

Deep Learning Hardware Acceleration

Jorge Albericio⁺ Alberto Delmas Lascorz Patrick Judd Sayeh Sharify Tayler Hetherington*

Natalie Enright Jerger

Tor Aamodt*

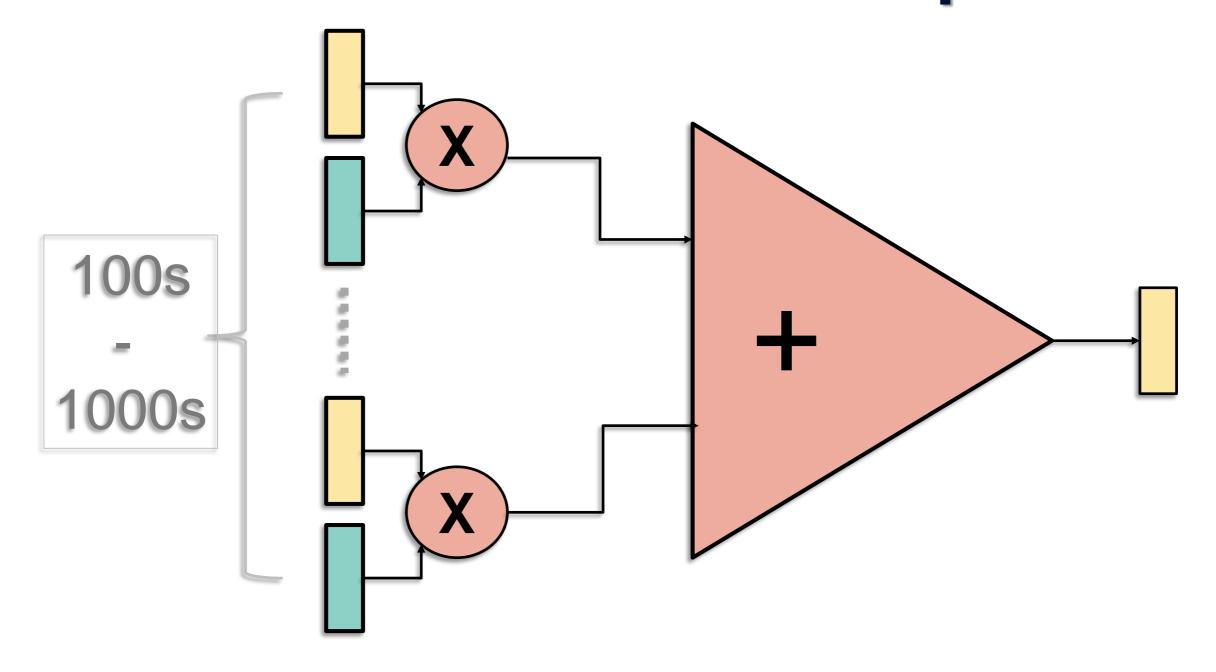
Andreas Moshovos

Disclaimer

The University of Toronto has filed **patent** applications for the mentioned technologies.

Deep Learning: Where Time Goes?

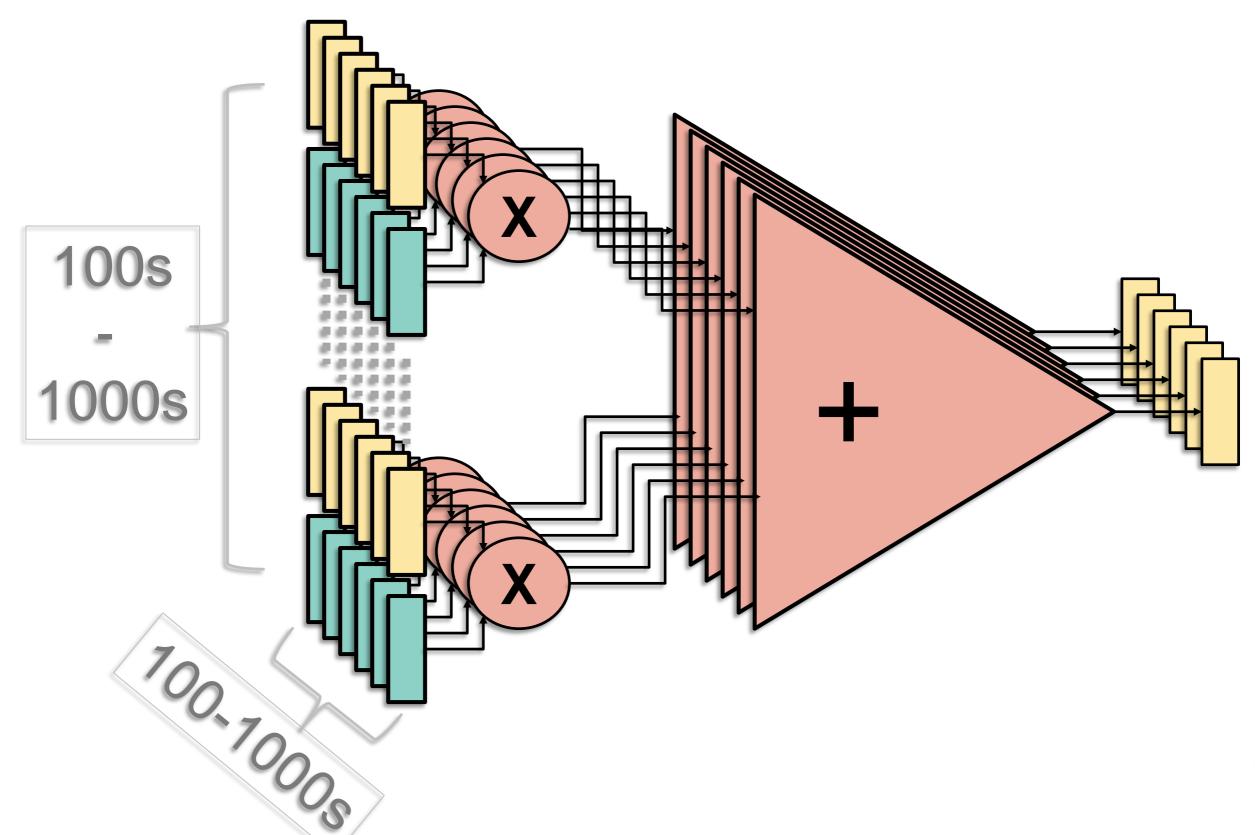
Time: ~ 60% - 90% → inner products



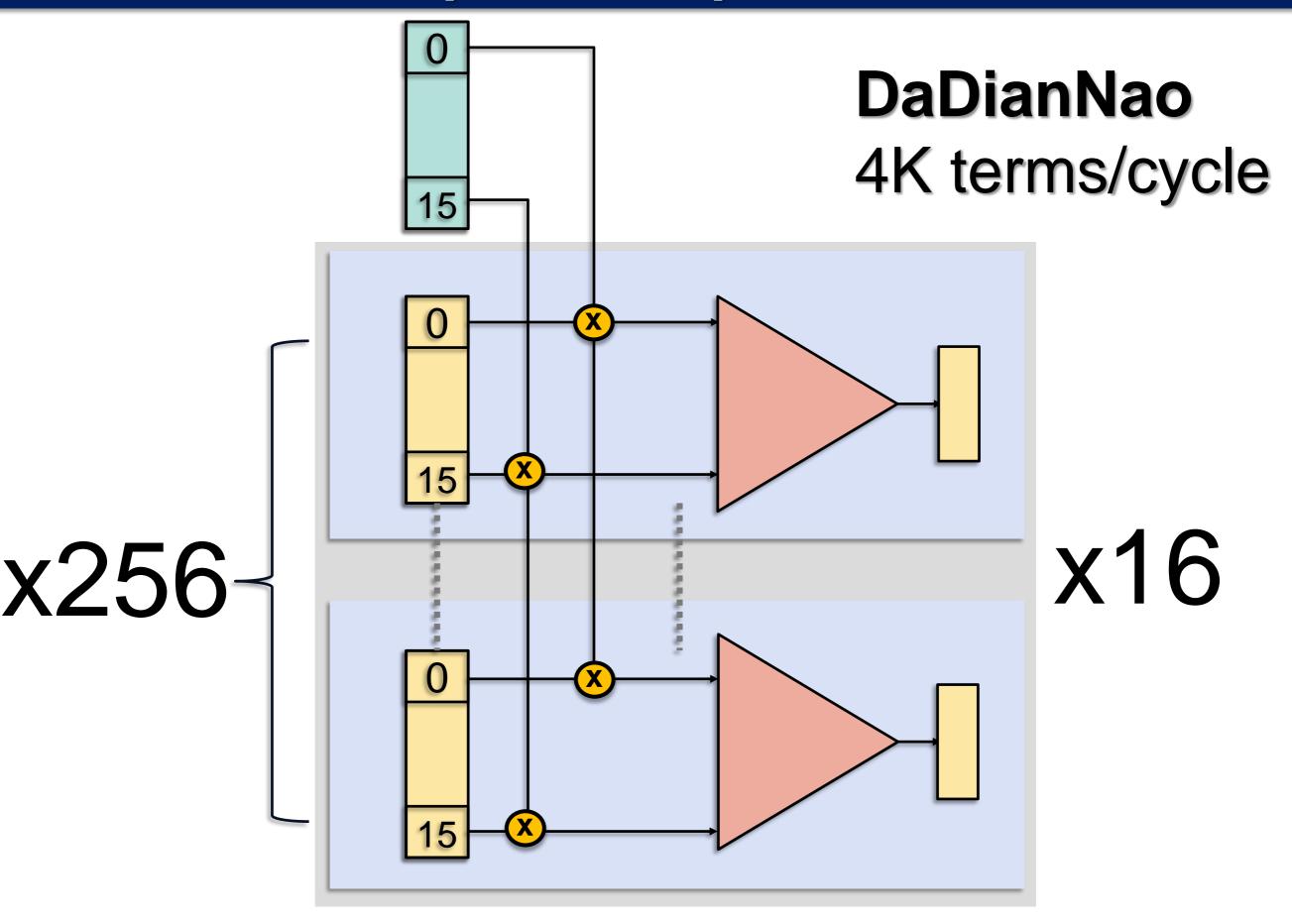
Convolutional Neural Networks: e.g., Image Classification

Deep Learning: Where Time Goes?

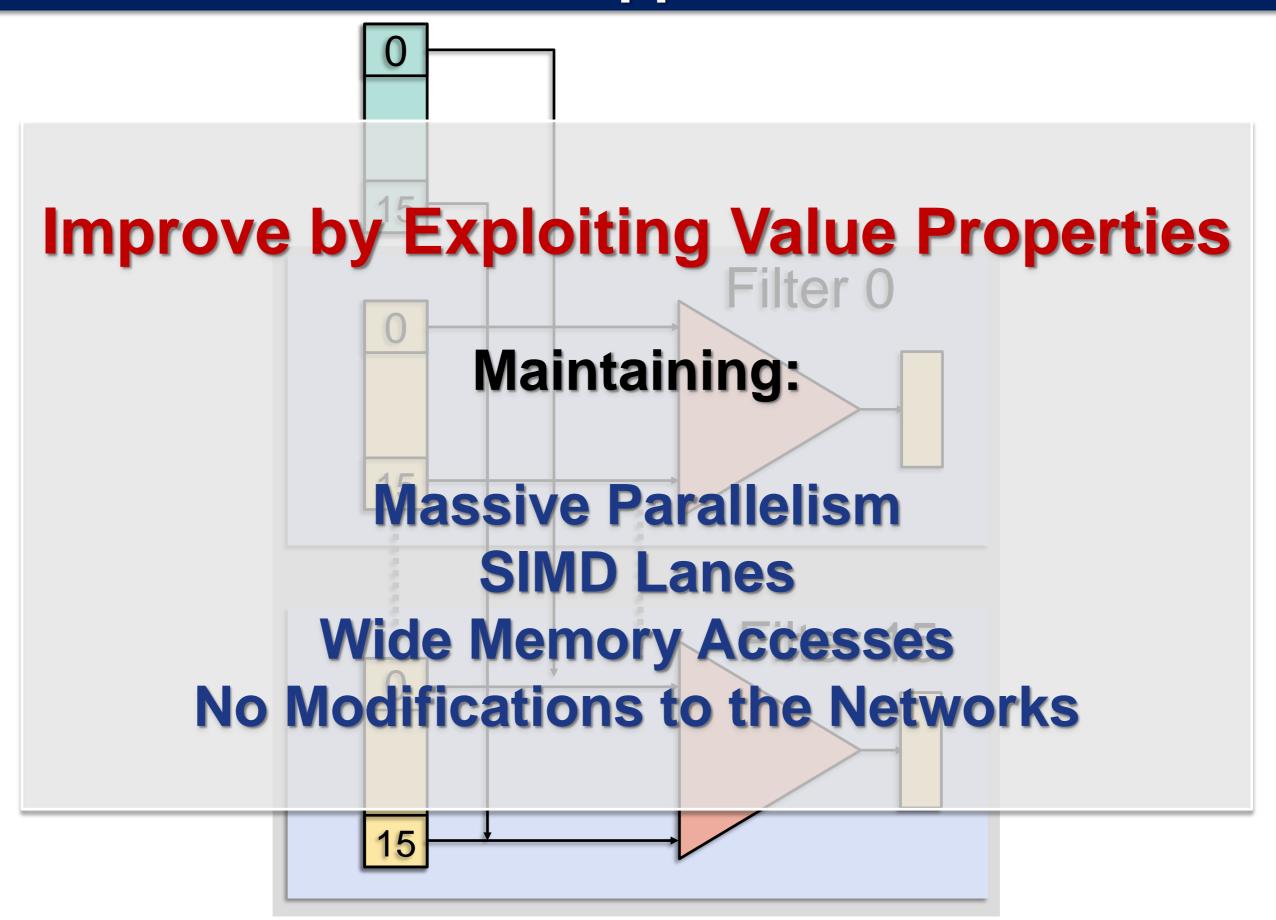
Time: ~ 60% - 90% → inner products



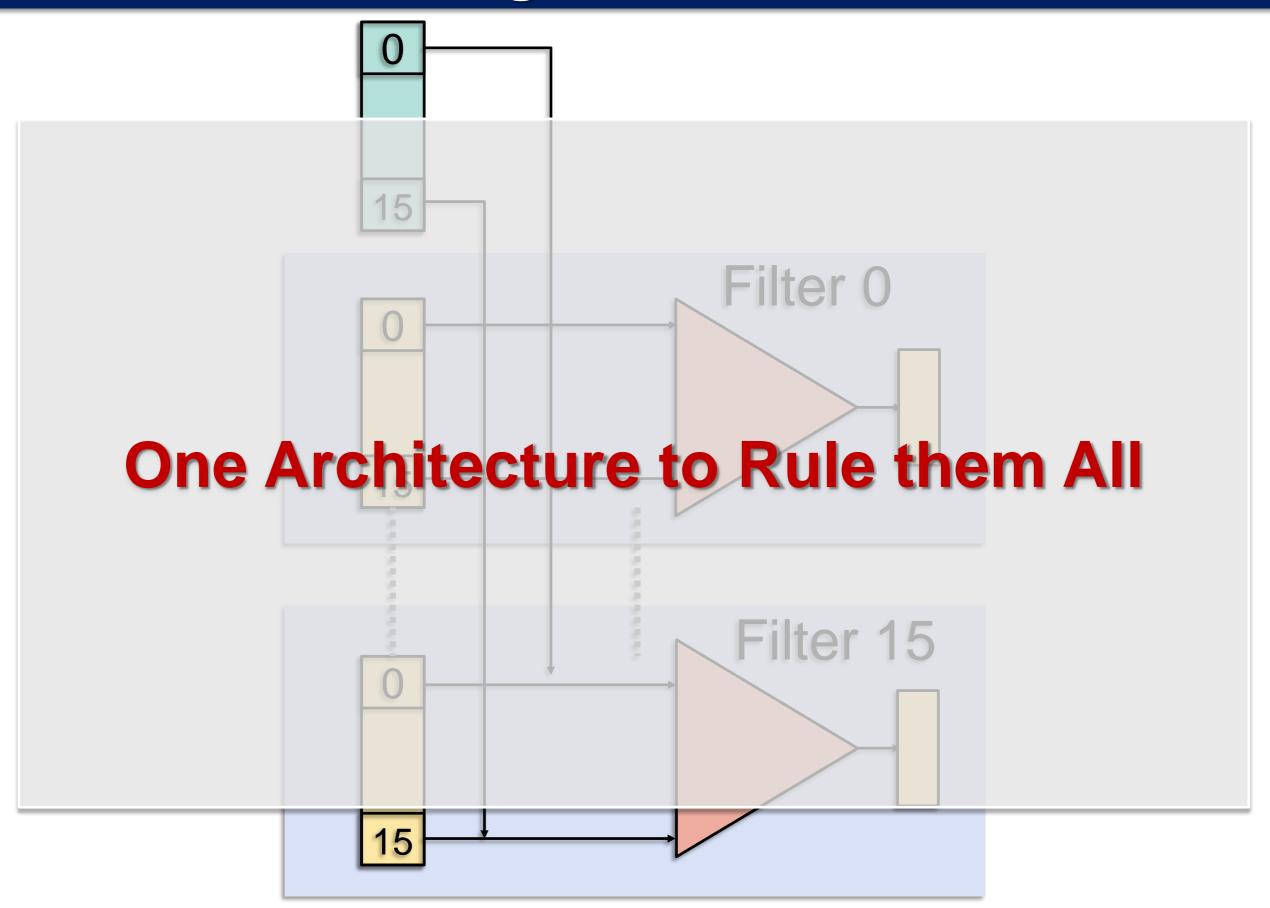
SIMD: Exploit Computation Stucture



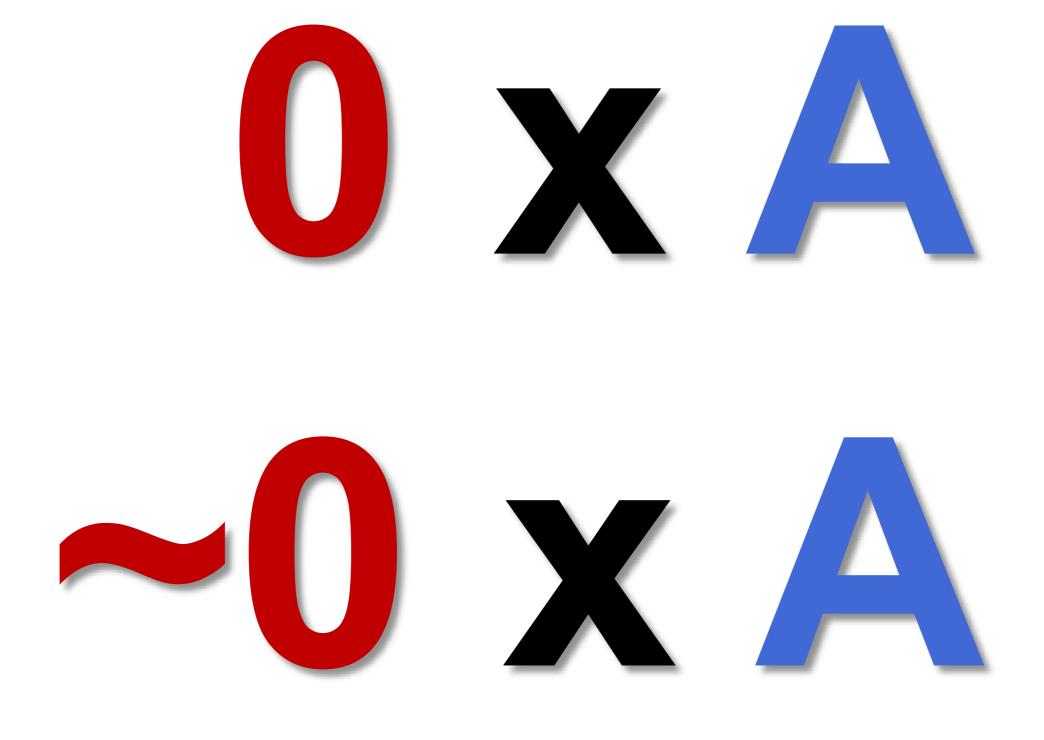
Our Approach



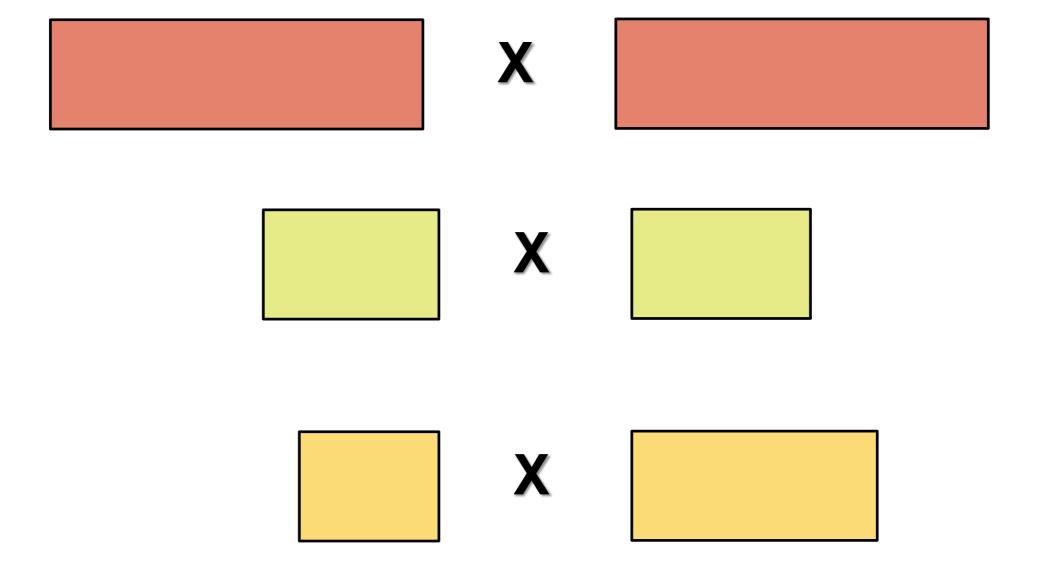
Longer Term Goal



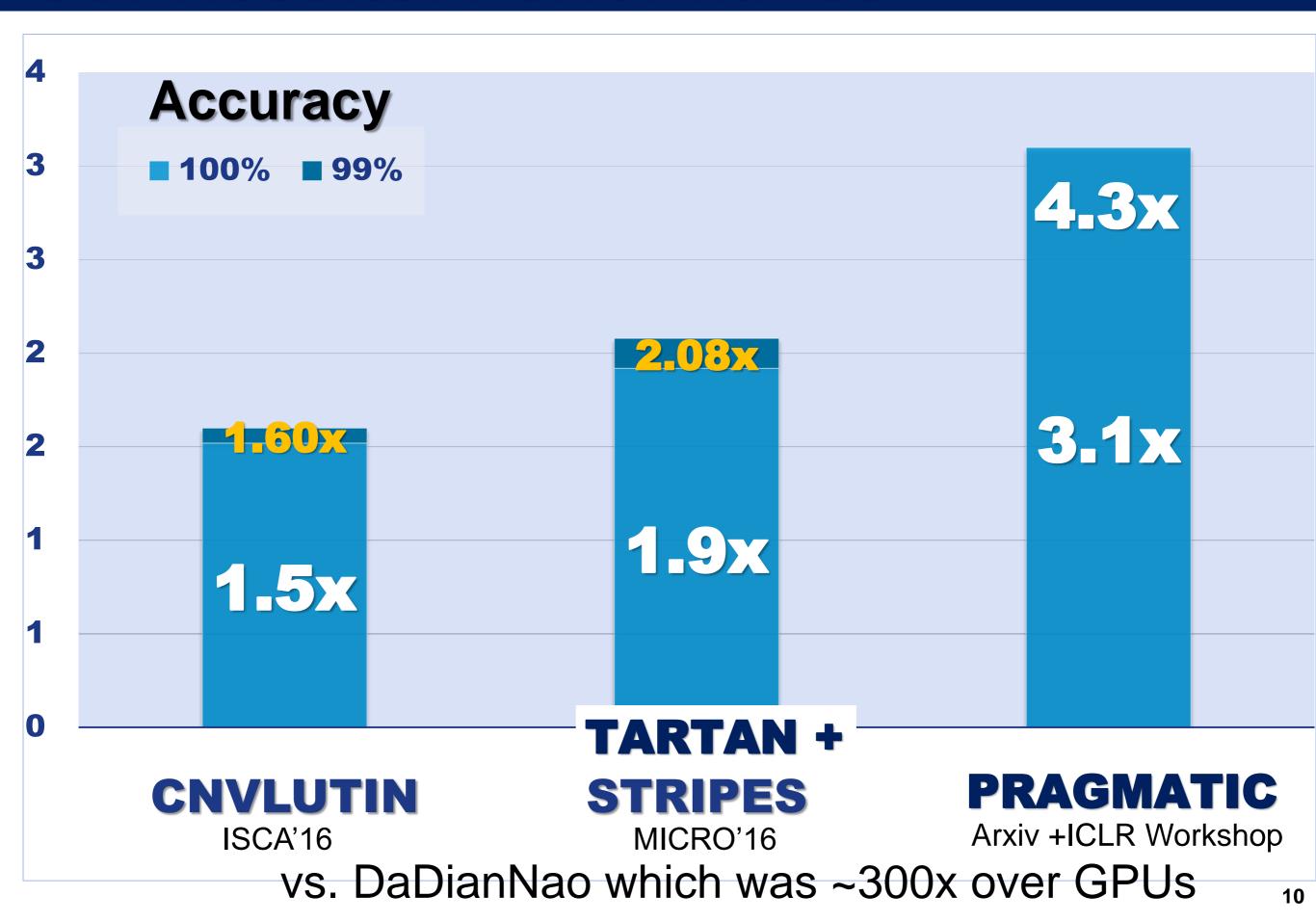
Value Properties to Exploit? Many ~0 values



Value Properties to Exploit? Varying Precision Needs



Our Results: Performance



Our Results: Memory Footprint and Bandwidth

• Proteus:

44% less memory bandwidth + footprint

Roadmap

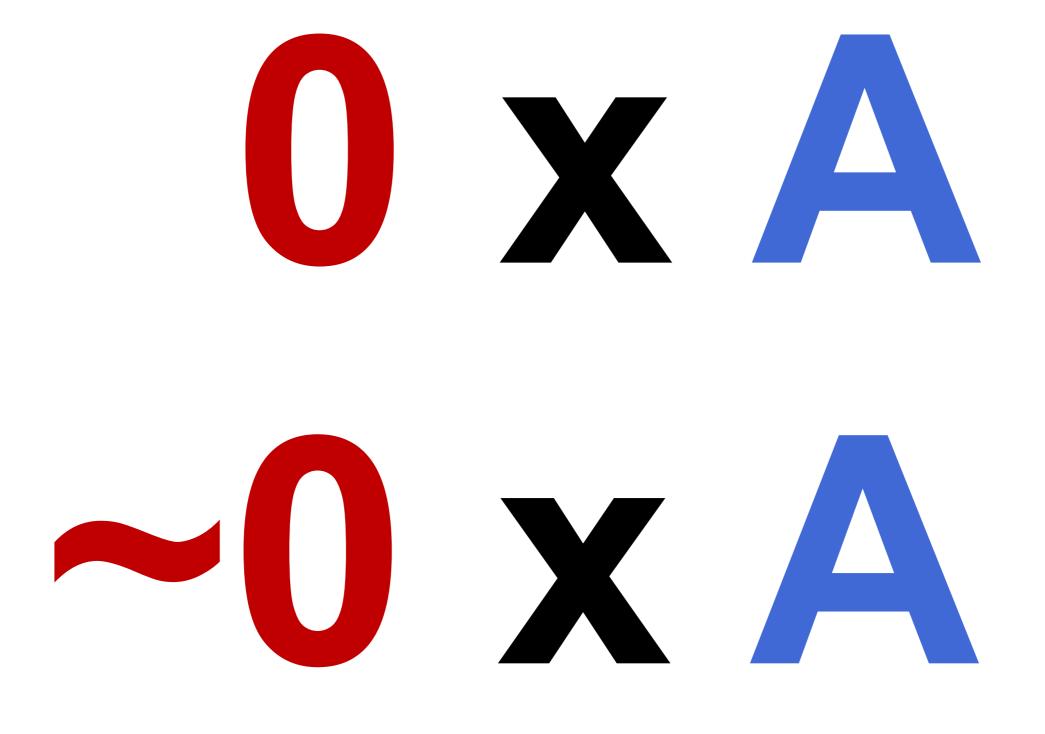
Avoiding computations with ~0

Performance from precision

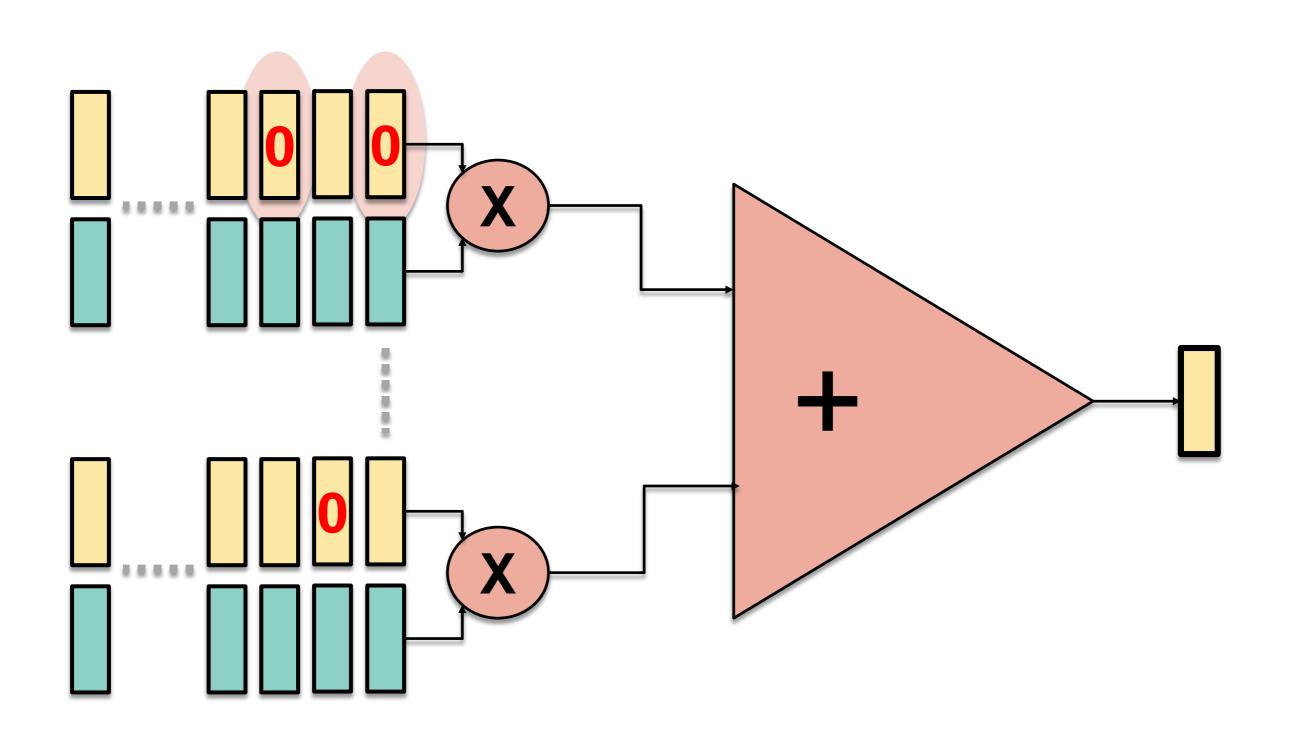
Performance from zero bits

Reducing footprint and bandwidth

#1: Skipping Ineffectual Activations

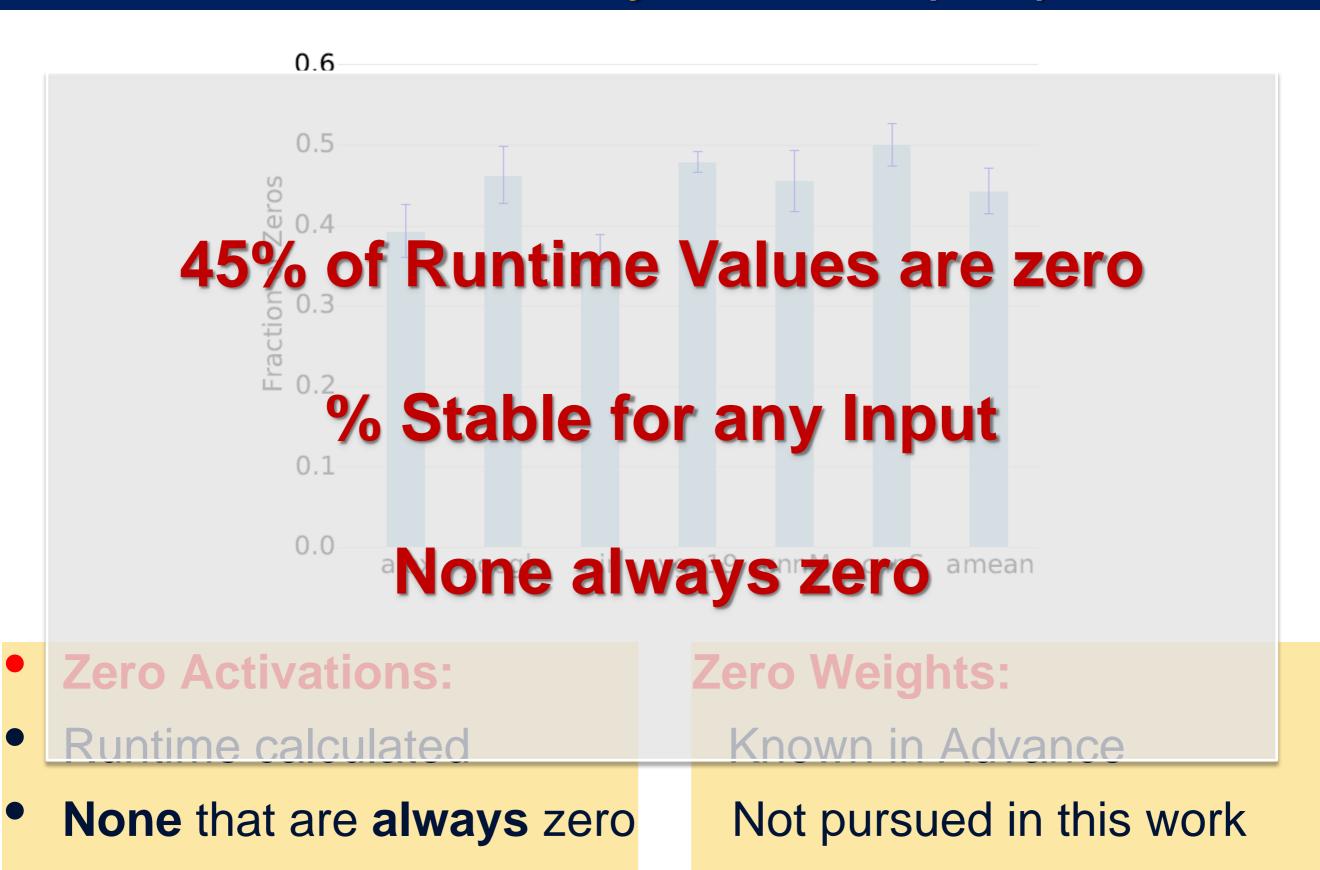


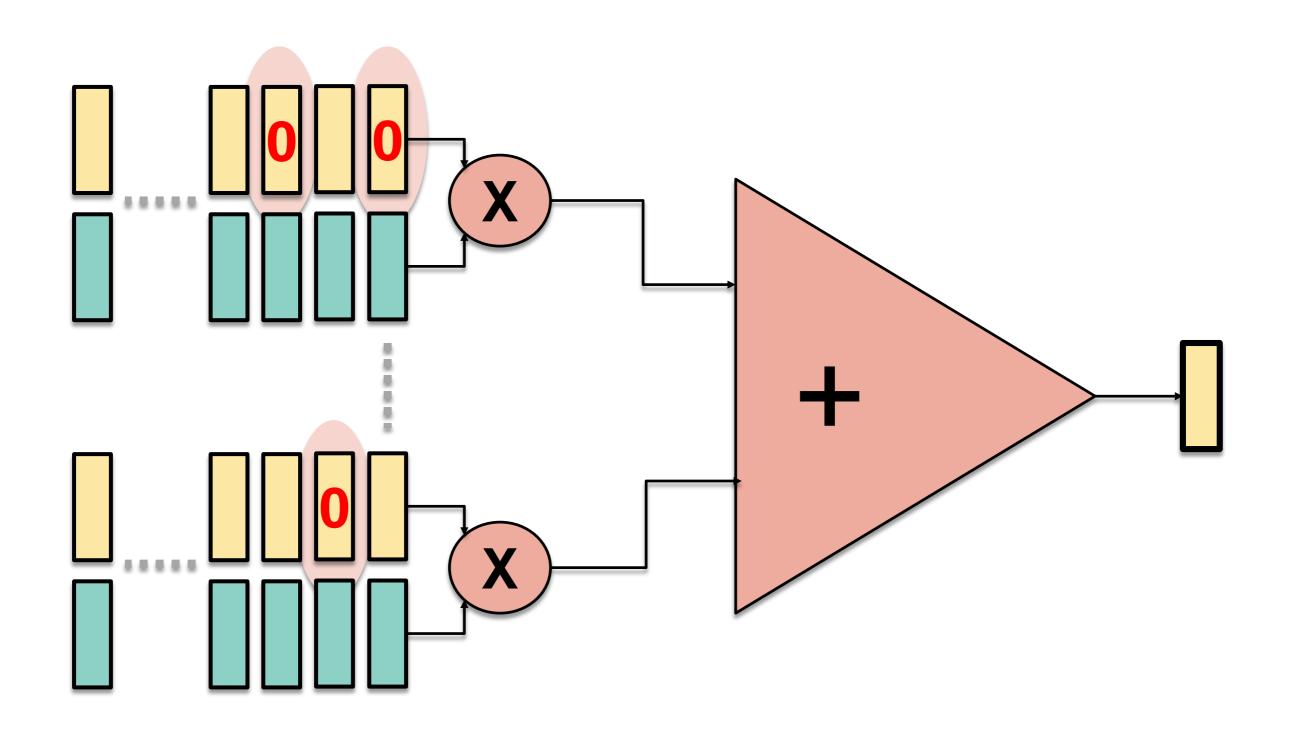
Cnvlutin: ISCA'16



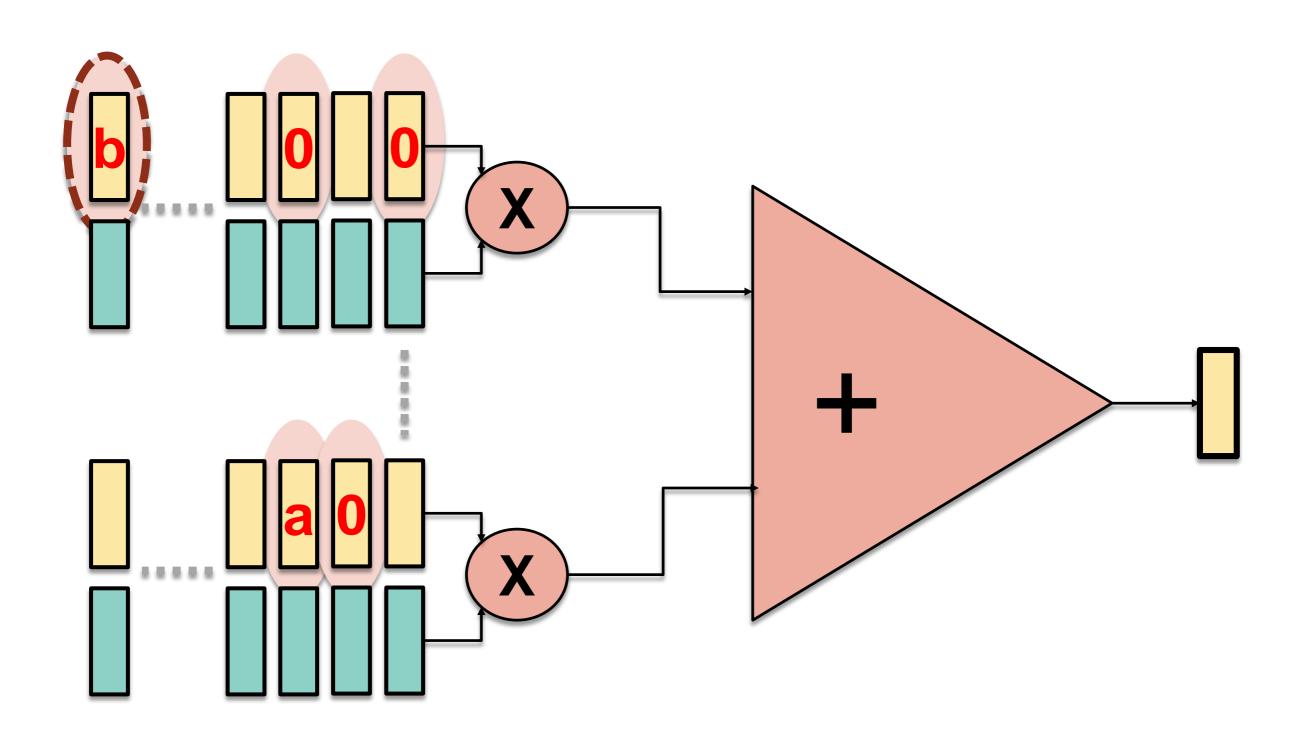
Many ineffectual multiplications

Many Activations and Weights are Intrinsically Ineffectual (zero)





Many ineffectual multiplications



Many more ineffectual multiplications

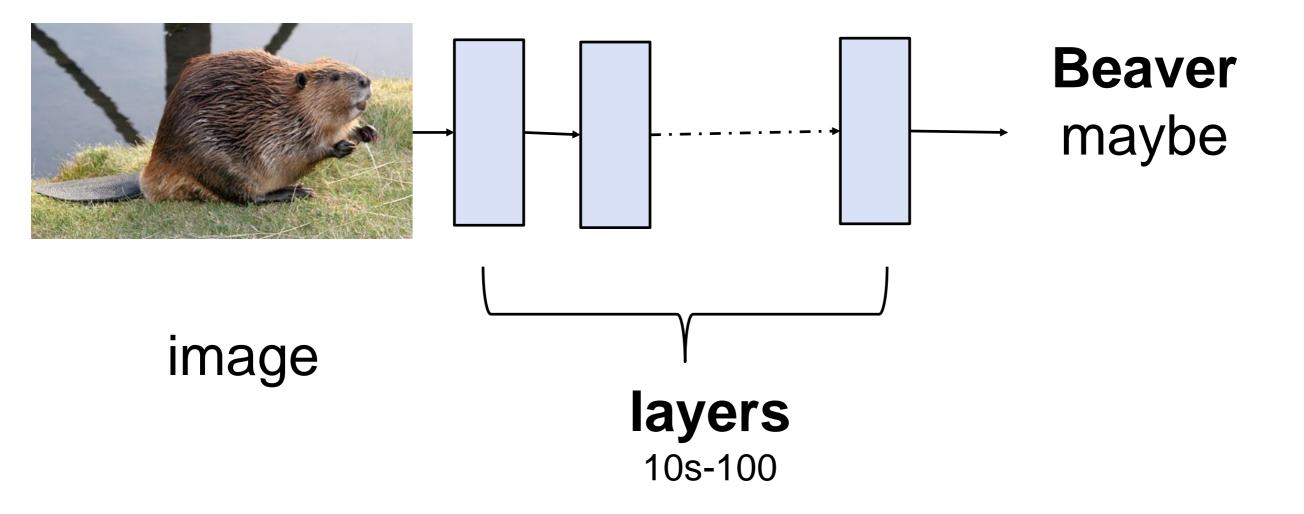
On-the-fly ineffectual product elimination
Performance + energy
Optional: accuracy loss +performance

No Accuracy Loss +52% performance -7% power +5% area

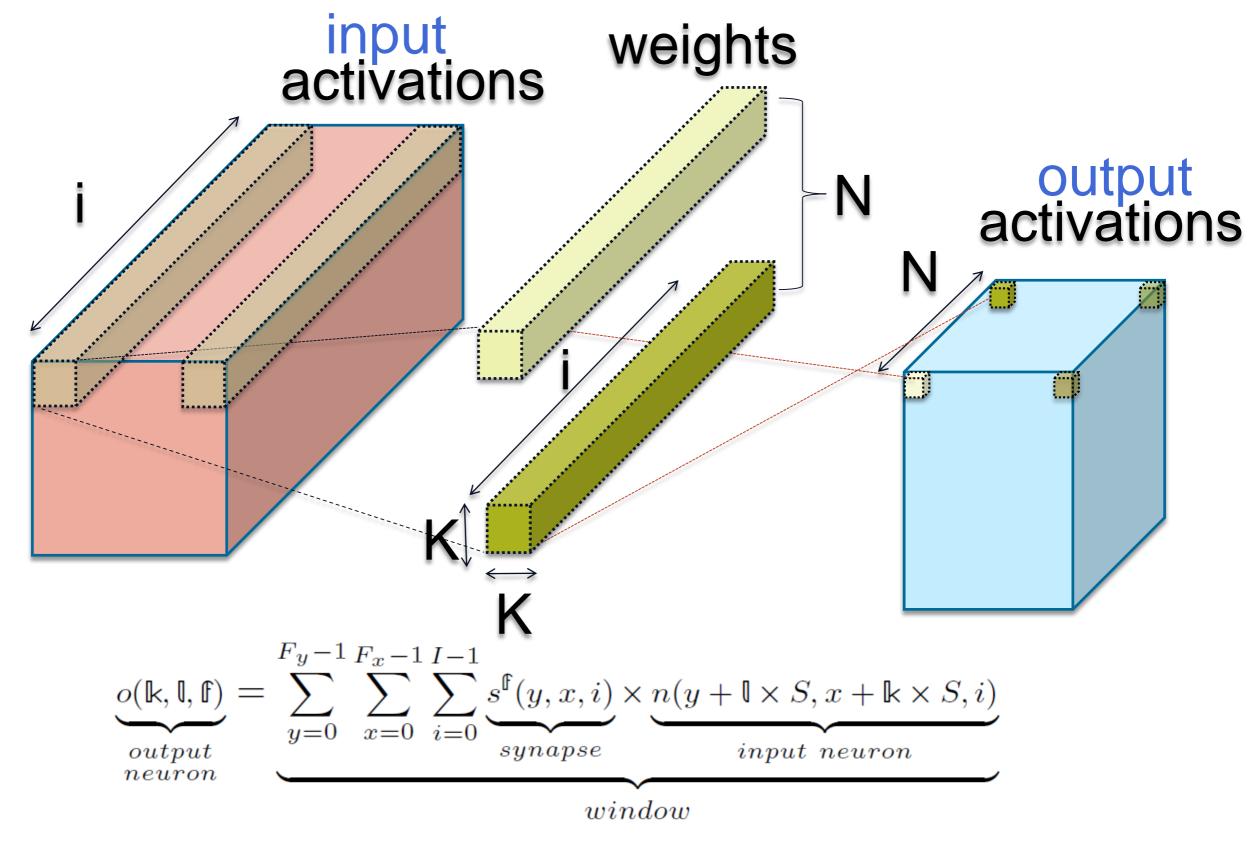
Can relax the ineffectual criterion better performance: 60%

even more w/ some accuracy loss

Deep Learning: Convolutional Neural Networks

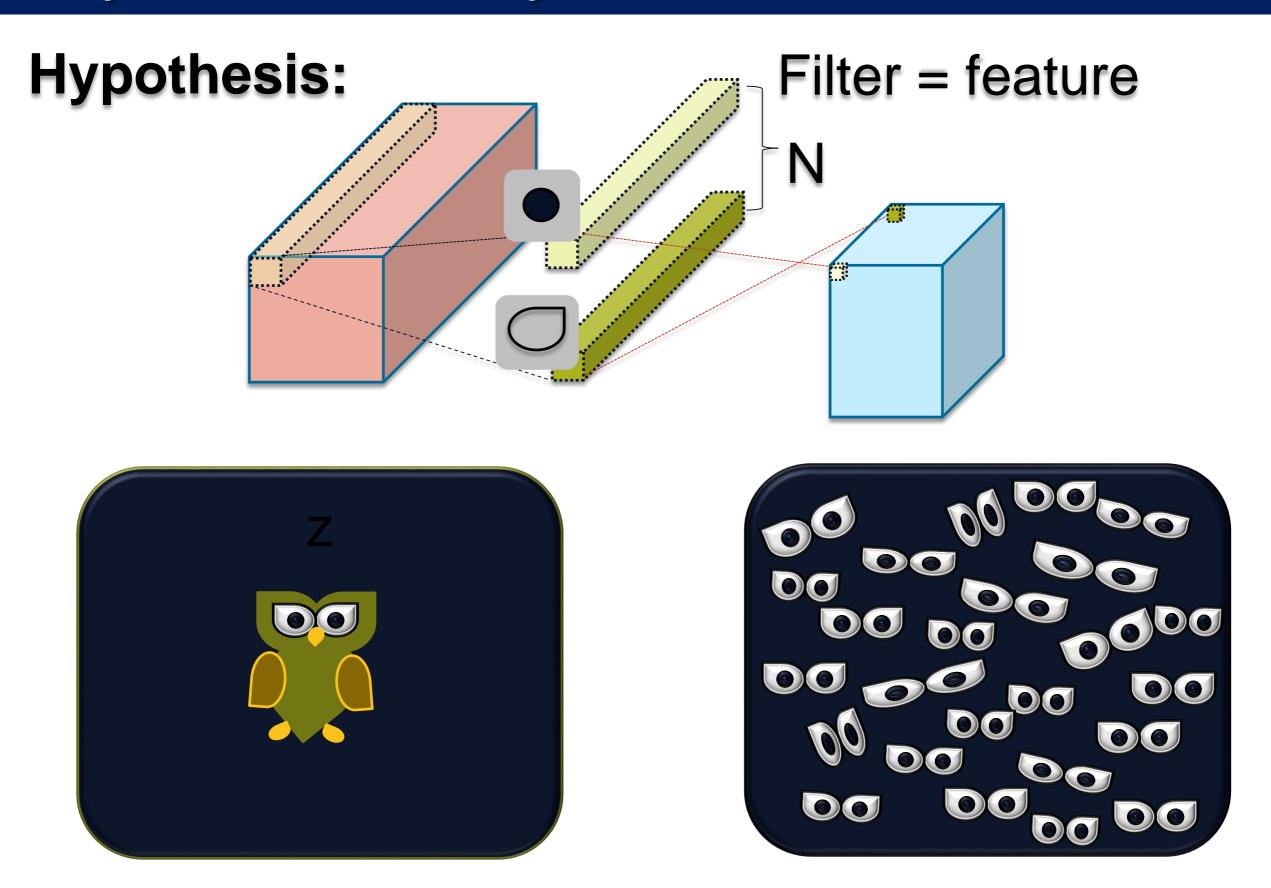


Deep Learning: Convolutional Networks

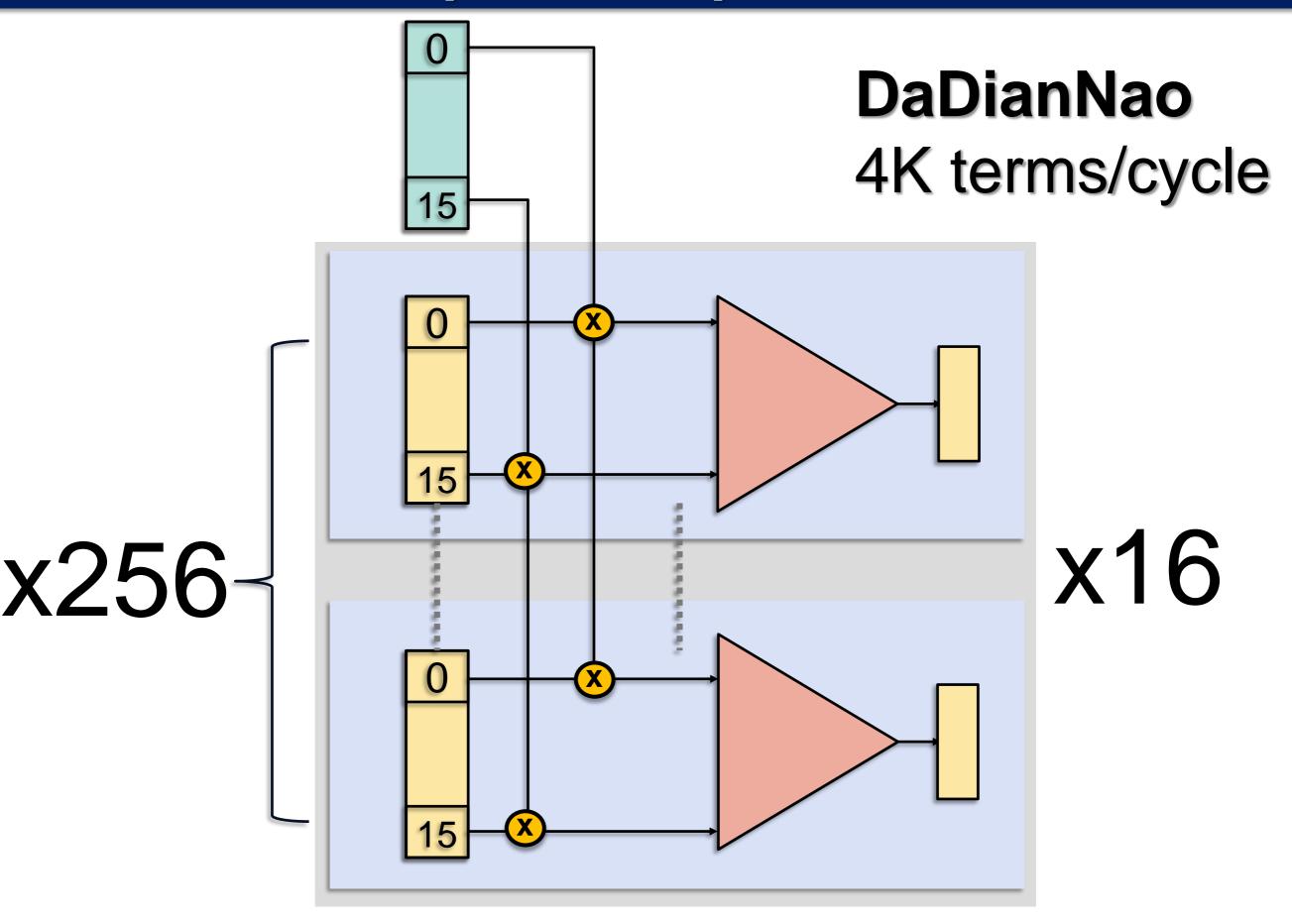


> 60% -- 90% of time in Convolutional Layers

Why are there so many zero neurons?



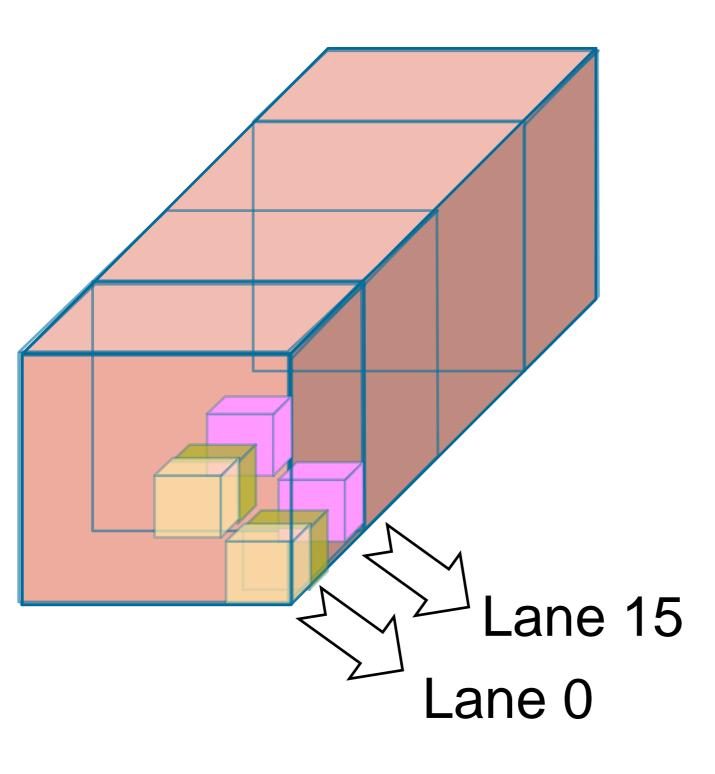
SIMD: Exploit Computation Stucture

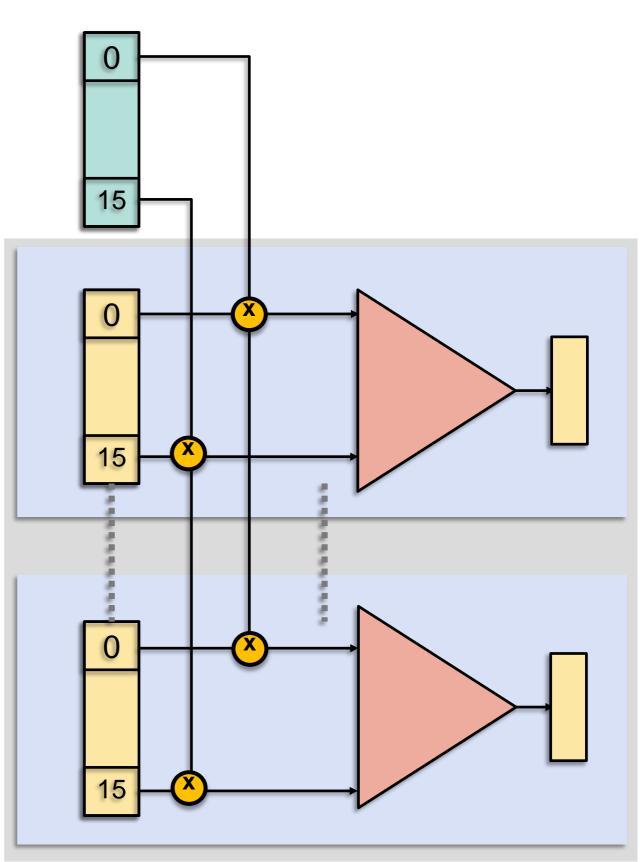


Skipping Ineffectual Activations: Key Challenge

• Processing all Activations:

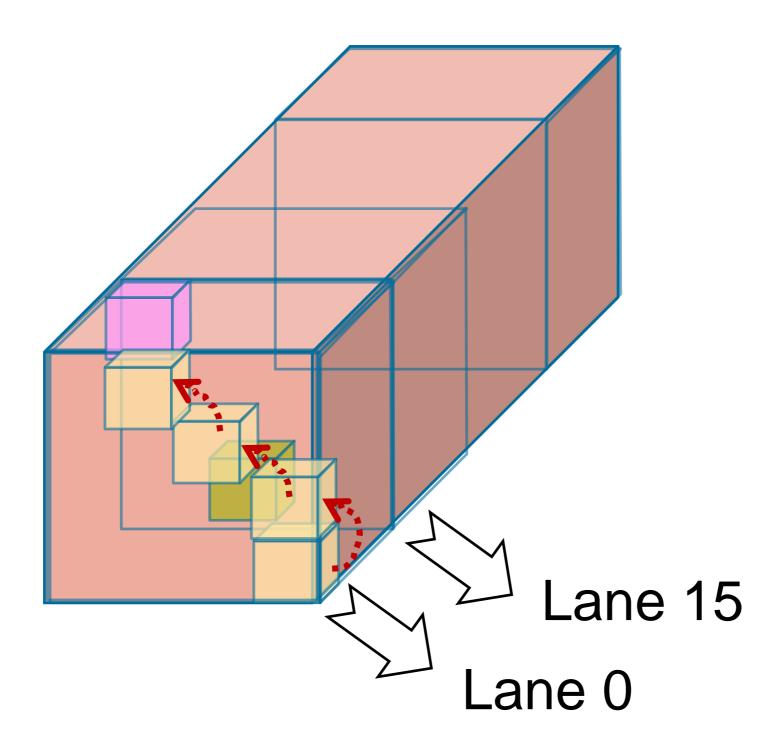
All Lanes operate in lock step



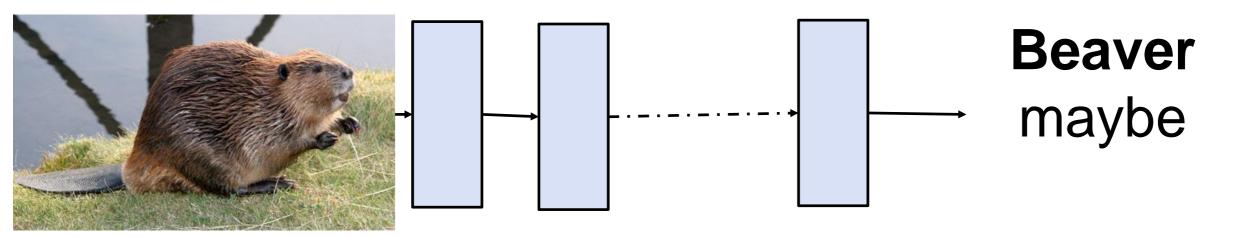


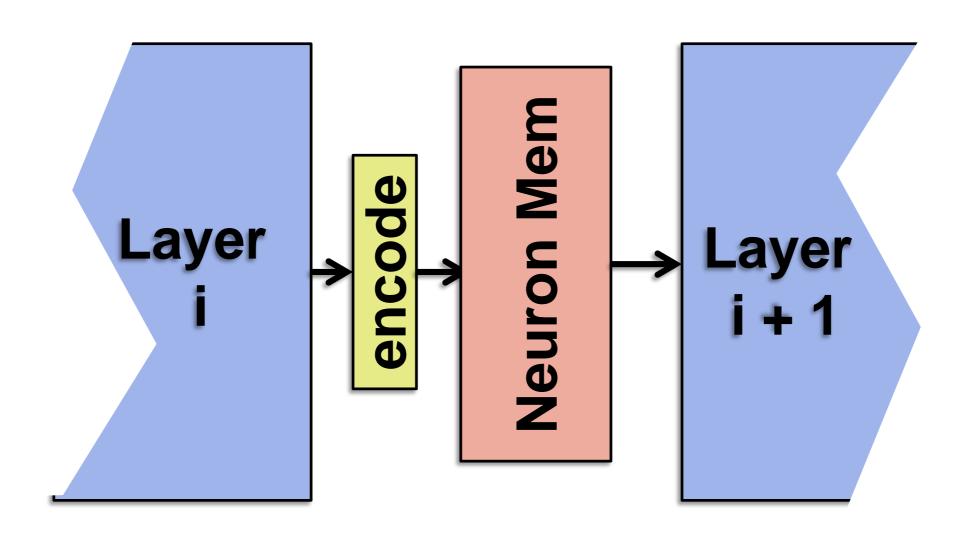
Naïve Solution: No Wide Memory Accesses

16 independent narrow activation streams

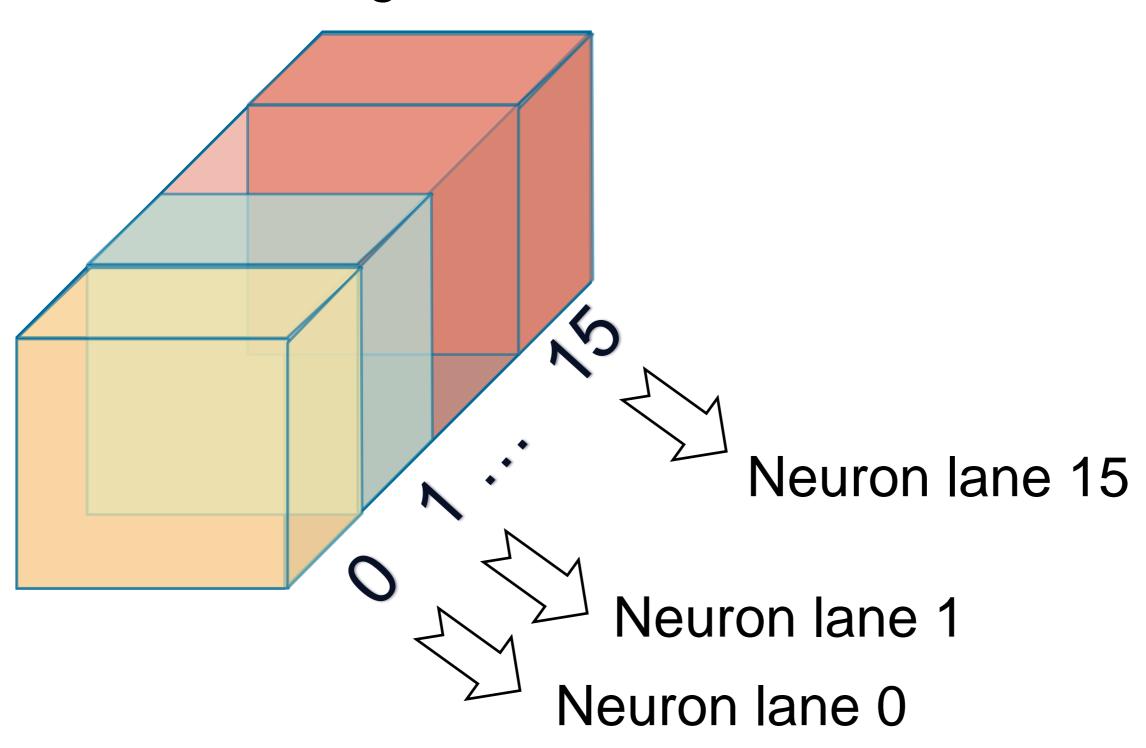


Removing Zeroes: At the output of each layer

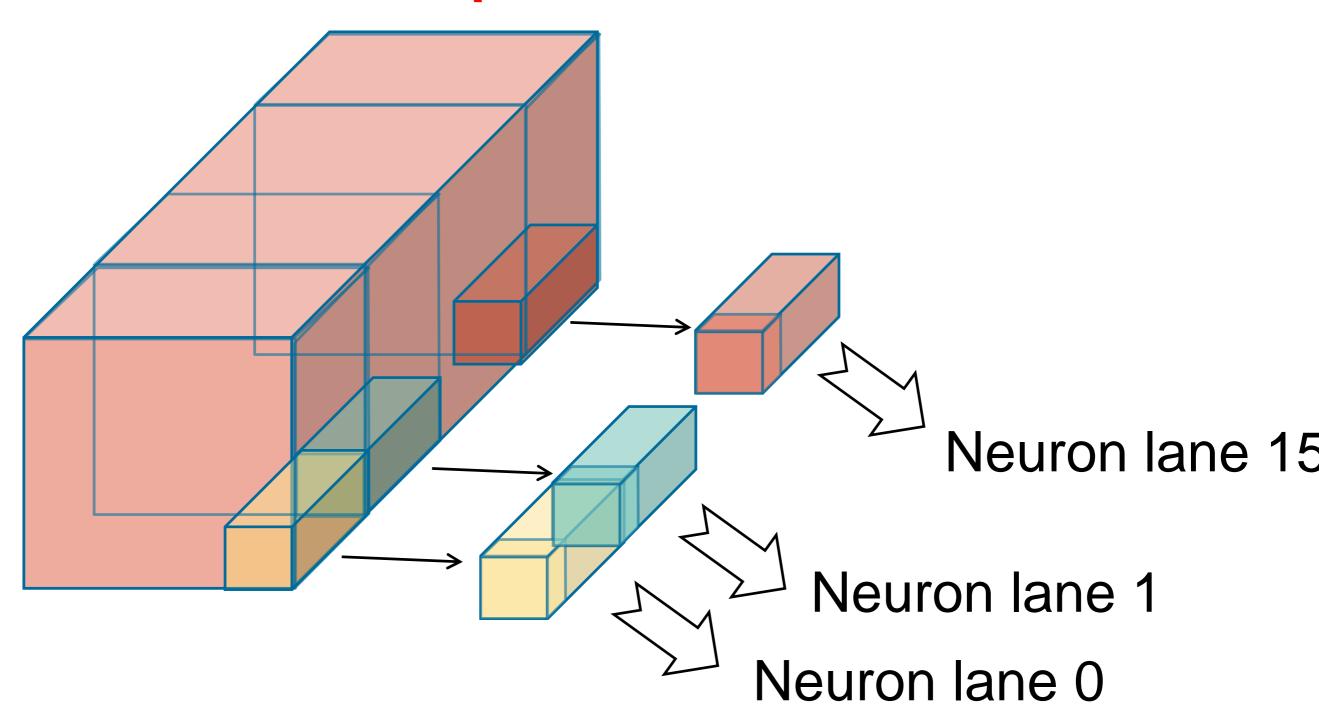




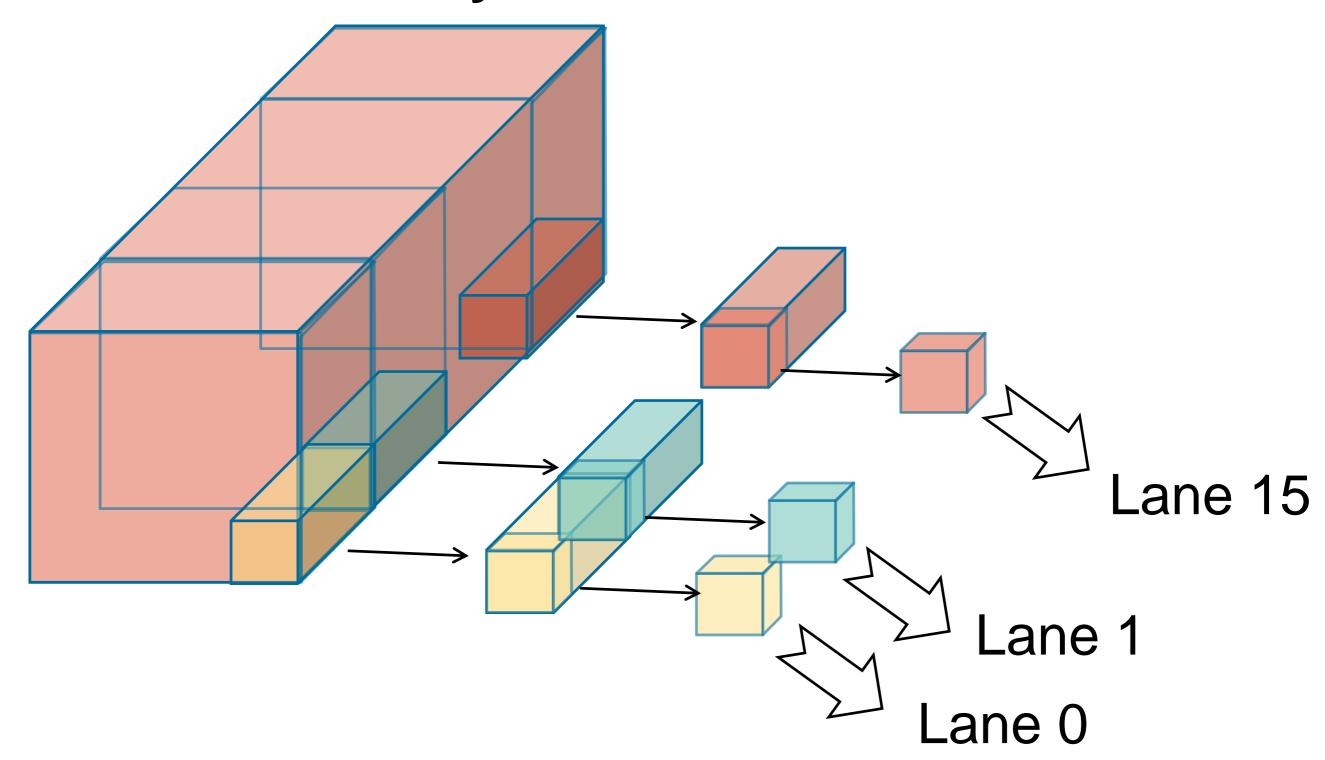
#1: Partition NM in 16 Slices over 16 Banks *Processing order does not matter*



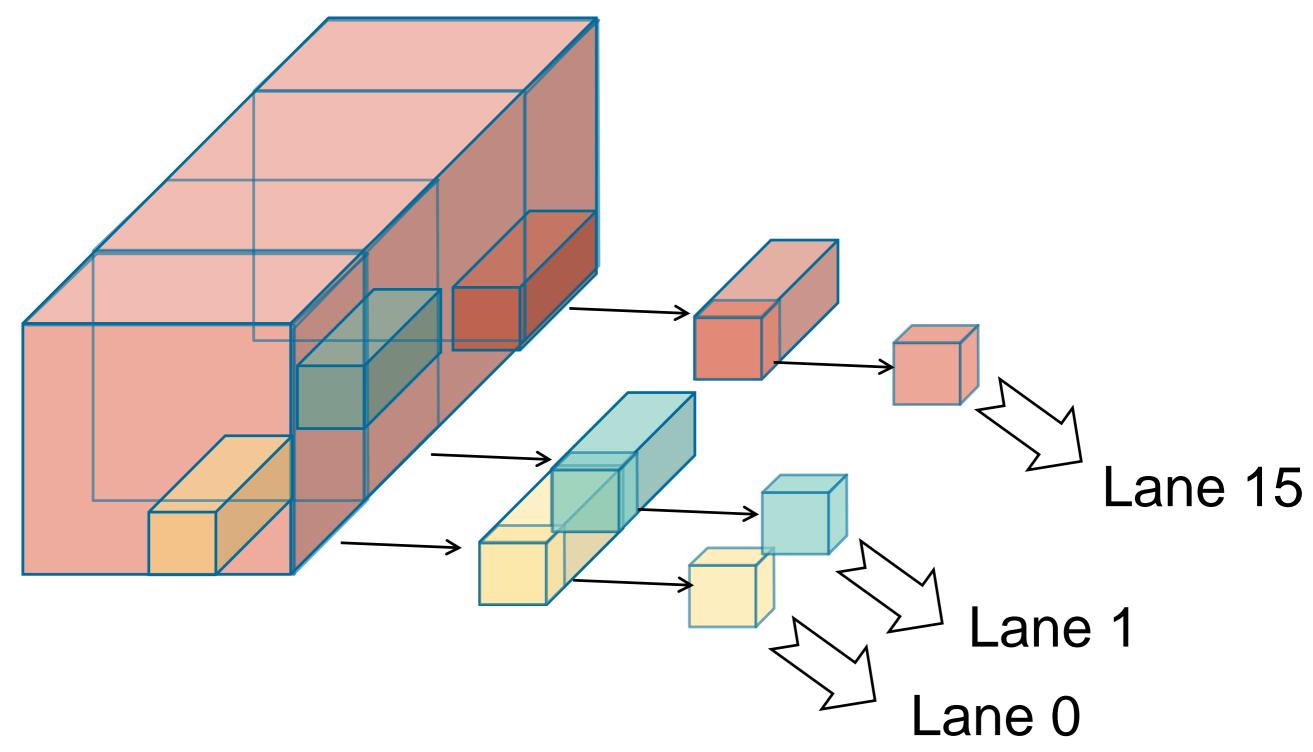
#2: Fetch and Maintain One Container per Slice Container: up to 16 non-zero neurons



#3: Keep Neuron Lanes Supplied with One Neuron Per Cycle

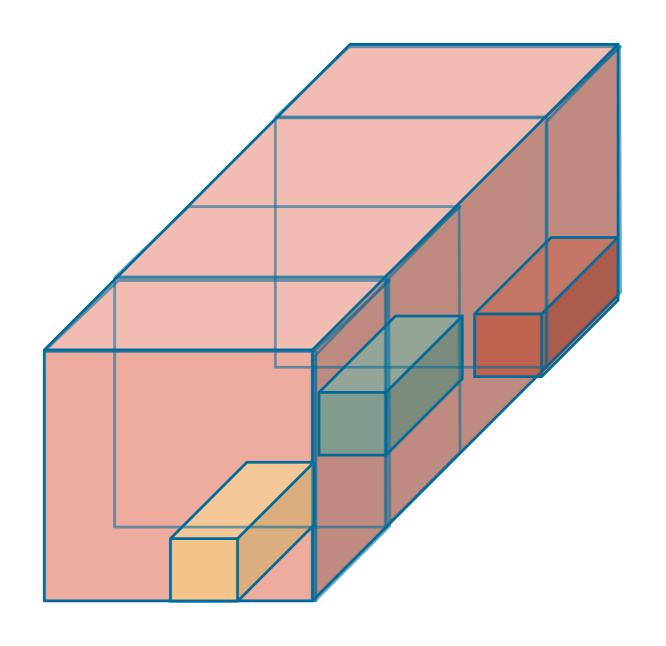


#4: When a container is exhausted, get the next one within the slice



Container: stores only non-zeros

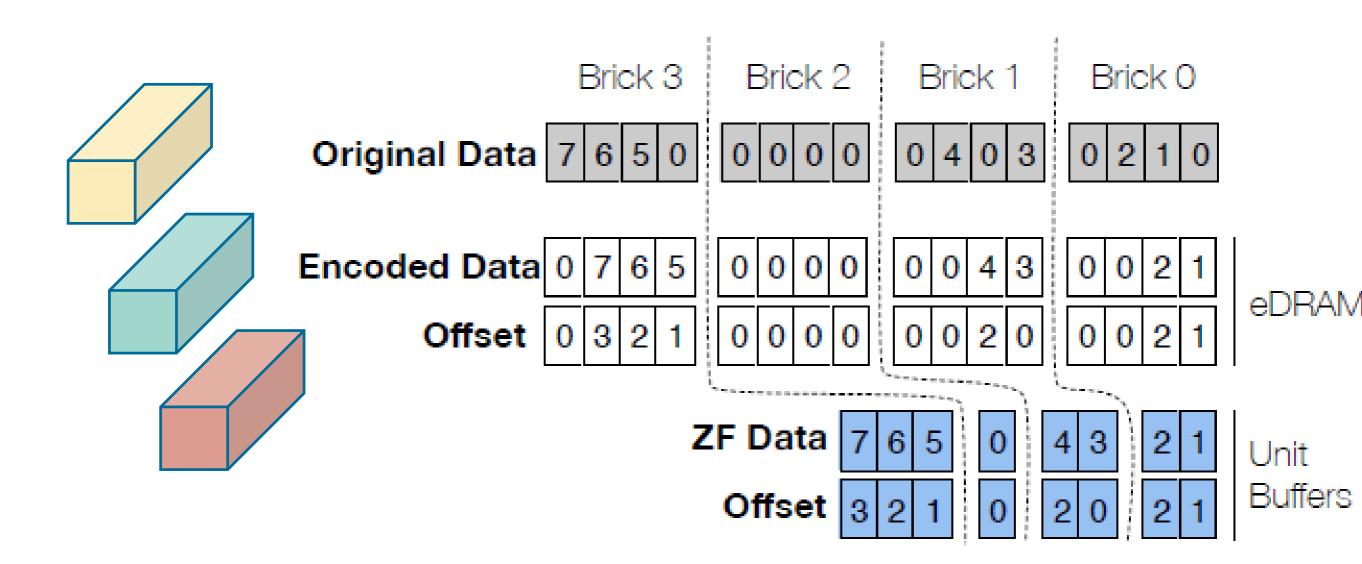
Encoding: Value, 4-bit offset



Could use 1 extra bit: encoded vs. raw

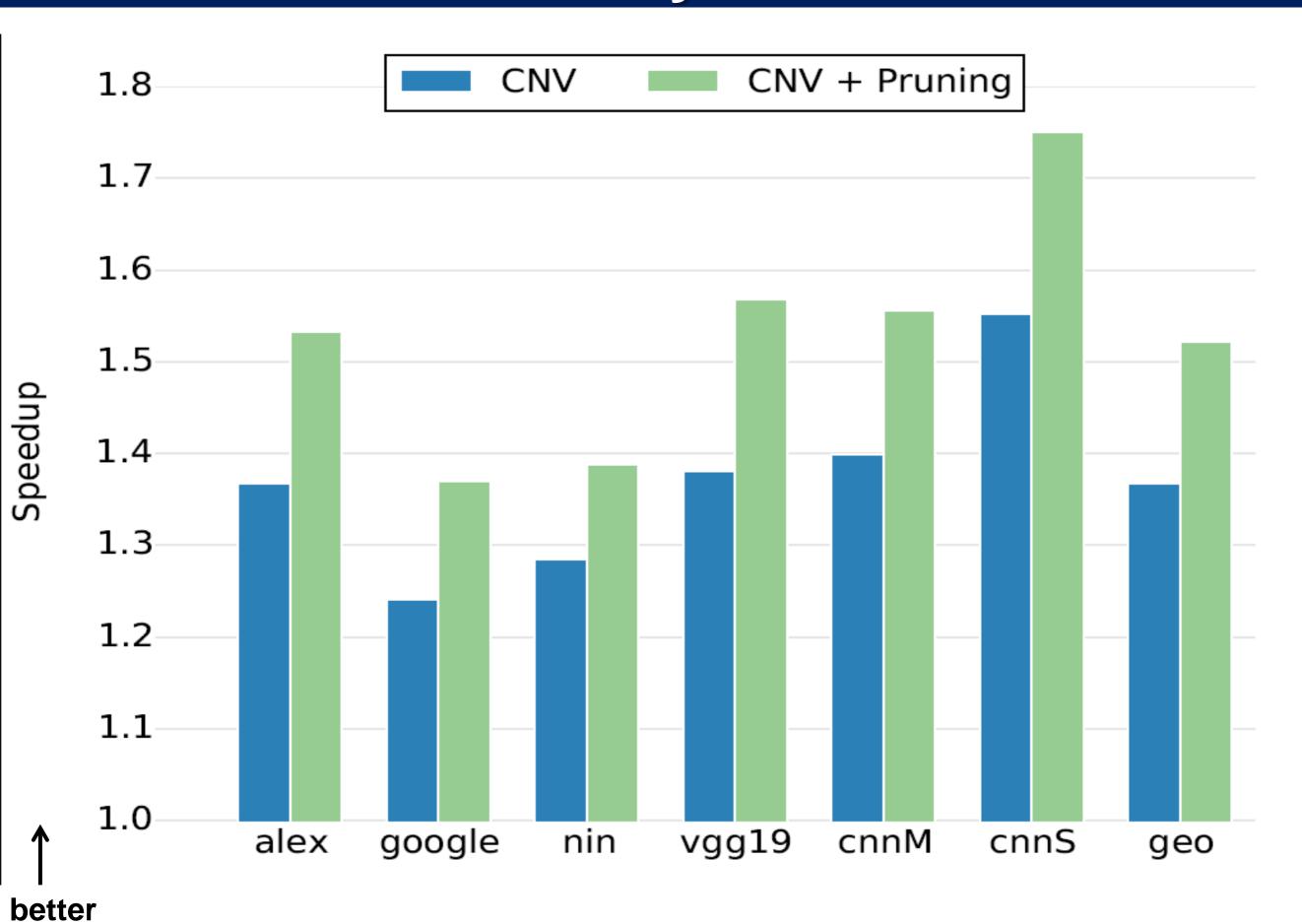
Inside Each Neuron Container

ZFNAf: Enabling the Skipping of Ineffectual Neurons

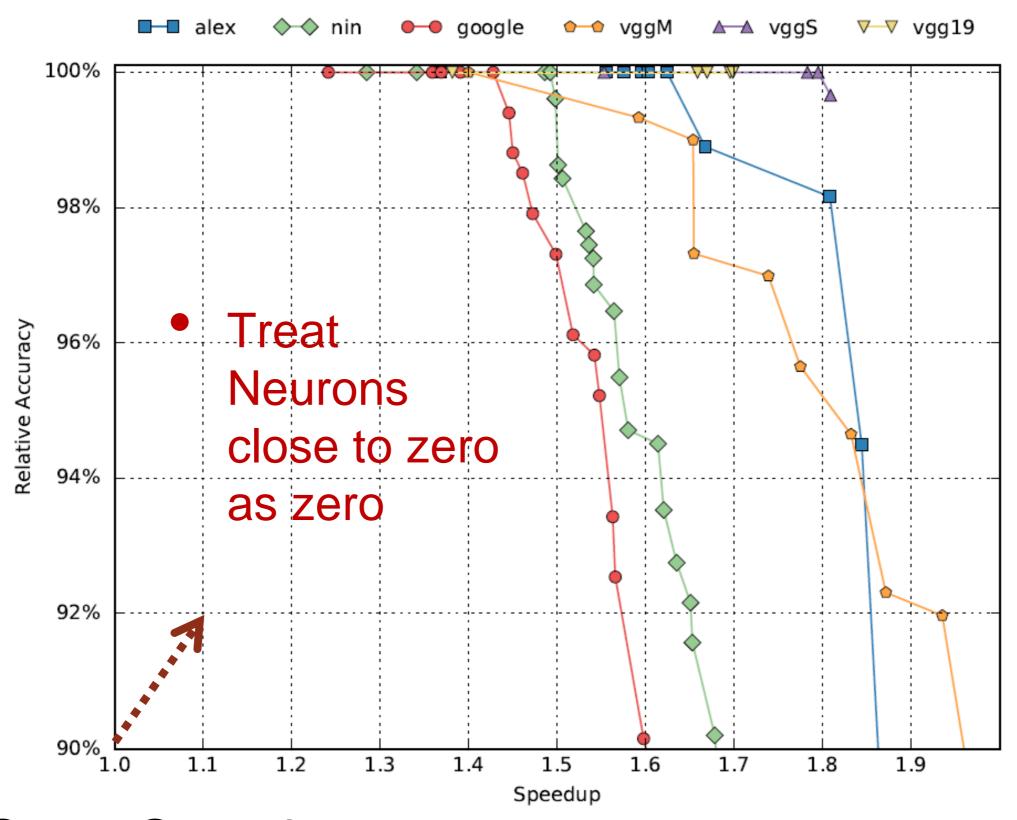


- Zero-Free Neuron Array Format:
- Only non-zero neurons + offsets
- Brick-level

Cnvlutin: No Accuracy Loss



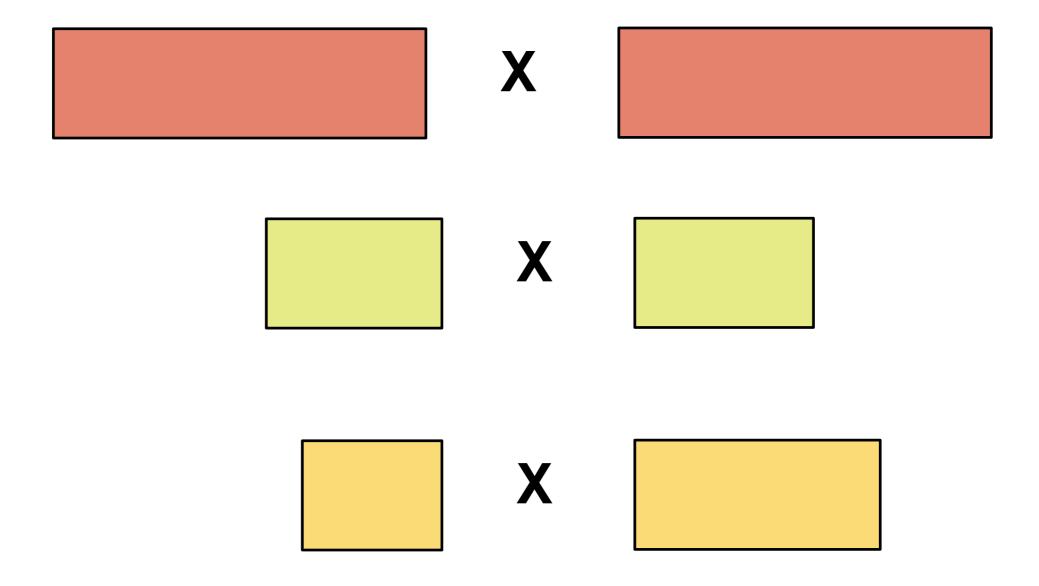
Loosening the Ineffectual Neuron Criterion



Open Questions:

Are these robust? How to find the best?

#2: Exploiting Precision



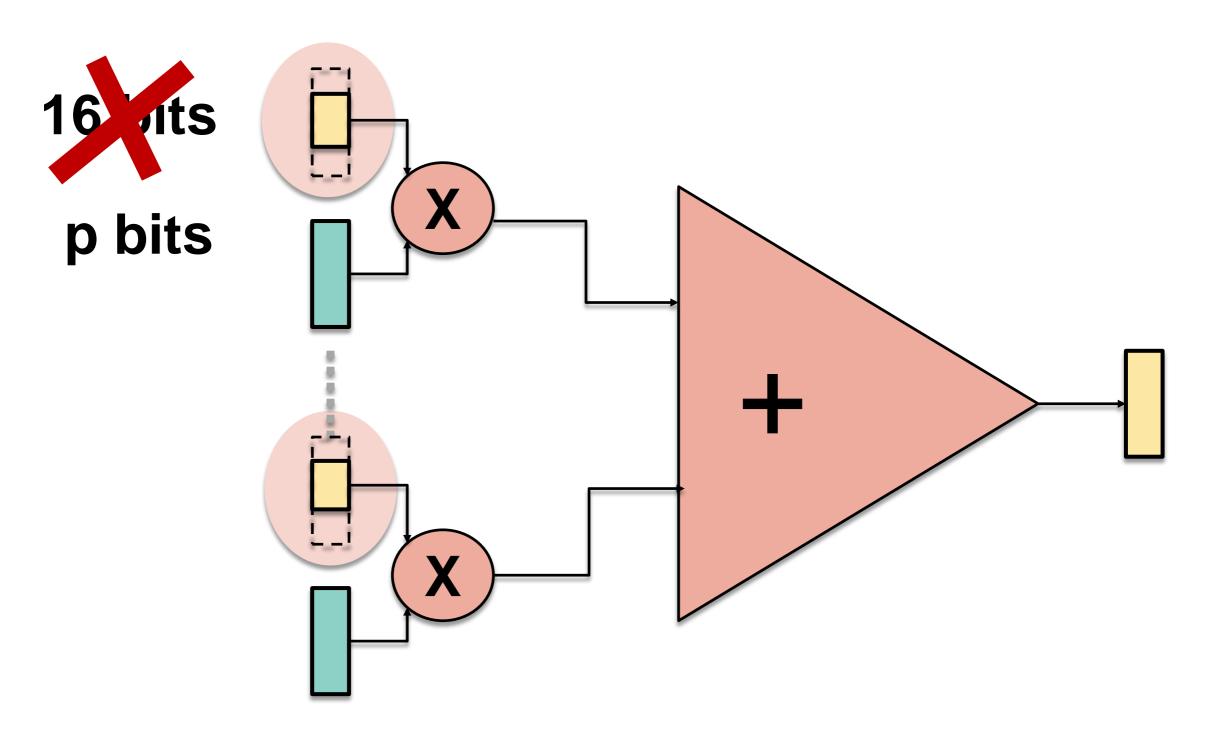
Another Property of CNNs



Operand Precision Required Fixed?

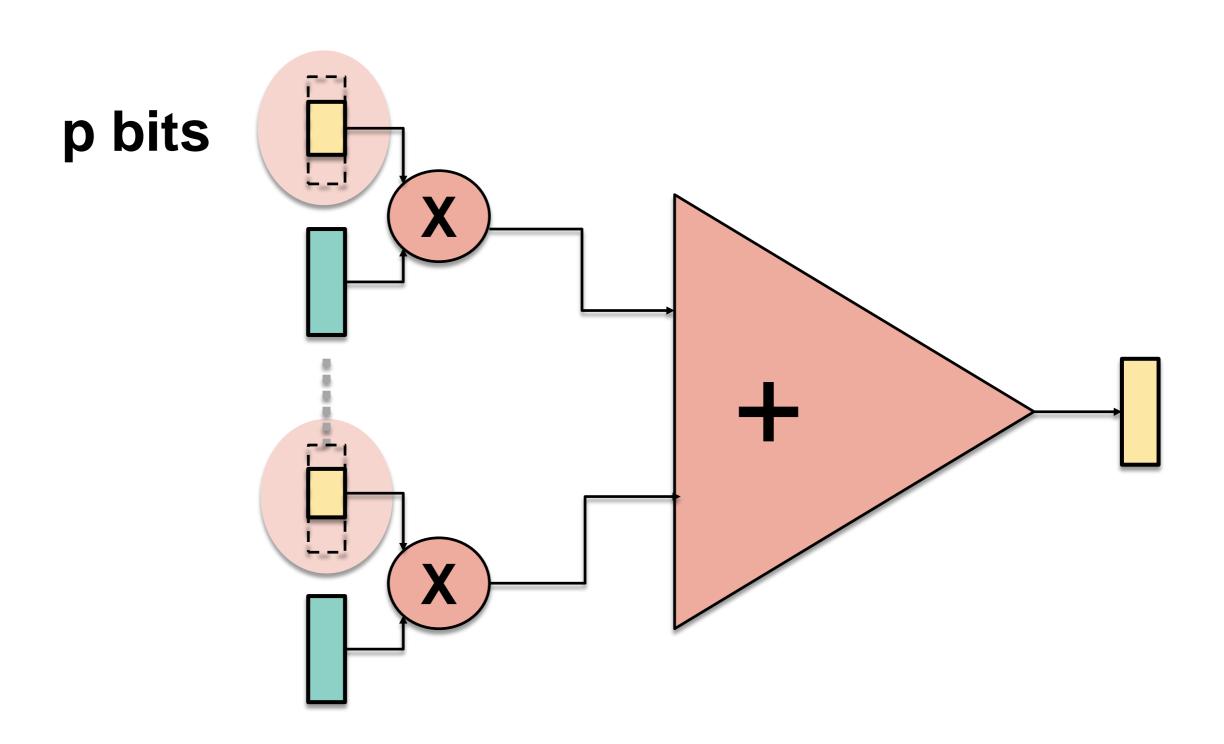
16 bits?

CNNs: Precision Requirements Vary



Operand Precision Required Fixed Varies
5 bits to 13 bits

Stripes



Execution Time = 16 / P

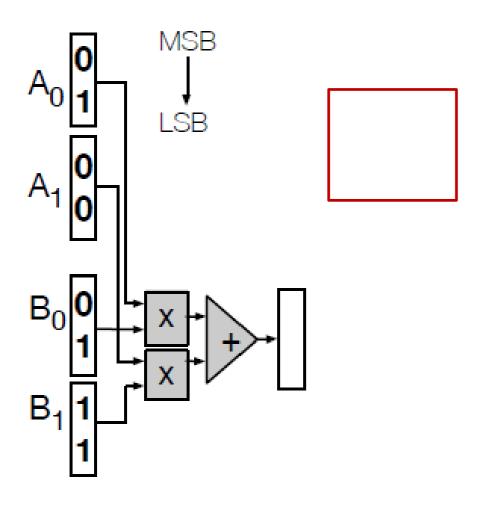
Peformance + Energy Efficiency + Accuracy Knob

Stripes: Key Concept

2 2x2b Terms/Step

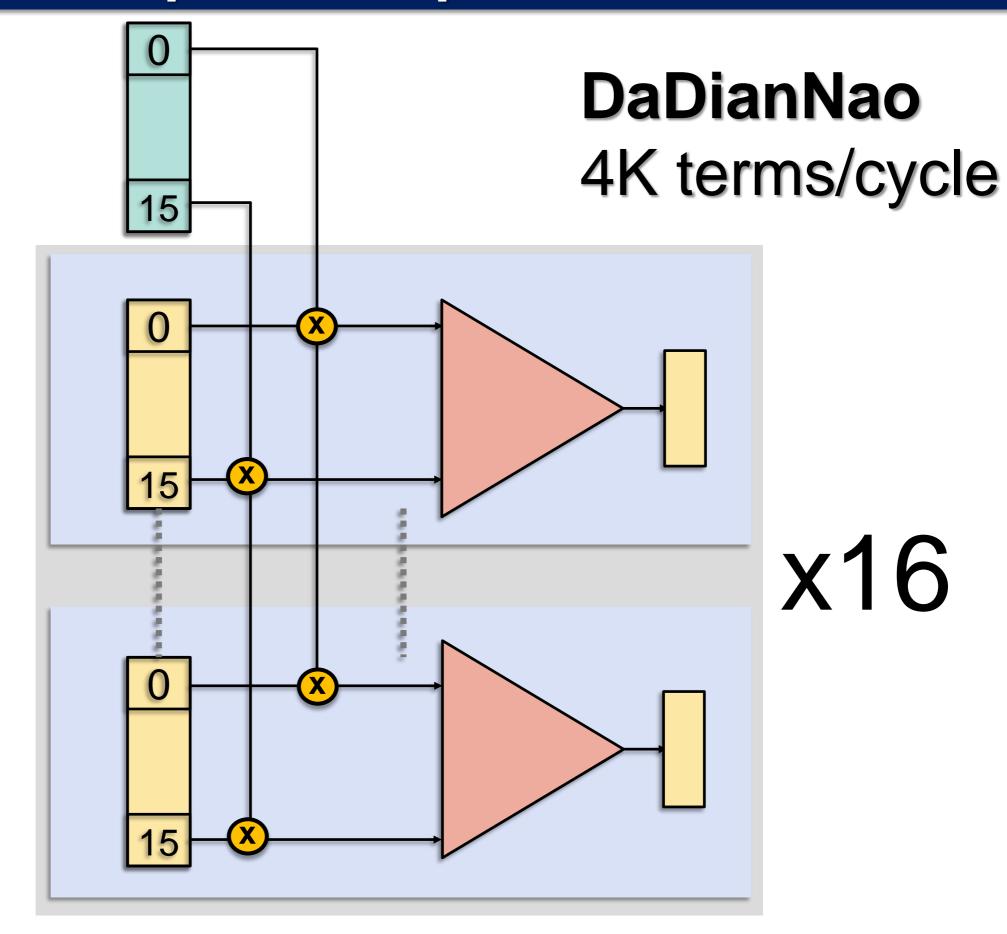
2 1x2b

4 1x2b

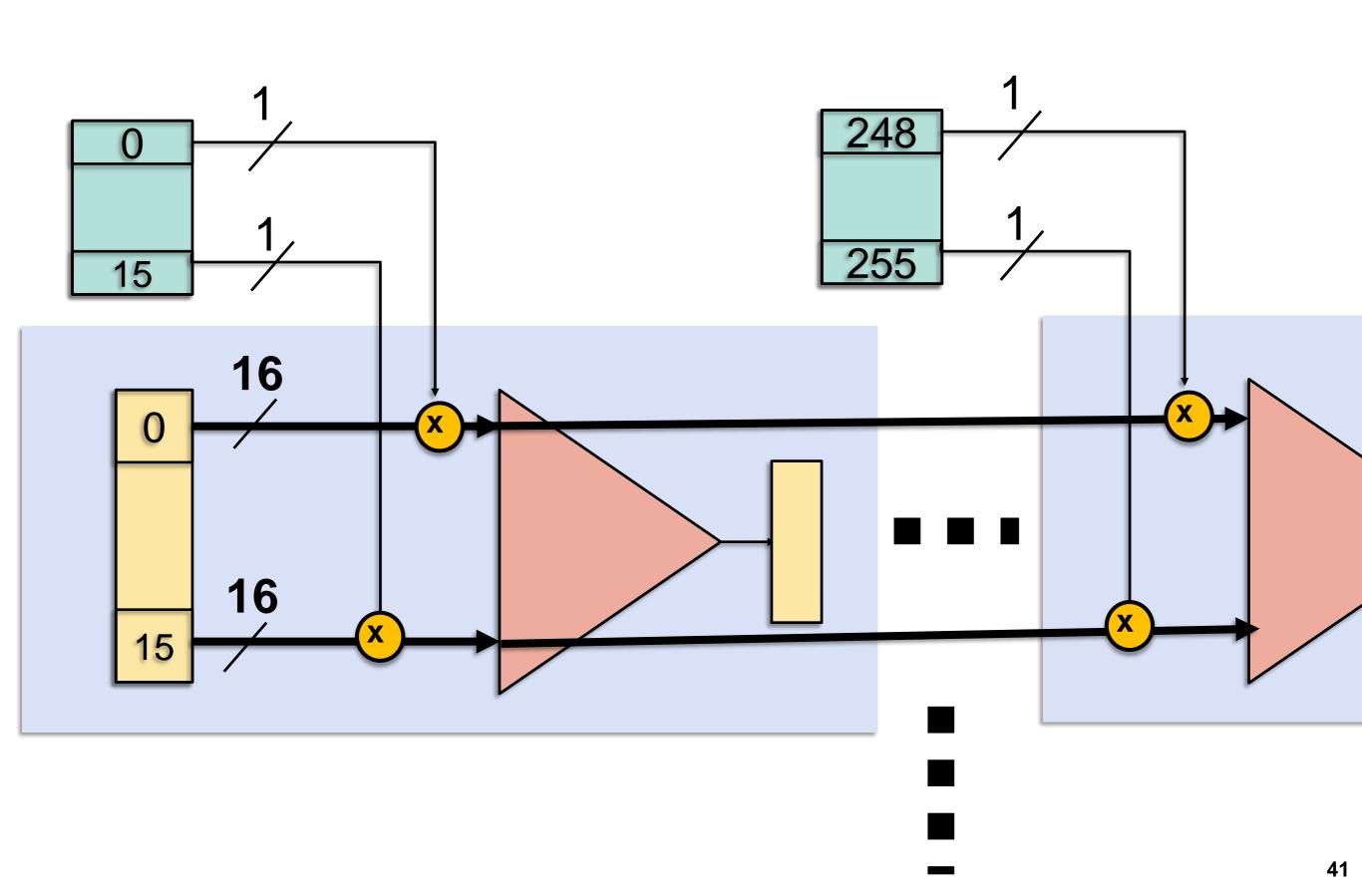


• Devil in the Details: Carefully chose what to serialize and what to reuse → same input wires as baseline

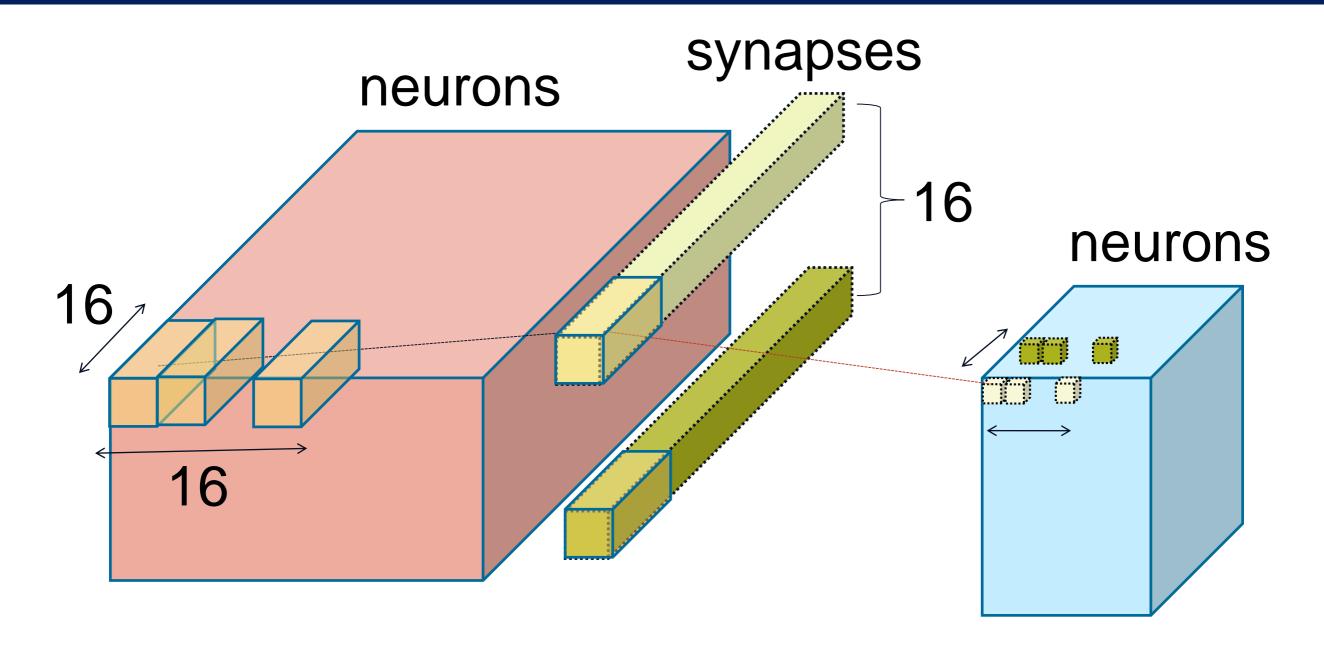
SIMD: Exploit Computation Stucture



Stripes Bit-Serial Engine



Compensating for Bit-Serial's Compute Bandwidth Loss



• Each Tile:

- 16 Windows Concurrently 16 neurons each
 - 16 Filters
 - 16 partial output neurons

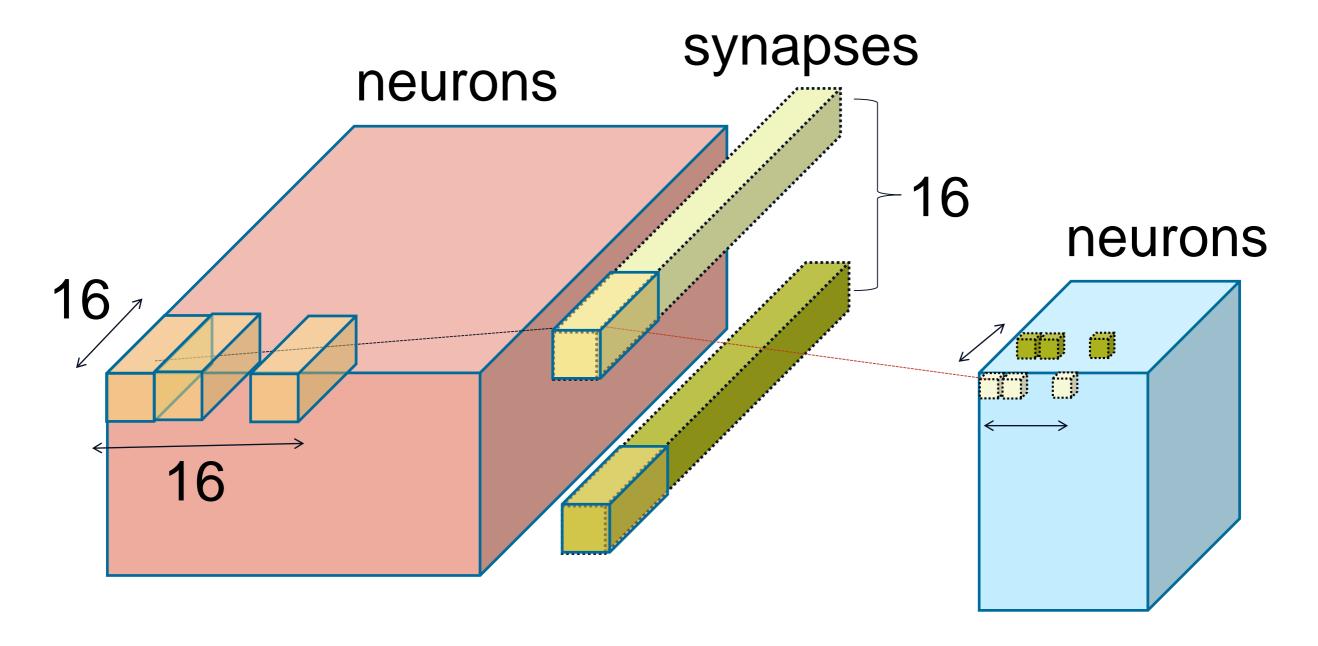
Stripes

No Accuracy Loss +192% performance* -57% energy +32% area

More performance w/ accuracy loss

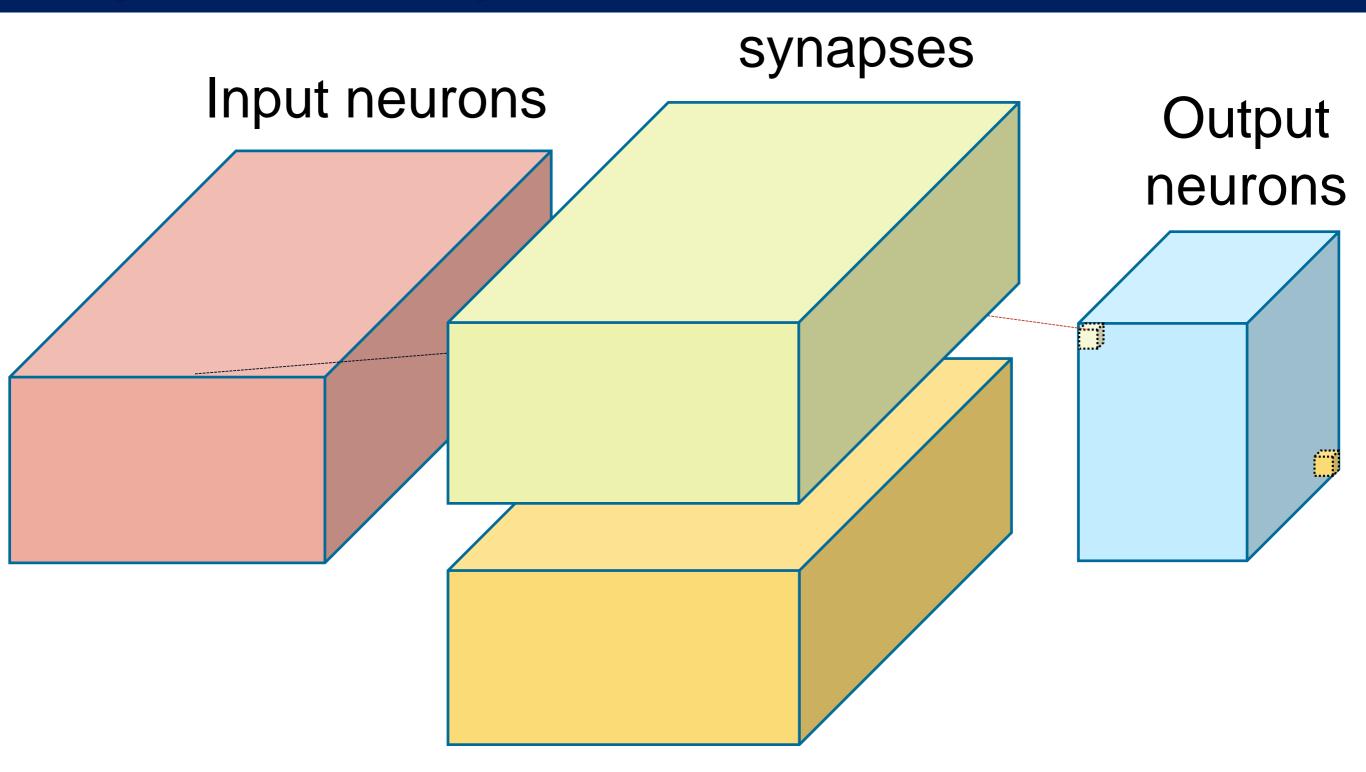
Stripes: Performance Boost

Fully-Connected Layers?



- Each Tile:
- No Weight Reuse
- Cannot Have 16 Windows

Fully-Connected Layers

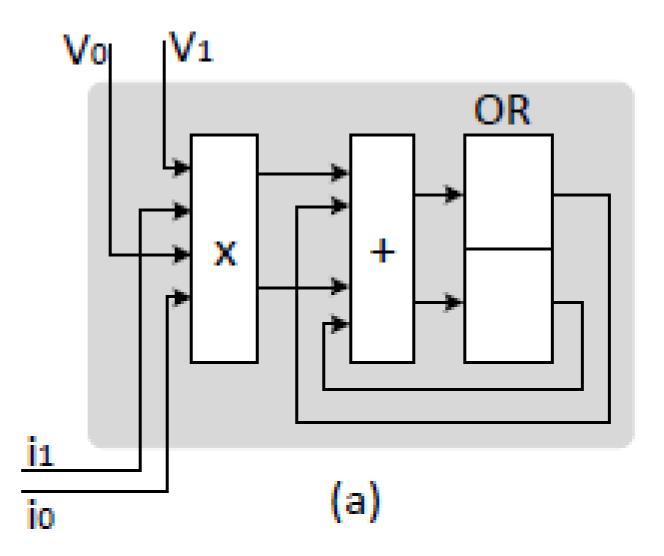


- No Weight Reuse
- Cannot Have 16 Windows

TARTAN: Accelerating Fully-Connected Layers

Bit-Parallel Engine

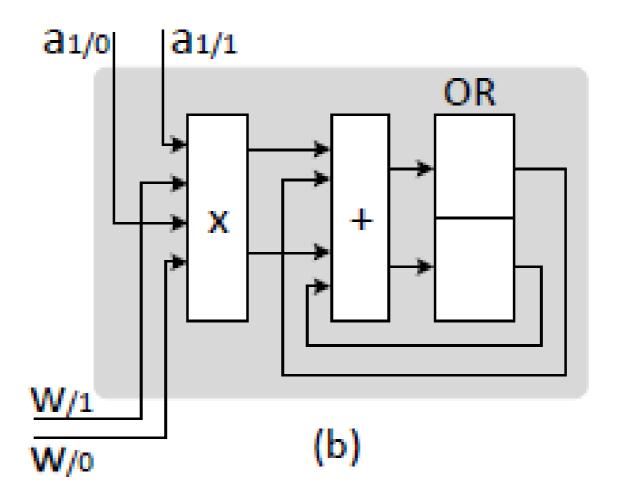
- V: activation
- I: weight
- Both 2 bits



Bit-Parallel Engine: Processing one Activation x Weight

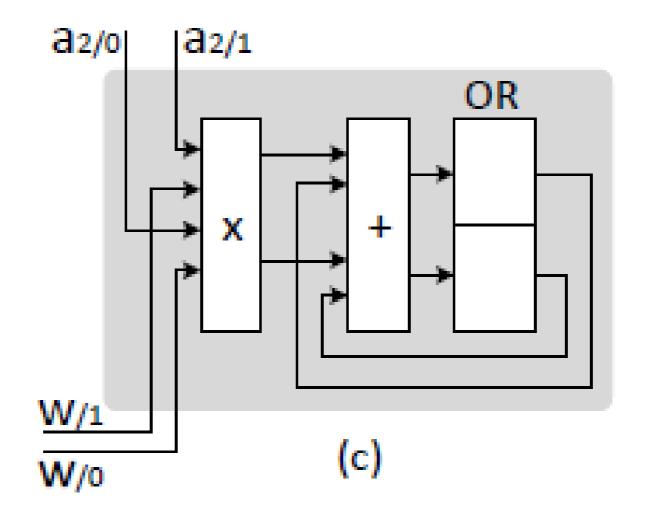
• Cycle 1:

Activation: a1 and Weight: W



Bit-Parallel Engine: Processing Another Pair

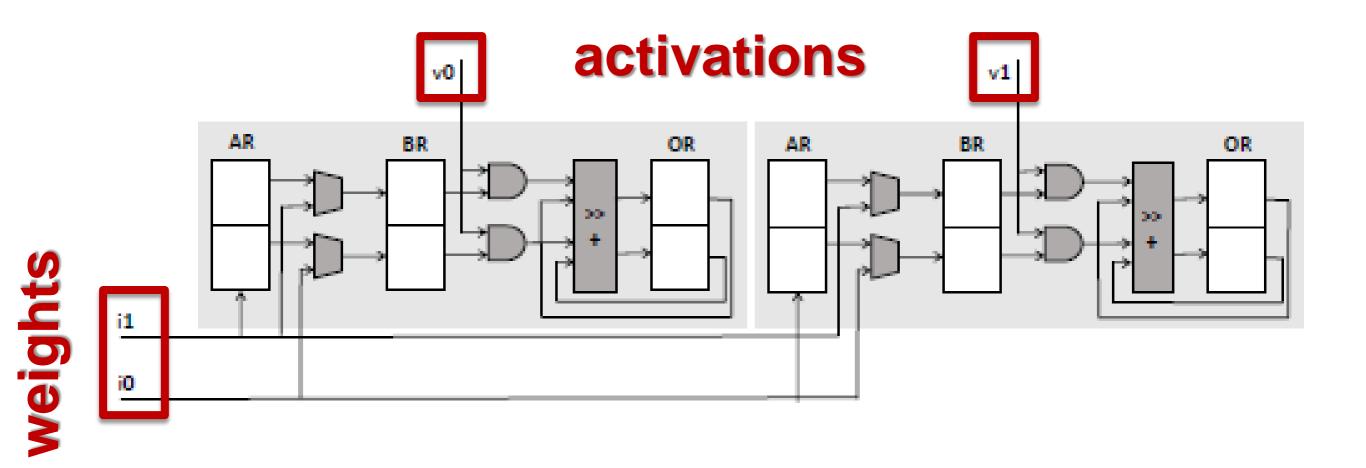
- Cycle 2:
 - Activation: a2 and Weight: W



• a1 x W + a2 x W over two cycles

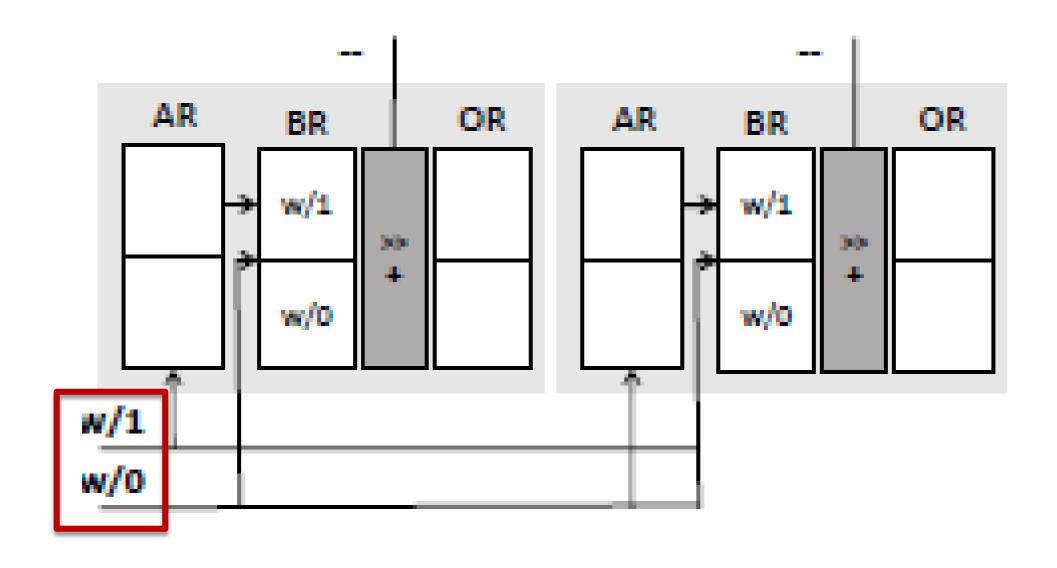
TARTAN engine

- 2 x 1b activation inputs
- 2b or 2 x 1b weight inputs



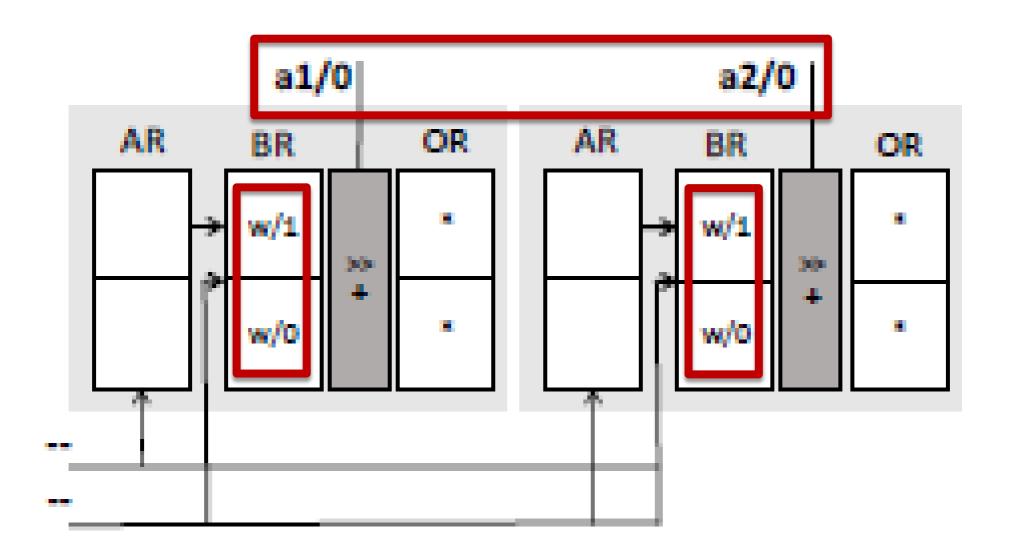
TARTAN: Convolutional Layer Processing

Cycle 1: load 2b weight into BRs



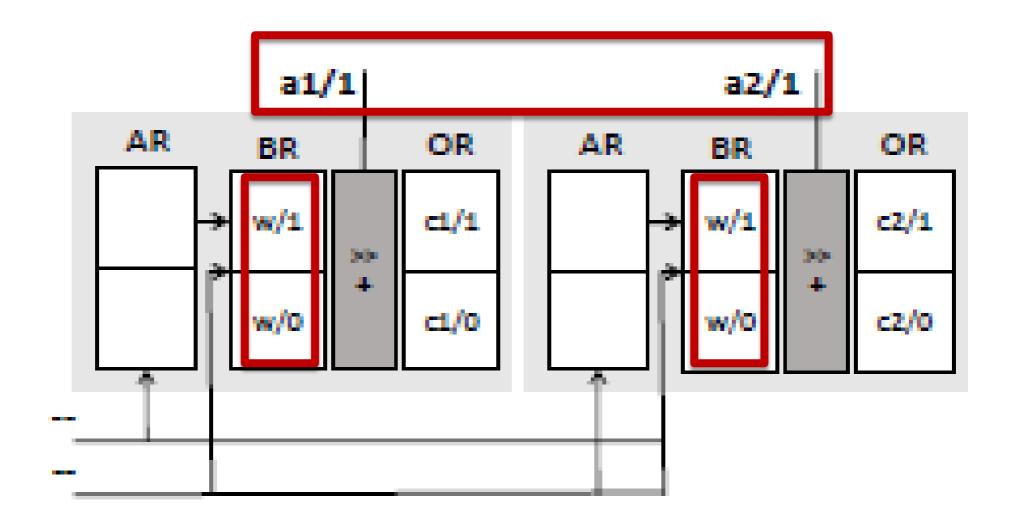
TARTAN: Weight x 1st bit of Two Activations

Cycle 2: Multiply W with bit 1 of activations a1 and a2



TARTAN: Weight x 2nd bit of Two Activations

- Cycle 3: multiply W with 2nd bit of a1 and a2
- Load new W' into BR

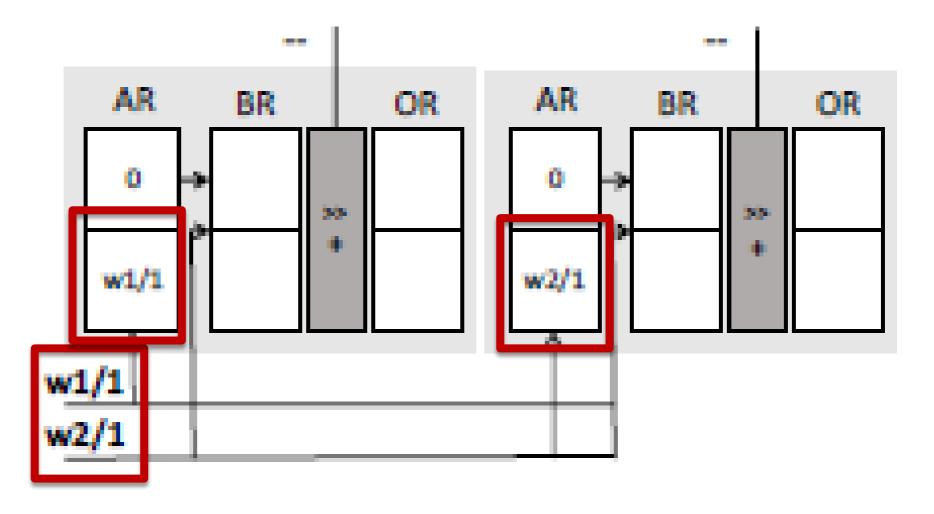


3-stage pipeline to do 2: 2b activation x 2b weight

TARTAN: Fully-Connected Layers: Loading Weights

What is different? Weights cannot be reused

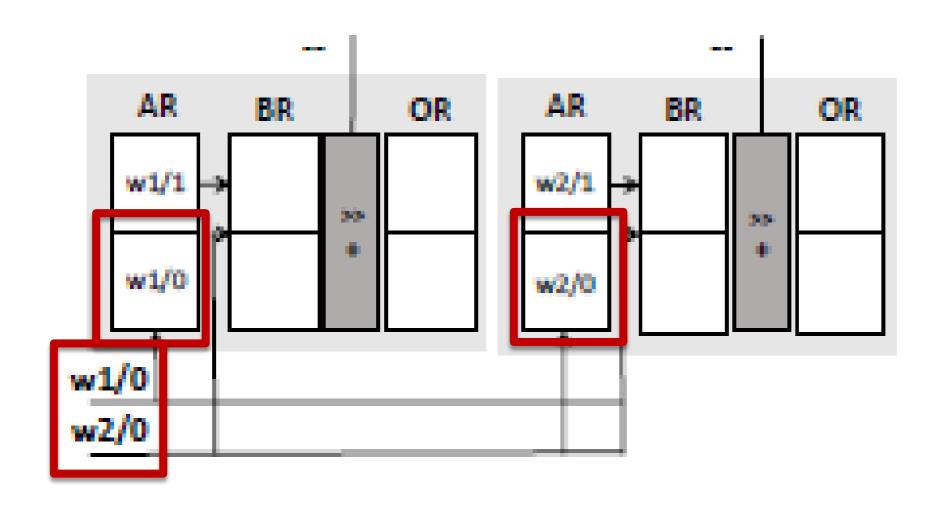
Cycle 1: Load first bit of two weights into Ars



Bit 1 of Two Different Weights

TARTAN: Fully-Connected Layers: Loading Weights

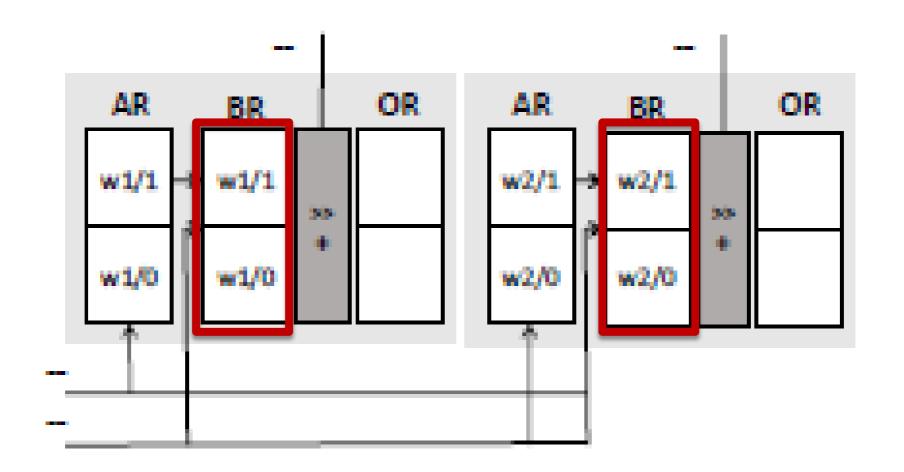
Cycle 2: Load 2nd bit of w1 and w2 into ARs



- Bit 2 of Two Different Weights
- Loaded Different Weights to Each Unit

TARTAN: Fully-Connected Layers: Processing Activations

 Cycle 3: Move AR into BR and proceed as before over two cycles



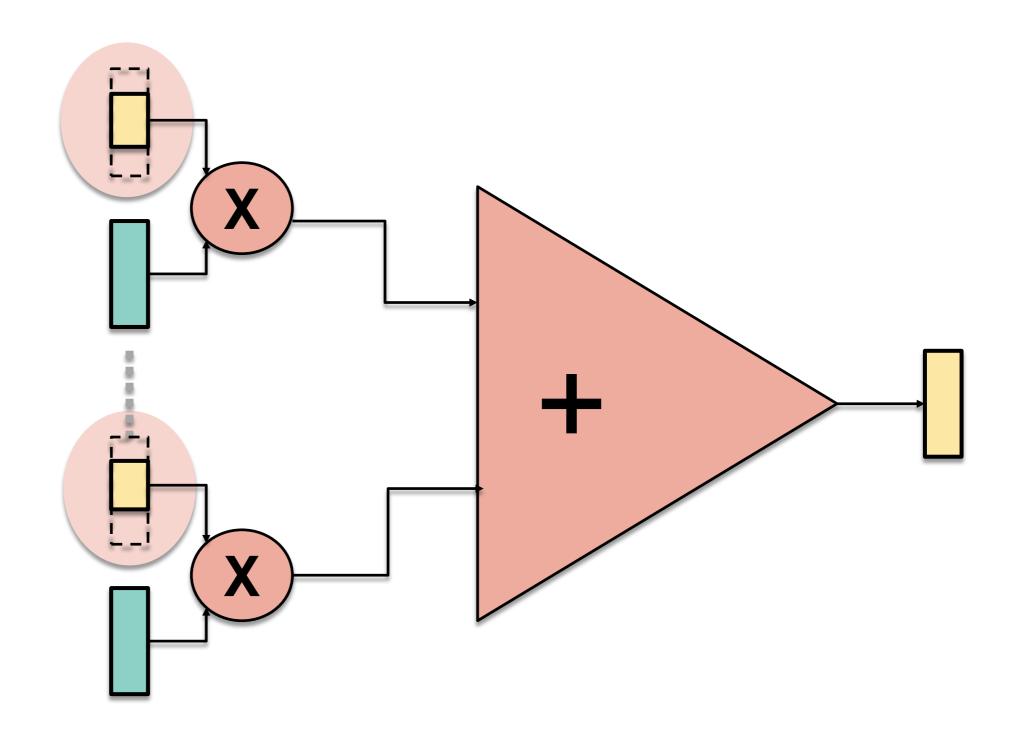
- 5-stage pipeline to do:
 - TWO of (2b activation x 2b weight)

TARTAN: Result Summary

- Bit-Serial TARTAN
 - 2.04x faster than DaDiannao
 - 1.25x more energy efficient at the same frequency
 - 1.5x area overhead

- 2-bit at-a-time TARTAN
 - 1.6x faster over DaDiannao
 - Roughly same energy efficiency
 - 1.25x area overhead

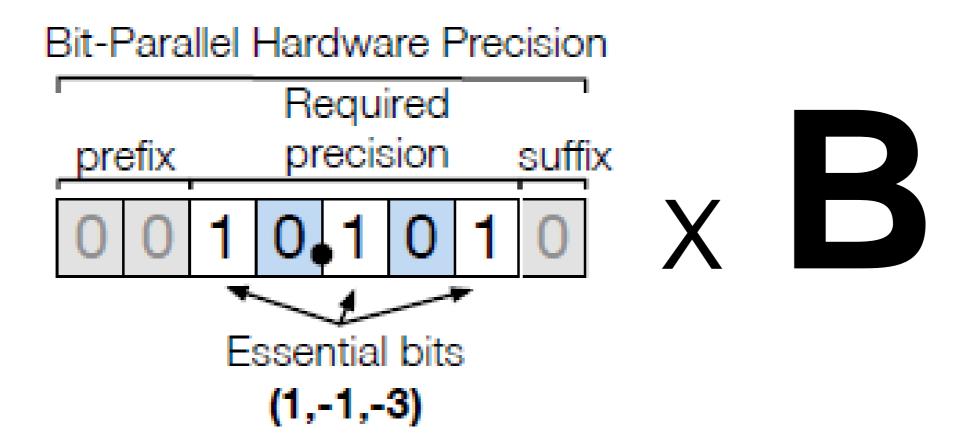
Bit-Pragmatic Engine



Operand Information Content Varies

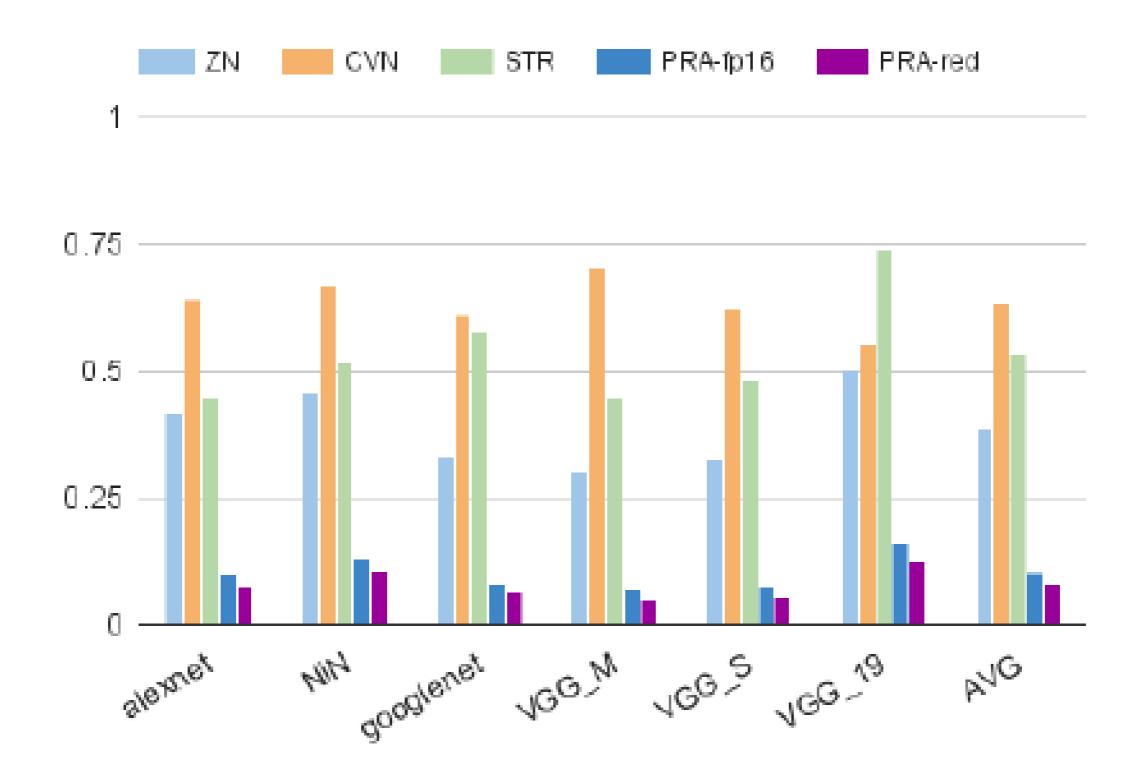
Inner-Products

- Want to do A x B
- Let's look at A



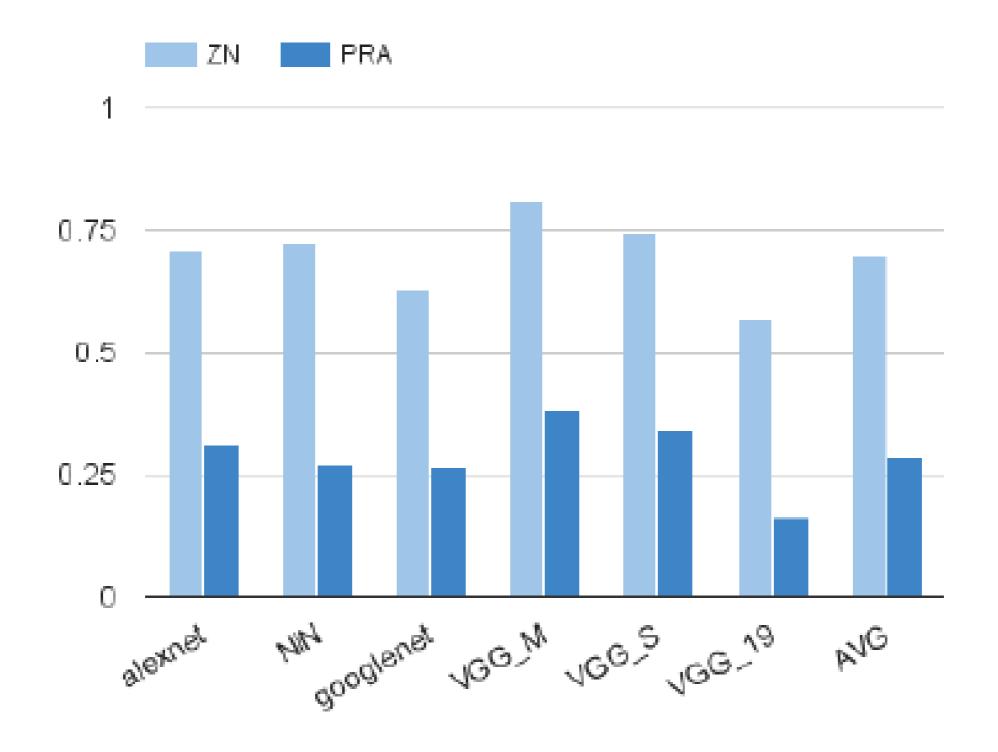
Which bits really matter?

Zero Bit Content: 16-bit fixed-point



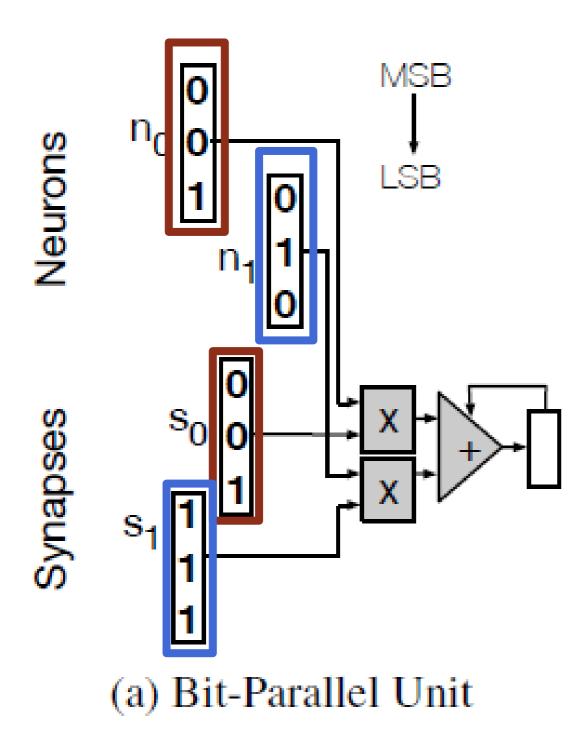
- Only 8% of bits are non-zero once precision is reduced
 - 15%-10% otherwise

Zero Bit Content: 8-bit Quantized (Tensorflow-like)



Only 27% of bits are non-zero

Pragmatic Concept: Bit-Parallel Engine

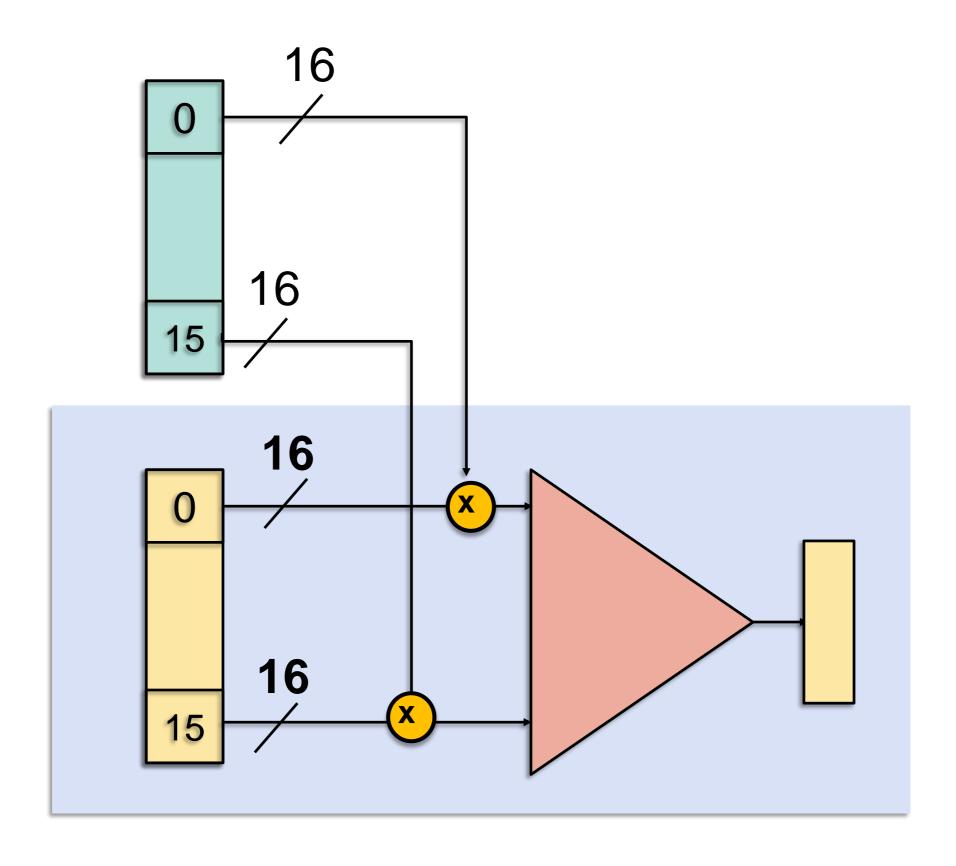


Pragmatic Concept: Use Shift-and-Add

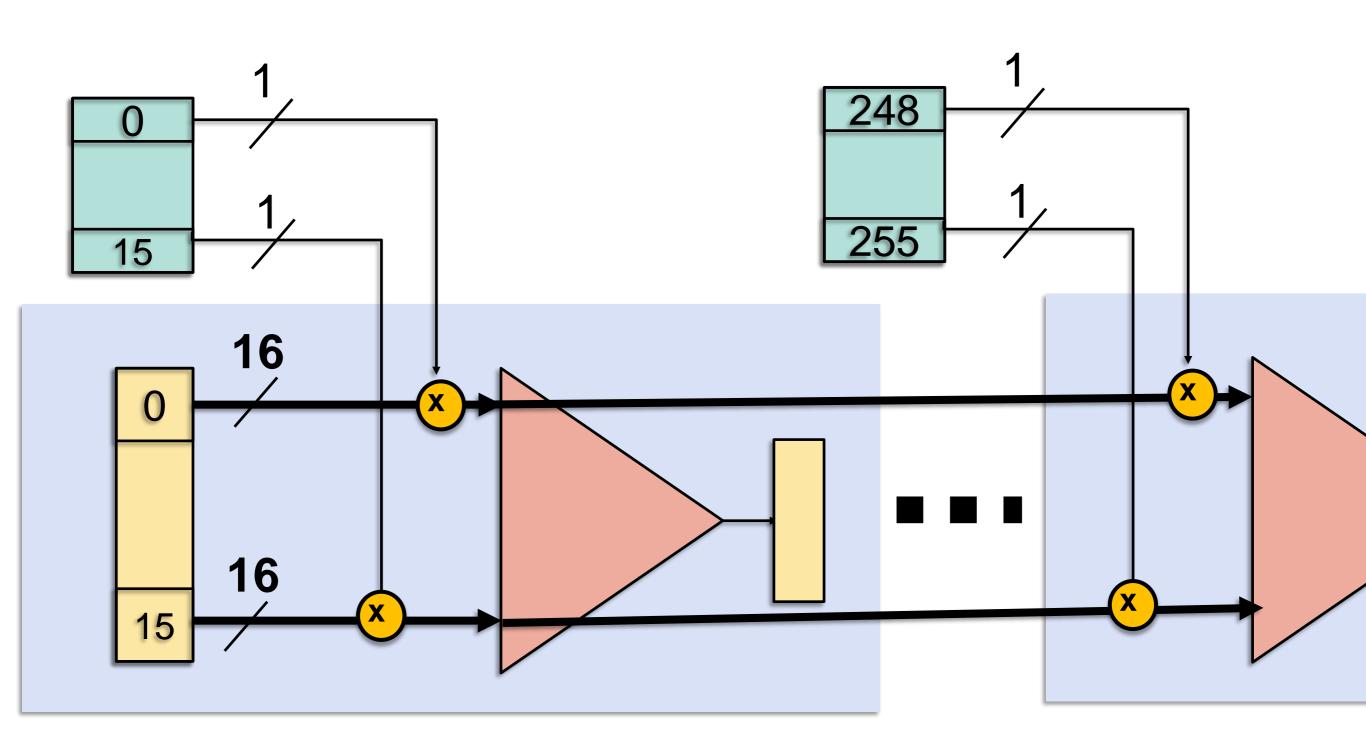


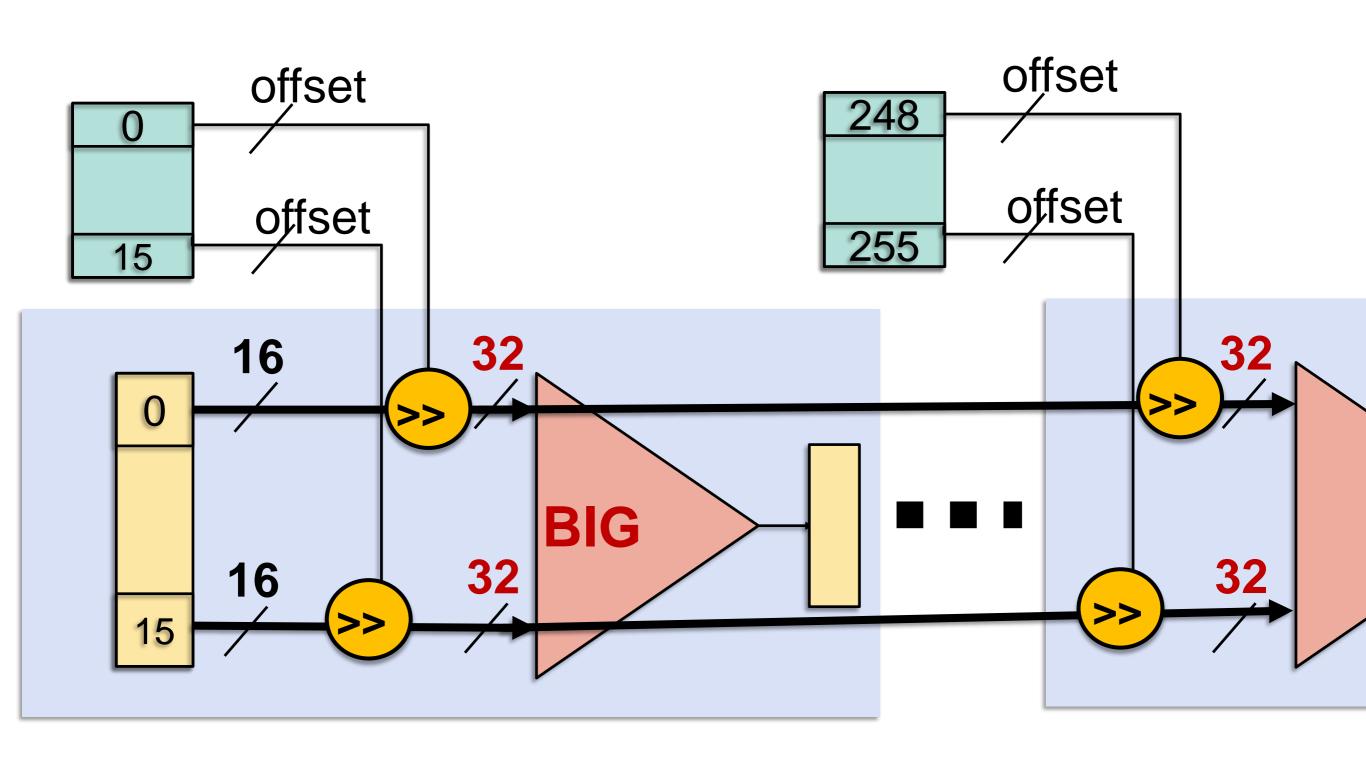
- Simply Modify Stripes?
 - Too Large + Cross Lane Synchronization

Bit-Parallel Engine



STRIPES

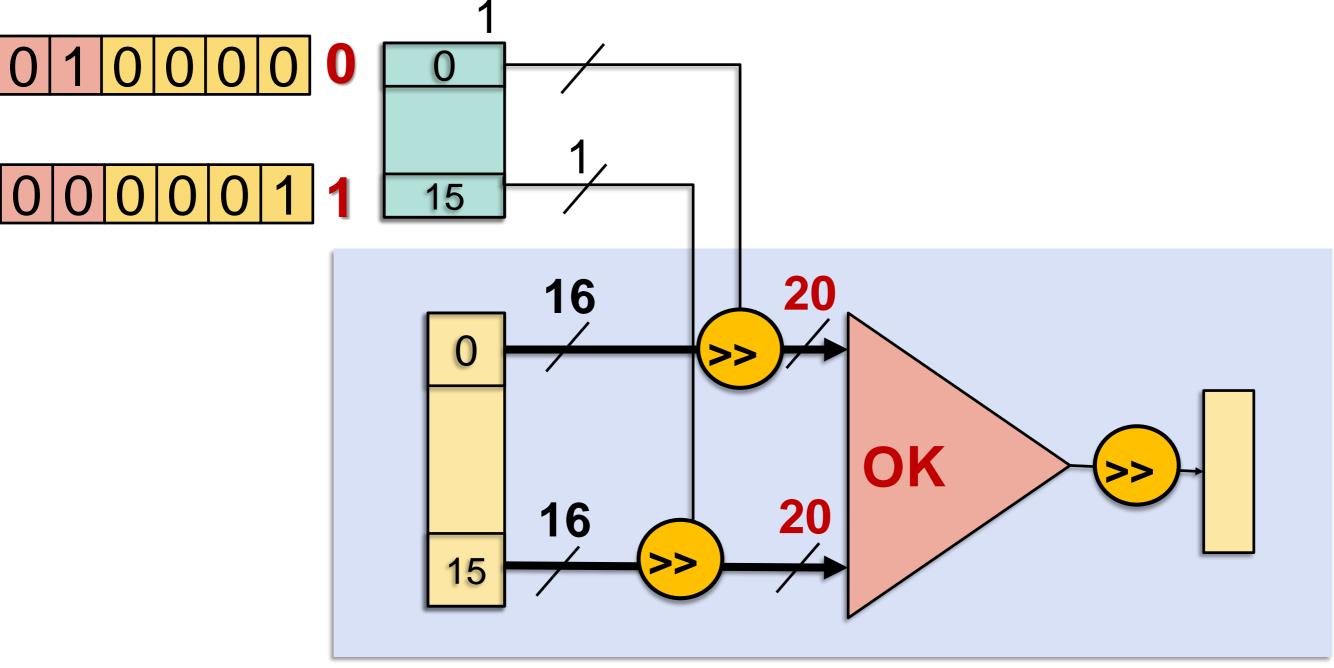




BIG = 3.7x area overhead just for the datapath 66

Solution to #1? 2-Stage Shifting

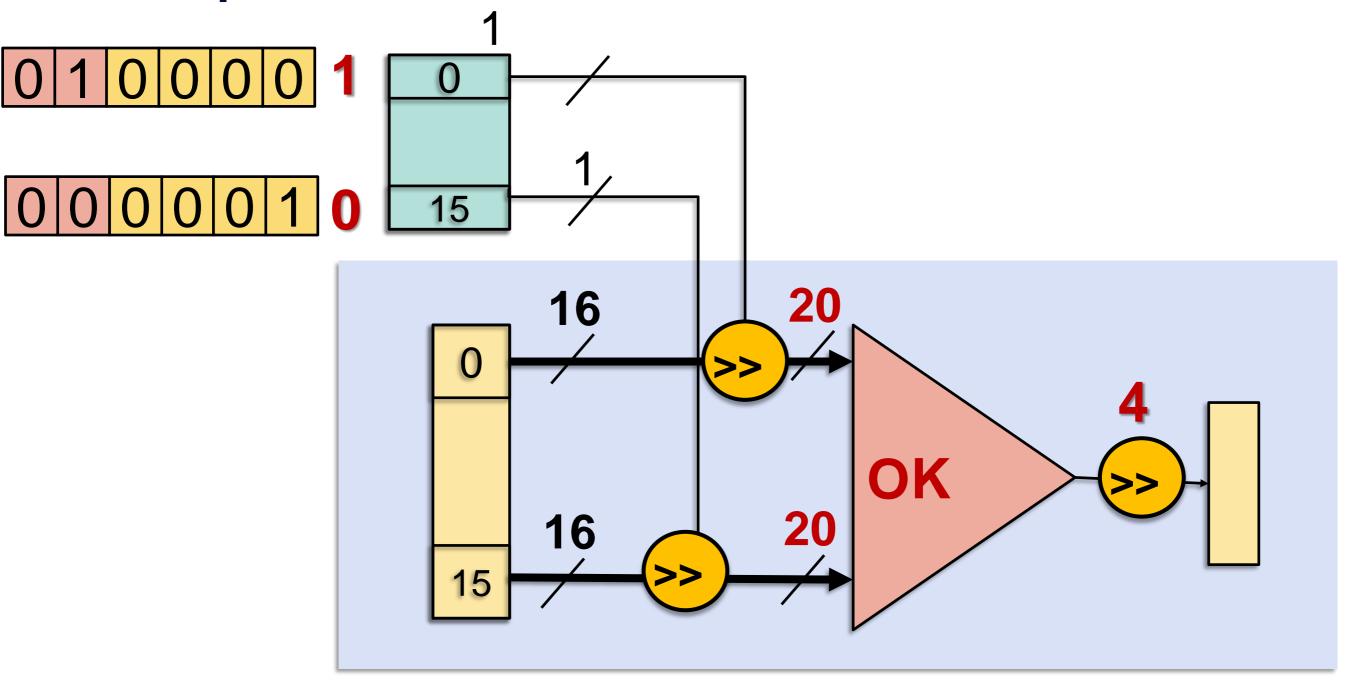
- Process in groups of Max N Difference
- Example with N = 4



- Some opportunity loss, much lower area overhead
- Can skip groups of all zeroes

Solution to #1? 2-Stage Shifting

- Process in groups of Max N Difference
- Example with N = 4

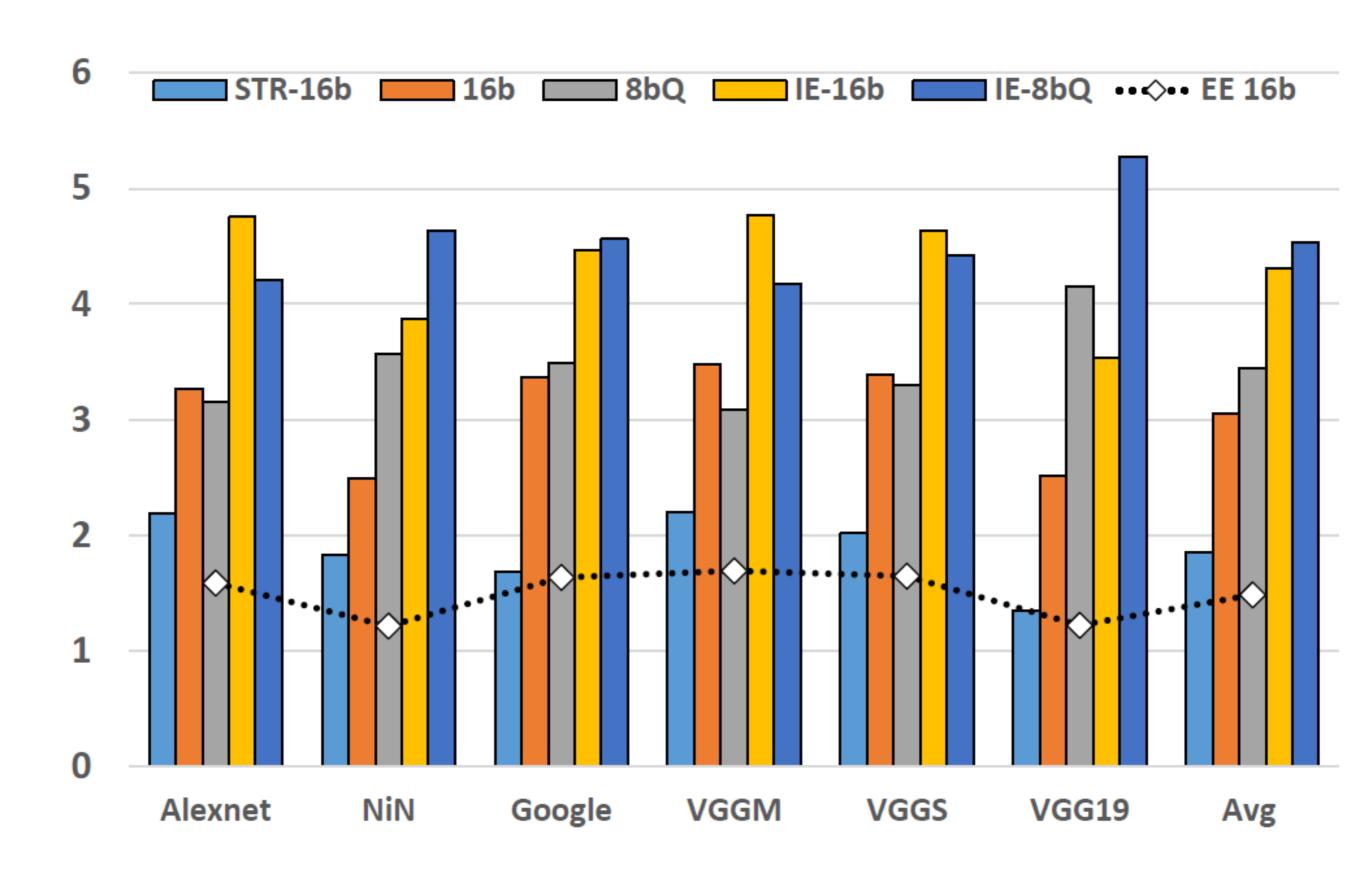


Some opportunity loss, much lower area overhead

Lane Synchronization

- Different # of 1 bits
- Lanes go out of sync
- May have to fetch up to 256 different activations from NM
- Keep Lanes Synchronized:
 - No cost: All lanes
 - Extra register for weights:
 - Allow columns to advance by 1
 - Some cost but much better performance

Speedup and Energy Efficiency vs. DaDianNao



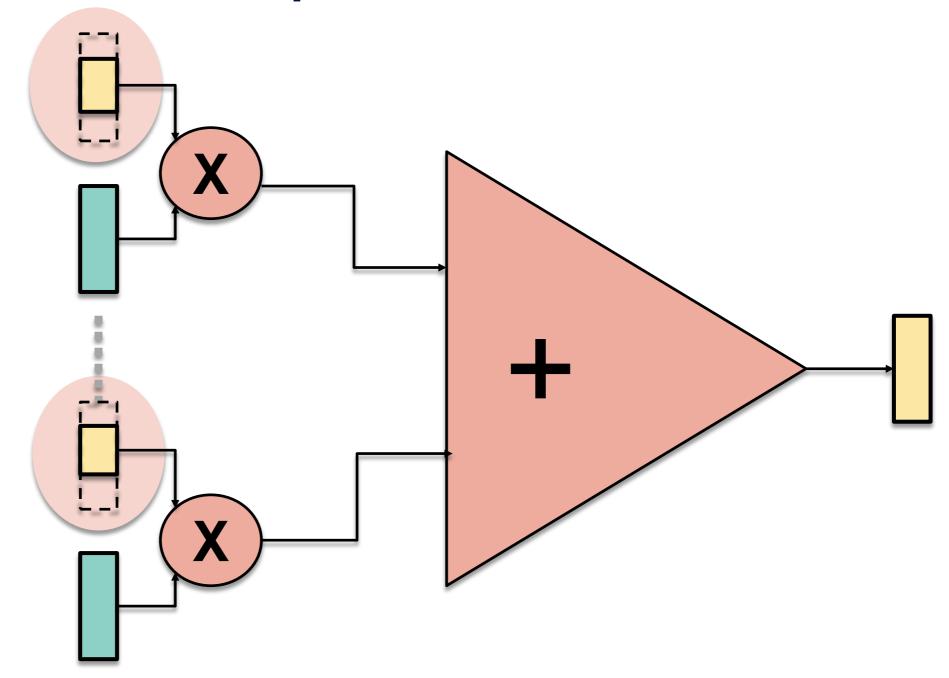
Bit-Pragmatic

No Accuracy Loss +310% performance - 48% Energy + 45% Area **Better w/ 8-bit Quantization** 4.3x with Encoding

Reducing Memory Footprint and Bandwidth

Proteus

Operand Precision Required Varies

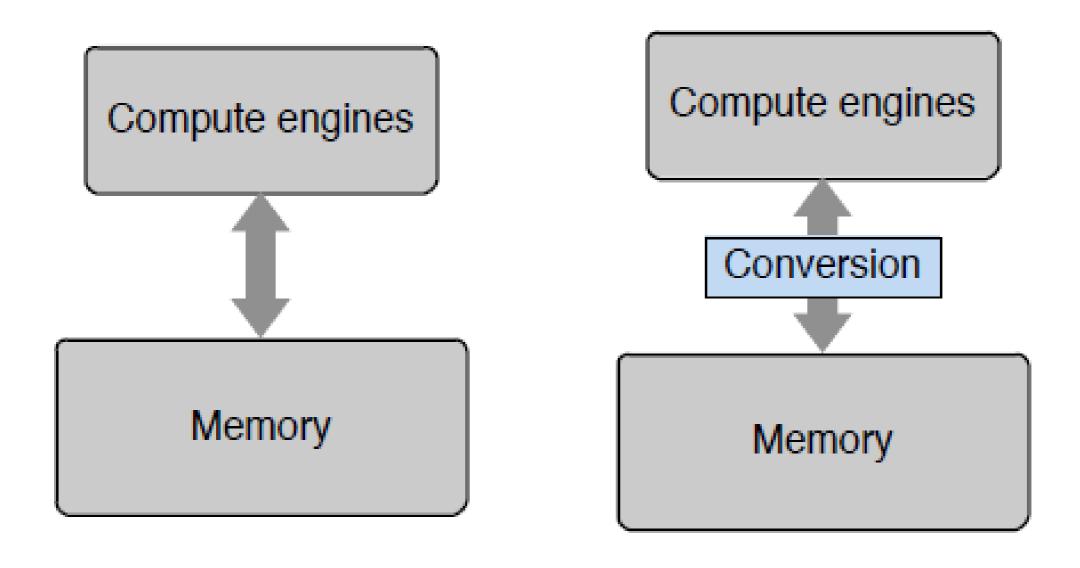


Proteus: Store in reduced precision in memory

Less Bandwidth, Less Energy

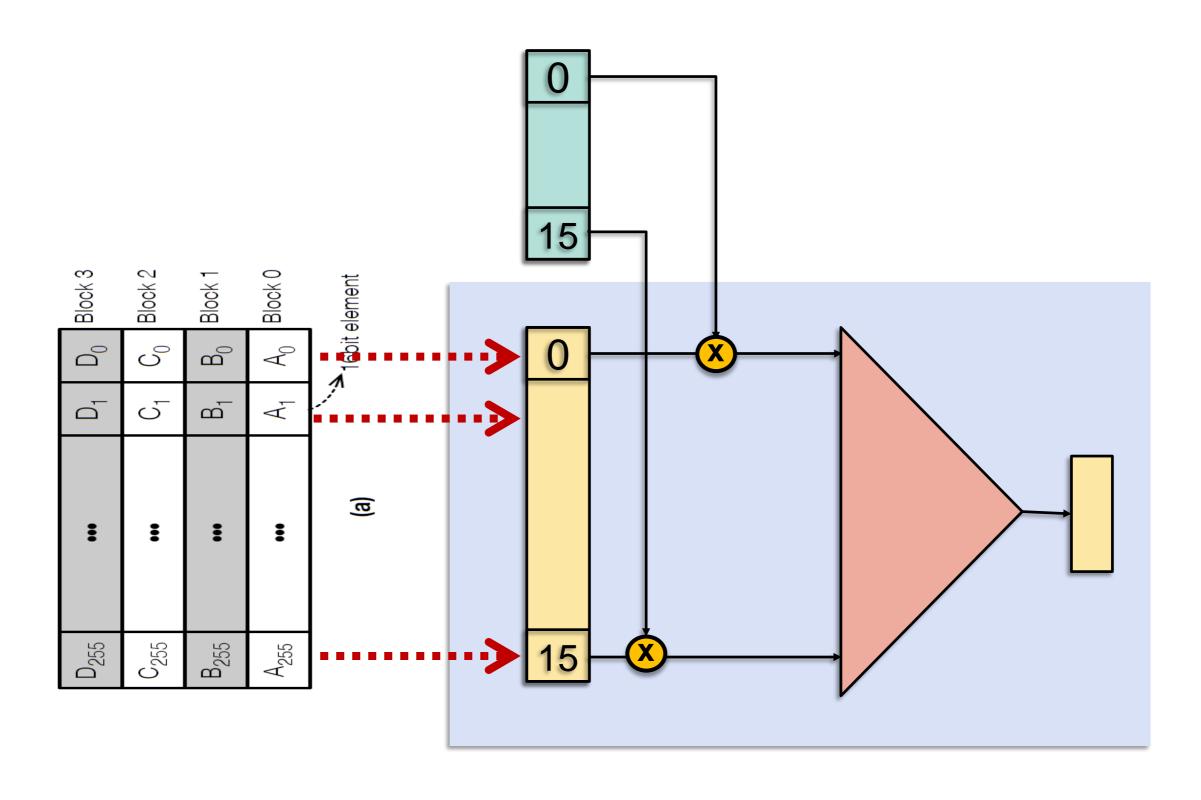
Proteus: Pick Per Layer Precision

Weights (synapses) and Data (activations/neurons)



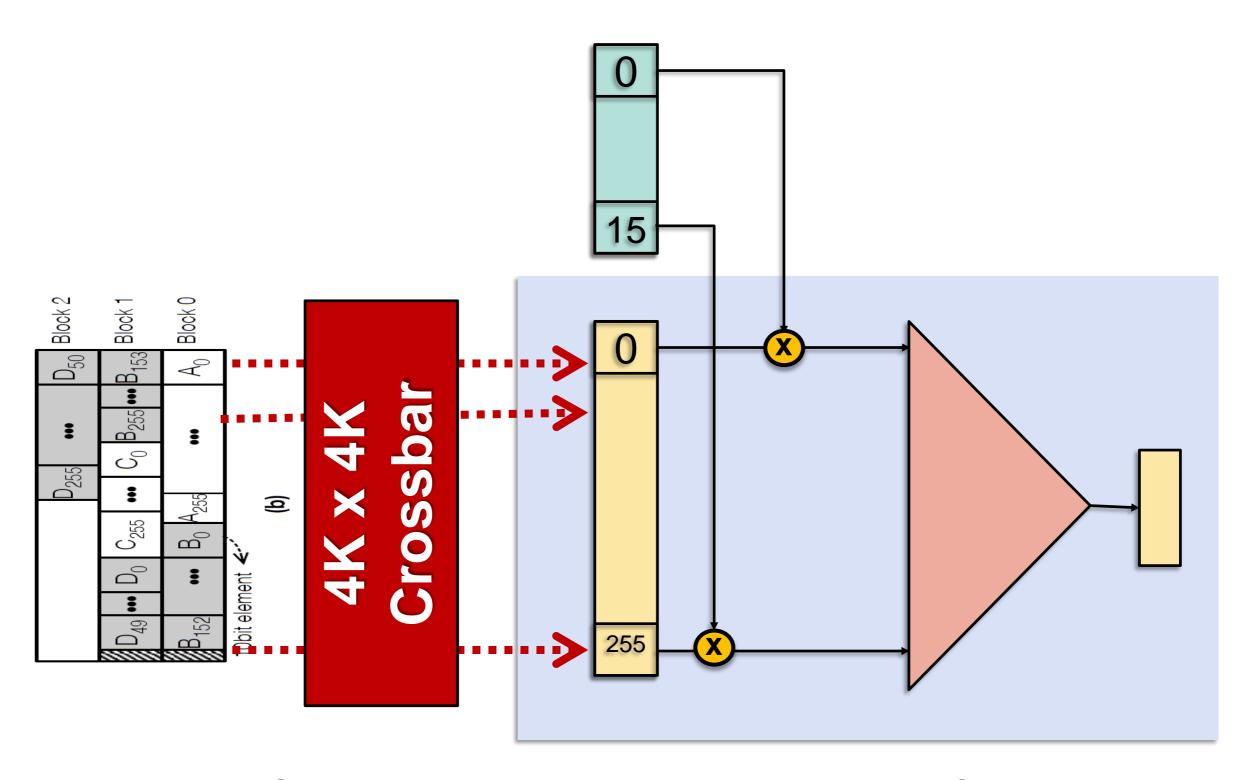
Layered Extension: Compatible with Existing Systems

Conventional Format: Base Precision



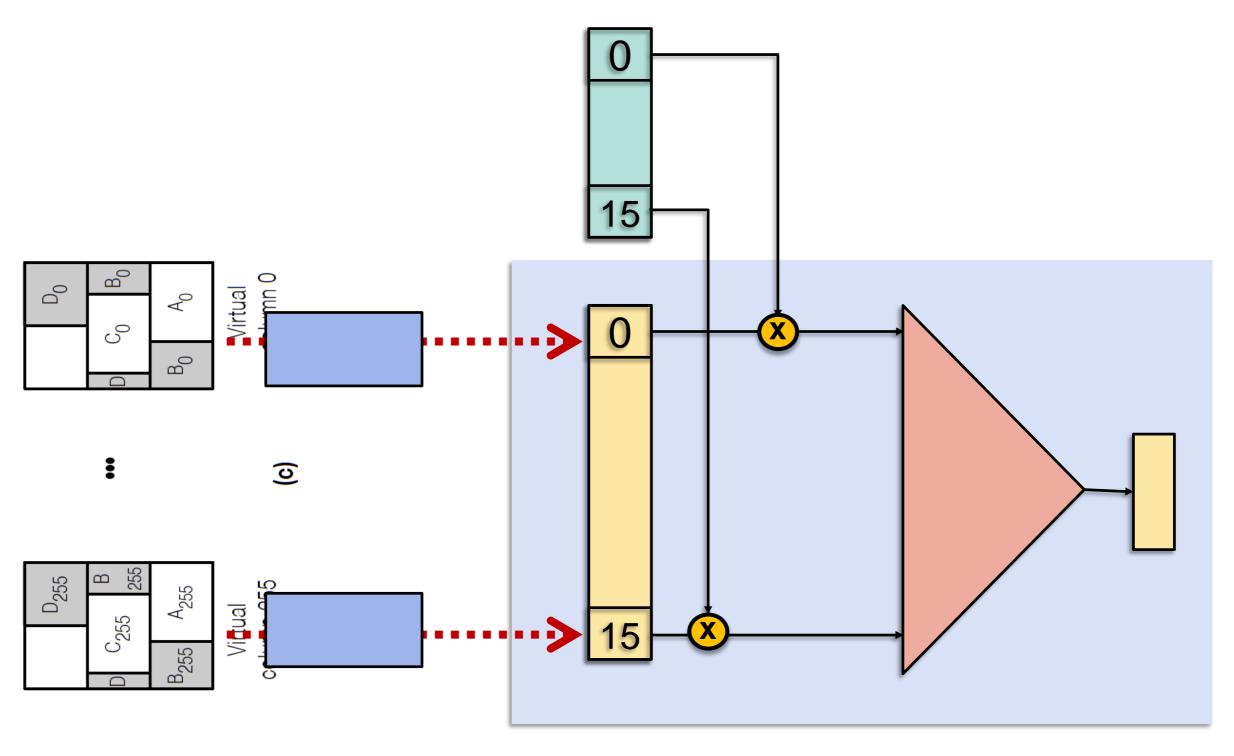
Data Physically aligns with Unit Inputs

Conventional Format: Base Precision



Need Shuffling Network to Route Synapses 4K input bits → Any 4K output bit position

Proteus' Key Idea: Pack Along Data Lane Columns



Local Shufflers: 16b input 16b output Much simpler

Proteus

44% less memory bandwidth

What's Next

- Training
- Prototype
 - Design Space: lower-end confs
- Unified Architecture
 - Dispatcher + Compute
 - Other Workloads: Comp. Photo
- General Purpose Compute Class

A Value-Based Approach to Acceleration

- More properties to discover and exploit
 - E.g., Filters do overlap significantly

- CNNs one class
 - Other networks
 - Use the same layers
 - Relative importance different

Training