
1

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

Abstract

A mini-graph is a dataflow graph that has an arbi-
trary internal size and shape but the interface of a sin-
gleton instruction: two register inputs, one register
output, a maximum of one memory operation, and a
maximum of one (terminal) control transfer.

Previous work has exploited dataflow sub-graphs
whose execution latency can be reduced via program-
mable FPGA-style hardware. In this paper we show that
mini-graphs can improve performance by amplifying
the bandwidths of a superscalar processor’s stages and
the capacities of many of its structures without custom
latency-reduction hardware. Amplification is achieved
because the processor deals with a complete mini-graph
via a single quasi-instruction, the handle. By constrain-
ing mini-graph structure and forcing handles to behave
as much like singleton instructions as possible, the num-
ber and scope of the modifications over a conventional
superscalar microarchitecture is kept to a minimum.

This paper describes mini-graphs, a simple algo-
rithm for extracting them from basic block frequency
profiles, and a microarchitecture for exploiting them.
Cycle-level simulation of several benchmark suites
shows that mini-graphs can provide average perfor-
mance gains of 2–12% over an aggressive baseline,
with peak gains exceeding 40%. Alternatively, they can
compensate for substantial reductions in register file
and scheduler size, and in pipeline bandwidth.

1. Introduction

Processors are good at executing simple instructions

with small, fixed interfaces: two inputs, one output, a

maximum of one memory reference, a maximum of one

control transfer. Machinery for dealing with small, fixed

interfaces is well understood and (relatively) easy to

build. Unfortunately, because instructions are fine

grained, they are also numerous. While instruction pro-

cessing machinery—most of which performs inter-

instruction book-keeping—may be conceptually simple,

it may become physically complex by virtue of its

capacity and bandwidth.

In this paper, we propose a mechanism that allows

simple, fixed-interface, single-instruction machinery to

process multi-instruction dataflow graphs which we call

mini-graphs. A mini-graph is a connected instruction

dataflow graph that has the interface of a singleton

instruction: two inputs, one output, at most one memory

reference, and at most one control transfer. A binary

rewriting tool modifies executables and statically

replaces dataflow graphs that satisfy mini-graph criteria

with handles; a handle is a quasi-instruction that

encodes the corresponding mini-graph’s interface regis-

ter dependences.

A mini-graph pipeline processes both unmodified

and modified executables and treats handles as individ-

ual instructions in all stages except execution. During

execution, the processor consults a handle-to-instruction

sequence translation which is stored in an on-chip table

called the mini-graph table (MGT). Essentially a

microcode store, the MGT drives the cycle-by-cycle

execution of the constituent mini-graph instructions

with low overhead. The MGT may be hardwired, but it

is more useful to customize its contents to an applica-

tion. We show that DISE (dynamic instruction stream

editor) is a good match for specifying application-spe-

cific mini-graphs.

Dataflow aggregates are not a new idea, but a mini-

graph processor exploits them in a new way. Most previ-

ous schemes reduce the execution-latency of aggre-

gates using custom hardware. A mini-graph processor

can do that too, but primarily it amplifies the bandwidth

and capacity of book-keeping machinery. A key to

amplification is to constrain mini-graph structure such

that handles look and behave like singleton instructions,

e.g., renaming a handle has the same effect as renaming

each mini-graph instruction individually. This approach

maximizes the number of stages (structures) that can

process (store) handles rather than mini-graph instruc-

tions and whose bandwidth (capacity) is amplified.

The most important aspect of making handles

behave like instructions is choosing mini-graphs that are

atomic. This restriction admittedly reduces mini-graph

“coverage”, but allows us to treat values on a mini-

graph’s interior—we use static analysis to identify these

values—as transient and to avoid allocating physical

register storage for them. This approach reduces register

file size requirements and amplifies renaming, schedul-

ing, register read, register write, and retirement band-

widths. Since mini-graphs naturally amplify fetch

bandwidth and instruction cache capacity, execution

remains the only un-amplified stage. To prevent it from

becoming a bottleneck, we introduce a microarchitec-

tural component called an ALU pipeline—a single-

entry, single-exit chain of ALUs—which adds execution

bandwidth without increasing bypassing complexity.

Execution-driven simulations of SPEC2000, Media-

Dataflow Mini-Graphs: Amplifying Superscalar Capacity and Bandwidth

Anne Bracy, Prashant Prahlad, Amir Roth

Department of Computer and Information Science, University of Pennsylvania
{bracy, pprahlad, amir}@cis.upenn.edu

2

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

Bench, CommBench, and MiBench programs show that

mini-graphs produce average performance improve-

ments of 2%, 12%, 6% and 7% respectively, over an

aggressive baseline and without any latency reduction.

On a per application basis, gains can exceed 30% and

40%. Mini-graphs can also effectively compensate for

dramatic reductions in the capacities of the scheduler

and register file and bandwidth at all pipeline stages.

We make four main contributions:

• First, we observe that instruction aggregates that

have external interfaces of singleton instructions can

improve performance by amplifying processor

capacity and bandwidth, without requiring custom

hardware for reducing dataflow-graph latency. We

call such aggregates mini-graphs.

• Second, we describe a microarchitecture for pro-

cessing mini-graphs that requires only small modifi-

cations over existing superscalar designs.

• Third, we demonstrate that DISE is suitable for cre-

ating and using application-specific mini-graphs.

• Finally, we present a simulation-driven performance

evaluation of our complete system.

2. Related Work
There is considerable prior work on the (automatic)

generation of application specific instruction set exten-

sions [1, 4, 6, 7], including commercial efforts like Ten-

silica’s Xtensa [9]. This work has been aimed at

discovering and exploiting graphs of arithmetic opera-

tions whose latency can be reduced via custom hard-

ware. This hardware ranges in implementation from

collapsing ALU [20, 22, 27] to FPGA [2, 11, 21] and in

interface from functional unit [20, 21, 26, 27] to co-pro-

cessor [11, 26]. Mini-graph processors can exploit cus-

tom hardware to reduce graph latency, but they improve

performance primarily by reducing book-keeping over-

head and amplifying the capacity of structures like the

scheduler and register file and the bandwidth of all pipe-

line stages. Mini-graph interfaces—e.g., number of

allowed register inputs and outputs—and internal com-

position are highly constrained to minimize the number

of pipeline stages that must be augmented with mini-

graph awareness. Some of these constraints have been

employed previously [20, 21], but again, only in the

context of collapsible dataflow graphs.

The fusion of dependent instructions for capacity

and bandwidth amplification is not entirely new, but

existing forms are more restricted than the mechanisms

we propose. Intel’s Pentium M [13] fuses load/execute

and store-address/store-data micro-op pairs, reducing

the number of micro-ops that must be renamed, sched-

uled, and retired and amplifying issue queue capacity.

Micro-op fusion also reduces the number of X86

instructions that decode into multiple micro-ops allow-

ing the Pentium M to achieve high decoding bandwidth

with a single complex decoder. Simple extensions to the

X86 ISA for fusing dependent instruction pairs have

also been proposed [12].

Macro-op scheduling [14] temporarily and micro-

architecturally fuses dependent instructions in order to

boost effective scheduling capacity and hide scheduling

loop latency [3, 23]. Macro-op scheduling is completely

transparent, but does not amplify the bandwidths or

capacities of any other structures.

There is extensive work on algorithms for choosing

compound instructions to optimize coverage or perfor-

mance under a variety of constraints [1, 4, 6, 7, 19]. Our

microarchitectural focus complements that work.

Finally, our work focuses on exploiting dataflow

graphs in a superscalar context. Grid Processor [17] and

WaveScalar [24] exploit dataflow graphs holistically

using new instruction sets and new microarchitectures.

3. Mini-graphs
We describe the physical structure of a mini-graph,

the restrictions on it and the rationale behind them, and

a simple, greedy algorithm for extracting mini-graphs

from program profiles.

Figure 1a shows two code snippets from the pro-

gram gcc. In each snippet, the shaded instructions com-

prise a mini-graph. Figure 1b shows the same snippets

with each mini-graph replaced by a single instruction

handle. A handle is a quasi-instruction that is only

meaningful to a mini-graph enabled processor. It has

three components: i) a reserved opcode mg, ii) two input

and one output register specifiers, and iii) an immediate

field. The immediate field is called the MGID and is the

index into an on-chip table, the mini-graph table

(MGT), which contains the instruction-by-instruction

mini-graph definition. Figure 1c shows the contents of

an MGT for the two mini-graphs. Each MGT row con-

tains the definition of one mini-graph template; row 12

contains the specification for the mini-graph on the left

(MGID 12). Each MGT INSN column represents a mini-

graph template instruction; the MGT shown here can

represent mini-graphs of three instructions or less. Note,

this MGT is logical; the organization and contents of an

actual MGT are described in Section 4.1.

The three register names explicit in a handle are the

mini-graph’s interface registers which define its exter-

nal dependences. The handle must contain these register

names because they (or their renamed versions) are

needed at renaming, scheduling, register read, register

write, retirement, and misprediction recovery; stages

where only the handle is available, not the complete

mini-graph. Information which is only needed during

execution—the interior registers which define mini-

graph internal dataflow, as well as the opcodes and

3

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

FIGURE 1. Mini-graphs. (a) Code snippets from gcc. (b)
Same snippets with shaded mini-graphs replaced by
handles. (c) MGT contains mini-graph definitions.

addl r18,2,r18

lda r6,2,r6

s8addl r7,r0,r7

cmplt r18,r5,r7

bne r7,0xA

ldl r18,24(r16)

mg r4,–,r17,34

bis zero,r18,r16

ldl r18,24(r16)

ldq r2,16(r4)

srl r2,14,r17

bis zero,r18,r16

and r17,1,r17

lda r6,2,r6

s8addl r7,r0,r7

mg r18, r5,r18,12

MGT OUT INSN0 INSN1 INSN2

12 0 addl E0,2 cmplt M0,E1 bne M1,0xA

34 2 ldq 16(E0) srl M0,14 and M1,1

(a)

(b)

(c)

immediates of the individual instructions—is not

explicit in the handle; it is encoded in the MGT.

In the MGT, interface input registers are mnemoni-

cally denoted using the letter E and their index in the

handle while interior values are denoted using the letter

M and the mini-graph instruction that creates them. The

MGT OUT field indicates which instruction produces the

mini-graph’s interface output register. Thus the first

mini-graph instruction, addl r18,2,r18 is represented in

INSN0 column of the MGT as addl E0,2; E0 is the first

interface register explicit in the handle, r18. The second

instruction, cmplt r18,r5,r7 is represented as cmplt M0,E1
where E1 is interface register r5 and M0 is output of the

first mini-graph instruction. The final instruction bne r7,
0xA is represented as bne M1,0xA. That the output of the

mini-graph is produced by its first instruction is denoted

by a 0 in the OUT field.

3.1. Structural Constraints

The most important aspect of the appearance of

being a single instruction is atomicity. Atomicity con-

strains mini-graphs to reside within basic blocks, a

severe restriction for programs with small blocks. Con-

ventional multiple block constructs like superblocks and

hyperblocks are not atomic as they have side exits.

RePLay [18] frames, however, are atomic and others

have shown that large dataflow aggregates can be mined

from them [6, 27]. Mini-graphs can contain branches,

but these must be terminal.

Coarse-grain atomicity allows mini-graph execution

to be more efficient than conventional execution.

Because partial mini-graph state is never needed, it is

not necessary to allocate explicit storage (i.e., physical

registers) to partial, interior mini-graph results. Mini-

graph interior values only live in the bypass network. In

this respect they are similar to interior values of grid

processor code blocks [17].

The fact that only mini-graph interface registers

require physical registers allows for bandwidth amplifi-

cation at four key pipeline stages: renaming (physical

register allocation), register read, register write, and

retirement (physical register freeing). Because interface

register names must be explicit in the handle and

because many pipeline stages have machinery that

assumes two register inputs and/or one register output

per instruction, we limit mini-graphs to two input and

one output interface registers. Unlike atomicity which is

fundamental, this constraint is only a practical one.

In contrast with previous work, we allow mini-

graphs to include loads and stores. However, we limit

the number of memory operations per mini-graph to

one. This restriction removes ordering ambiguities that

would result from two stores or a load and store to the

same address within a mini-graph. It enables mini-

graphs to be collapsed to single instructions while pre-

serving total load/store order. Finally, it simplifies the

handling of memory exceptions, e.g., page faults.

3.2. Mini-Graph Selection

Our focus is on micro-architectural techniques for

exploiting mini-graphs. We are less concerned with

developing new mini-graph selection algorithms and

defer to prior work in that respect [7, 19]. In this work,

we use a simple greedy selection algorithm.

First, we analyze the static executable and enumer-

ate all possible legal mini-graphs. Enumeration is expo-

nential in the number of instructions considered, but

since mini-graphs are restricted to basic-blocks, the

number of instructions under consideration at any time

is typically small. Mini-graph legality testing is more

involved than simply testing the interface (two register

inputs, one register output) and composition (one mem-

ory operation) conditions. The instructions in a mini-

graph are not necessarily contiguous in the original pro-

gram and execution semantics must not change when

they are collapsed to a single handle. For each mini-

graph, we choose an anchor around which to collapse

the remaining instructions. In order of preference, the

anchor is: i) the branch, ii) the memory operation, or iii)

the last instruction. Notice, in Figure 1b the mini-graphs

are collapsed around the branch and load, respectively.

Memory operations are given precedence so that col-

lapsing does not result in load/store reordering. We

reject mini-graphs if there is register interference in the

range between the anchor and original positions of the

first and last instructions. Our static choice of anchor

forces us to reject some legal mini-graphs, but our

experiments indicate that this is rare.

Next, we sort the mini-graph list in order of decreas-

4

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

ing benefit. Since our focus is on amplifying bandwidth

and capacity, our mini-graph benefit function is its cov-

erage: the fraction of dynamic instructions it removes

from the pipeline. A mini-graph’s estimated coverage is

(n-1)*f where n is its size in instructions and f is its exe-

cution frequency, the sum of the execution frequencies

of all of its static instances (we consider static mini-

graphs with identical dataflows and immediate operands

as equivalent and coalesce them). We derive f from a

basic-block frequency profile.

Finally, we select mini-graphs by iterating over the

sorted candidate list. Because a single static instruction

may belong to at most one mini-graph, the selection of a

mini-graph may eliminate some remaining candidates.

At the end of each iteration, we adjust the weights of the

remaining mini-graphs. The process repeats until the list

is exhausted or a preset mini-graph limit is reached.

4. Mini-graph Execution

In this section we describe a mini-graph microarchi-

tecture. For now, we assume that the processor supports

a hardwired set of mini-graphs and that the only mini-

graph handles that appear in programs are legal ones.

4.1. Basic Microarchitecture

A mini-graph processor treats handles as singleton

instructions at all stages except execution. There, it uses

a table to control—microcode-style—the execution of

the individual mini-graph instructions.

The mini-graph table (MGT). The central compo-

nent of a mini-graph execution core is the mini-graph

table (MGT) which maps handle MGIDs to mini-graph

definitions. We have already introduced the MGT logi-

cally; now we define its physical organization. Because

some aspects of a mini-graph’s definition are needed

during scheduling and others are needed at execution,

the MGT is organized as two tables, shown in Figure 2

(there are two alternative templates for mini-graph 34).

The mini-graph header table (MGHT) contains

scheduling information which includes the functional

units needed by the mini-graph (FU0 and FUBMP), and

the latency of the its register output (LAT) which is

shorter than the execution latency of the complete mini-

graph if the output is not produced by the last instruc-

tion. Note, FUBMP is used for a particular style of mini-

graph scheduler which we present in Section 4.3. The

header allows the scheduler to reserve functional units,

bypass paths, and register write ports.

The mini-graph sequencing table (MGST) is used

during execution and includes the execution information

for each instruction in the mini-graph. This includes:

functional unit (FU), opcode (OP), immediate value (IM),

and bypassing directives (B0 and B1). The MGST is

sliced vertically, one bank per mini-graph execution

cycle. Integer mini-graph instructions are arranged in

consecutive banks, but multi-cycle operations like loads

require that subsequent banks be left empty. Note, mini-

graph 34 whose first instruction is a load (here we

assume that load latency is 2 cycles). MGST bank 1 is

empty; the rest of the mini-graph resumes in bank 2.

The rationale for this organization will be clear shortly.

We explain the structure and usage of these two

tables using an example execution of mini-graph 12. In

subsequent sections, we use the term MGT to refer to

the MGHT and MGST collectively.

Mini-graph life cycle. Figure 3a shows a mini-

graph handle as it progresses through the nominal stages

of a superscalar pipeline. The bold number at the begin-

ning of each stage action is the cycle at which the action

takes place (we assume all stages are single-cycle).

A handle is fetched, decoded, and renamed as if it

were a singleton instruction (the physical register in

parentheses is the overwritten output register which

must be freed when the handle retires). The handle is

allocated reorder buffer and scheduler (reservation sta-

tion, issue queue) entries. Its MGID is used to read the

MGHT and both MGID and the contents of the MGHT

entry are copied to the scheduler entry, the latter to

avoid MGHT lookups during scheduling. The func-

tional unit (FU0) required by mini-graph 12 is AP (ALU

pipeline), a new unit we describe in Section 4.2. The

latency of the register output (LAT) is 1 since the first

instruction in the mini-graph produces the output.

The MGST is coupled to M pipelined sequencers,

where M is the maximum number of handles that can be

scheduled per cycle. When the handle is issued, the

scheduler sends the MGID (12) to a free sequencer.

Over the next three cycles, the sequencer advances from

one MGST bank to the next, reading and driving the

control signals for each successive mini-graph instruc-

FIGURE 2. Mini-graph table. Physical MGT organization/contents for two example mini-graphs, MGID 12 and 34.

MGST.0 MGST.1 MGST.2 MGST.3

FU OP IM B0 B1 FU OP IM B0 B1 FU OP IM B0 B1 FU OP IM B0 B1

AP.0 addl 2 E0 IM AP.1 cmplt M0 E1 AP.2 bne 0xA M1 IM

LD ldq 16 E0 IM ALU srl 14 LD IM ALU and 1 ALU IM

LD ldq 16 E0 IM AP.0 srl 14 E0 IM AP.1 and 1 M0 IM

MGHT

LAT FU0 FUBMP

12 1 AP –:–:–

34 4 LD –:ALU:ALU

34 4 LD –:AP:–

5

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

tion. The combination of MGST and sequencers act like

pipelined, table-driven microcode. The MGST’s cycle-

based organization avoids sequencer and bank conflicts.

On the mini-graph terminal instruction, the MGST

sequencer writes a completion bit in the handle’s re-

order buffer entry and frees its scheduler entry. Register

write back and tag broadcast are handled by the sched-

uler which has reserved ports and tag buses for them.

A handle is retired like a singleton instruction, it

overwrites and must free at most one physical register.

For mini-graph containing a store, the corresponding

store queue entry (of which there can be only one) is

written to the data cache.

Summary. In general, mini-graphs only require

changes to the scheduling and execution stages of the

pipeline. Some other stages appear to require modifica-

tion, but these are natural as whatever action was previ-

ously performed on a singleton instruction is now

performed on the handle instead. For instance, if a mini-

graph terminates in a branch, the handle PC stands in

for the branch PC for the purposes of branch prediction

and update. The fact that mini-graph interior values are

transient and mini-graphs contain at most one memory

operation makes it easy to handle mini-graph excep-

tions. Exception information is attached to the handle,

the entire mini-graph is flushed, the exception is han-

dled, and the entire mini-graph is replayed.

Performance effects. Figure 3b shows mini-graph

12 executing as three singleton instructions. The advan-

tage of mini-graph execution is obvious from the differ-

ence in resource and bandwidth consumption. The mini-

graph requires one slot each of fetch, decode, rename,

schedule, and retire. Individual execution requires three

slots at each stage. The mini-graph requires one reorder

buffer entry and one scheduler entry, individual execu-

tion requires three each. Mini-graph execution requires

one physical register and one physical register write,

individual execution requires two registers and two

writes.

The price of bandwidth and capacity amplification is

the potential for two forms of serialization. External

serialization potentially delays issue for mini-graphs

with external inputs to instructions other than the first.

Our example mini-graph 12 suffers from potential exter-

nal serialization, which is illustrated in Figure 3a and

3b. Consider that registers p20 and p14 are ready in

cycles 4 and 5, respectively. Executing individually

(Figure 3b), addl and cmplt (which depends on it) exe-

cute in cycles 5 and 6, respectively. Executing as a mini-

graph (Figure 3a), addl is spuriously forced to wait for

p14 and the two instructions execute in cycles 6 and 7.

Internal serialization produces execution delays for

mini-graphs with internal parallelism, e.g., a three-

instruction mini-graph whose first two instructions feed

the third but are independent of one another. Executing

individually, this sequence could execute in 2 cycles; as

a mini-graph it executes in 3. Unlike external serializa-

tion, internal serialization is not a fundamental problem;

We could allow the MGST to drive the execution of two

mini-graph instructions per cycle. However, internally

parallel mini-graphs which expose this problem are rare

and do not justify this added complexity. We investigate

the cost of both forms of serialization in Section 6.2.

4.2. ALU Pipeline

A mini-graph processor executes mini-graphs com-

posed entirely of single-cycle integer operations on an

ALU pipeline: a single-entry single-exit pipelined chain

of ALUs. An ALU pipeline is simple because to a

scheduler, it looks like a pipelined, multi-cycle func-

tional unit, e.g., a multiplier. It is powerful because it

amplifies execution bandwidth to match the amplifica-

tion of all other bandwidths that mini-graphs provide. It

does so without adding bypass or register file complex-

ity. A 3-stage ALU pipeline can perform 3 operations

per cycle, but has only 1 register/bypass output and 2

inputs, rather than 3 outputs and 6 inputs.

Figure 4 shows the basic design: a chain of ALUs

with two external inputs and a single output. The exter-

nal register inputs and the outputs of each stage ALU

are latched to form a pipeline. The figure shows a 3-

stage ALU pipeline. The external inputs to the pipeline

are for register values. Each stage ALU also has a side

FIGURE 3. Mini-graph execution example. (a) Mini-graph 12 executing as a handle. (b) Mini-graph 12 executing as 3
conventional instructions.

Fetch/Decode Rename/Alloc Schedule RegRead Execute RegWrite Retire/Free

1: mg r18,r5,r18,12 2: mg p20,p14,p32(p40),1, rob,rs,preg 3: MGST[12] 5: p20,p14 6: MGST.0[12] 7: p32

7: MGST.1[12]

8: MGST.2[12] 10: p40

Fetch/Decode Rename/Alloc Schedule RegRead Execute RegWrite Retire/Free

1: addl r18,2,r18 2: addl p20,2,p32(p40), rob,rs,preg 3: addl 4: p20 5: addl 6: p32 7: p40

1: cmplt r18,r5,r7 2: cmplt p32,p14,p17(p15), rob,rs,preg 4: cmplt 5: p14 6: cmplt 7: p17 8: p15

1: bne r7,0xA 2: bne p17, 0xA, rob,rs 5: bne 6: 7: bne 8: 9:

(a)

(b)

6

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

FIGURE 4. ALU pipeline. 3-stage non-collapsing ALU
pipeline with no support for branches.

ex
te

rn
al

 r
eg

is
te

r
in

pu
ts

ex
te

rn
al

 r
eg

is
te

r
ou

tp
ut

side inputs (from MGST): immediates and control

AP.0 AP.1 AP.2

input. This input is an immediate which is streamed to

the ALU by the MGST. An ALU pipeline need not

include all possible forwarding paths; mini-graphs that

require excluded paths are simply disallowed. Support

for branches (not shown) requires the PC as an implicit

input to the pipeline and some additional control logic.

The output of an ALU pipeline is selected between

the unlatched outputs of each of the stage ALUs. This

arrangement has several advantages. It doesn’t penalize

mini-graphs whose output register is not produced by

the last instruction. It also allows us to handle long mini-

graphs while not penalizing shorter ones and even exe-

cute singleton ALU operations on ALU pipelines with

no penalty. This is important because it lets us substitute

ALU pipelines for ALUs without complicating the

scheduler or degrading the performance of programs

that do not exploit mini-graphs. One issue with this

design is the possibility of “writeback” conflicts; these

are avoided by the scheduler with the help of header

information, specifically output latency (LAT).

Latency-reducing ALUs. A mini-graph processor

does not rely on latency reducing ALUs [16, 21, 22, 27],

but can exploit them. Support for such ALUs depends

on the precise manner in which latency reduction is

achieved. Structured latency reduction—e.g., by fusion

of consecutive ALU pipeline stages using techniques

like carry-save addition—is easy to incorporate into our

scheme. We simply expand the MGST to allow each

slice to emit control signals for two instructions. Incor-

porating ad hoc latency reduction hardware like an

FPGA [21] is more difficult. It potentially requires an

additional step prior to execution to program the unit.

4.3. Sliding-window Scheduler

Integer mini-graphs provide limited coverage. For

many applications, better coverage can be achieved

using integer-memory mini-graphs which can contain

loads and stores. It is impractical to create a load/store

pipeline or to incorporate load/store stages into an ALU

pipeline. Integer-memory mini-graphs execute on a

combination of conventional functional units and any

ALU pipelines that exist. Their interior values live in the

bypass network. In this section, we introduce a modified

scheduler called a sliding-window scheduler that can

schedule integer-memory mini-graphs. Unlike an ALU

pipeline, a sliding-window scheduler does not amplify

execution bandwidth because load and store ports are

not replicated.

Basic operation. A sliding-window scheduler needs

one piece of new functionality: the ability to reserve all

the functional units a mini-graph will use at once. Con-

ventional schedulers already have some forward reser-

vation functionality which they use to reserve register

write ports for multi-cycle operations. Logically, a

scheduler maintains a two-dimensional reservation bit-

map: one dimension represents resources (here register

ports), the other future cycles. The number of future

cycles represented is equal to the latency of the longest

common operation, e.g., load. Each cycle, the issuing

instructions reserve register write ports by setting bits in

the appropriate subsequent bitmap lines. Each cycle, the

bitmap advances by one line. A sliding window sched-

uler extends the bitmap in the resource dimension to

include functional units and in the time dimension to the

maximum mini-graph execution latency.

To help in making mass functional unit reservations,

we augment the MGHT with an FUBMP field that repre-

sents the functional units used by the second and subse-

quent mini-graph instructions; the unit needed by the

first instruction is represented in the field FU0. The reg-

ister write port bitmap is implicitly represented in the

LAT field. In Figure 2, mini-graph 12 is an integer mini-

graph: it executes on an ALU pipeline and its FUBMP is

empty. Mini-graph 34, however, is an integer-memory

mini-graph and its FUBMP indicates that it needs ALUs

in the third and fourth cycles after issue.

Like a conventional scheduler, a sliding window

scheduler initially schedules both singleton instructions

and handles using the FU of the first instruction. If the

handle belongs to an integer-memory mini-graph, a slid-

ing-window scheduler ANDs the handle’s FUBMP with

its own current bitmap. If no bit in the result is set—i.e.,

there are no downstream resource conflicts—the handle

is scheduled, and its FUBMP is ORed into the current bit-

map to make the reservations. If there is a conflict, han-

dle issue is canceled and the slot used to attempt issue is

lost. It is difficult to schedule multiple integer-memory

handles in one cycle due to the need to cross-check the

FUBMP of candidate handles against one another. Our

experiments show that supporting the issue of a single

heterogeneous handle per cycle is sufficient.

Partial mini-graphs on ALU pipelines. A sliding-

window scheduler doesn’t amplify execution bandwidth

so any mini-graph processor will likely contain ALU

pipelines. It is desirable to execute the contiguous inte-

7

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

ger portions of integer-memory mini-graphs on ALU

pipelines. This is accomplished in our current scheme

by proper definitions in the MGHT and MGST. The

alternative definition of mini-graph 34 which schedules

the last two operations on an ALU pipeline.

Mini-graph load scheduling. Integer-load mini-

graphs—mini-graphs that contain loads—need not only

be integrated with the register scheduler, but also with

the load scheduler. There are two aspects to this integra-

tion: cache miss replays and memory disambiguation.

The MGT implicitly assumes a fixed latency for

each instruction. What happens when a mini-graph load

misses in the cache? There are two cases. Misses on ter-

minal loads are handled like misses on singleton loads.

No mini-graph instruction follows the load, so the

scheduler holds (or replays) all waiting instructions

(which may be younger handles) as usual. Misses on

interior loads are more difficult. Since it is not possible

to reschedule only the mini-graph subset that depends

on the load, the entire mini-graph must be replayed. The

result is a small performance penalty.

As in the case of branch prediction/update, a handle

and its PC assume responsibility for memory disambig-

uation and load scheduling. Integer-load handles are

scheduled according the same policy used to schedule

singleton loads. These days, mechanisms like store sets

[5]—which minimally synchronize loads and stores

pair-wise—are popular. Like many other predictors,

store sets is PC based and continues to work when loads

and stores that are embedded in mini-graphs are identi-

fied by handle PCs rather than individual PCs. As on

interior load misses, the entire enclosing mini-graph is

(squashed and) replayed on a load mis-speculation.

5. Custom Mini-Graphs Using DISE
Mini-graphs capture common computational idi-

oms. Some idioms are common to all programs, but the

ability to program the MGT with application-specific

mini-graphs is important. DISE (dynamic instruction

stream editor) [8] effectively provides the programma-

ble dynamic instruction set customization required to

support application-specific mini-graphs. DISE is a

facility for translating instructions into instruction

sequences at decode time, according to programmable

rewriting rules called productions. It is suitable for

mini-graphs because mini-graph processors require han-

dle-to-instruction-sequence translation but do not

require further translation, e.g., to FPGA directives.

DISE Primer. A DISE production is a <pattern :
replacement sequence> specification pair. Pattern speci-

fications can specify any combination of aspects of a

single instruction: opcode, register name, or immediate.

A replacement sequence is a sequence of instructions

that is parameterized, i.e., some fields in some instruc-

tions are “holes” to be filled in with field information

from the matching instruction. The following toy DISE

production <add,–,–,–,– : T.INSN; andi T.RD,0xff,T.RD;>
injects after every add an instruction which clears all but

the least-significant byte of the result. T.INSN and T.RD
are template parameters. DISE examines every fetched

instruction and replaces those that match active patterns

with corresponding instruction sequence. Given the

above production, the instruction add r2,r4,r2 with the

sequence add r2,r4,r2; andi r2,0xff,r2.

DISE has two usage modes. Transparent utilities

operate on unmodified executables and redefine the

semantics of naturally occurring instructions. Memory

bounds checking is a example of a transparent utility;

productions are defined for loads and stores. Aware util-

ities match and replace codewords, quasi-instructions

that are only meaningful to DISE and which have been

planted into the executable by a DISE-aware compiler

or binary rewriter. DISE codewords are recognized by

their use of a reserved opcode; the codeword immediate

serves as an index into the DISE on-chip translation

structures. A DISE aware executable contains a special

“.dise” section that defines the productions; the OS is

responsible for loads this section into the DISE tables.

Code decompression is an example of an aware utility.

DISE mini-graph productions. Mini-graph pro-

cessing is an aware DISE utility and the format of a

mini-graph handle matches that of a DISE codeword

precisely. DISE provides a natural way for expressing

the logical separation between a mini-graph’s register

interface and its internal register dataflow. Interface reg-

isters are specified as parameters and are explicit in the

codeword/handle. Mini-graph internal register dataflow

is specified using DISE’s dedicated register set. This

allows mini-graphs instantiated from different static

handles not to interfere with local register definitions.

The replacement sequences for our two mini-graphs are

<addl T.RS1,2,T.RD; cmplt T.RD,T.RS2,$d0; bne $d0, 0xa>
and <ldq $d0, 16(T.RS2); srl $d0,14,$d0; and $d0,1,T.RD>.

$d0 is a DISE register which denotes mini-graph inte-

rior dataflow.

A DISE mini-graph microarchitecture. Combin-

ing DISE and mini-graphs requires slight modifications

to both. On the mini-graph side, we modify the MGT to

act as a cache rather than a ROM, adding a small table,

the mini-graph tag table (MGTT) to implement the

tags. On the DISE side, we provide an option to keep

codewords/handles un-expanded. Between the two, we

add a small finite-state machine, the mini-graph pre-

processor (MGPP), that scans DISE replacement

sequences and compiles them to internal MGT format.

The DISE specification [8] implies that productions

transform the instruction stream in-line, codewords are

excised and replacement sequences spliced in their

8

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

place. This design compartmentalizes DISE but also

prevents the execution core from exploiting mini-graphs

by feeding it a stream of singleton instructions. For

mini-graph processing, we augment DISE with the

option to forgo expansion and keep the codeword/han-

dle inline. The decision to expand is based on finding

the MGID in the MGTT. If the MGID is present—trans-

lation: this mini-graph is supported—the handle is not

expanded. Otherwise, DISE expands the handle and the

execution core processes each instruction individually.

Keeping the expansion option preserves the correctness

of DISE utilities whose productions do not meet mini-

graph specifications. It also provides portability and

compatibility at the intersection of mini-graph enabled

executables and mini-graph processors. A processor can

always expand a mini-graph it doesn’t understand.

Each MGTT entry contains an MGID and two valid

bits. The first valid bit simply indicates that a tag is not

garbage and that the associated mini-graph has been

pre-processed. The second valid bit indicates that the

MGPP has “approved” the mini-graph and the handle

should remain un-expanded. The MGTT is read at the

DISE (decode) stage. On a miss, DISE expands the

replacement sequence. One copy is sent to the execution

core to avoid stalling the pipeline. A second copy goes

to the MGPP for inspection/compilation.

6. Experimental Evaluation
We present a simulation-driven evaluation of mini-

graph processing. We begin by studying mini-graphs

functionally by examining the effects of constraints on

mini-graph coverage. We follow with a performance

evaluation, including sensitivity analysis.

Our simulators are constructed using the SimpleSca-

lar Alpha AXP instruction and system call definition

modules. The timing simulator models a 6-way super-

scalar, dynamically scheduled processor with a 15-stage

pipeline, 128 entry reorder buffer, 64 entry load/store

queue, and 50 entry issue queue. The execution engine

uses a 164-entry, 5 read port, 4 write port, 2 cycle read

physical register file. Each cycle, the scheduler may

issue up to 6 operations with the following maximum

composition: 4 integer, 2 floating-point, 2 load, and 1

store. Loads are scheduled using a store sets [5] predic-

tor. Cache miss replays and memory ordering violation

squashes are modeled faithfully.

We model a 12Kb hybrid branch direction predictor

and a 2K-entry 4-way set-associative target buffer. The

on-chip memory hierarchy includes 32KB, 2-way set-

associative, 32B line 1-cycle access instruction and 2-

cycle access data caches and a 2MB, 4-way set-associa-

tive, 128B line, 10-cycle access L2. Main memory has

an access latency of 100 cycles and is accessed via a

16B bus that operates at one-quarter core frequency.

We use benchmarks from the SPEC2000, Media-

Bench [15], CommBench [25], and MiBench [10]

suites. The benchmarks were compiled for the EV6

microarchitecture using the Digital OSF compiler with

optimization level –O3. The SPECint programs were

run on their training inputs at 2% periodic sampling

with 10M instructions per sample; all other benchmarks

were run unsampled on their largest available inputs.

All benchmarks were run to completion. Results are

shown for selected benchmarks along with means over

all programs in each suite.

6.1. Coverage

Figure 5 shows coverage for integer (top) and inte-

ger-memory (middle) mini-graphs. Each bar group var-

ies along the two MGT dimensions: total number of

mini-graphs horizontally (32, 128, 512, 2K), and indi-

vidual mini-graph size vertically (2,3,4,8).

With 512 integer mini-graphs, coverage averages

13%, 24%, 21%, and 19% for SPECint, MediaBench,

CommBench, and MiBench, respectively. SPECint pro-

grams have both a lower ratio of ALU operations and

smaller basic blocks. Integer-memory mini-graphs

increase coverage by approximately 50%, to 21%, 33%,

31%, and 29%. Although a sliding window scheduler

does not increase execution bandwidth, this increased

coverage suggests that it should boost performance.

In practice, 60% of coverage is achieved using only

2 instruction mini-graphs. There is some advantage to

allowing mini-graphs of size 3 and 4, but little benefit to

allowing mini-graphs longer than that. Longer idioms

that meet mini-graph criteria are simply not common; in

SPECint the average basic block size is not much bigger

than 4 instructions.

Most non-SPECint programs are statically so small

that 128 MGT entries are sufficient to provide maxi-

mum coverage in all but a few cases (ghostscript, rtr).

For SPECint, a similarly sized MGT will achieve maxi-

mum coverage for integer mini-graphs, but 512 entries

are needed for integer-memory mini-graphs. 2K entries

provide additional coverage for only a few programs

(gap, gcc, ghostscript).

Intra-application input data robustness. Our off-

line selection algorithm prioritizes mini-graph by cover-

age which is proportional to execution frequency. For

maximum effectiveness, it relies on the robustness of

basic block frequency profiles. We tested this robustness

for SPECint and MiBench by selecting mini-graphs

using basic block profiles from the test and small input

data sets, respectively.

Our results (not shown) indicate that basic block fre-

quency variance across input data sets reduces coverage

relatively by an average of 15% (e.g., from 20% to

17%). 70% of SPECint and 80% of MiBench programs

9

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

maintain coverages within 15% of those in Figure 5.

However, several programs see their coverage drop to

0%. For these, different input files or flags simply trig-

ger different portions of the static code. To avoid this

pathology, mini-graph selection can and should incorpo-

rate profiles from multiple runs. In light of both the

robustness of most programs and our proposed solution

for less robust ones, we continue to use profiles gener-

ated from the same inputs used in testing.

Domain specific mini-graphs. The top two graphs

in Figure 5 showed application-specific mini-graphs.

The bottom graph shows coverage of domain specific

integer-memory mini-graphs. Here, a 512 entry MGT

holds the 512 most frequent mini-graphs across an

entire benchmark suite. At 512 entries, each benchmark

sacrifices some coverage for the benefit of the others in

its suite. Intuitively, larger, 2K-entry MGTs are needed

to achieve maximum per-application coverage. Interest-

ingly, while two-instruction mini-graphs already domi-

nate within an application, their relative contribution

increases even further when they must cover multiple

applications. Just as smaller idioms are more likely to be

found in multiple static locations within a program, they

are more likely to be found in different programs.

All subsequent experiments use an MGT that holds

512 application-specific mini-graphs with a maximum

size of 4 instructions each.

6.2. Performance

Figure 6 shows the performance of two mini-graph

processor configurations relative to our 6-wide baseline

machine. In the first configuration, (light bars) integer

mini-graphs execute on a similar pipeline in which two

integer ALUs have been replaced with 4-stage ALU

pipelines. In the second (dark bars), we further add a

sliding-window scheduler capable of issuing one inte-

ger-memory mini-graph per cycle. Within each configu-

ration there are two sub-configurations: the first (solid)

uses simple ALU pipelines, the second (striped) uses

pair-wise collapsing ALU pipelines. Baseline IPCs are

printed below each benchmark.

We defer a discussion on latency-reducing ALU

pipelines and focus on the resource amplifying configu-

rations (solid portions of the bars). For integer mini-

graphs and ALU pipelines, average (gmean) gains are

2% for SPECint, 10% for MediaBench, 6% for Com-

mBench, and 7% for MiBench. For integer-memory

mini-graphs and a sliding-window scheduler, those

numbers are 2%, 12%, 3%, and 7%, respectively. There

is a high degree of variance within each suite, with some

programs (reed.decode, mpeg2.decode, gsm.toast) post-

ing speedups of 20% and above while others show neg-

ligible gains or even losses (crc, mcf).

Isolating serialization effects. Performance losses

manifest both for integer mini-graphs (e.g., mcf, drr,

adpcm.encode) and for integer memory mini-graphs

(e.g., adpcm.rawc whose performance improvement

drops from 14% with integer mini-graphs to 11% with

integer-memory mini-graphs). These losses are due to

serialization—both internal and external—in the integer

case and serialization and cache miss replays in the inte-

ger-memory case.

Figure 7 isolates the effects of these costs. The first

FIGURE 5. Coverage. (top) Application-specific integer and (middle) integer-memory, and (bottom) domain-specific
integer-memory mini-graphs. Horizontal bars are 32,128, 512, 2K MGT entries. Stacks are mini-graphs of size 2,3,4, 8.

0

10

20

30

40

0

10

20

30

40

2
3
4
8

SPECint MediaBench CommBench MiBench

crfty twolf vprp mean g721e gs gsmt jpegc mpg2d mean drr reedd rtr mean bitcnt sussm jpege 2rgba dikst rsynt blwfd adpce mean

0

10

20

30

40

50

3
2

1
2
8

5
1
2

2
0
4
8

10

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

FIGURE 7. Serialization effects. Relative performance
of mini-graphs with and without external serialization,
internal serialization, and load-induced replays.

0.8

0.9

1.0

1.1

1.2

1.3 int
int - externally serial
int - internally serial
int - serial
int-mem
int-mem - serial
int-mem - serial - replay

gsmu mpg2e reede mcf sha adpce

FIGURE 6. Performance. Mini-graph processor using integer (light) and integer-memory (dark) mini-graphs, relative
to a baseline processor (baseline IPCs shown). Striped configurations use pair-wise collapsing ALU pipelines.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

int + collapsing int-mem + collapsing

int int-mem

crfty gcc mcf perld vprp adpcd g721e gsmt mesao pgwte castd frag gzipe reedd tcpdp bitct jpege dikst blwfd crc
2.09 1.43 0.270 1.46 1.89 1.59 2.71 3.61 2.67 1.95 2.73 3.67 1.74 3.43 1.91 2.30 3.14 2.96 3.33 3.28

gap gzip parsr twolf mean epice gs jpegc mpg2d mean drr gzipd jpegd rtr mean sussm 2rgba rsynt adpce mean
1.08 2.09 1.22 1.19 1.13 3.35 1.86 3.11 4.08 2.45 2.73 2.38 3.69 2.22 2.42 2.76 2.46 3.52 2.29 2.79

SPECint MediaBench CommBench MiBench

than the last. Finally, mcf’s 4% performance loss returns

to a 1% performance gain.

The non-uniform effects of each mini-graph selec-

tion sub-policy—allowing or disallowing internally

serial, externally serial, and replay vulnerable mini-

graphs—suggests that there is potential benefit to apply-

ing each policy selectively. Our results show that when

the best combination of policies is applied on a per

benchmark basis, average performance gains rise to 3%,

14%, 9% and 11%, respectively. Generally speaking,

latency bound programs seem to prefer non-serializing

mini-graphs while bandwidth bound programs can toler-

ate serialization and prefer increased coverage and

bandwidth amplifications. Higher gains still may possi-

bly be achieved if policies could be applied on a per

mini-graph basis. We are currently investigating heuris-

tics and profile measures for guiding the application of

these and other policies to mini-graph selection. Our

remaining experiments use unrestricted mini-graphs.

Latency reduction and resource amplification.

Mini-graph processing is primarily a resource amplifica-

tion technique. It is orthogonal to, but compatible with,

dataflow-graph latency reduction. The striped portions

of the bars in Figure 6 show experiments that add pair-

wise collapsing to the 4-stage ALU pipelines of the cor-

responding mini-graph configurations. Two instruction

integer mini-graphs execute in one cycle; three and four

instruction graphs execute in two cycles. The addition of

structured latency reduction boosts performance

improvements to 4%,15%, 14%, and 13% for integer

mini-graphs on ALU pipelines and 4%, 18%, 10%, and

13% for integer-memory mini-graphs on ALU pipelines

and a sliding window scheduler. Generally speaking,

latency reduction is less effective than bandwidth ampli-

fication, accounting for 30–50% of total performance

improvement. However, it can provide a significant

boost for latency bound programs like bitcount and crc.

Again, the scope of latency reduction here is limited to

dataflow graphs that meet mini-graph criteria.

Instruction cache effects. Like any static compres-

bar shows relative performance of integer mini-graphs

for six programs; four of the six experience slowdowns.

In the second bar, we eliminate external serialization by

disallowing mini-graphs with external register inputs to

any instruction other than the first, i.e., whose first

instruction may be spuriously delayed by inputs to sub-

sequent instructions. For gsm.untoast, removing exter-

nally serial mini-graphs lowers performance gains from

27% to 16%. For mpeg2.encode, however, removing

external serialization converts a 1% loss into a 13%gain.

In the third bar, we eliminate internal serialization

by disallowing mini-graphs that have any internal paral-

lelism, i.e., are not serial dependence chains. This

change has little effect in general because it can only

possibly eliminate three and four instruction mini-

graphs which are less common than two instruction

mini-graphs. The only change we see is a slight perfor-

mance loss in gsm.untoast. In the fourth bar, we disal-

low both externally and internally serial mini-graphs.

Sha posts a speedup only when both types of serializa-

tion are eliminated.

The striped bars isolate effects for integer-memory

mini-graphs. The first striped bar shows the perfor-

mance of unconstrained mini-graphs. The second

removes both internally and externally serial mini-

graphs. Removing these two effects is enough to elimi-

nate all performance degradation cases except for mcf,

which suffers from load-miss mini-graph replays. In the

final bar, we eliminate mini-graph replay effects by dis-

allowing mini-graphs with loads in any position other

11

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

sion technique, mini-graphs amplify instruction cache

capacity. In order to isolate the effects of mini-graphs

from those of ad hoc compression, none of our figures

show the compression effect (we replace mini-graph

interior instructions with nops). Because they have

larger instruction footprints and working sets, SPECint

programs are the only ones which experience a notice-

able speedup from this effect. SPECint speedup triples

to an average of 6%, while other suites gain on average

less than 1% additional performance.

6.3. Resource Amplification as Simplification

The capacity and bandwidth amplification that mini-

graphs provide can be used either to improve perfor-

mance or to maintain performance at a lower complex-

ity. We investigate the ability of mini-graph processing

to compensate for reductions in physical register file

size and bandwidth at all pipeline stages. We also mea-

sure its effectiveness at hiding scheduling loop latency.

For this sensitivity analysis, we only use benchmarks

for which mini-graphs provide a performance gain. This

is done to ease data presentation. Means are still shown

over all programs.

Capacity: physical register file size. The top graph

in Figure 8 shows relative performance advantage of

mini-graphs for processor configurations with reduced

physical register files. Our baseline processor has 164

physical registers: 64 hold architected state and 100

hold in-flight state for a 128-entry reorder buffer (stores

and branches are not allocated registers). We measure

the effects of reducing the number of registers for in-

flight instructions by 20%, 40% and 60% to 144, 124

and 104, respectively. For these reduced configurations,

our baseline processor experiences average slowdowns

of 1–2%, 2–4%, and 9–12%, depending on the bench-

mark suite. On average, mini-graphs can compensate—

and often over-compensate—for a 40% reduction in

physical registers. Intuitively, they cannot fully compen-

sate for reductions that exceed coverage.

Although we do not show results, mini-graph pro-

cessing can similarly deal with reductions in the number

of scheduler (issue queue, reservation station) entries.

Bandwidth: all pipeline stages. Our baseline pro-

cessor can fetch, rename, execute, and retire six instruc-

tions per cycle. The bottom graph in Figure 8 compares

the effect of mini-graphs for that configuration (first

bar) with their effect on two processors that can fetch,

rename, schedule, and retire only 4 instructions per

cycle. The first (second bar) can execute 4 instructions

per cycle, including 1 load; the second (third bar) can

execute 6 instructions per cycle, including 2 loads.

Relative to a 6-wide processor, a 4-wide processor

represents performance degradations of 10%, 17%,

17%, and 18% for SPECint, MediaBench, Com-

mBench, and MiBench, respectively. The addition of

mini-graphs effectively restores much of this band-

width; with mini-graphs, slowdowns are only 7%, 4%,

10%, and 9%, respectively. These remaining slowdowns

are due to the fact that mini-graphs do not amplify exe-

cution bandwidth, specifically load execution band-

width (ALU pipelines amplify integer execution

bandwidth). When we restore the second load port,

slowdowns are only 4%, 1%, 6%, and 4%.

Latency: scheduling loop. Our baseline processor

models a “single-cycle” scheduler and can execute sin-

gle-cycle operations and instructions that depend on

them in consecutive cycles. Clock cycle concerns have

forced some processors to pipeline the scheduler. The

resulting wake-up/select loop disallows the issue of

dependent instructions in back-to-back cycles and effec-

tively increases the latency of all single-cycle operations

to two cycles. Because mini-graph execution is “pre-

scheduled” and does not use conventional wake-up/

FIGURE 8. Resource amplification. (top) mini-graph performance with 144, 124, and 104 physical registers relative
to a baseline with 164 registers. (bottom) mini-graph performance on a 4 wide processor, on a 4 wide processor with 6
execution units, and with a 2 cycle scheduler, relative to a baseline 6-wide processor with a 1 cycle scheduler.

0.7

0.8

0.9

1.0

1.1

1.2

1.3
int-mem
int
baseline

SPECint MediaBench CommBench MiBench

6
-w

id
e

4
-w

id
e

4
-w

id
e

+
 6

-e
x
ec

2
-c

y
cl

e
sc

h
ed

u
le

crfty twolf vprp mean gsmt jpegc mesao mpg2d pgwtd mean frag jpegd reedd mean suse suss jpege 2rgba dithr dikst rsynt adpcd mean

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1
6
4

1
4
4

1
2
4

1
0
4

12

Appears in Proceedings of 37th International Symposium on Microarchitecture (MICRO-37), Dec. 4–8, 2004.

select logic, it can help tolerate scheduling loop latency.

This is the motivation for macro-op scheduling [14], a

restricted micro-architectural precursor to mini-graph

processing. Like macro-ops, mini-graphs hide schedul-

ing latency in two ways: internally, dependent instruc-

tions within the same mini-graph execute in consecutive

cycles, and externally, single cycle operations which

impose a scheduling penalty on dependent instructions

coalesce to multi-cycle operations which do not.

In the bottom graph of Figure 8, the right -most bar

in each group shows a configuration with a two-cycle

scheduler. In a conventional processor, two-cycle sched-

uling degrades performance by averages of 7–18%

across the different benchmark suites. Mini-graphs

compensate for 100% of this loss in MediaBench, 85%

of it in SPECint, 80% in CommBench, and 70% in

MiBench. These rates are roughly proportional to the

mini-graph coverage with respect to single-cycle integer

operations. Macro-op scheduling is reported to be more

effective—it compensates for all by 0.5% of the perfor-

mance loss on SPECint [14]—but this isn’t surprising

considering it specifically targets this problem. Macro-

op scheduling’s advantage here derives from its ability

to exploit macro-ops that cross basic block boundaries.

7. Conclusions and Future Work
This work introduces mini-graphs, multi-instruction

dataflow graphs with an instruction-like interface: two

inputs, one output, at most one memory reference, and

at most one control transfer. We detail a microarchitec-

ture that processes entire mini-graphs via a single quasi-

instruction handle. Mini-graphs reduce bandwidth con-

sumption at every pipeline stage and storage demands

on resources like the scheduler and register file.

Our results show that mini-graphs can cover 10–

50% of the dynamic instruction stream. Relative to an

aggressive baseline, they achieve average performance

gains of 2%, 12%, 6% and 7% on SPECint, Media-

Bench, CommBench and MiBench respectively, with

peak gains exceeding 30% and 40%. Alternatively, they

can also effectively compensate for 40% reductions in

register file and scheduler sizes, 33% reductions in pipe-

line bandwidth, or a pipelined scheduler. Our analysis

shows that there is room for further improvement.

Future work will focus on selection heuristics and

on the energy properties of mini-graph processors.

Acknowledgments

We thank the anonymous reviewers for their sugges-

tions. E Lewis, Milo Martin, and Ronny Ronen gave

comments that helped improve this manuscript. This

work was supported by NSF CAREER award CCR-

0238203 (Roth), NSF award CCR-0311199, an NSF

Fellowship (Bracy), and a generous gift from Intel.

References
[1] K. Atasu, L. Pozzi, and P. Ienne. “Automatic Application Specif-

ic Instruction Set Extensions Under Microarchitectural Con-
straints.” In DAC-40, Jun. 2003.

[2] P. Athanas and H. Silverman. “Processor Reconfiguration
Through Instruction Set Metamorphosis.” IEEE Computer, Mar.
1993.

[3] E. Borch, E. Tune, S. Manne, and J. Emer. “Loose Loops Sink
Chips.” In HPCA-8, Jan. 2002.

[4] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. “Instruc-
tion Generation and Regularity Extraction for Reconfigurable
Processors.” In CASES-02, Oct. 2002.

[5] G. Chrysos and J. Emer. “Memory Dependence Prediction using
Store Sets.” In ISCA-25, Jun. 1998.

[6] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. “Ap-
plication-Specific Processing on a General-Purpose Core via
Transparent Instruction Set Customization.” In MICRO-37, Dec.
2004.

[7] N. Clark, H. Zhong, and S. Mahlke. “Processor Acceleration
through Automated Instruction Set Customization.” In MICRO-
36, Dec. 2003.

[8] M. Corliss, E. Lewis, and A. Roth. “DISE: A Programmable
Macro Engine for Customizing Applications.” In ISCA-30, Jun.
2003.

[9] D. Goodwin and D. Petkov. “Automatic Generation of Applica-
tion Specific Processors.” In CASES-03, Oct. 2003.

[10] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite.” In WWC-4, Dec. 2001.

[11] J. Hauser and J. Wawrzynek. “Garp: A MIPS Processor with a
Reconfigurable Coprocessor.” In FCCM-97, Apr. 1997.

[12] S. Hu and J. Smith. “Using Dynamic Binary Translation to Fuse
Dependent Instructions.” In CGO-2, Mar. 2004.

[13] Intel Corporation. Mobile Intel Pentium 4 M-Processor
Datasheet, Jun. 2003. http://www.intel.com/design/mobile/
datashts/250686.htm.

[14] I. Kim and M. Lipasti. “Macro-op Scheduling: Relaxing Sched-
uling Loop Constraints.” In MICRO-36, Dec. 2003.

[15] C. Lee, M. Potkojnak, and W. Mangione-Smith. “MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Com-
munications Systems.” In MICRO-30, Dec. 1997.

[16] N. Malik, R. Eickemeyer, and S. Vassiliadis. “Interlock Collaps-
ing ALU for Increased Instruction-Level Parallelism.” In MI-
CRO-25, Dec. 1992.

[17] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler. “A
Design Space Evaluation of Grid Processor Architectures.” In
MICRO-34, Dec. 2001.

[18] S. Patel and S. Lumetta. “rePLay: a Hardware Framework for
Dynamic Optimization.” IEEE Transactions of Computers,
50(6), Jun. 2001.

[19] A. Peymandoust, L. Pozzi, P. Ienne, and G. D. Micheli. “Auto-
matic Instruction Set Extension and Utilization for Embedded
Processors.” In ASAP-14, Jun. 2003.

[20] J. Phillips and S. Vassiliadis. “High-Performance 3-1 Interlock
Collapsing ALUs.” IEEE Transactions on Computers, 1994.

[21] R. Razdan and M. Smith. “A High-Performance Microarchitec-
ture with Hardware Programmable Function Units.” In MICRO-
27, Dec. 1994.

[22] Y. Sazeides, S. Vassiliadis, and J. Smith. “The Performance Po-
tential of Data Dependence Speculation and Collapsing.” In MI-
CRO-29, Dec. 1996.

[23] J. Stark, M. Brown, and Y. Patt. “On Pipelining Dynamic In-
struction Scheduling Logic.” In MICRO-33, Dec. 2000.

[24] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.
“WaveScalar.” In MICRO-36, Dec. 2003.

[25] T. Wolf and M. Franklin. “CommBench: A Telecommunications
Benchmark for Network Processors.” Technical Report WUCS-
99-29, University of Washington in St. Louis, Nov. 1999.

[26] Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee. “CHIMAERA:
A High-Performance Architecture with a Tightly-Coupled Re-
configurable Functional Unit.” In ISCA-27, Jun. 2000.

[27] S. Yehia and O. Temam. “From Sequences of Dependent In-
structions to Functions: A Complexity-Effective Approach for
Improving Performance without ILP or Speculation.” In ISCA-
31, Jun. 2004.

	1. Introduction
	2. Related Work
	3. Mini-graphs
	3.1. Structural Constraints
	3.2. Mini-Graph Selection

	4. Mini-graph Execution
	4.1. Basic Microarchitecture
	4.2. ALU Pipeline
	4.3. Sliding-window Scheduler

	5. Custom Mini-Graphs Using DISE
	DISE Primer

	6. Experimental Evaluation
	6.1. Coverage
	6.2. Performance
	6.3. Resource Amplification as Simplification
	Bandwidth: all pipeline stages

	7. Conclusions and Future Work
	References
	Dataflow Mini-Graphs: Amplifying Superscalar Capacity and Bandwidth

