3D-Pose Estimation from a Quadratic-Curved Feature
in Two Perspective Views

R. Safaee-Rad I. Tchoukanov B. Benhabib K.C. Smith

Computer Integrated Manufacturing Laboratory, Department of Mechanical Engineering
University of Toronto, 5 King's College Road, Ontario, M5S 1A4, CANADA

ABSTRACT - Estimation of 3D information from 2D-image coordinates is a fundamental problem in both machine vision and computer vision. In this paper, a closed-form analytical solution is presented to the problem of 3D-location estimation of quadratic-curved features based on two images. Compared to previous solution methods, the proposed method has the following advantages: (1) it is a closed-form solution method; (2) it is mathematically simpler; and (3) a priori knowledge of the size and shape of the feature is not required. The method is demonstrated here for an elliptical feature using a simulated experimental set-up.

1. Introduction

Estimation of 3D information from 2D-image coordinates is a fundamental problem in both machine vision and computer vision. The problem of 3D-location (3D-pose) estimation in a scene has been addressed extensively in the applied literature where it is referred to as "feature-based 3D-location estimation of objects." The body of literature dealing with this general problem is concerned with developing mathematical methods for the estimation of an object's location based on point features, whether it is a 3-point problem [1], a 4-point problem [2], or an n-point problem [3]. Estimation of the object's location based on line features, whose mathematics is similar to that of point features, has also been studied [4].

Quadratic-curved features are also very common in machine vision and computer vision, though they are obviously more complex. Quadratic-curve-related situations (involving conic sections) occur in various forms and in various contexts. The fact that quadratic curves are common and important in both the machine-vision and computer-vision fields, is due to several factors: (1) many manufactured objects are bounded by quadratic surfaces or have quadratic-curved edges; (2) quadratic curves or surfaces have been used as artificial landmarks in many machine-vision-related problems; (3) under both orthographic and perspective projections quadratic curves always map onto quadratic curves [5]; (4) with the obvious exception of first-order approximation (straight-line fitting), second-order (segmental or piecewise) approximation of curves is computationally the cheapest and most common approach. Basically, one can classify quadratic-curve-related problems into three kinds, depending on the context in which they occur: (a) pattern recognition and scene analysis, (b) machine-vision metrology, and (c) 3D-location estimation in both the direct and inverse forms.

Haralick and Chu [6] have developed a general method for 3D-location estimation based on quadratic-curved features. They consider two cases: either the shape and the size of a quadratic-curved feature are both known, or only its shape is known. For the first case, their method leads to a highly nonlinear optimization problem -- a nonlinear least-squares problem --, with three orientation variables; For the second case, their method leads to a similar nonlinear optimization problem but with five variables (three orientation and two size parameters). The main drawback of this method is the residual ambiguity concerning the number of possible solutions that exist, and the selection of the one which is acceptable. This is due to the nonlinearity of the optimization process which generally yields a local minimum depending on the initial estimates. As well, the method does not provide a geometrical interpretation of the problem and its solutions; furthermore, circles, being the most common quadratic feature, are not addressed.

We have previously addressed the circular-feature problem and derived a closed-form mathematical solution to the general form of the problem based on 3D-analytical geometry [7-8]. It was shown that based on a single image of the feature, there exist two possible solutions to the problem (assuming its radius is known). As well, we have previously addressed the problem of 3D-location estimation based on quadratic-curved features [9-10]. There, it was assumed that the true size and the true shape of a feature in object space is known, along with its perspective projection in the image plane (that is, using a single image). A set of geometrical constraints on the 3D location for each type of quadratic feature was derived. We proved that, in general, knowledge of the true size and shape does not yield a sufficient number of constraints to uniquely determine the 3D orientation and position and that there exist many possible solutions based on a single image. We have shown the locus of all possible solutions. As a result, extra constraints must be acquired from other sources and fused with these constraints in order to obtain a unique solution to the 3D-location-estimation problem. Nevertheless, the method developed and the results obtained for quadratic-curved features removed ambiguities that existed in a previously developed solution method [6].

Various types of constraints may be used in order to obtain a unique solution to the 3D-location estimation of quadratic-curved features: a second image of the feature, a coplanar quadratic-curved (QC) feature, a coplanar point feature, a second view along the same optical axis, or a
known distance between the image plane and the QC feature plane. Since acquisition of a second image of the feature is very common in machine vision and computer vision (for example, in stereo vision), in this paper we address the problem with this particular constraint, and derive a corresponding closed-form analytical solution which leads to the unique solution to the problem.

2. Analytical Formulation of the Problem

The analytical method proposed in this paper is based on the decomposition of the 3D-location-estimation problem into two parts: first, the 3D orientation of the quadratic-curved-feature's plane is estimated; subsequently, based on the estimated orientation (i.e., feature's surface normal), the 3D position and the third orientation parameter of the feature are calculated.

The problem of 3D-orientation estimation of a quadratic-curved feature based on two images can be stated as follows: Given the effective focal length of a camera, two images of a quadratic-curved feature, and the transformation between the two view points (from information concerning the 3D locations of the camera corresponding to the two views), it is required to estimate the 3D orientation of the feature's plane with respect to the camera frame.

This problem is equivalent to the following one: Given two 3D-cone surfaces defined by two bases (the perspective projections of a quadratic-curved feature in two image planes) and two vertices (the origin of the camera frame corresponding to each of the two views) with respect to a reference frame (for example, the first camera frame), it is required to determine the 3D orientation of a plane (with respect to the same reference frame) which intersects the two cones and generates a common curve identical to the quadratic-curved feature.

The equation of the cone whose vertex is the point \((p,y,z)\) and whose base is defined by a conic

\[
F(x,y) = a'x^2 + 2b'xy + b'y^2 + 2c'x + 2f'y + d' = 0
\]

(1)

can be expressed as [11]:

\[
z^2F(\alpha,\beta) - y\left[\frac{\partial F}{\partial x} + y \frac{\partial F}{\partial y} + t \frac{\partial F}{\partial t}\right] + \gamma^2 F(x,y) = 0. \tag{2}
\]

In equation (2), \(t\) is an auxiliary variable by which \(F(x,y)\) is made homogeneous \((F(x,y,t))\). The terms \(\frac{\partial F}{\partial x}\) and \(\frac{\partial F}{\partial y}\) are evaluated at \(x=\alpha\) and \(y=\beta\); and the term \(t \frac{\partial F}{\partial t}\) is calculated by first taking the derivative of the homogeneous equation with respect to \(t\) and then equating \(t\) to unity and \(x=\alpha\) and \(y=\beta\). The general form of the equation of a cone that is defined using the above equation is as follows:

\[
ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + d = 0. \tag{3}
\]

3. An Analytical Solution of the Problem

The solution method proposed is based on two theorems which were proven in [11-12].

Theorem (1): The curve of intersection of two conicoids is of the fourth degree (a quartic curve). Furthermore, the quartic curve of intersection of two conicoids may consists of: (a) a straight line and a cubic curve, (b) two straight lines and a conic curve, (c) four straight lines, or (d) two conics.

In our case, we know that the two constructed cones have a common conic. Thus, they should have either (1) another common conic; or (2) two other common straight lines (that is, where the second common conic degenerates into two straight lines).

As a result, in our case, the two intersecting cones have two common planar intersections. Based on this, we can use the following theorem:

Theorem (2): If \(S_1=0\) is the equation of one conicoid, and \(P_1\) and \(P_2\) represent the planes of the common sections, the equation of the other conicoid is of the form:

\[
S_1 + \lambda P_1 P_2 = 0 , \tag{4}
\]

where \(\lambda\) is a linear variable coefficient.

Based on this theorem, we can state the following: If \(S_1 = 0\) and \(S_2 = 0\) are the two constructed cones, and \(P_1\) and \(P_2\) are the two common planar sections, then in general the following is true:

\[
S_2 - \lambda S_1 = \lambda P_1 P_2 \tag{5}
\]

where,

\[
S_1 = a_1x^2 + b_1y^2 + c_1z^2 + 2f_1yz + 2g_1zx + 2h_1xy + 2u_1x + 2v_1y + 2w_1z + d_1 = 0 ,
\]

\[
S_2 = a_2x^2 + b_2y^2 + c_2z^2 + 2f_2yz + 2g_2zx + 2h_2xy + 2u_2x + 2v_2y + 2w_2z + d_2 = 0 ,
\]

\[
P_1 = l_1x + m_1y + n_1z + t_1 = 0 ,
\]

\[
P_2 = l_2x + m_2y + n_2z + t_2 = 0 . \tag{6}
\]

Note that, \(S_1, S_2, P_1,\) and \(P_2\) are defined with respect to the \(xyz\) frame, which is the frame of the first image. From (5) we would obtain ten equations with ten unknowns \((\lambda_1, \lambda_2, l_1, m_1, n_1, t_1, l_2, m_2, n_2, t_2)\).

To simplify the solution of this set of equations, we can proceed, without loss of generality, as follows:

(a) We transfer the first image frame to its canonical location (through application of proper 3D-translation and rotation transformations \(T\)) [10]. If the canonical frame is defined as \(XYZ\), then the equation of \(S_1\) would reduce to the following:

\[
S_1 = a_1'X^2 + b_1'Y^2 + c_1'Z^2 = 0 , \tag{7}
\]

and for the other equations in (6), we would have (using the transformation \(T\)):

\[
S_2 = a_2'X^2 + b_2'Y^2 + c_2'Z^2 + 2f_2'YZ + 2g_2'ZX + 2h_2'XY + \]

342
two planes

The quartic equation based on the resolvent cubic equation can be employed

Then, based on the nine equations with nine unknowns,

From (5) would be equal to 1.

As a consequence of the above two simplification processes (a) and (b), we obtain from (5) the following set of nine equations with nine unknowns (λ_1, λ_2, λ_3, λ_4, λ_5, λ_6, λ_7, λ_8, λ_9), which is simpler to solve:

To derive a solution set, let

and

Then, based on (9) and (10), we can derive the following equation for the unknown θ_1 (11):

Then, equation (11), the method of solution of a quartic equation based on the resolvent cubic equation can be employed [13]. This equation, in general, yields at most four real solutions. However, based on the objective conditions (that is, from Theorem (1), there exist only two common planar sections), it results in only two real solutions, which correspond to the two acceptable solutions for the two planes P_1 and P_2. This will be shown in Section 4 through a numerical example.
The transformation between the canonical camera frames of the second viewing point to the first viewing point is (17):

\[
\begin{pmatrix}
X_2 \\
Y_2 \\
Z_2 \\
1
\end{pmatrix} =
\begin{pmatrix}
0.697 & 0.261 & 0.668 & -22.211 \\
-0.202 & 0.956 & -0.166 & 5.512 \\
-0.688 & -0.019 & 0.726 & -1.128 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
X_1 \\
Y_1 \\
Z_1 \\
1
\end{pmatrix}.
\]

Thus, the equation of the second viewing cone with respect to the first canonical camera frame would be (18):

\[
3940.306 X_1^2 + 2102.481 Y_1^2 + 3593.207 Z_1^2 + 2253.008 Y_1 Z_1 + 7622.141 X_1 Z_1 + 2259.333 X_1 Y_1 - 25197.870 X_1 - 74950.083 Y_1 - 240660.932 Z_1 + 4003597.925 = 0.
\]

For the above camera-feature configuration, the equation of the elliptical-feature’s plane with respect to the first camera frame is:

\[
0.250 x_1 - 0.433 y_1 - 0.866 z_1 + 30 = 0
\]

and with respect to the first canonical camera frame would be:

\[
0.324 X_1 - 0.272 Y_1 - 0.906 Z_1 + 30 = 0
\]

4.2. Experimental Results

In this numerical example, \(S_1 \) (7) and \(S_2 \) (8) are given by Eqs. (14) and (18). Using (10), we can calculate coefficients \(K_1 \) to \(K_{10} \) and subsequently solve the fourth order polynomial (11) which yields two real solutions:

\[
\lambda_1^* = 0.011 \quad \lambda_2^* = -0.074.
\]

Corresponding to the first solution for \(\lambda_1^* \), the other unknowns are estimated as follows (using (12)):

\[
m_1^* = -0.009 \quad n_1^* = -0.030 \quad \lambda_2^* = -0.074.
\]

Similarly, corresponding to the second solution for \(\lambda_1^* \), we obtain the following (using (12)):

\[
m_2^* = -0.010 \quad n_2^* = -0.030 \quad \lambda_1^* = 0.011
\]

As can be seen, these two sets of solutions are identical, that is, they represent the coefficients of the same two planes \(P_1 \) and \(P_2 \). This is exactly as expected according to Theorem (1), where there exist only two common intersecting-conic planes. Thus, the equations of these two planes with respect to the first canonical camera frame are:

\[
0.011 X_1 - 0.009 Y_1 - 0.030 Z_1 + 1 = 0
\]

or

\[
P_1 = 0.324 X_1 - 0.272 Y_1 - 0.906 Z_1 + 30 = 0
\]

Using the transformation \(T \), we can determine the equations of the both planes with respect to the first camera frame:

\[
P_1 = 0.250 x_1 - 0.433 y_1 - 0.866 z_1 + 30 = 0
\]

\[
P_2 = -0.856 x_1 - 0.511 y_1 - 0.075 z_1 + 12.474 = 0.
\]

Since the first plane \(P_1 \) is on the one side of the camera frame in two views, it is the acceptable unique solution.

5. Conclusions

A closed-form analytical solution was derived for 3D-location estimation of quadratic-curved features based on two images without a priori knowledge about the size and shape of the feature. It has been shown that there exist, in general, two possible solutions to this problem. However, only one of them is acceptable based on the properties of the real camera-feature configuration. A simple method is proposed to determine the acceptable solution. The simulation results support the derived analytical solution method.

References

