1

Level 1

50 100 150

20
40
60
80

100
120
140

Level 2

20 40 60 80

20

40

60

Level 3

20 40

10

20

30

d2

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

dL

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

dR

50 100 150

20
40
60
80

100
120
140

20 40 60 80

20

40

60

20 40

10

20

30

Figure 4.16: Disparity maps for SAC stereo-motion graph cuts. Each column corresponds
to a level of the pyramid, while each row corresponds to the resulting disparity map, with
two stereo disparity maps (d1 and d2) and two motion disparity maps (dL and dR) per
level of the pyramid.

Chapter 4. Results 83

 Range: [0, 240]
 Dims: [288, 384]

x_d1 level 0

 Range: [0, 240]
 Dims: [288, 384]

x_d2 level 0

 Range: [0, 240]
 Dims: [288, 384]

x_dL level 0

 Range: [0, 240]
 Dims: [288, 384]

x_dR level 0

Figure 4.17: Disparity maps for SAC stereo-motion graph cuts. There are two stereo
disparity maps (d1 and d2) and two motion disparity maps (dL and dR).

Chapter 4. Results 84

4.3.2 Analysis

The data in Table 4.3 is illustrated in the accuracy versus time plot of Figure 4.18, which

shows all results from algorithms that creates disparity maps for stereo image pairs.

These algorithms have the ’ID#’ 1-4 and 11-13 in Table 4.2 and Table 4.3, except that

those numbered 11-13 have disparity maps for the first stereo pair (Leftt, Rightt), labeled

as d1, and for the second stereo pair (Leftt+1, Rightt+1), labeled as d2. In the graph,

these stereo pairings become obvious as the data points that are coupled by computation

time. For example, the disparity maps d1 and d2 for the SAC stereo-motion algorithm

have a time value of 533593 seconds.

All stereo algorithms (1-4) implemented achieve similar time and accuracy results

with very small variance. Figure 4.20 (left) shows a typical distribution. The error

distributions show the absolute difference between the estimated values and the ground

truth values in pixels. 97% of the distribution is within one pixel distance from the

ground truth data. Those pixels whose error are greater than one pixel usually lie in

the regions near depth discontinuities, a common source of error for stereo computation,

shown in Figure 4.20 (right) where the intensities are scaled to maximum disparity error.

Looking at the stereo algorithms alone, the benefit of the multi-resolution approach

is not apparent. However, if we look at the motion algorithms, the benefits become clear.

Figures 4.21 to 4.24 present the distributions (left) and inaccurate label maps (right)

for the motion algorithms. As accuracy increases, the computation time increases. The

fastest motion algorithm is the LDNR motion algorithm at only 7 seconds computation

time, as opposed to the 99 seconds for the normal motion algorithm. This increase in

accuracy can reasonably be attributed to the increase in number of label combinations

calculated for correspondence.

Chapter 4. Results 85

ID# Method Algorithm Accuracy% RMSE(pixs) Time (s)

1 Stereo Normal 97.406 0.912 23

2 Stereo LS 97.399 0.914 21

3 Stereo LDNR 97.402 0.901 19

4 Stereo EL 97.399 0.914 20

11 SM LDNR (d1) 80.71 2.200 294

LDNR (d2) 69.42 3.230 294

12 SM EL (d1) 87.18 1.680 2073

EL (d2) 86.37 1.790 2073

13 SM SAC (d1) 90.96 1.340 533593

SAC (d2) 91.12 1.350 533593

Table 4.3: The relationship between system accuracy and time to convergence for graph
cuts algorithms creating stereo disparity maps, where SM represents stereo-motion.

65 70 75 80 85 90 95 100
101

102

103

104

105

106

Accuracy %

Ti
m

e
(s

ec
on

ds
)

Accuracy% vs Time for Stereo Disparity Maps

Stereo Normal
Stereo LS
Stereo LDNR
Stereo EL
Stereo−Motion LDNR (d1)
Stereo−Motion EL (d1)
Stereo−Motion SAC (d1)
Stereo−Motion LDNR (d2)
Stereo−Motion EL (d2)
Stereo−Motion SAC (d2)

Figure 4.18: The accuracy versus time plots for all algorithms that create stereo disparity
maps (d1 and d2).

Chapter 4. Results 86

ID# Method Algorithm Accuracy% RMSE(pixs) Time (s)

5 Motion Normal 93.671 1.108 99

6 Motion LS 90.168 1.267 48

7 Motion LDNR 84.577 1.412 7

8 Motion EL 87.329 1.438 11

11 SM LDNR (dL) 46.75 3.53 294

LDNR (dR) 46.59 3.14 294

12 SM EL (dL) 86.19 1.54 2073

EL (dR) 84.66 1.70 2073

13 SM SAC (dL) 91.50 1.25 533593

SAC (dR) 90.55 1.32 533593

Table 4.4: The relationship between system accuracy and time to convergence for graph
cuts algorithms creating motion disparity maps, where SM represents stereo-motion.

45 50 55 60 65 70 75 80 85 90 95
100

101

102

103

104

105

106

Accuracy %

Ti
m

e
(s

ec
on

ds
)

Accuracy% vs Time for Motion Disparity Maps

Motion Normal
Motion LS
Motion LDNR
Motion EL
Stereo−Motion LDNR (dL)
Stereo−Motion EL (dL)
Stereo−Motion SAC (dL)
Stereo−Motion LDNR (dR)
Stereo−Motion EL (dR)
Stereo−Motion SAC (dR)

Figure 4.19: The accuracy versus time plots for all algorithms that create motion disparity
maps (dL and dR).

Chapter 4. Results 87

Examining the combined stereo-motion algorithms further reinforces this relationship.

Recall from Section 3.8, that each of the combined stereo-motion algorithms limits the

label set in different ways. The result is that the LDNR algorithm severely reduces the

number of label combinations, from 83521 to 251 labels, thereby significantly reducing

the computation time, from an estimated 6 months computation time down to 294 sec-

onds. If we allowed the normal stereo-motion graph cuts algorithm to run for this same

amount of time, it would barely finish a fraction of the computation needed to complete

the first iteration. However, as previously mentioned, accuracy suffers greatly, reducing

down to a 70-80% accuracy rate. This is illustrated in the error distributions and in-

accurate label maps of the stereo-motion graph cuts algorithms in Figures 4.25 to 4.30.

As we continually increase the number of labels and consequently the computation time,

as in EL stereo-motion graph cuts and SAC stereo-motion graph cuts, we improve the

system accuracy. We can attribute this improved accuracy to solving the error propaga-

tion problem, described in (Section 3.8.2), for pixels near depth discontinuities and the

background layer. These pixels are allowed the opportunity to take on similar labels to

the pixels in these regions that are already labeled properly. This is evidenced in the

stereo-motion inaccurate label maps in Figure 4.26 for the LDNR algorithm, Figure 4.28

for the EL algorithm and Figure 4.30 for the SAC algorithm, where a large portion of

the improperly labeled pixels in the background and depth discontinuity regions of the

LDNR algorithm disappear in the EL algorithm and almost completely disappear in the

SAC algorithm.

The benefit of the multi-resolution approach is more pronounced if we look at both

the motion graph cuts algorithms and the combined stereo-motion graph cuts algorithms.

Table 4.4 and its graphical representation in Figure 4.19 demonstrate this difference

between accuracy and computation time of the resulting motion disparity map estimates.

The motion disparity map estimates are generated in algorithms that have the ID# 5-8

and 11-13 in Table 4.2 and Table 4.4, with the exception that those numbered 11-13

Chapter 4. Results 88

have disparity maps for the left motion pair (Leftt, Leftt+1), labeled as dL, and the

right motion pair (Rightt, Rightt+1), labeled as dR. Using any of the different multi-

resolution algorithms for motion computation had a large effect in reducing computation

time down to a fraction of the original motion graph cuts algorithm; from 98 seconds

down to 7 seconds in the case of the LDNR algorithm. There was only a slight loss in

accuracy.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8
x 104 Disparity error (pixels) for occlusions x_d1

Absolute Error (pixels)
 Accuracy = 97.406 %; RMSE = 0.912 pixels

N
um

be
r

of
 O

cc
ur

re
nc

es

Accuracy = 97.4059% ; RMSE = 0.9121 pixels

Inaccurate labels occlusions x_d1

Figure 4.20: Distribution of pixel error (left) and inaccurate label map (right) for the
original stereo graph cut algorithm.

Chapter 4. Results 89

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8
x 104 Disparity error (pixels) for occlusions x_d1

Absolute Error (pixels)
 Accuracy = 93.671 %; RMSE = 1.108 pixels

N
um

be
r

of
 O

cc
ur

re
nc

es

Accuracy = 93.6709% ; RMSE = 1.1083 pixels

Inaccurate labels occlusions x_d1

Figure 4.21: Distribution of pixel error (left) and inaccurate label map (right) for the
motion graph cut algorithms without any multi-resolution implementation.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8
x 104 Disparity error (pixels) for occlusions x_d1

Absolute Error (pixels)
 Accuracy = 90.168 %; RMSE = 1.267 pixels

N
um

be
r

of
 O

cc
ur

re
nc

es

Accuracy = 90.1681% ; RMSE = 1.2665 pixels

Inaccurate labels occlusions x_d1

Figure 4.22: Distribution of pixel error (left) and inaccurate label map (right) for the LS
motion graph cut algorithms without any multi-resolution implementation.

Chapter 4. Results 90

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7
x 104 Disparity error (pixels) for occlusions x_d1

Absolute Error (pixels)
 Accuracy = 87.577 %; RMSE = 1.412 pixels

N
um

be
r

of
 O

cc
ur

re
nc

es

Accuracy = 87.5775% ; RMSE = 1.412 pixels

Inaccurate labels occlusions x_d1

Figure 4.23: Distribution of pixel error (left) and inaccurate label map (right) for the
LDNR motion graph cut algorithms without any multi-resolution implementation.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7
x 104 Disparity error (pixels) for occlusions x_d1

Absolute Error (pixels)
 Accuracy = 87.329 %; RMSE = 1.438 pixels

N
um

be
r

of
 O

cc
ur

re
nc

es

Accuracy = 87.3288% ; RMSE = 1.4383 pixels

Inaccurate labels occlusions x_d1

Figure 4.24: Distribution of pixel error (left) and inaccurate label map (right) for the EL
motion graph cut algorithms without any multi-resolution implementation.

Chapter 4. Results 91

0 5 10 15
0

2

4

6

8
x 104 x_d1

Absolute Error (pixels)
 Acc=80.71%; RMSE=2.20 pixels

N
o.

 O
cc

ur
re

nc
es

0 5 10 15
0

2

4

6
x 104 x_d2

Absolute Error (pixels)
 Acc=69.42%; RMSE=3.23 pixels

N
o.

O
cc

ur
re

nc
es

0 5 10 15
0

1

2

3

4
x 104 x_dL

Absolute Error (pixels)
 Acc=46.75%; RMSE=3.53 pixels

N
o.

 O
cc

ur
re

nc
es

0 5 10 15
0

1

2

3

4
x 104 x_dR

Absolute Error (pixels)
 Acc=46.59%; RMSE=3.14 pixels

N
o.

 O
cc

ur
re

nc
es

Figure 4.25: Distribution of pixel error for LDNR stereo-motion graph cut algorithms.

Chapter 4. Results 92

 Acc=80.71%
 RMSE=2.20 pixels

x_d1

 Acc=69.42%
 RMSE=3.23 pixels

x_d2

 Acc=46.75%
 RMSE=3.53 pixels

x_dL

 Acc=46.59%
 RMSE=3.14 pixels

x_dR

Figure 4.26: Inaccurate label map for LDNR stereo-motion graph cut algorithms.
Brighter pixels indicate greater error.

Chapter 4. Results 93

0 5 10 15
0

2

4

6

8
x 104 x_d1

Absolute Error (pixels)
 Acc=87.18%; RMSE=1.68 pixels

N
o.

 O
cc

ur
re

nc
es

0 5 10 15
0

2

4

6

8
x 104 x_d2

Absolute Error (pixels)
 Acc=86.37%; RMSE=1.79 pixels

N
o.

O
cc

ur
re

nc
es

0 5 10 15
0

2

4

6

8
x 104 x_dL

Absolute Error (pixels)
 Acc=86.19%; RMSE=1.54 pixels

N
o.

 O
cc

ur
re

nc
es

0 5 10 15
0

2

4

6

8
x 104 x_dR

Absolute Error (pixels)
 Acc=84.66%; RMSE=1.70 pixels

N
o.

 O
cc

ur
re

nc
es

Figure 4.27: Distribution of pixel error for EL stereo-motion graph cut algorithms.

Chapter 4. Results 94

 Acc=87.18%
 RMSE=1.68 pixels

x_d1

 Acc=86.37%
 RMSE=1.79 pixels

x_d2

 Acc=86.19%
 RMSE=1.54 pixels

x_dL

 Acc=84.66%
 RMSE=1.70 pixels

x_dR

Figure 4.28: Inaccurate label map for EL stereo-motion graph cut algorithms. Brighter
pixels indicate greater error.

Chapter 4. Results 95

0 5 10 15
0

2

4

6

8
x 104 x_d1

Absolute Error (pixels)
 Acc=90.96%; RMSE=1.34 pixels

N
o.

 O
cc

ur
re

nc
es

0 5 10 15
0

2

4

6

8
x 104 x_d2

Absolute Error (pixels)
 Acc=91.12%; RMSE=1.35 pixels

N
o.

O
cc

ur
re

nc
es

0 5 10 15
0

2

4

6

8
x 104 x_dL

Absolute Error (pixels)
 Acc=91.50%; RMSE=1.25 pixels

N
o.

 O
cc

ur
re

nc
es

0 5 10 15
0

2

4

6

8
x 104 x_dR

Absolute Error (pixels)
 Acc=90.55%; RMSE=1.32 pixels

N
o.

 O
cc

ur
re

nc
es

Figure 4.29: Distribution of pixel error for SAC stereo-motion graph cut algorithms.

Chapter 4. Results 96

 Acc=90.96%
 RMSE=1.34 pixels

x_d1

 Acc=91.12%
 RMSE=1.35 pixels

x_d2

 Acc=91.50%
 RMSE=1.25 pixels

x_dL

 Acc=90.55%
 RMSE=1.32 pixels

x_dR

Figure 4.30: Inaccurate label map for SAC stereo-motion graph cut algorithms. Brighter
pixels indicate greater error.

Chapter 4. Results 97

ID# Method Algorithm Energy Time (secs)

11 SM LDNR (dL) 7652980 294

12 SM EL (dL) 1914927 2073

13 SM SAC (dL) 717592 533593

Table 4.5: The resulting energy values for each stereo-motion algorithm.

We can also use the final energy value of the resulting energy functional as a measure

of goodness of a solution. The lower the energy value, the closer the solution is to the

global minimum. Figure 4.31 is an example of the total system energy over the course

of its operation. Two of the lines in each of the graphs indicate the energy value of

the components that make up the energy function, namely the data energy term Edata

and the smoothness energy term Esmooth. The third line represents the total energy of

the system, which is the sum of the data and smoothness terms. The vertical dotted

lines have the same representation as those in the number of labels versus time graphs

of Section 4.2, where each line represents a change in level of the pyramid. Thus, the

large spikes in energy coincide with each change in level of computation because of the

increase in pixels and labels that cause larger energy values when computing both the

data and smoothness terms.

All three of these plots represent the energy value over time for three stereo-motion

graph cuts algorithms. Figure 4.31 (a) corresponds to the LDNR algorithm. Figure 4.31

(b) shows the EL algorithm energy results, while Figure 4.31 (c) gives the SAC algorithm

energy results. The final energy values achieved by each algorithm are summarized in

Table 4.5. The SAC algorithm achieves a lower energy measure, and as such, is more

accurate than the other two stereo-motion methods.

Chapter 4. Results 98

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14
x 106

Iteration

En
erg

y

Total Energy

Smooth Energy
Data Energy
Total Energy

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14
x 106

Iteration

En
erg

y

Total Energy

Smooth Energy
Data Energy
Total Energy

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14
x 106

Iteration

En
erg

y

Total Energy

Smooth Energy
Data Energy
Total Energy

Figure 4.31: Total energy graph for the stereo-motion graph cuts algorithms: (top) LDNR
algorithm, (middle) EL algorithm, and (bottom) SAC algorithm. Vertical dotted lines
indicate a change in level operation in the MRGC algorithm. The first dotted line on
the left begins at the highest (coarsest) level of the pyramid operation, finishing with the
lowest (finest) level of the pyramid. This example begins at level 3 and finishes at level 0.

Chapter 4. Results 99

4.4 Summary

In Chapter 4, we began with a demonstration of the image pyramids created by the

system. Next, we looked at the effect of varying the number of labels on the system,

illustrating that the system computation time has a direct relationship to the number

of pixels. Increasing the number of labels increases the computation time, independent

of the choice of graph cuts algorithm. However, there is a linear relationship for graph

cuts implementing the α-expansion algorithm as opposed to a quadratic relationship for

graph cuts implementing α-β swap algorithm.

System accuracy also had a quadratic relationship to computation time in the multi-

resolution graph cuts algorithms for stereo-motion. Each of the three algorithms imple-

mented reduced the label sets, but at different degrees, directly affecting system accuracy.

Also affecting accuracy are regions of depth discontinuities and occlusion.

In the next chapter, we suggest ways to improve the computation time of the system.

These include the use of the fundamental matrix, determining a different convergence

criteria and formulating a metric smoothness function. We also propose a method to

compute sub-pixel disparity measurements for graph cuts.

Chapter 5

Conclusions and Future Work

The original graph cuts algorithm, presented in [6, 7, 8, 5, 18, 28], produces very accurate

disparity maps at the expense of high computation cost. The method includes two algo-

rithms used for graph creation, the α-expansion algorithm and the α-β swap algorithm,

with the decision factor being the formulation of the smoothness term. If the designed

smoothness function is a metric, one should use the α-expansion algorithm, with a time

complexity of O(mn), where m is the number of pixels and n is the number of labels.

This algorithm has the benefit of a guaranteed solution within a known factor of 2 of

the global minimum. However, formulating a metric function creates difficulties for more

general problems, such as motion. In these cases, it is easier to create a semi-metric

smoothness function, requiring the use of the much slower α-β swap algorithm, which is

O(mn2). Consequently, the influence of the label set size becomes even more pronounced.

Taking this into consideration, this thesis presents a multi-resolution graph cuts for

a stereo-motion system. The multi-resolution feature of the system design creates a

framework with many benefits. First, we are able to handle larger images than the

original graph cuts algorithm. The multi-resolution framework breaks the correspondence

problem into smaller, faster subproblems of computing correspondence on smaller images

with smaller label sets. This allows for an initialisation of the subsequent pyramid level

100

Chapter 5. Conclusions and Future Work 101

to be closer to that level’s objective function’s minimum. By the time we reach the

finest level of the pyramid, we are already very close to the best solution that the α-β

swap algorithm can provide. As a result, the number of iterations to reach convergence,

and conversely computation time, is decreased. Second, we are able to handle larger

disparity ranges. In a similar fashion to the handling of larger images, the multi-resolution

framework also reduces the label set size at each level of the pyramid. Third, this multi-

resolution framework helps promote solutions to more general problems, such as motion

estimation, where the search space lies in two-dimensions, as opposed to one dimension

for rectified stereo.

Another system design feature is the use of both stereo and motion constraints to

improve the accuracy. The resulting effect on accuracy is unknown at the moment, but

is still under computation because of the increased time complexity in the problem. Using

this stereo-motion framework, the problem extended from a one-dimensional problem in

stereo to a five-dimensional problem, one-dimension for each of the two stereo image

pairs and two-dimensions for the motion image pairs (two horizontal and one vertical

due to image rectification). The result of this extension requires the use of the slower α-

β swap algorithm for graph creation, thus increasing computation time. However, in this

framework, we are still able to establish the trade-off between an increase in computation

time that will result in an increase in accuracy.

A highlight of the system is the design of three different approaches to multi-resolution

graph cuts. The first algorithm, LDNR, uses a vastly reduced set of labels to compute

the resulting disparity maps. It is the fastest of the three algorithms and is best used

in situations where fast initialisation close to the global minimum is desired, because

the overall accuracy rates suffers. However, for a substantial increase in accuracy (if an

increase in computation time is acceptable) the choice of the EL algorithm is a better

option. Lastly, if accuracy is of greatest importance, the use of the SAC algorithm is

the best option. The label sets are less than straightforward computation, due to the

Chapter 5. Conclusions and Future Work 102

multi-resolution framework, but are significant enough to increase accuracy by 5-6% when

used with stereo-motion computation. There is, however, a big increase in computation

time. On the other hand, when compared to the straightforward computation of stereo-

motion with a multi-resolution approach, there is a significant decrease in computation

time, going from an estimated computation time of 6 months to 5-6 days (depending on

convergence limits).

Output of the system is in the form of dense disparity maps. The benefit of dense

disparity maps lies in their inverse relationship with depth. Given that we are able to

obtain dense disparity maps, we are able to discern the depth to objects in the scene.

This becomes very useful in applications such as scene reconstruction, navigation, image

segmentation, object recognition and object tracking.

5.1 Future Work

The multi-resolution framework described in this thesis provides a general framework

that opens up the possibility of many areas of future work. Areas for improvement

involve improving both the accuracy and the computation time of the system. Some of

these areas are:

• Finding the fundamental matrix between motion image pairs, according to [14], so

that the search space for correspondence between becomes one-dimensional. From

the fundamental matrix, we know that a point in one image must have a correspond-

ing point lie along the epipolar line in the other image, assuming no independently

moving objects in the scene. Therefore, we have reduced the overall system search

space from five dimensions (two for stereo and three for motion) to four dimen-

sions (two for stereo and two for motion), thereby improving computation time

and accuracy. This is valid if there are no independently moving objects in the

images.

Chapter 5. Conclusions and Future Work 103

• Formulate a smoothness term in the form of a metric, thus sacrificing accuracy

for a significant reduction in computation time. Using a metric would allow the

use of the α-expansion algorithm during the graph building step. The α-expansion

algorithm is O(mn) as opposed to O(mn2) in the α-β swap algorithm. It also

has the guarantee of finding a solution within a known factor of 2 from the global

minimum.

• Determine an improved convergence criteria for the energy minimisation technique.

Generally, after 4-5 iterations, the system has nearly stabilized, with its energy

being very close to the energy of the system it would achieve at convergence. This

signifies that the solutions are quite similar and implies that changes that are

occurring are labeling changes of only a few pixels at a time. The pixels are most

likely those pixels in the regions of difficulty: occlusion, textureless or near depth

discontinuities. Improving the convergence criteria can help improve system speed

with only a little decrease in accuracy.

• Compute sub-pixel accuracy disparity measurements. The original graph cuts algo-

rithm is only setup for integer values of disparity. However, in the multi-resolution

framework created in this thesis, we are able to handle larger label sets. A good

approach would be to initially calculate disparities to integer accuracy and then

sub-divide each integer value into smaller floating point labels and computing cor-

respondence in each reduced set of labels.

References

[1] S.S. Beauchemin and J.L. Barron. The computation of optic flow. ACM Computing

Surveys, 27:433–467, September 1995.

[2] S. Birchfield and C. Tomasi. A pixel dissimilarity measure that is insensitive to

image sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(4):401–406, 1998.

[3] M.J. Black and P. Anandan. A framework for the robust estimation of optical flow.

In European Conference on Computer Vision, pages 231–236, 1993.

[4] A.F. Bobick and S.SS. Intille. Large occlusion stereo. International Journal of

Computer Vision, 33(3):181–200, 1999.

[5] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 26(9):1124–1137, September 2004.

[6] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with effecient approx-

imations. In IEEE Computer Society Conference on Computer Vision & Pattern

Recognition, page 648, 1998.

[7] Y. Boykov, O. Veksler, and R. Zabih. A new algorithm for energy minimization with

discontinuities. IEEE Computer Society Conference on Computer Vision & Pattern

Recognition, pages 205–220, July 1999.

104

REFERENCES 105

[8] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(11):1222–1239, November 2001.

[9] D. Cheung. Motion segmentation incorporating active contours for spatial coherence.

Master’s thesis, University of Toronto, 2004.

[10] P.B. Chou and C.M. Brown. The theory and practice of bayesian image labeling. In

International Journal of Computer Vision, volume 4, pages 185–210, 1990.

[11] L. Ford and D. Fulkerson. Flow in Networks. Princeton University Press, 1962.

[12] D. Geiger and F. Girosi. Mean field theory for surface reconstruction. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 13(5):401–412, 1991.

[13] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 6:721–741, 1984.

[14] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge University Press, Cambridge, UK, 2nd edition, 2003.

[15] A.Y.K. Ho and T.C. Pong. Cooperative fusion of stereo and motion. PR, 3(1):121–

130, January 1996.

[16] B.K.P. Horn and B.G. Schunck. Determining optic flow. Artificial Intelligence,

17(1-3):185–203, August 1981.

[17] M. Isaard and J. MacCormick. Dense motion and disparity estimation via loop belief

propagation. In Asian Conference on Computer Vision, pages 32–41, 2006.

[18] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph

cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–

159, January 2004.

REFERENCES 106

[19] S. Li. Markov Random Field Modeling in Computer Vision. Springer-Verlag, 1995.

[20] B.D. Lucas and T. Kanade. An iterative image registration technique with an ap-

plication to stereo vision. In Proceedings of the Seventh International Conference on

Computer Vision, pages 674–679, 1981.

[21] M. Okutomi and T. Kanade. A locally adaptive window for signal matching. Inter-

national Journal of Computer Vision, 7(2):143–162, 1992.

[22] D. Scharstein and R. Szeliski. Middlebury college - stereo vision page research.

http://cat.middlebury.edu/stereo/.

[23] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. International Journal of Computer Vision, 47(1/2/3):7–

42, April-June 2002.

[24] N. Papenberg T. Brox, A. Bruhn and J. Weickert. High accuracy optical flow esti-

mation based on a theory for warping. In European Conference on Computer Vision,

volume 3024, pages 25–36, 2004.

[25] R.L. Rivest T.H. Cormen, C.E. Leiserson and C. Stein. Introduction to Algorithms.

The MIT Press, Cambridge, Massachusetts, 2nd edition, 2001.

[26] E. Trucco and A. Verri. Introductory Techniques for 3D Computer Vision. Prentice

Hall Inc., Upper Saddle River, New Jersey, 1998.

[27] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade.

Three-dimensional scene flow. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(3):475–480, 2005.

[28] O. Veksler. Effecient Graph-Based Energy Minimization Methods in Computer Vi-

sion. PhD thesis, Cornell University, August 1999.

REFERENCES 107

[29] W.D. Wang and J.H. Duncan. Recovering the 3-dimensional motion and structures

of mulitple moving objects from binocular image flows. Computer Vision & Image

Understanding, 63:430–446, May 1996.

[30] A. Waxman and J. Duncan. Binocular image flows: Steps towards stereo-motion

fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:715–729,

1986.

[31] C.Q. Shu Y.Q. Shi and J.N. Pan. Unified optical flow field approach to motion

analysis from a sequence of stereo images. Pattern Recognition, 27:1577–1590, 1994.

