
1

Quantum Computer Simulation Using CUDA
Alexander Smith Khashayar Khavari University of toronto

Department of Electrical and Computer Engineering

I. I NTRODUCTION

Quantum computing has captured the attention of many researchers in the past decade. While researchers in the fields of
electrical engineering and physics have concentrated on realizing a physical machine that satisfies the criteria of a quantum
computing, others in the research community are developingalgorithms that can take advantage of such machines. Through
exploitation of the inherit superposition observed at the quantum level, many interesting quantum algorithms (q-algorithms)
have been developed. These range from simple communicationbetween two points using super-dense coding to factorization
of a large number into its prime components through Shor’s algorithm.

Despite the dedication and hard work of physicists and engineers, a physically stable quantum computer is still a dream to
be fulfilled. To deal with this problem and to encourage development of more q-algorithms, it has been proposed to simulate
the functionality of a quantum computer using a classical one. Quantum computer simulation allows researchers to validate
existing quantum algorithms without the need for a physicalquantum computer. However, the inherent complexity of a quantum
system results in extremely time-consuming simulations ona classical machine.

In a physical quantum computer, quantum superposition of states allows the simultaneous manipulation of all possible
combinations of a set of bits in a single operation, speedingup many algorithms exponentially when compared to a classical
computer. This is main challenge that a classical simulatorhas to face. Because of this, quantum algorithms, which are supposed
to reduce exponential processing times to linear ones, run more slowly than their classical counterparts when simulated.
However, the inherit parallelism involved in simulating a quantum system makes it suitable for GPU implementations.

In this project we will implement a simulator for Quantum Fourier Transform (QFT) using CUDA. Like classical Fourier
transform, the QFT is at the heart of many other algorithms. Probably the most famous example is Shor’s integer factorization
algorithm [3] which is a set of protocols that convert the factorization problem into a period detection problem.

In order to validate our implementation and to test it’s performance we will uselibquantumas the basis for this work.
libquantumis a set of a programming libraries written in C for the simulation of quantum computers. There are many quantum
algorithms implemented by this library, and its gate-by-gate approach to simulation allows a fair comparison and easy integration
of our implementation.

The remainder of this paper is organized as follows. We startby introducing the reader to the basics of Quantum Fourier
Transform in Section II. We then present our approach for a CUDA implementation in Section III. In Section IV we present
methods of improving the performance of our code for GPUs. Section V presents a subset of our experiments to evaluate the
correctness, accuracy and performance of our design. We summarize the work and point to future improvements in Section VI.

II. QUANTUM FOURIER TRANSFORM

Fig. 1 presents the quantum circuit for QFT, while Equation 1describes the operation of the overall system in terms of the
input and output states [2]. Each input state goes through a number of phase shift gates and Hadamard transforms. However,
the phase shift gates “controlled” quantum gates. This means that the effect the have on the target qubit (quantum bit) is
dependent on the value of the control qubit. A gate-by gate simulation of this circuit involves evaluating the effect of each
gate on each qubit for all different states. Note that given the superposition property of quantum computation,n input qubits
translate toN = 2n states. What makes this problem suitable for a CUDA implementation is that processing each state is
completely independent from the otherN − 1 states.

|o>= |i1, . . . , in>→ 1√
N

N−1
∑

k=0

e2πj i.k
N |k> (1)

Fig. 1. Quantum Fourier Transform circuit consisting of controlled phase shift gates and Hadamard transforms.

2

Before we start describing our approach to solving this problem, we would like to clarify the operation of the QFT throughan
example with two qubits (n = 2). The number of states for this example isN = 22 = 4 and the states are|0>, |1>, |2>, |3>.
Each state is represented as a column vector of 4 elements with a single nonzero element at the row corresponding to the state
number, eg.|2>= [0010]T . The input state to our system is a weighted sum of these four states, where the coefficients are
complex numbers, Equation 2.

|Ψin>=
N−1
∑

k=0

αk |k> (2)

The output state is also a weighted sum of the same basis states with different coefficients, Equation 3.

|Ψout>=

N−1
∑

k=0

βk |k> (3)

In order to describe the output of the circuit in terms of its input, we need to describe the output coefficientsβk as a function
of input coefficientsαk. It is a well-known fact that the operation of each gate on anyqubit q can be described as a linear,
unitary transformation on its input qubits. As it turns out,the output coefficientβi is a function ofαi andαi⊕2q , whereq is
the index of the qubit at which that the gate is being applied.We note that the same two input coefficients are required to
obtain bothβi andβi⊕2q .

Applying what we have reviewed to our example for state|2> and qubitq = 1 we have the following transformation after
the Hadamard gate.

β2 =
1√
2

(α2 − α0) (4)

The effect of all other gates on all states can be evaluated ina similar manner.

III. I MPLEMENTATION IN CUDA

We considered two different approaches to the problem. Anemulator, in which each gate is implemented in CUDA and the
whole circuit is implemented by interconnecting these gates, and asimulator. A simulator achieves the the same final result,
but through a different method. In our case, our emulator uses matrix multiplication.

A. Simulator

One can show that any quantum circuit can be reduced to an algebraic problem involving the multiplication of a matrix
representing all of the gates in the circuit in anN = 2n dimensional space by the input state vector. This is due to what is
known as “delayed measurement” in quantum systems. Simply stated, this property allows one to carry out operations that
depend on the intermediate value of qubits without actuallymeasuring the values of those bits except for a single measurement
at the end of the circuit. For example, the following matrix can be used to evaluate the QFT of a three-bit input circuit.

M =
1
√

8

2

6

6

6

6

6

6

6

6

6

4

1 1 1 1 1 1 1 1

1 w w
2

w
3

w
4

w
5

w
6

w
7

1 w
2

w
4

w
6

1 w
2

w
4

w
6

1 w
3

w
6

w w
4

w
7

w
2

w
5

1 w
4

1 w
4

1 w
4

1 w
4

1 w
5

w
2

w
7

w
4

1 w
6

w
3

1 w
6

w
4

w
2

1 w
6

w
4

w
2

1 w
7

w
6

w
5

w
4

w
3

w
2

w

3

7

7

7

7

7

7

7

7

7

5

Using this idea, we reduced the QFT circuit to a problem of multiplying an N × N matrix with all input states and then
summing the results; or, equivalently:

|Ψout>=

N−1
∑

k=0

αkM × |k>= M × |Ψin> (5)

We implemented both a CPU and an optimized GPU version of thisapproach, achieving three orders of magnitude in speedup.
However, it soon became clear that although this approach isvery GPU-friendly, it has a complexity ofO(N ×N) = O(22n).
As we will see in the next section, a gate-by-gate emulation has a complexity ofO(n2×2n). For this reason, the overall speed
of the gate-by-gate emulation is much higher for large values of n. Because this approach ultimately was not fruitfal, and to
save space, we will not present details of our optimizationsfor this matrix-multiplication method here.

3

q 0 1 … 7 8

I I xor 2
q

I xor 2
q

… I xor 2
q

I xor 2
q

0 1 2 … 128 256

1 0 3 … 129 257

2 3 0 … 130 258

Block 1 3 2 1 … 131 259

4 5 6 … 132 260

… … … … … …

511 510 509 … 383 255

512 513 514 … 640 768

513 512 515 … 641 769

514 515 512 … 642 770

Block 2 515 514 513 … 643 771

516 517 518 … 644 772

… … … … … …

1023 1022 1021 … 895 767

Fig. 2. Memory access pattern for the last nine qubits.

B. Emulator

Our QFT emulator simulates the quantum circuit gate by gate.The QFT implementation inlibquantumis a direct implemen-
tation of a modified form of the circuit shown in Fig. 1. The authors of libquantumhave applied an algebraic manipulation of
the circuit so qubits are applied to the high-order gates first, which is opposite to what is shown in Fig. 1. This manipulation
does not affect the result, nor the number of computations required, and provides no additional opportunity for optimization.
Nevertheless, we chose to followlibquantum’s form of the circuit in order to facilitate testing of our code.

Our initial emulation algorithm is a fairly direct port of the libquantumcode to CUDA. Performing a QFT (usinglibquantum’s
method) requires applying several controlled quantum gates to the last output qubit, then applying several gates to thesecond-
last qubit, and so on. From the discussion in Section II, it isclear that several consecutive gates applied to the same qubit will
involve the same state coefficients. Therefore, we can combine each set of consecutive gates on a qubit (several phase-shifts and
a Hadamard transformation) into a single kernel call. This results inn kernel calls for ann-qubit QFT. Also from Section II,
we see that state calculations can be grouped: calculating the outputs of statesi andi⊕2q both requireandproducecoefficients
αi andαi⊕2q . Thus in CUDA, we can assign one thread to every pair of coefficients.

IV. OPTIMIZATION FOR GPU

The largest qubit state vector On the lab machines, the largest qubit state vector that fits in GPU memory is 26-bits (requiring
512 MB of memory). Our initial GPU implementation gave a33× speedup overlibquantum. From here, we applied several
different types of optimizations. We used some methods from[1], as well as others described below.

A. Algebraic Manipulations

Trignometric floating-point operations are some of the slowest operations on CUDA GPUs. We began our optimizations by
trying to reduce the number and complexity of floating point operations required. Our first optimization involved combining
consecutive phase shift gates into one.libquantumsimulates each gate separately. Forn consecutive phase shift gates, this
approach requiresn sin andcos calculations,n complex multiplications (each requiring4n floating-point multiplications and
2n additions), and2n further floating-point additions. Since quantum phase shift gates commute, we can group the phase
shift gates together. We first calculate the total resultingphase shift (which will be different for each state), and then perform
a single floating pointsin and cos. This procedure alone gave an additional3.8× speedup, for a total so far of125×. See
Section V for details.

On the CUDA architecture,sinf andcosf are much slower thansqrtf. Sincesin φ = ±
√

1 − cos2 φ, we can achieve
a further speedup by replacing a call tosinf with sqrt. Finally, we can halve the number of accesses to global memory
by combining the phase shift and Hadamard calculations intoa single function. Instead of fetching and writing back a pair of
state coefficients for the phase, and then the Hadamard gate,the coefficients are fetched into thread-local variables once at the
start of the function. The phase shift is applied, followed by the Hadamard transformation, and only then is global memory
accessed again in order to write the final result back.

B. Combining Kernels and Shared Memory

One of the main bottlenecks in the CUDA architecture is the memory access speed. Accessing global memory takes several
hundred clock cycles. If memory accesses are not coalesced,the time penalty for accessing memory is compounded. In our
algorithm, there is a separate kernel call for each qubitq = n− 1 . . .0. Some particular thread will be performing calculations
on coefficientsαi andαi⊕2q . An important question is: If threadi accesses coefficientαi and thenαi⊕2q , will these memory
accesses coalesce? The answer can be found in Fig. 2. Accesses to αi obviously will coalesce, since sequential threads are
accessing sequential memory locations. Accesses toαi⊕2q are uncoalesced for low values ofq, but do coalesced whenq is

4

q 9 10 11

I I xor 2
q

I xor 2
q

I xor 2
q

0 512 1024 2048

Block 1 … … … …

511 1023 1535 2559

512 0 1536 2560

Block 2 … … … …

1023 511 2047 3071

1024 1536 0 3072

Block 3 … … … …

1535 2047 511 3583

1536 512 512 3584

Block 4 … … … …

2047 1023 1023 4096

2048 2560 3072 0

Block 5 … … … …

2559 3071 3583 511

2560 2048 3584 512

Block 6 … … … …

3071 2559 4096 1023

3072 3584 2048 1024

Block 7 … … … …

3583 4096 2559 1535

3584 3072 2560 1536

Block 8 … … … …

4096 3583 3071 2047

Fig. 3. Memory access pattern for qubits 9–11.

high enough. Therefore, we should be able to achieve a speedup by improving global memory access for the least significant
few bits.

Fig. 2 illustrates another useful features of the QFT algorithm. For qubits0 . . . 8, the pairs of coefficientsαi andαi⊕2q lie
within the same 512-element block of the vector state array.512 complex numbers is the largest power of two we can fit
into shared memory on the GTX280 graphics cards. This observation suggests a means of using shared memory to improve
performance. Each block will copy-in 512 elements from the state vector. The block will then perform the calculations for the
last nine qubits1 in its own shared memory and then copy the results back. Copying coefficients into and out of shared memory
can be done with global memory coalescing. In addition, thisreduced the overhead incurred in launching nine separate kernels.
While implementing this optimization, we were careful to avoid shared memory bank conflicts as much as possible.

Our use of shared memory in the last nine qubits is possible because the coefficients for those qubits naturally fall into
disjoint groups of less than 512 (= 29). For higher qubits, the coefficient pairs spread out in memory. However, for anyr
consecutive qubits, the state vector coefficients can be divided into disjoint sets such that the calculations for the coefficients in
that set affect those coefficients, and those coefficients only. In other words for anyr consecutive qubits, the coefficients can
be divided intodisjoint sets. Several of these sets can be copied into shared memory,and a block can process them completely
without worrying about synchronization with any other blocks. Fig. 3 illustrates how a disjoint set can be found for qubits 9 to
11 (r = 3). In this case, state coefficients 3584 and 3072 are paired, since3584⊕29 = 3072. These coefficients are highlighted
in yellow in the figure. In order to apply the gates for qubit 9,we must first have the output coefficients from qubit 10. For
qubit 10, these two coefficients are paired with another two coefficients: 2048 and 2560. These four coefficients in turn require
four more coefficients from qubit 11. Thus, for qubits 9–11, the coefficients{0, 512, 1024, 1536, 2048, 2560, 3072, 3584} form
a closed set. The gates for qubits 11 through 9 can be applied to these coefficients without regard to any other coefficients
in the state vector. We attempted to implement an algorithm that copied several such closed sets of coefficients into shared
memory, processed them there, and then wrote them back. However, we ran into difficulties with the implementation and were
unable to get the algorithm working in time for the project demo.

V. EVALUATION

We have evaluated the correctness of our implementation andall improvements by comparing the results generated by the
GPU to those generated bylibquantum. We compared our calculated output vector with that fromlibquantumby calculating
the l2-norm between them. The original GPU implementation beforeoptimizations agreed exactly with the CPU version. The
algebraic manipulations introduced in Section IV-B introduce a small error. In our tests, the error has never exceeded5×10−5,
and given that the outputs represent the probability of a specific state occurring in the quantum system, this small erroris

1Recall from Section III-B that we process qubits in reverse order.

5

bits 10 12 14 16 18 20 22 24 26
CPU [ms] 0 1.915 10.51 40.42 247.0 1342 6272 29163 134627
GPU [ms] 0.23 0.23 0.66 2.00 8.65 40.18 188.16 876.06 4096.00
Speedup 0 6.4 15.9 20.2 28.6 33.4 33.3 33.3 32.9

TABLE I

SPEEDUP ACHIEVED BY PARALLELIZING THE PROCESS OF ALL STATES FOR EACH BIT VALUE INTO A SINGLE KERNEL CALL.

negligible. In factlibquantumcontinually discards states with probabilities on this order, intentionally rounding them down to
zero.2

We also compared the performance of our implementations against libquantum. Table V presents the speedup gained by our
first CUDA implementation. Usingn CUDA kernel calls, each of which process allN = 2n states for a specific qubit, we
have gained a factor of about 33 times in speedup.

In order to demonstrate the advantage of each subsequent optimization phase, we have presented the output from the CUDA
Visual Profiler. Fig. 4 presents the processing time samplesof the profiler for the original and the algebraically optimized
versions of the code. The optimizations include the reduction of phase calculations, the elimination of thesin function, the
reduction of global memory access by half, and the combination of phase shift gates and a Hadamard gate into a single, more
complex gate.

(a) Original gate-by-gate CUDA implementation (b) Algebraically improved implementation

Fig. 4. Combining gates and reducing computation complexity of each thread results in much smaller processing time.

Fig. 5 demonstrates how combining the last nine kernel callsand using shared memory results in shorter processing times.
Note that the green bar represents the time it takes to achieve the same work done by the last nine yellow bars from Fig 4(a).

Finally we compare the speedup achieved through each stage of optimization in Fig. 6. We have included the results from
combining kernels from higher bits when using global memory. This implementation performs worse than keeping each kernel
separate due to the amount of uncoalesced memory accesses. Since we have not been able to resolve the problem we are
experiencing with the case of using shared memory for higherbits, we have not presented the performance results here.
Table V presents the overall speedup and incremental speedup achieved for each of the optimization steps.

VI. CONCLUSION

Quantum computer simulation, although extremely time consuming, is currently a necessary part o developing and testing
new quantum algorithms. Through a CUDA implementation of Quantum Fourier Transform, a commonly used algorithm, we

2The fact thatlibquantumdoes this also makes it impossible to draw any further conclusions about accuracy. Small discrepancies in our algorithmcould
be caused because wedo not drop any states until the final comparison step.

6

Fig. 5. Combining the last nine kernel calls into a single kernel that uses shared memory.

10 12 14 16 18 20 22 24 26
0

20

40

60

80

100

120

140

160

180

Bits

S
pe

ed
up

Initial gate−bygate
Combined phase gates
0−8 Kernel reduction
Higher bit kernel reduction

Fig. 6. Speedup comparison of different optimizations.

Algorithm Improvement Time [ms] Overall Speedup Incremental Speedup
libquantum — 134627 1 1

1 Plain 4094.77 32.88 32.88
2 Phase Gates 1076.76 125.03 3.8
3 Trigonometry 982.4 137.04 1.1
4 Shared Mem 837.85 160.68 1.17
5 0To8 Kernel 828.2 162.55 1.01
6 Combined Kernels 1020.96 131.86 0.81

TABLE II

OVERALL AND INCREMENTAL SPEEDUP FOR EACH OPTIMIZATION STEP.

7

have shown how GPUs can help speed up quantum computer simulations. After a number of optimizations ranging from
algebraic manipulations to reduce computation complexityto use of combined kernels, shared memory and reduced bank
conflicts, we have achieved speed ups of over 160 times. Unfortunately, given the limited time, we have not been able to find
the error in the logic of our final optimization plan. Given our current experiments in this direction, we would expect to see
a further speedup up to a factor of two times faster.

REFERENCES

[1] E. Gutierrez, S. Romero, M. A. Trenas, and E. L. Zapata,Computational Science — ICCS 2008. Springer Berlin, 2008, vol. 5101, ch. Parallel Quantum
Computer Simulation on the CUDA Architecture, pp. 700–709.

[2] M. Nielsen and I. Chuang,Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[3] P. Shor, “Algorithms for quantum computation: discretelogarithms and factoring,” in35th Annual Symposium on Foundations of Computer Science, Nov

1994, pp. 124–134.

