Quantum Computer Simulation Using CUDA

Alexander Smith Khashayar Khavari University of toronto
Department of Electrical and Computer Engineering

I. INTRODUCTION

Quantum computing has captured the attention of many refsex in the past decade. While researchers in the fields of
electrical engineering and physics have concentrated alizirgy a physical machine that satisfies the criteria of antum
computing, others in the research community are develogiggrithms that can take advantage of such machines. Throug
exploitation of the inherit superposition observed at thiargum level, many interesting quantum algorithms (g-atiyms)
have been developed. These range from simple communidagisveen two points using super-dense coding to factooizati
of a large number into its prime components through Shogsrithm.

Despite the dedication and hard work of physicists and exays) a physically stable quantum computer is still a dream t
be fulfilled. To deal with this problem and to encourage depaient of more g-algorithms, it has been proposed to simulat
the functionality of a quantum computer using a classica. @@uantum computer simulation allows researchers to atalid
existing quantum algorithms without the need for a physicaintum computer. However, the inherent complexity of antjua
system results in extremely time-consuming simulations atassical machine.

In a physical quantum computer, quantum superposition atestallows the simultaneous manipulation of all possible
combinations of a set of bits in a single operation, speedmgnany algorithms exponentially when compared to a claksic
computer. This is main challenge that a classical simulasrto face. Because of this, quantum algorithms, whichugppcsed
to reduce exponential processing times to linear ones, raremlowly than their classical counterparts when simdlate
However, the inherit parallelism involved in simulating aastum system makes it suitable for GPU implementations.

In this project we will implement a simulator for Quantum Feun Transform (QFT) using CUDA. Like classical Fourier
transform, the QFT is at the heart of many other algorithmgb&bly the most famous example is Shor’s integer factbama
algorithm [3] which is a set of protocols that convert thetéaization problem into a period detection problem.

In order to validate our implementation and to test it's perfance we will usdibquantumas the basis for this work.
libquantumis a set of a programming libraries written in C for the sintiola of quantum computers. There are many quantum
algorithms implemented by this library, and its gate-byeggpproach to simulation allows a fair comparison and easgiation
of our implementation.

The remainder of this paper is organized as follows. We $tarintroducing the reader to the basics of Quantum Fourier
Transform in Section Il. We then present our approach for &&lUmplementation in Section Ill. In Section IV we present
methods of improving the performance of our code for GPUsti&e V presents a subset of our experiments to evaluate the
correctness, accuracy and performance of our design. Wenauge the work and point to future improvements in Section V

Il. QUANTUM FOURIER TRANSFORM

Fig. 1 presents the quantum circuit for QFT, while Equatiotlescribes the operation of the overall system in terms of the
input and output states [2]. Each input state goes througimaber of phase shift gates and Hadamard transforms. However
the phase shift gates “controlled” quantum gates. This mehat the effect the have on the target qubit (quantum bit) is
dependent on the value of the control qubit. A gate-by gateulsition of this circuit involves evaluating the effect cdah
gate on each qubit for all different states. Note that givenguperposition property of quantum computatierinput qubits
translate toN = 2" states. What makes this problem suitable for a CUDA impldaaté&m is that processing each state is
completely independent from the oth&r— 1 states.

N—-1
1
lo>= i1, ... in>— ST k> 1)
k=0

VN

~{n] b,
|

b EH__'_} b
bn-l HH?2 IE— bi

n

Fig. 1. Quantum Fourier Transform circuit consisting of ttolked phase shift gates and Hadamard transforms.

Before we start describing our approach to solving this f@mbwe would like to clarify the operation of the QFT throuayh
example with two qubitsi{ = 2). The number of states for this exampleNs= 22 = 4 and the states ar>, |1>, |2>, [3>.
Each state is represented as a column vector of 4 elemettswingle nonzero element at the row corresponding to the sta
number, eg.|2>= [0010]7. The input state to our system is a weighted sum of these fatess where the coefficients are
complex numbers, Equation 2.

N-1
Win>= > o [k>)
k=0
The output state is also a weighted sum of the same basis statedifferent coefficients, Equation 3.
N-1
|\Ilout>: Z ﬁk |k> (3)
k=0
In order to describe the output of the circuit in terms of itput, we need to describe the output coefficiefitsas a function
of input coefficientsoy. It is a well-known fact that the operation of each gate on qulit ¢ can be described as a linear,
unitary transformation on its input qubits. As it turns otlite output coefficient; is a function ofa; and a;g2q, Wheregq is
the index of the qubit at which that the gate is being appli#d. note that the same two input coefficients are required to
obtain bothg; and 5;g2..
Applying what we have reviewed to our example for stite and qubitg = 1 we have the following transformation after

the Hadamard gate.)

7 (a2 — ap)

The effect of all other gates on all states can be evaluatedsimilar manner.

P = (4)

Il. | MPLEMENTATION IN CUDA

We considered two different approaches to the probleme#alator in which each gate is implemented in CUDA and the
whole circuit is implemented by interconnecting these gjadéed asimulator A simulator achieves the the same final result,
but through a different method. In our case, our emulatos uisatrix multiplication.

A. Simulator

One can show that any quantum circuit can be reduced to amraigeproblem involving the multiplication of a matrix
representing all of the gates in the circuit in Ah= 2" dimensional space by the input state vector. This is due tatgh
known as “delayed measurement” in quantum systems. Simatgd; this property allows one to carry out operations that
depend on the intermediate value of qubits without actualyasuring the values of those bits except for a single meamsant
at the end of the circuit. For example, the following matrande used to evaluate the QFT of a three-bit input circuit.

r1 1 1 1 1 1 1 1 7
1 w w? w wt w W W
1 w? wt W 1 w? wt Wt
M= 1 1w w ow w W w Wt
o % 1 w1 w1 wt 1wt
1 w w? W wt 1 wb Wl
1wt w' w? 1w wt w?
L 1 w’ w w’ wt W w? w i

Using this idea, we reduced the QFT circuit to a problem oftiplying an N x N matrix with all input states and then
summing the results; or, equivalently:
N—-1
[Cour>= Y oM x [k>= M x [U;,> ®)
k=0
We implemented both a CPU and an optimized GPU version ofaghiisoach, achieving three orders of magnitude in speedup.
However, it soon became clear that although this approaearis GPU-friendly, it has a complexity @@(N x N) = O(22").
As we will see in the next section, a gate-by-gate emulatasd complexity of)(n? x 2™). For this reason, the overall speed
of the gate-by-gate emulation is much higher for large \@lolen. Because this approach ultimately was not fruitfal, and to
save space, we will not present details of our optimizatfonghis matrix-multiplication method here.

q 0 1 7 8
I I xor 2¢ I xor 29 I xor 2¢ I xor 29
0 1 2 128 256
1 0 3 129 257
2 3 0 130 258
Block 1 3 2 1 131 259
4 5 6 132 260
511 510 509 383 255
512 513 514 640 768
513 512 515 641 769
514 515 512 642 770
Block 2 515 514 513 643 771
516 517 518 644 772
1023 1022 1021 895 767

Fig. 2. Memory access pattern for the last nine qubits.

B. Emulator

Our QFT emulator simulates the quantum circuit gate by gate.QFT implementation itibquantumis a direct implemen-
tation of a modified form of the circuit shown in Fig. 1. The laaurts oflibquantumhave applied an algebraic manipulation of
the circuit so qubits are applied to the high-order gateg fivhich is opposite to what is shown in Fig. 1. This manipiolat
does not affect the result, nor the number of computatiogsired, and provides no additional opportunity for optiatian.
Nevertheless, we chose to folldibquantuns form of the circuit in order to facilitate testing of our de.

Our initial emulation algorithm is a fairly direct port oféfibquantumcode to CUDA. Performing a QFT (usitiquantun’s
method) requires applying several controlled quantumsgitehe last output qubit, then applying several gates tséoend-
last qubit, and so on. From the discussion in Section Il, diésr that several consecutive gates applied to the saniewgiib
involve the same state coefficients. Therefore, we can coerdmch set of consecutive gates on a qubit (several phiiseasiu
a Hadamard transformation) into a single kernel call. Tesults inn kernel calls for am-qubit QFT. Also from Section I,
we see that state calculations can be grouped: calculdténgutputs of statesand: @ 27 bothrequire andproducecoefficients
a; anda;goa. Thus in CUDA, we can assign one thread to every pair of caeffis.

IV. OPTIMIZATION FOR GPU

The largest qubit state vector On the lab machines, thedargsbit state vector that fits in GPU memory is 26-bits (reggi
512 MB of memory). Our initial GPU implementation gave3ax speedup ovelibquantum From here, we applied several
different types of optimizations. We used some methods fibjnas well as others described below.

A. Algebraic Manipulations

Trignometric floating-point operations are some of the glstwoperations on CUDA GPUs. We began our optimizations by
trying to reduce the number and complexity of floating poiperations required. Our first optimization involved comibn
consecutive phase shift gates into olilequantumsimulates each gate separately. Roconsecutive phase shift gates, this
approach requires sin andcos calculations;: complex multiplications (each requiring: floating-point multiplications and
2n additions), an®2n further floating-point additions. Since quantum phaset gdtes commute, we can group the phase
shift gates together. We first calculate the total resulihgse shift (which will be different for each state), andntiperform
a single floating pointin and cos. This procedure alone gave an additiofdd x speedup, for a total so far dR5x. See
Section V for details.

On the CUDA architecturesi nf andcosf are much slower thasqrt f. Sincesin¢ = 4-1/1 — cos? ¢, we can achieve
a further speedup by replacing a callgonf with sqrt. Finally, we can halve the number of accesses to global mgmor
by combining the phase shift and Hadamard calculationsartimgle function. Instead of fetching and writing back ar i
state coefficients for the phase, and then the Hadamardtpetepefficients are fetched into thread-local variableseat the
start of the function. The phase shift is applied, followgdtbe Hadamard transformation, and only then is global mgmor
accessed again in order to write the final result back.

B. Combining Kernels and Shared Memory

One of the main bottlenecks in the CUDA architecture is thenary access speed. Accessing global memory takes several
hundred clock cycles. If memory accesses are not coalefoedime penalty for accessing memory is compounded. In our
algorithm, there is a separate kernel call for each ggbitn —1...0. Some particular thread will be performing calculations
on coefficientsy; anda;go¢. An important question is: If threadaccesses coefficient; and thena;g 2., will these memory
accesses coalesce? The answer can be found in Fig. 2. Aedessgobviously will coalesce, since sequential threads are
accessing sequential memory locations. Accessesdg. are uncoalesced for low values @f but do coalesced whenis

q 9 10 11
I xor 2¢ I xor 29 I xor 29
0 512 1024 2048
Block 1
511 1023 1535 2559
512 0 1536 2560
Block 2
1023 511 2047 3071
1024 1536 0 3072
Block 3
1535 2047 511 3583
1536 512 512 3584
Block 4
2047 1023 1023 4096
2048 2560 3072 0
Block 5
2559 3071 3583 511
2560 2048 3584 512
Block 6
3071 2559 4096 1023
3072 3584 2048 1024
Block 7
3583 4096 2559 1535
3584 3072 2560 1536
Block 8
4096 3583 3071 2047

Fig. 3. Memory access pattern for qubits 9-11.

high enough. Therefore, we should be able to achieve a spdadimproving global memory access for the least significant
few bits.

Fig. 2 illustrates another useful features of the QFT atbori For qubits) . .. 8, the pairs of coefficients; and a;q2q lie
within the same 512-element block of the vector state aBag complex numbers is the largest power of two we can fit
into shared memory on the GTX280 graphics cards. This obfenvsuggests a means of using shared memory to improve
performance. Each block will copy-in 512 elements from ttagesvector. The block will then perform the calculations thee
last nine qubitsin its own shared memory and then copy the results back. @gmoefficients into and out of shared memory
can be done with global memory coalescing. In addition, thékiced the overhead incurred in launching nine separatelse
While implementing this optimization, we were careful tomalshared memory bank conflicts as much as possible.

Our use of shared memory in the last nine qubits is possibbause the coefficients for those qubits naturally fall into
disjoint groups of less than 512-(2%). For higher qubits, the coefficient pairs spread out in msmidowever, for anyr
consecutive qubits, the state vector coefficients can hdethvinto disjoint sets such that the calculations for theffidents in
that set affect those coefficients, and those coefficierlis bmother words for any consecutive qubits, the coefficients can
be divided intodisjoint sets. Several of these sets can be copied into shared meandrg, block can process them completely
without worrying about synchronization with any other tecFig. 3 illustrates how a disjoint set can be found for tgiBito
11 (r = 3). In this case, state coefficients 3584 and 3072 are paiirezk 3584 @ 27 = 3072. These coefficients are highlighted
in yellow in the figure. In order to apply the gates for qubitv8 must first have the output coefficients from qubit 10. For
qubit 10, these two coefficients are paired with another taeffcients: 2048 and 2560. These four coefficients in tuguire
four more coefficients from qubit 11. Thus, for qubits 9-1 toefficients0, 512, 1024, 1536, 2048, 2560, 3072, 3584} form
a closed set. The gates for qubits 11 through 9 can be apmid¢itese coefficients without regard to any other coefficients
in the state vector. We attempted to implement an algorithat topied several such closed sets of coefficients intcedhar
memory, processed them there, and then wrote them back.\éowee ran into difficulties with the implementation and wer
unable to get the algorithm working in time for the projectrae

V. EVALUATION

We have evaluated the correctness of our implementatiorafinchprovements by comparing the results generated by the
GPU to those generated Hipquantum We compared our calculated output vector with that fidsquantumby calculating
the l;-norm between them. The original GPU implementation befgrémizations agreed exactly with the CPU version. The
algebraic manipulations introduced in Section 1V-B intod a small error. In our tests, the error has never exceeddd >,
and given that the outputs represent the probability of aifipestate occurring in the quantum system, this small eisor

1Recall from Section 1lI-B that we process qubits in reversgeo

bits 10 12 14 16 18 20 22 24 26
CPU [ms 0 1.915| 10.51 | 40.42 | 247.0 | 1342 | 6272 | 29163 | 134627
GPU [ms] | 0.23| 0.23 | 0.66 | 2.00 | 8.65 | 40.18 | 188.16 | 876.06 | 4096.00
Speedup 0 6.4 159 | 20.2 28.6 | 334 33.3 33.3 32.9

TABLE |
SPEEDUP ACHIEVED BY PARALLELIZING THE PROCESS OF ALL STATES®R EACH BIT VALUE INTO A SINGLE KERNEL CALL.

negligible. In factlibquantumcontinually discards states with probabilities on thisesrdntentionally rounding them down to
zero?

We also compared the performance of our implementationsstddoquantum Table V presents the speedup gained by our
first CUDA implementation. Usings CUDA kernel calls, each of which process &ll = 2" states for a specific qubit, we
have gained a factor of about 33 times in speedup.

In order to demonstrate the advantage of each subsequémizgiton phase, we have presented the output from the CUDA
Visual Profiler. Fig. 4 presents the processing time samgpfethe profiler for the original and the algebraically opted
versions of the code. The optimizations include the reductf phase calculations, the elimination of ttie function, the
reduction of global memory access by half, and the comhinaif phase shift gates and a Hadamard gate into a single, more
complex gate.

1 memcopy

[K_gft_gpu_vl_stage

369946 3015824
339117+ 276449
308288 251317
277459 226185
246630 201054
215801 1759224
184973 150790
154144 125658
123315 100527+
G 92486+ s 75395
P P
U 61657 U sp263
T T
i 30828 i 25131
m m
e e
1 4 7 10 13 16 18 22 25 28 1 4 7 10 13 186 18 22 25 28
Method Number Method Number
(a) Original gate-by-gate CUDA implementation (b) Algebraically improved implementation

Fig. 4. Combining gates and reducing computation complexteach thread results in much smaller processing time.

Fig. 5 demonstrates how combining the last nine kernel et using shared memory results in shorter processing.times
Note that the green bar represents the time it takes to aliievsame work done by the last nine yellow bars from Fig 4(a).
Finally we compare the speedup achieved through each sfaggimization in Fig. 6. We have included the results from

combining kernels from higher bits when using global memhis implementation performs worse than keeping eachetern
separate due to the amount of uncoalesced memory accesses.W& have not been able to resolve the problem we are
experiencing with the case of using shared memory for hidgfitsr we have not presented the performance results here.
Table V presents the overall speedup and incremental spesthieved for each of the optimization steps.

VI. CONCLUSION
Quantum computer simulation, although extremely time aorig, is currently a necessary part o developing and tgstin
new quantum algorithms. Through a CUDA implementation oh@um Fourier Transform, a commonly used algorithm, we

2The fact thatlibquantumdoes this also makes it impossible to draw any further caimhs about accuracy. Small discrepancies in our algoritbmid
be caused because wle notdrop any states until the final comparison step.

I memcopy
[K_gft_gpu_v5_stage

= K_gft_gpu_v5_stage_Oto8

390044

357538+

325036+

292532+

260028+

2275254

195021+

162518+

130014+

(L= | Coo

975104

65007

325034

0 T

1 4

Method Number

7 10 13 16

Fig. 5. Combining the last nine kernel calls into a singlenkétthat uses shared memory.

19

180

Speedup

= |nitial gate-bygate

= Combined phase gates
= 0-8 Kernel reduction
=~ Higher bit kernel reduction

Fig. 6. Speedup comparison of different optimizations.

Bits

Algorithm Improvement Time [ms] | Overall Speedup] Incremental Speedup
libquantum — 134627 1 1

1 Plain 4094.77 32.88 32.88

2 Phase Gates 1076.76 125.03 3.8

3 Trigonometry 982.4 137.04 1.1

4 Shared Mem 837.85 160.68 1.17

5 0To8 Kernel 828.2 162.55 1.01

6 Combined Kernels| 1020.96 131.86 0.81

TABLE 1l

OVERALL AND INCREMENTAL SPEEDUP FOR EACH OPTIMIZATION STEP

have shown how GPUs can help speed up quantum computer SonslaAfter a number of optimizations ranging from
algebraic manipulations to reduce computation completityise of combined kernels, shared memory and reduced bank
conflicts, we have achieved speed ups of over 160 times. tmfately, given the limited time, we have not been able to find
the error in the logic of our final optimization plan. Givenrawurrent experiments in this direction, we would expectae s

a further speedup up to a factor of two times faster.

REFERENCES

[1] E. Gutierrez, S. Romero, M. A. Trenas, and E. L. Zap&utational Science — ICCS 200&pringer Berlin, 2008, vol. 5101, ch. Parallel Quantum
Computer Simulation on the CUDA Architecture, pp. 700-709.

[2] M. Nielsen and |. ChuangQuantum Computation and Quantum InformatiorCambridge University Press, 2000.

[3] P. Shor, “Algorithms for quantum computation: discrédgarithms and factoring,” ir85th Annual Symposium on Foundations of Computer Scidhoe
1994, pp. 124-134.

