
ABSTRACT
We introduce Branch Predictor Prediction (BPP) as a
power-aware branch prediction technique for high perfor-
mance processors. Our predictor reduces branch prediction
power dissipation by selectively turning on and off two of
the three tables used in the combined branch predictor. BPP
relies on a small buffer that stores the addresses and the
sub-predictors used by the most recent branches executed.
Later we refer to this buffer to decide if any of the sub-pre-
dictors and the selector could be gated without harming
performance. In this work we study power and performance
trade-offs for a subset of SPEC 2k benchmarks. We show
that on the average and for an 8-way processor, BPP can
reduce branch prediction power dissipation by 28% and
14% compared to non-banked and banked 32k predictors
respectively. This comes with a negligible impact on perfor-
mance (1% max). We show that BPP always reduces power
even for smaller predictors and that it offers better overall
power and performance compared to simpler predictors.

1. INTRODUCTION
Dynamic power dissipation has emerged as a first class

consideration in modern, high-performance processor
design. In this work, we focus on power-efficient and
highly-accurate branch predictors. Reportedly, for a typical
high-performance processor, branch predictors dissipate a
considerable amount (i.e., about 10%)of overall power [1].

Overall power dissipation heavily depends on branch
prediction accuracy making developing power-efficient
branch predictors a challenging task. In isolation, it would
seem that using smaller predictors would result in reduced
power dissipation. However, this is not true since branch
predictor accuracy indirectly impacts the amount of work
and hence the amount of power that is consumed by the rest
of the processor [2]. Accordingly, in this work we focus on
predictors that are both power-efficient and highly-accu-
rate.

We propose branch predictor prediction or BPP as a
power-efficient extension to the commonly used combined

predictors. Combined predictors use three underlying sub-
predictors that are all accessed for every branch. Out of the
three prediction hints, one is used to select among the other
two. BPP exploits the temporal and sub-predictor locality
characteristics of typical branch streams to allow us to gate
two out of the three sub-predictors for many branches. Spe-
cifically, we have observed that: 1) often, short sequences
of branches tend to appear repeatedly, and 2) they tend to
use the same sub-predictors. In BPP, a small buffer is intro-
duced in the fetch stage. BPP entries record the sub-predic-
tors used by recent branches. Each BPP entry is tagged by
the PC of a recently seen branch and records the sub-predic-
tors used by the two branches that followed it in the
dynamic execution stream. By associating sub-predictor
hints with a preceding branch, BPP avoids increasing pre-
diction latency. The hints become available at least one
cycle in advance of when the actual prediction needs to take
place.

We show that our predictor can reduce branch predictor
power by 14% over a 32K-entry, conventional, banked
combined branch predictor (taking into consideration the
BTB and the return address stack that our BPP does not
optimize). Moreover, we show that a processor with BPP is
always more power efficient than one that uses any of the
sub-predictors alone. Finally, we show that BPP reduces
power even for smaller branch predictors (range 16K-
entries down to 1K-entries).

The rest of the paper is organized as follows. In section
2 we explain BPP. In section 3 we present our experimental
evaluation. We report performance, and power savings. We
report relative power reduction for both the predictor and
the entire processor. We compare our model to three differ-
ent alternatives. In section 4, we study how BPP reacts to
changes in predictor size and BPP configuration. In section
5 we review related work. Finally, in section 6, we summa-
rize our findings.

2. BRANCH PREDICTOR PREDICTION
Branch prediction is essential to sustaining high perfor-

mance in modern high-end processors. The combined pre-
dictor is used in many high-performance designs.

Branch Predictor Prediction: A Power-Aware Branch Predictor for High-
Performance Processors

Amirali Baniasadi
Electrical and Computer Engineering

Northwestern University

Andreas Moshovos
Electrical and Computer Engineering

University of Toronto



Combined predictors use three underlying sub-predictors.
Two of the sub-predictors produce predictions for branches.
They are typically tuned for different branch behaviors. By
using a selector predictor, combined predictors offer the
best of both underlying sub-predictors.

While using three tables makes better prediction possi-
ble, it also increases power dissipation. Our analysis shows
that for a 32K-entry predictor, the three sub-predictors con-
sume close to 65% of the total predictor power (the rest is
consumed in the BTB and the return address stack).

BPP relies on typical program behavior, to gate two out
of the three underlying sub-predictors for most branches. In
particular, BPP exploits the following two phenomena: (1)
Branch instructions show strong temporal locality. We mea-
sured the temporal locality in the dynamic branch stream by
studying how often a branch is within the last n branches
fetched, where n varies from 8 to 64. On average and for a
subset of SPEC’2k benchmarks, almost half of the branches
appear within eight branches apart and about 83% of the
branches appear within the last 64 branches fetched. (2)
Often branches tend to use the same sub-predictor. Our
study shows that on the average, a branch uses the same
sub-predictor with a 91% probability for a subset of
SPEC’2K benchmarks.

Based on the above we suggest BPP. At the core of
BPP we use a FIFO buffer called the BPP-buffer. BPP-
buffer is a small power-efficient structure that stores infor-
mation regarding the most recent branches encountered.
The stored information is used to gate the selector and one
of the two sub-predictors. This n-entry FIFO buffer records
the n most recently fetched branches in sequence. Every
buffer entry includes an address field and a two bit sub-pre-
dictor hint field. We use the latter to record the last sub-pre-
dictor used by the specific branch. Combinations 00 and 01
indicate that the gshare and bimodal predictors have been
the last predictors used to speculate the branch outcome
respectively. We assign combination 11 to indicate that the
branch was miss-predicted last time speculated. We do not
gate the sub-predictors if the miss-predicted branch reap-
pears since we have no confidence on the predictor used
last time.

The front-end fetches up to two branches every cycle
for a total of eight instructions. Once all instructions are
fetched we check the BPP buffer to see if the last branch
fetched is among those recorded in the buffer. If no match is
found, all sub-predictors will be probed during the next
cycle. If a match is found, we look at the sub-predictor hints
of the next two buffer elements. Since branch sequences
tend to repeat, we implicitly predict (assume) that these
access hints are the right ones for the next two branches that
may be fetched during the next cycle. We gate two of the
three tables if the next two (guessed by the BPP-buffer)

dynamic branches have used (and therefore are predicted to
use) the same sub-predictor and they have not been miss-
predicted.

We access the BPP-buffer in parallel with the branch
predictor. This is true for both branch lookup and update.
We allocate BPP entries at fetch in order. We update the
BPP-buffer speculatively as soon as a branch calculates its
direction. We do not flush the BPP entries that follow a
miss-predicted branch. We instead mark the miss-predicted
branch. This allows us to salvage sub-predictor locality
down miss-predicted paths. For example, due to control
independence some of the sub-predictor hints may be valid
even though an earlier branch was miss-predicted. We
lookup the BPP buffer to decide what sub-predictor to gate
(if any) for the next cycle. While BPP uses branch temporal
locality it is different from a branch predictor cache of
shorts since it associates sub-predictor hints with preceding
branches.

Provided that sufficient branch and sub-predictor
locality exists, BPP has the potential for reducing branch
prediction power dissipation. However, it introduces extra
power overhead and can, in principle, increase overall
power dissipation if the necessary behavior is not there. We
take into account this overhead in our study and show that
for the programs we studied, BPP is robust.

3. METHODOLOGY AND RESULTS
In this section, we present our analysis of the BPP tech-

nique. We report performance results in section 3.1 We
report power measurements in section 3.2.

We used programs from the SPEC2K suite compiled
for the MIPS-like architecture used by the Simplescalar
v3.0 simulation tool set. We used GNU’s gcc compiler
(flags: -O2 –funroll-loops –finline-functions). Table 1
reports the branch prediction accuracy per benchmark. To
obtain reasonable simulation times we simulated 200M of
the instructions after skipping the initialization. We detail
the base processor model in table 2.

For most of our experiments we used a combined pre-
dictor with 32K-entries per sub-predictor. In section 4, we
demonstrate that BPP is still effective even with smaller
predictors. We use the 32K-entry predictor after investigat-
ing predictors of different sizes and studying performance
and accuracy. Our study shows that further increase in pre-
dictor size rarely and slightly contributes to performance
while increases predictor power dissipation dramatically.
Our study shows that while using smaller predictors saves
predictor power, it also results in higher overall processor
power dissipation.

We used WATTCH [3] for power estimation. We mod-
eled an aggressive 2GHz superscalar microarchitecture
manufactured under a 0.1 micron technology.



3.1. Performance
BPP can negatively impact accuracy and hence perfor-

mance. Therefore, we first investigate how BPP impacts
performance. To determine whether our technique is indeed
worthwhile, it is important to compare it with a number of
obvious alternatives. Accordingly, we compare with a num-
ber of alternative machines that use different branch predic-
tor organizations. We compare with three alternative branch
predictors: (1) Conventional Combined Predictor (CMB)
(2) Bimodal-Predictor (BMD) (3) Gshare-Predictor
(GSH). Comparing to CMB shows whether our power sav-
ings are worth the possible performance loss, BMD and
GSH comparisons explore the possible benefits and costs of
the combined predictor when compared against its two sub-
predictors.

In figure 1 we report performance for the processor that
uses a 32-entry BPP (in section 4 we vary BPP size) com-
pared to 3 different base cases. Bars from left to right report
relative performance compared to CMB, BMD and GSH.
On average, performance slowdown is 0.3% compared to
CMB. In the worst case of mcf, it is only 1%. As it can be
seen in table 1, mcf exhibits the worst branch behavior.
However, even then, the performance loss is only 1%, mak-
ing BPP an attractive alternative to a conventional com-
bined predictor (CMB). Comparing to BMD and GSH, on
average, BPP offers higher performance. The performance
difference is amplified for some of the integer benchmarks
(e.g., gcc), while they are negligible for most of the floating
point benchmarks (e.g., mes).

3.2. Power
As an indicator of power reduction we studied how

often BPP gates two out of the three sub-predictors per
benchmark for SPEC’2k benchmarks. Our measurements
show that on the average, BPP gates sub-predictors 54% of
time reaching a maximum of 96% and a minimum of 34%.

In the rest of the section we first report predictor power
dissipation. while exploiting a less complex branch predic-
tor reduces predictor’s power dissipation, it may increase
the total power dissipation[1]. Therefore, we also report
total power dissipation. In our experiments we take into
account the power overhead associated with the BPP buffer.
Moreover, we also study how BPP interacts with banked
predictors (suggested by previous work[1]). Banking is par-
ticularly important for large predictors. We used four banks
based on CACTI’s analysis. We make the following
assumptions to pessimistically account for power overheads
and static power: First, we assume gated structures still
consume 10% of their maximum power dissipation. Sec-
ond, in banked predictors we assume that all banks are
always precharged (i.e., banks need to be ready in case they
are accessed by the next branch). It would be possible to
use BPP to selectively precharge only the sub-predictor
banks that we will use.

Figure 2 reports relative predictor and overall power
reduction for non-banked and banked predictors. For each
benchmark, bars from left to right report power reduction
compared to CMB, BMD and GSH. The entire bar shows
savings achieved for non-banked predictors. The dark por-
tion of each bar shows savings for banked predictors. Fig-
ure 2(a) reports predictor power reduction. On average,
non-banked BPP reduces predictor power dissipation 28%
compared to a non-banked CMB. For banked predictors,
power savings are lower but still considerable. A banked
BPP reduces branch predictor power 14% compared to a
banked CMB. For both banked and non-banked predictors,
as expected, BPP dissipates more power than BMD and
GSH.

In figure 2(b) we report overall power reduction for
processors using banked and non-banked predictors. For

Program Ab. BP Acc. Program Ab. BP Acc.

ammp amm 99% mesa mes 99%
bzip bzp 97% parser prs 93%
compress cmp 92% vortex vor 98%
equake equ 98% vpr vpr 92%
gcc gcc 93% wolf wlf 92%
mcf mcf 91%

Table 1: Benchmarks and control flow prediction accuracy
(direction and target).

Branch Predictor 32K GShare+32K bi-modal w/ 32K selector

Scheduler 128 entries, RUU-like

Fetch Unit Up to 8 instr./cycle. Max 2 branches/cycle
64-Entry Fetch Buffer

Load/Store Queue 128 entries, 4 loads or stores per cycle
Perfect disambiguation

OOO Core any 8 instructions / cycle

Func. Unit Latencies same as MIPS R10000

L1 - Instruction /Data
Caches

64K, 4-way SA, 32-byte blocks,
3 cycle hit latency

Unified L2 256K, 4-way SA, 64-byte blocks,
16-cycle hit latency

Main Memory Infinite, 100 cycles

Table 2: Base processor configuration.

Figure 1: Performance (higher is better). Bars
from left to right compare BPP to the CMB, BMD

and GSH.

60%

80%

100%

120%

am
m

bz
p

cm
p

eq
u

gc
c

m
cf

m
es pr

s
vo

r
vp

r
wlf

AVG

CMB BMD GSH



non-banked BPP, compared to non-banked CMB, BMD and
GSH average power reductions are 1.7%, 5.6% and 1.8%.
For a banked BPP and compared to a banked CMB, BMD
and GSH average power reductions are 0.6%, 5.2% and
1.4%. This suggests that BPP reduces both the predictor’s
and the total processor power dissipation compared to
CMB. Moreover it shows that using a combined predictor
both increases performance and saves power when com-
pared to using only one of its sub-predictors.

4. SENSITIVITY ANALYSIS
In this section, we study how BPP reacts to smaller

predictor sizes and different BPP buffer sizes.

First we report BPP sensitivity to predictor size. We
studied relative predictor power dissipation compared to a
non-banked combined predictor with a similar predictor
size. We picked non-banked predictors since banking is
reportedly less effective for smaller predictors[1]. Our stud-
ies show that savings are less but still obtainable for smaller
predictors. On average, BPP reduces power by 4%, 8%,
13%, 16% and 21% for predictor sizes 1k, 2k, 4k, 8k and
16k.

We also studied how BPP reacts to various BPP buffer
sizes. Our studies show that performance stays within 0.5%
for buffer sizes 64, 32, 16 and 8. On average, and for a
banked predictor, predictor power reduction is 11.3%, 14%,
10.4% and 8.7% for buffer sizes 64, 32, 16 and 8 respec-

tively. Therefore, savings are maximum for a 32-entry
buffer. Apparently, a 32-entry buffer is large enough to
store the required information. While 8- and 16-entry buff-
ers appear to be too small, a 64-entry buffer imposes unnec-
essary power overhead.

5. RELATED WORK
Previous work has introduced banking and the usage of

prediction probe detector (PPD) as two techniques that
reduce branch predictor power dissipation without harming
accuracy[1]. Banking reduces the active portion of the pre-
dictor. In this paper we studied how BPP interacts with
banking and demonstrated that BPP can reduce power even
when the underlying predictors are banked. PPD aims at
eliminating unnecessary BTB and predictor accesses.
While BPP does not target reducing the BTB power dissi-
pation it could be used on top of PPD to further reduce
power dissipation by gating the sub-predictors when there
are predictor lookups required.

6. CONCLUSION
We presented BPP, a technique for reducing power

while maintaining the accuracy advantage of combined
branch predictors.We affirmed that it is possible to signifi-
cantly reduce power by exploiting a) the temporal locality
amongst branch instructions, and b) the high predictability
in their usage of sub-predictors. On average, BPP reduces
predictor power dissipation 28%, compared to a non-
banked and 14% compared to a banked conventional com-
bined predictor. This comes with a negligible performance
degradation. We have also shown that while BPP is more
effective for larger predictors, it still reduces power even
for smaller branch predictors. More importantly, we have
shown that when one considers the overall processor power
dissipation, BPP-enhanced processors always dissipate less
power when compared to ones that use either just the con-
ventional combined predictor, or just one of its underlying
sub-predictors.

Because of the considerable power savings and the rel-
atively small cost, BPP is an attractive power-aware
enhancement for modern, high-performance processors.

REFERENCES
[1] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, amd M.R. Stan.

Power Issues Related to Branch Prediction. In Proc. Intl.
Symposium on High-Performance Computer Architecture,
February 2002.

[2] A. Baniasadi, A. Moshovos, Instruction Flow-Based Front-end
Throttling for Power-Aware High-Performance Processors.
In Proc. ISLPED’01, August 2001

[3] D. Brooks, V. Tiwari M. Martonosi “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations”,
Proc of the 27th Int’l Symp. on Computer Architecture, 2000

Figure 2: (a) Branch prediction power reduction (b)
Overall power reduction. Bars from left to right

compare to CMB, BMD and GSH. Entire bar reports
for non-banked and dark portion of the bar reports

for banked predictors.

-50%
-30%
-10%
10%
30%
50%

am
m bzp

cm
p

eq
u

gcc m
cf

m
es prs vo

r
vp

r
wlf

AVG

0%

5%

10%

15%

20%

am
m bzp

cm
p

eq
u

gc
c

m
cf

m
es prs vo

r
vp

r
wlf

AVG


