
qstartFinal : trademark.frm 1 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 Printed in U.S.A.

Foundation
Series Quick
Start Guide 1.4

Features of Foundation
Series 1.4

Setting Up the Foundation
Tools

Foundation Overview

In-depth Tutorial

Glossary

qstartFinal : trademark.frm 2 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

XILINX, XACT, XC2064, XC3090, XC4005, XC5210, XC-DS501, FPGA Architect, FPGA Foundry, NeoCAD,
NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, and TRACE are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation,
HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, Plus Logic, Plustran,
P+, PowerGuide, PowerMaze, Select-RAM, SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing,
WebLINX, XABEL, Xilinx Foundation Series, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776;
5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609;
5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837;
5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018; 5,550,839;
5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529;
5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738;
5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342;
5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480;
5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547;
5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950; 5,657,290;
5,659,484; 5,661,660; 5,661,685; 5,670,897; 5,670,896; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and
foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors
contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume
any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1997 Xilinx, Inc. All Rights Reserved.

R

qstartFinal : preface.frm iii Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 iii

Preface

About this Quick Start Guide
This Quick Start Guide is intended to give an overview of the features
and additions to Xilinx’s newest product—Foundation 1.4. The
primary focus of this guide is to show the relationship between the
design entry tools and the design implementation tools.

This guide should be used as the initial learning tool for designers
who are unfamiliar with the features of the Foundation software. It
will also serve as a good reference for more advanced users who
simply need a refresher on a particular subject, such as components
or constraints.

Quick Start Guide Contents
This guide covers the following topics:

• Chapter 1, “Features of Foundation Series 1.4,” introduces the
new and enhanced features of the Foundation 1.4 software and
provides information about both FPGA- and CPLD-specific
features.

• Chapter 2, “Setting Up the Foundation Tools,” gives instructions
for the installation of Foundation 1.4 and provides you with
information about the type of computer you need to successfully
implement your designs.

• Chapter 3, “Foundation Overview,” looks in-depth at the
capability and flexibility of the Foundation software.

qstartFinal : preface.frm iv Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

iv Xilinx Development System

• Chapter 4, “In-depth Tutorial,” is a tutorial that explains many
different facets of a schematic-oriented Foundation design flow.
This chapter also shows how to use Foundation accessories such
as the State Editor, the Waveform Editor, and the HDL Editor.

• Appendix A, “Glossary,” defines some of the commonly used
terms in this Guide.

qstartFinal : convent.frm v Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 v

Conventions

Typographical
This manual uses the following conventions. An example illustrates
each convention.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement.

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

qstartFinal : convent.frm vi Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

vi Xilinx Development System

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

Square brackets also enclose footnotes in tables that are printed
out as hardcopy in DynaText.

• Braces “{ }” enclose a list of items from which you choose one or
more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

symbol editor_name [bus|pins]

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
Xilinx has created several conventions for use within the DynaText
online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click on the red-underlined text to
open the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click on the blue-underlined text to
open the specified cross-reference.

• There are several types of icons.

Iconized figures are identified by the figure icon.

qstartFinal : convent.frm vii Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 vii

Iconized tables are identified by the table icon.

The Copyright icon displays in the upper left corner on the first
page of every Xilinx online document.

The DynaText footnote icon displays next to the footnoted text.

Double-click on these icons to display figures, tables, copyright
information, or footnotes in a separate window.

• Inline figures display within the text of a document. You can
display these figures in a separate window by clicking on the
figure.

qstartFinal : convent.frm viii Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

viii Xilinx Development System

qstartFinal : qstartFinalTOC.doc ix Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 ix

Contents

Preface
About this Quick Start Guide... iii
Quick Start Guide Contents .. iii

Conventions
Typographical.. v
Online Document .. vi

Chapter 1 Features of Foundation Series 1.4

Xilinx Device Support .. 1–2
Foundation Project Manager... 1–2
Design Entry Tools.. 1–2

EDIF Netlist Format Supported.. 1–3
LogiBLOX... 1–3
XVHDL Compiler.. 1–4
XABEL Compiler .. 1–4
Schematic Editor.. 1–4
State Editor .. 1–6
HDL Editor ... 1–6
Simulator.. 1–6
Library Manager... 1–7
Symbol Editor... 1–8
Foundation Express (Optional) .. 1–8
Help System... 1–11
Online Documentation Suite .. 1–11

Design Implementation Tools.. 1–12
FPGA-specific Features... 1–12

EDIF Netlists Supported ... 1–12
Netlist Optimization Built into Mapper................................. 1–12
Improved MAP Reports .. 1–13
Place and Route Improvements ... 1–13

qstartFinal : qstartFinalTOC.doc x Tue Dec 23 06:35:17 1997

x Xilinx Development System

Foundation Series Quick Start Guide 1.4

Static Timing Analysis After Each Major Process............... 1–14
Multi-pass Place-and-Route ... 1–14
Re-entrant Routing ... 1–14
EPIC Graphical Viewer/Editor... 1–15
Flow Engine .. 1–15
Timing Analyzer .. 1–15
Hardware Debugger ... 1–16
PROM File Formatter.. 1–16

CPLD-specific Features ... 1–16
CPLD Implementation Software ... 1–16
Comprehensive Online Help... 1–17
JTAG Programmer Interface Software 1–17
Design Constraints/Properties .. 1–17

Chapter 2 Setting Up the Foundation Tools

Installation Notes... 2–2
Supported Platforms and Machine Requirements 2–2
Memory Requirements for Xilinx Architectures........................ 2–3
Running Setup ... 2–3
Network Compatibility .. 2–4
Obtaining and Setting Up Licenses.. 2–5

Customer Service.. 2–5
United States and Canada... 2–5
Europe ... 2–5
Other International Countries... 2–6

Technical Support ... 2–6

Chapter 3 Foundation Overview

Design Flow .. 3–2
Using the Foundation Design Entry Tools..................................... 3–5

Starting the Foundation Project Manager 3–5
Creating Top-Level Schematic Designs................................... 3–7
Creating Top-level VHDL Designs ... 3–8
Creating State Machine Designs ... 3–8

Using Foundation Express (Optional) ... 3–9
Using the Foundation Design Implementation Tools 3–9

Benefits of Using the Design Manager 3–9
Starting the Xilinx Design Manager.. 3–10
Implementing a Design .. 3–11
Translate .. 3–12
MAP (FPGAs) .. 3–12

qstartFinal : qstartFinalTOC.doc xi Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 xi

Contents

Place and Route (FPGAs) ... 3–12
CPLD Fitter (CPLDs) ... 3–13
Configure ... 3–13
Interpreting the Reports ... 3–13

Translation Report .. 3–14
Map Report (FPGAs) .. 3–14
Place and Route Report (FPGAs) 3–15
Pad Report.. 3–15

Selecting Options... 3–15
Using Constraint Files ... 3–17

Design, Netlist, and User Constraints 3–17
Creating A User Constraint File ... 3–18

Guiding Implementation .. 3–22
Exact Guide Mode ... 3–22
Leveraged Guide Mode ... 3–22

Static Timing Analysis ... 3–23
Static Timing Analysis After Map (FPGAs Only)...................... 3–23
Static Timing Analysis After Place and Route (FPGAs Only) .. 3–24
Summary Timing Reports .. 3–24
Detailed Timing Analysis.. 3–24

Creating Simulation Files .. 3–25
When Can Simulation Data be Created?................................. 3–25
Creating Functional Simulation Data 3–26
Creating Timing Simulation Data ... 3–27

Downloading a Design .. 3–28
Creating a PROM... 3–28
In-circuit Debugging ... 3–28

Advanced Implementation Flows (FPGAs Only)........................... 3–29
Re-entrant Routing... 3–29
Multi-pass Place-and-Route... 3–30

Chapter 4 In-depth Tutorial

Design Flow .. 4-2
Getting Started .. 4-5

Nomenclature... 4-5
Required Software ... 4-5
Installing the Tutorial.. 4-5
Tutorial Project Directories and Files 4-6
Starting the Project Manager ... 4-7

Hierarchy Browser .. 4-8
Project Flowchart .. 4-8
Message Window ... 4-9

qstartFinal : qstartFinalTOC.doc xii Tue Dec 23 06:35:17 1997

xii Xilinx Development System

Foundation Series Quick Start Guide 1.4

Copying the Tutorial Files .. 4-9
Starting the Schematic Editor .. 4-10
Executing Commands.. 4-12

Hotkeys... 4-12
Toolbar Buttons .. 4-12

Manipulating the Screen .. 4-12
Targeting an XC9500 Device .. 4-12
Completing the Calc Design.. 4-13

Design Description... 4-13
Creating the ANDBLK2 Symbol ... 4-15
Creating the ANDBLK2 Schematic .. 4-18

Opening the Schematic .. 4-18
Adding Components ... 4-18
Placing Additional Components.. 4-19
Moving a Component.. 4-19
Adding Buses.. 4-20
Adding Bus Taps .. 4-21
Connectivity .. 4-23
Saving the Schematic ... 4-24

Completing the ALU Schematic ... 4-24
Placing User-created Components..................................... 4-24
Placing Library Components... 4-26
Adding Nets, Buses, and Labels... 4-26
Changing Symbol References .. 4-28
Saving the ALU Schematic ... 4-30

Exploring Xilinx Library Elements .. 4-30
Viewing a Xilinx Soft Macro .. 4-31
Viewing a Xilinx RPM (XC4000 Family Only) 4-32

Returning to the Calc Schematic ... 4-34
Using the XC4000E Oscillator ... 4-35

Controlling Implementation from the Schematic 4-36
Assigning Pin Locations (XC4000 Family Only) 4-36
Controlling Slew Rate .. 4-38
Using I/O Flip-flops .. 4-39
Saving the Calc Schematic .. 4-40

Modifying the Design for Non-XC4000 Family Devices 4-40
RAM Stack Implementation ... 4-41
Removing the XC4000E Oscillator .. 4-42

Using LogiBLOX (Optional)... 4-44
Using the State Editor (Optional) .. 4-46

Creating a State Machine Macro ... 4-46
Defining States... 4-47

qstartFinal : qstartFinalTOC.doc xiii Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 xiii

Contents

Defining Transitions, Conditions and Actions 4-50
Generating and Compiling VHDL Code 4-53
Placing the Macro .. 4-54

Using the HDL Editor and XVHDL (Optional)................................ 4-54
Creating a VHDL Macro... 4-54
Creating and Editing VHDL Code .. 4-56
Compiling with XVHDL... 4-58
Placing the Macro .. 4-58

Other Special Components (Optional) .. 4-59
The STARTUP Block (XC4000 Family Only)........................... 4-59
The CONFIG Symbol... 4-60

Using a Constraints File .. 4-62
Functional Simulation.. 4-63

Starting the Logic Simulator... 4-63
Waveform Viewer ... 4-63
Simulator Toolbar ... 4-64

Selecting Nets to Probe ... 4-64
Adding Probes From the Logic Simulator 4-64
Adding Probes From the Schematic Editor......................... 4-66

Manipulating Buses.. 4-68
Assigning Stimulators .. 4-69

Defining the Clock... 4-71
Defining Formulas... 4-72

Saving the Input Waveforms.. 4-74
Simulating the Circuit ... 4-74

Using the Design Implementation Tools 4-78
Timing Simulation.. 4-84

Invoking the Logic Simulator for Timing Simulation 4-84
Asserting Global Reset .. 4-84

Without STARTUP.. 4-85
With STARTUP (XC4000 Family Only) 4-85

Running the Simulation.. 4-86
Examining Routed Designs with EPIC .. 4-87
Verifying the Design Using a Demonstration Board...................... 4-88
Making Incremental Design Changes ... 4-89

Making an Incremental Schematic Change 4-89
Translating the Incremental Design ... 4-91
Verifying the Change in the Demonstration Board................... 4-92

Further Reading .. 4-92

Appendix A Glossary
Index

qstartFinal : qstartFinalTOC.doc xiv Tue Dec 23 06:35:17 1997

xiv Xilinx Development System

Foundation Series Quick Start Guide 1.4

qstartFinal : Chap1.frm 1 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 1-1

Chapter 1

Features of Foundation Series 1.4

Welcome to Xilinx’s newest software release, known as Foundation®

Series 1.4. Xilinx is the world’s largest supplier of programmable
logic solutions, including industry-leading device architectures and
world-class design software.

This release contains many enhancements and additions. The result is
a product that provides hardware designers with an improved suite
of tools for designing and implementing Programmable Logic
Devices (PLDs).

If you ordered Foundation Express, then you also received the new
Synopsys® HDL design entry tool that can be used to create VHDL
and Verilog® designs. Refer to the Foundation Express
documentation, Foundation Express User Guide and Foundation Express
Application Note Supplement, for details.

This chapter contains the following sections:

• “Xilinx Device Support” section

• “Foundation Project Manager” section

• “Design Entry Tools” section

• “Design Implementation Tools” section

Note: Foundation Series 1.4 is intended for use with the Xilinx design
implementation tools, such as PAR and MAP. Complete compatibility
with the XNF (logical) and LCA (physical) design files that were used
in previous XACTstep releases has been preserved.

To see a step-by-step installation procedure, see the “Installing
Foundation” chapter in the Foundation Series 1.4 Install and Release
Document.

qstartFinal : Chap1.frm 2 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-2 Xilinx Development System

Xilinx Device Support
Foundation Series 1.4 supports the XC3000A/L, XC3100A/L,
XC4000E/L/EX/XL/XV, XC5200, Spartan, and XC9500 devices.

For further details about device support, refer to the “Device and
Package Support” chapter in the Foundation Series 1.4 Install and
Release Document that you received with this software.

Note: Technical information for all but the latest families is included
in the Xilinx Programmable Logic Data Book. For the most up-to-date
information about new devices, please see the Xilinx Web Site at
http://www.xilinx.com

Foundation Project Manager
The Foundation Project Manager—the overall project management
tool—contains the Foundation Series tools used in the design process.
Within the Project Manager, you access both the design entry tools
and the design implementation tools. Major new Project Manager
features include the following:

• new tab views in the Project Flowchart area (Flow, Contents,
Status, Reports, Synthesis). For a description of the new tabs, see
the “Project Manager Tabs” section of the Foundation Series User
Guide.

• improved performance of the netlist converter

• enhanced XNF support

• expanded support for third-party vendors

• importing of hierarchical XNF

• long macro names support (127 characters)

• enhanced project and library archiving (Refer to the “Project
Archiving” section of the Foundation Series User Guide.)

Design Entry Tools
This section describes both the new and previously available features
of the design entry tools. You can also find a list of the new design
entry features in the online help. From the Project Manager, select
Help → Foundation Help Contents → What’s New .

qstartFinal : Chap1.frm 3 Tue Dec 23 06:35:17 1997

Features of Foundation Series 1.4

Foundation Series Quick Start Guide 1.4 1-3

Major new features that apply to the design entry tools suite include
the following:

• year 2000 compliant

• larger design support

• longer name support (127 characters) for design elements
(macros, nets, buses, pins, and reference designators)

• new file formats (Designs created prior to Foundation Series 1.4
are backed up before conversion.)

EDIF Netlist Format Supported
The Project Manager design entry tools of Foundation Series 1.4
generate EDIF, which is the preferred netlist file format. (Foundation
Express generates XNF files.)

Note: All designs must be created using components from the Xilinx
Unified Libraries, described fully in Xilinx’s online document, the
Libraries Guide.

LogiBLOX
In Foundation Series 1.4, the LogiBLOX interface is integrated into
the Schematic Editor. Within the Schematic Editor, select Options →
LogiBLOX or Options → Import LogiBLOX . The Import Logi-
BLOX option allows you to import a LogiBLOX component that has
been previously created in another design project into the current
project.

LogiBLOX can be used to create the following types of modules,
among others:

• ROMs

• RAMs

• counters

• comparators

• decoders

LogiBLOX modules can be used in both schematic and HDL-based
designs. Refer to the “LogiBLOX” chapter in the Foundation Series
User Guide for details.

qstartFinal : Chap1.frm 4 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-4 Xilinx Development System

XVHDL Compiler
XVHDL compiler features include the following:

• uses EDIF format for output netlist

• supports hierarchy in netlist

• infers LogiBLOX components

• produces combinatorial logic usage estimate

• contains an attribute to control clock buffer assignment

• maintains net names that correspond closely to the signals
defined in the VHDL source

For specific information about how to create VHDL designs and use
the XVHDL compiler, refer to the “Top-level VHDL Designs” section
in the Foundation Series User Guide.

XABEL Compiler
XABEL offers the following features:

• uses EDIF format for output netlist

• supports hierarchical design source modules

• supports several Xilinx attributes that help control design
implementation (some features not available for FPGAs)

Schematic Editor
With the Schematic Editor, you can create a variety of schematic
designs:

• all-schematic top-level designs

• top-level designs with instantiated HDL

• LogiBLOX, State Machine modules, and schematic modules that
can be instantiated in HDL designs.

qstartFinal : Chap1.frm 5 Tue Dec 23 06:35:17 1997

Features of Foundation Series 1.4

Foundation Series Quick Start Guide 1.4 1-5

Major new features in the Editor include the following:

• enhanced bus taps connectivity

• improved Delete Symbol operation (Deleting a symbol leaves
connected wires in place.)

• enhanced Design Rule Checking (DRC checks for connections of
named signals to unnamed buses at the time these connections
are made.)

• improved support for hanging wire terminators

• temporary symbol generation for missing symbols

• schematic tabs added to the main window to easily switch
between pages. See the “Schematic Tabs” section in the Founda-
tion Series User Guide for details.

• ARRAY symbol support for multiple instances of a symbol
($ARRAY parameter) when importing a Viewlogic schematic.

• improved behavior when dragging groups of bus taps

• Replace Symbol option for replacing all instances of a selected
symbol

• Simulate Current Macro option. See the “Simulate Current
Macro” section in the Foundation Series User Guide.

• improved annotation for renumbering symbol references when
merging schematic sheets

• integrated LogiBLOX interface

qstartFinal : Chap1.frm 6 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-6 Xilinx Development System

State Editor
The State Editor allows you to do the following:

• graphically describe a state machine using the “bubble diagram”
concept

• generate behavioral VHDL code from the diagram

• invoke the XVHDL compiler to convert the behavioral
description into a gate-level EDIF netlist

The State Editor also supports the XABEL language. State actions
may now include IF statements.

HDL Editor
In Foundation Series 1.4, you can initiate LogiBLOX within the HDL
Editor (Synthesis → LogiBLOX).

If you received and installed Foundation Express, then Verilog is
automatically enabled within the HDL Editor. When you use the
Design Wizard to create a new project, the Verilog option displays in
the Design Wizard - Language window. Like VHDL, Language
Assistant templates and color coding are provided for Verilog.
However, unlike VHDL, you cannot synthesize Verilog designs
within the HDL editor. You must use Foundation Express to
synthesize your Verilog designs. See the Foundation Express
Application Note Supplement for information about Verilog design
flows.

Simulator
The simulator can accept a hierarchical EDIF netlist as input,
allowing a design’s hierarchy to be manipulated, maintained, and
viewed in the simulator. Some of the major new features of the
simulator include the following:

• support for large designs with a maximum of 32000 modules in
each hierarchical level

• Waveform Copy/Paste option for single waveforms

• dragging of signal transitions in the Waveform Editor. See the
“Waveform Editing Functions” section of the Foundation Series
User Guide for details.

qstartFinal : Chap1.frm 7 Tue Dec 23 06:35:17 1997

Features of Foundation Series 1.4

Foundation Series Quick Start Guide 1.4 1-7

• Simulate Macro Editor option. See the “Simulation Macro Editor”
section of the Foundation Series User Guide for details.

• new windows for managing simulation formulas

• support for saving formulas and stimulators as ASCII Test
Vectors

• improved display and notification of timing violations

• improved hierarchical simulation speed

• faster loading of large EDIF netlists

In addition to the improvements to the simulator, the new Simulation
Macro Editor, which is based on the HDL Editor, lets you edit and run
simulation scripts. To access the Simulation Macro Editor, from the
Logic Simulator window, select Tools → Script Editor . To find
out how to use the new editor, within the Macro Editor window,
select Help → SIM Macros Help .

Library Manager
The XC3000 and XC5200 libraries are now available for Foundation
customers. The XC7000 library has been removed.

Some features of the Library Manager user interface include the
following:

• a toolbar with buttons for library management operations

• main window tabs for selecting libraries and components within
those libraries

• color coding representing the type of library (system or user)

• resizable list columns

• list header area that allows you to sort the libraries and symbols
based on any of the fields

• print preview function

qstartFinal : Chap1.frm 8 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-8 Xilinx Development System

Symbol Editor
The user interface of the Symbol Editor supports the following
features:

• a toolbar that provides access to frequently-used Symbol Editor
functions through a series of pushbuttons.

• Copy/paste functions which encourages easy creation of a new
symbol by using an existing symbol as a template.

• improved pin type visibility control

• support for long names

Foundation Express (Optional)
Foundation Express allows Foundation customers to use Xilinx's new
HDL synthesis technology (provided by Synopsys).

The major new features of Foundation Express include the following:

• high-quality synthesis for all Xilinx device families

a) XC3000 and XC5200

b) XC4000 up to XC40125

c) XC4000XV

d) Spartan

e) XC9500

• VHDL and Verilog support

a) improved Verilog black box support

To instantiate a module in Verilog, you simply define an
empty module containing the names and directions for the
module’s I/O pins and then instantiate the module. The
instances of the module are automatically stored in the final
netlist.

You can also specify timing constraints on arbitrary timing
paths, including multi-cycle paths. You can create a subpath
by right-clicking on a path in the pre-optimized
implementation.

qstartFinal : Chap1.frm 9 Tue Dec 23 06:35:17 1997

Features of Foundation Series 1.4

Foundation Series Quick Start Guide 1.4 1-9

b) updated faster HDL analyzers

The latest (V)HDL analyzer from Synopsys Design Compiler
version 1997.08 contains bug fixes and additional construct
support.

• graphical constraint entry

a) customizable timing groups

b) improved overall system performance requirements

• new Interactive Graphical Timing Analyzer

Foundation Express includes a timing analyzer for timing report
and debugging, which is built on the Paths and Ports constraint
tables. After optimization, the timing verifier displays:

• The timing for both path groups and subpaths (Paths page).
Double click on the path icon to display or hide the subpaths
of a timing path. Clicking a path or subpath shows the worst
delays to all endpoints in the To group. Clicking an endpoint
shows the complete critical path from the start to endpoints.

• The input to clock and clock to output timing (Ports page)
(Timing analyzer support is not available for the Xilinx
XC9500.)

• automatic finite state machine (FSM) optimization

Automatic FSM encoding is supported for enumerated types
(VHDL); use the VHDL template to design your FSM, then
choose One Hot or Binary encoding under Synthesis →
Options → Project .

• improved graphical user interface

The graphical user interface (GUI) has a new look and feel. In
addition to the Design Sources window and the Chip window,
the Error/Warnings window is always displayed. Several
activities, such as entering constraints or viewing results, are
started by clicking the right mouse button. Double clicking on
icons expands or contracts the file or design hierarchy. For
VHDL, other libraries than WORK can be created by clicking the
right mouse button on the project icon, and selecting New
Library.

qstartFinal : Chap1.frm 10 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-10 Xilinx Development System

• built-in editor source editor

The editor interacts with analysis errors and lets you edit source
files. You start the editor and open the file by selecting the design
file icon, clicking the right mouse button, and selecting Edit File.
You can use a menu of editing options by clicking the right
mouse button.

• M1/XACT option

You can target either M1 or XACT. Targeting M1 turns off the
HBLKNM setting. HBLKNM is used on some look-up tables to
improve the quality of result when using XACT. The switch to
control this feature is under the Xilinx Options spreadsheet of the
pre-optimized implementation.

• choice of optimization parameters

You can synthesize a design for high speed or low area. The
switch to control this feature is under the Create Implementation
window. Also with the Low/High effort switch, you can control
the CPU effort for the optimization engine. Low effort runs faster,
though High effort provides better quality of results. The switch
to control this feature is under the Create Implementation
window.

• GSR Mapping for designs including black boxes

Foundation Express can now infer the global set reset (GSR) even
for design that contains black boxes (when allowed by the
selected device). The switch, which is called Ignore Unlinked
Cells During GSR Mapping, can be found by selecting
Synthesis → Edit Constraints → Xilinx Options of the
pre-optimized implementation.

• enhanced export report file

The export report file contains much more detailed information
on the pre-optimized as well as the post optimized design, such
as: the design's hierarchy, the inferred operators, the cell count,
the timing constraints, and the clock speed estimates.

If Foundation Express is installed, the HDL Editor provides color-
coding and language assistance for the Verilog language. However,
you cannot synthesize your designs within the HDL Editor. These
designs must be synthesized using Foundation Express.

qstartFinal : Chap1.frm 11 Tue Dec 23 06:35:17 1997

Features of Foundation Series 1.4

Foundation Series Quick Start Guide 1.4 1-11

Help System
Complete online help and online documentation is provided with the
Foundation Series software. The online help system can be invoked
from the Project Manager’s Help menu or from the Xilinx Foundation
Series program group.

The online help for the design entry tools is provided in Windows
help files on a per-application basis. The new online help system has
an improved look-and-feel. In general, it is more consistent than the
previous version and exhibits more extensive use of Windows 95 help
features.

With this new version of the online help, Xilinx FPGA designers can
find more information than they could previously, including a
tutorial that teaches basic FPGA design techniques. In addition, the
help system now includes links that take you directly to the Xilinx
web site.

Online Documentation Suite
The online documentation for the design implementation tools is
organized into books, and you use a different browser (not based on
Winhelp), DynaText, to view it. Xilinx manuals are divided by subject
matter, and several volumes can apply to one or more products.

Note: For more information on DynaText, see the “Troubleshooting”
appendix in the Foundation Series 1.4 Install and Release Document.

qstartFinal : Chap1.frm 12 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-12 Xilinx Development System

Design Implementation Tools
The Xilinx implementation software offers many important features.
These features are described in the following sections, first for FPGA
devices, then for CPLD devices.

FPGA-specific Features
This release contains a suite of software that supports all available
FPGA devices. Designs can easily be retargeted between various
FPGA device families.

EDIF Netlists Supported

Third-party synthesis or schematic capture tools create various types
of netlists. When using Foundation, the preferred netlist file format is
EDIF; however, other netlist formats are supported. Refer to the
following table for a list of the netlists supported by Foundation
Series 1.4.

Netlist Optimization Built into Mapper

MAP, the mapping program, performs its own netlist optimization.
Advantages to the customer include the following:

• faster, more reliable results

• no need to run a separate program

• improved optimization results

a.XNF support has been retained to provide backwards compatibility with other
tools, including previous releases of Xilinx XACTstep software.

Table 1-1 Supported Netlist Formats

Netlists Variations

EDIF Multiple variations are accepted, including:

SEDIF
EDIF

EDN

XNF Multiple variations are accepted, including:

SXNF
XFF

XNFa

XTF

qstartFinal : Chap1.frm 13 Tue Dec 23 06:35:17 1997

Features of Foundation Series 1.4

Foundation Series Quick Start Guide 1.4 1-13

Improved MAP Reports

The new MAP reports have a new table of contents. Errors and
warnings are grouped together into special sections at the beginning
of the report. The report summary has also been moved to the
beginning of the report. Three sections of the report are optional
which reduces the length and file space requirements.

Place and Route Improvements

For Foundation Series 1.4, significant runtime improvements have
been made to the PAR software. In addition, the Design Manager
displays a single slider bar to define the PAR effort level. Select the
Place and Route Tab from the Implementation Option window to see
the new slider bar.

Figure 1-1 New Slider Bar

PAR reports contain a new Suggestions section with hints on how to
improve design performance. PAR reports also provide improved
resource utilization descriptions.

qstartFinal : Chap1.frm 14 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-14 Xilinx Development System

Static Timing Analysis After Each Major Process

You can analyze your design for non-resolved timing constraint,
clock, and path problems by looking at its timing; use the interactive
Timing Analyzer tool to perform this analysis.

You can perform analysis at three key places in the design process for
FPGAs 1) after merging netlists and selecting a target architecture, 2)
post-map, or 3) post-place-and-route. For CPLDs, you can perform
static analysis after running your design through the CPLD fitter.

Post-MAP timing reports can be very useful in evaluating timing
performance. Although routing delays are not accounted for,
evaluating logic delays can provide you with valuable information
about the design. On the other hand, post-PAR timing reports
incorporate all known delays to provide a comprehensive timing
summary. Foundation Series 1.4 static timing reports describe net
fanout.

Multi-pass Place-and-Route

The place-and-route (PAR) software allows multiple place and route
iterations to be run:

• on a single machine

• on various computers distributed on a wide-area network (WAN)

• on multiple machines in parallel

The multi-pass feature achieves optimum performance and efficiency,
utilizing maximum CPU time to achieve design results more readily
and quickly.

Re-entrant Routing

Once a place and route result is found that is close to meeting the
desired specifications, notably those of timing, or is close to being
completely routed, the implementation process can be re-entered to
continue the routing process. This feature allows you to modify
attributes and constraints during the routing stage of design
implementation.

In addition to facilitating design changes, re-entrant routing
significantly reduces CPU time of re-compiles.

qstartFinal : Chap1.frm 15 Tue Dec 23 06:35:17 1997

Features of Foundation Series 1.4

Foundation Series Quick Start Guide 1.4 1-15

EPIC Graphical Viewer/Editor

Editor for Programmable Integrated Circuits (EPIC), a graphical
editor, provides a view of the physical implementation of your Xilinx
design. The availability of EPIC means you no longer have to use
XDE/EDITLCA. Important features of EPIC include the following:

• the ability to view CLB mapping, placement, and routing

• a timing analysis with critical paths highlighted

• the ability to modify the placement and routing of your Xilinx
design

• the creation of custom macros to be incorporated into your Xilinx
design

Flow Engine

The Flow Engine displays and then executes all the steps needed to
implement a Xilinx design. The Flow Engine performs the following:

• translates the design netlist

• maps the logic to CLBs (FPGAs)

• places and routes the design (FPGAs)

• creates a configuration file which downloads a design to a part

• creates static timing reports and timing simulation netlists in the
following formats: VHDL (Vital), Verilog, EDIF, or XNF

Timing Analyzer

The Timing Analyzer produces a report on the following:

• overall design performance

• timing specifications performance

• specific path performance

Timing analysis can be performed on the block delays of a just-
mapped design or on the block and route delays of a design already
placed and routed.

qstartFinal : Chap1.frm 16 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-16 Xilinx Development System

Hardware Debugger

The Hardware Debugger is useful for prototyping. The Hardware
Debugger downloads a configuration file to a single FPGA or to a
daisy chain of FPGAs through the XChecker, Serial, or Parallel
download cables. When used with the XChecker cable, the Hardware
Debugger can read back the state (logic levels) of the design signals
inside the FPGA, and thus, enable in-circuit design debugging.

PROM File Formatter

The PROM File Formatter creates files for serial- or byte-wide
configuration PROMs. Three formats are available: MCS-86,
EXORmacs, and TEKHEX. The HEX format is also supported for
microprocessor-based configuration. (The HEX file type is not
considered a valid PROM file format because you cannot use it to
program PROM devices.)

CPLD-specific Features
The CPLD fitter supports all available XC9500 devices. For
information on how to create and process XC9500 designs using this
software, refer to the online help provided for the CPLD fitter.

CPLD Implementation Software

By default, the CPLD fitter automatically takes advantage of special
CPLD architecture features, including global clocks, global output
enables, global set/reset, D-type and T-type flip-flops, and XOR
gates.

The fitter also performs general timing optimization to reduce overall
path delays in your design. If desired, you can disable any of these
features.

The CPLD fitter produces a comprehensive report listing the
resources used, the resources remaining, the resulting device pinout,
and the allocation of macrocell resources for your design. The fitter
also produces a static timing report showing the calculated worst-
case timing for the logic paths in your design.

qstartFinal : Chap1.frm 17 Tue Dec 23 06:35:17 1997

Features of Foundation Series 1.4

Foundation Series Quick Start Guide 1.4 1-17

The fitter has an advanced pin-locking feature for XC9500 designs.
The software automatically selects initial pin locations for your I/O
signals that give you the greatest flexibility to iterate your design
after committing your pinout. Each time the fitter successfully
implements your design, it stores your pinout in a “guide file” that
will optionally lock your pinout during subsequent iterations.

Comprehensive Online Help

The Foundation Series online help system contains the information
you will need to design XC9500 CPLDs. In addition to providing
links to the information available about all the design entry and
implementation tools, the Foundation online help provides in-depth
information on the following CPLD topics:

• CPLD design techniques and application notes

• tutorial teaching CPLD design flow

• XC9500 JTAG programming

• reference information on schematic library, attributes and
implementation options

JTAG Programmer Interface Software

This release supports in-system downloading of programming files
to supported XC9500 devices via the JTAG test access port. The
interactive JTAG Interface software also provides for testing of on-
chip logic and is compatible to the IEEE 1149.1 standard. The
software also includes BSDL files for use with third-party boundary
scan and ATE systems.

Design Constraints/Properties

Foundation Series 1.4 software provides a revised set of design
properties (also attributes and/or constraints) that is consistent
across design entry methods and between device families (FPGA and
CPLD). Several new properties have been added to control CPLD
design implementation, including global clock/OE/set/reset
allocation, logic collapsing, and improved timing specifications.

qstartFinal : Chap1.frm 18 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

1-18 Xilinx Development System

Properties can be specified either in the source design or via the new
user constraint file (UCF), which replaces the CST file used in
previous releases. Refer to the “Using Constraint Files” section of the
“Foundation Overview” chapter for more information about user
constraint files. Alternatively, refer to the Foundation online help for
descriptions of the new property names used in this release.

qstartFinal : Chap3.frm 1 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 2-1

Chapter 2

Setting Up the Foundation Tools

This chapter lists the system requirements for the Foundation Series
1.4 Xilinx design tools software. This chapter discusses the recom-
mended machine types and memory requirements to comfortably
run the Foundation Series 1.4 software. Also included are general
instructions for installing the software, contacting customer support,
and obtaining and installing the necessary authorization codes and
licenses.

This chapter contains the following sections:

• “Installation Notes” section

• “Customer Service” section

• “Technical Support” section

qstartFinal : Chap3.frm 2 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

2-2 Xilinx Development System

Installation Notes
Ensure the optimum use and operation of your new design tools by
installing Foundation Series 1.4 on the recommended hardware with
sufficient memory (RAM and swap). If you experience problems with
either the installation, operation, or verification of your installation,
please contact the Xilinx Technical Support hotline. Refer to the
“Technical Support” section of this chapter for specific phone
numbers and email addresses to use.

Supported Platforms and Machine Requirements
The Foundation Series 1.4 software is a PC-only release. Foundation
runs on either Windows 95 or Windows NT (version 4.0 or later). The
following list shows the type of PC you should have to perform
designs for Xilinx FPGAs or CPLDs.

• Pentium Pro Processor®

• Windows 95® or Windows NT 4.0®

• 120 MHz clock speed

• Memory—32 MB to 64 MB (dependent on device)

• Swap Space—48 MB to128 MB (dependent on device)

• 500 MB disk space (for 1 device family only)

• 2 GB hard disk (for all device families)

• SVGA 17” monitor

• 4x CD-ROM drive

• Keyboard

• Mouse

Note: Due to the size and complexity of the XC4000EX devices, Xilinx
recommends that XC4000EX designs be compiled using a high-
performance computer. 64MB of RAM as well as 64MB of swap space
is required to compile XC4000EX designs, but Xilinx recommends
that 128MB of both RAM and swap space be used.

Swap file size requirements also vary with the design and constraint
set size. By default, Windows 95 manages its swap file size
automatically, but for Windows NT, you may need to increase it.

qstartFinal : Chap3.frm 3 Tue Dec 23 06:35:17 1997

Setting Up the Foundation Tools

Foundation Series Quick Start Guide 1.4 2-3

Typically, your Windows NT swap file size should be twice as large
as your system RAM amount.

It is important to note that slower machines, or machines with less
than the recommended RAM and/or swap space, will exhibit longer
runtimes.

Memory Requirements for Xilinx Architectures
The various steps of designing Xilinx FPGAs or CPLDs require a
substantial amount of memory, as shown in the following table.

Note: The values given in the above table are for typical designs and
include the normal load created by the operating system. Additional
memory may be required for certain “boundary-case” or “extremely
large” designs, as well as for concurrent operation of other non-Xilinx
applications.

Running Setup
Please refer to the “Installation” section of the Foundation Series 1.4
Install and Release Document for complete details on installation.

1. Insert the Design Entry Tools CD. If your system has the Auto
Run feature enabled, the Foundation Master Installer will start
automatically. Select “Install Design Entry Tools” to begin
installation.

If you do not have Auto Run enabled on your system, you can
bypass the Master Installer utility by running the Setup program
(found in the “setup” directory on the Design Entry Tools
CD-ROM) directly.

Table 2-1 Memory Requirements

Xilinx Packages RAM
Virtual Memory
(Swap Space)

Base
Base with VHDL

48 MB 64 MB

Standard
Standard with VHDL

64 MB 128 MB

qstartFinal : Chap3.frm 4 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

2-4 Xilinx Development System

2. Follow the instructions on the screen to install the design entry
tools; if you wish, you can wait until installing all portions of
Foundation before restarting.

3. If you are installing Foundation from the Master Installer
(described in Step 1 above), you can click on “Install Design
Implementation Tools” to begin installation of this set of tools
and the related DynaText documentation files. If you make this
selection, you will be prompted to insert the Design
Implementation Tools CD. After inserting the CD and clicking on
OK, the installation will start.

Alternatively, you can initiate the Implementation Tools setup
program yourself by inserting the Implementation Tools
CD-ROM and running the setup program located in the root
directory of the CD.

4. You may need to reboot your PC to allow the new/modified
environment variables and path statement to take effect before
you can run the design implementation tools. The InstallShield
program will inform you if you need to reboot.

5. (Optional) Insert the CD-ROM labeled “Esperan MasterClass
Lite VHDL Tutorial.” Run “setup.exe” located in the CD-ROM
root directory. (This CD is included only with FND-BSX and
FND-EXP packages.)

6. (Optional) Insert the CD-ROM labeled “Foundation Express”.
Run “setup.exe” located in the CD-ROM root directory. Install
this CD if you wish to use the Foundation Express software for
synthesizing VHDL and Verilog designs files.

Network Compatibility
The Xilinx installation program supports only TCP-IP style networks.
Novell is not a TCP-IP style network.

Note: If you are using XABEL, the entire Foundation software
package must be installed on your local PC’s hard drive. The XABEL
compiler does not run reliably over a network.

qstartFinal : Chap3.frm 5 Tue Dec 23 06:35:17 1997

Setting Up the Foundation Tools

Foundation Series Quick Start Guide 1.4 2-5

Obtaining and Setting Up Licenses
Before running your Foundation software, you will need to obtain a
license from Xilinx. To obtain a license, you need to be a registered
user in the Customer Service database.

New Xilinx users should fill out their Xilinx registration card and fax
or mail it to their Customer Service location. Customer Service will
send your license and authorization codes in a license.dat file.

You can also obtain a license by accessing the online Web tool or by
contacting your local Xilinx Customer Service representative. If you
request your license via fax, please fill out the form that is located
behind the front cover of this Quick Start Guide. For details about
licensing, consult the “Setting Up Security” chapter in the Foundation
Series 1.4 Install and Release Document.

Customer Service
Use the following information for contacting your local Xilinx
Customer Service representative.

United States and Canada
Monday-Friday, 8:00am to 5:00pm Pacific Standard Time
voice 800-624-4782, and facsimile 408-559-0115.

Europe
Monday-Friday, 9:00am to 5:30 pm United Kingdom time—English
speaking only.

Country Telephone Facsimile

United Kingdom 01932-333550 01932-828521

Belgium 0800-73738

France 0800-918333

Germany 0130-816027

Italy 1677-90403

Netherlands 0800-918333

Other European Locations (44) 1932-333550 (44) 1932-828521

qstartFinal : Chap3.frm 6 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

2-6 Xilinx Development System

Other International Countries

If you reside in an international country not listed, please contact
your local distributor.

Technical Support
The following are Xilinx hotline access numbers.

Xilinx sells a Student Edition of the Foundation Series software. If
you are using this version of the software, you are requested to not
call for technical support. Instead, visit the following web site and
follow the instructions there to get answers to your questions and
obtain technical support.

http://www.xilinx.com/programs/univ.htm

Country Telephone Facsimile

Japan 81-3-3297-9153 81-3-3297-9189

Southeast Asia/ROW Contact local distributor Contact local distributor

Location Telephone Electronic Mail

U.S. and Canada 1-800-255-7778 hotline@xilinx.com

Japan 81-33-297-9163 jhotline@xilinx.com

France 33-1-3463-0100 frhelp@xlinx.com

Germany 49-89-9915-4930 dlhelp@xilinx.com

United Kingdom 44-1932-820821 ukhelp@xilinx.com

To contact factory 1-408-879-5199 hotline@xilinx.com

qstartFinal : Chap4.frm 1 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 3-1

Chapter 3

Foundation Overview

This overview explains the basic concepts and design flow of the
Foundation Series 1.4 release as it spans the flow from netlist to final
PROM file. This chapter contains the following sections:

• “Design Flow” section

• “Using the Foundation Design Entry Tools” section

• “Using Foundation Express (Optional)” section

• “Using the Foundation Design Implementation Tools” section

• “Using Constraint Files” section

• “Guiding Implementation” section

• “Static Timing Analysis” section

• “Creating Simulation Files” section

• “Downloading a Design” section

• “Advanced Implementation Flows (FPGAs Only)” section

The flow described in this chapter is generally applicable to all Xilinx
families. However, many of the details apply only to the FPGA device
families. For complete information on CPLD design flows, refer to the
Foundation online help.

qstartFinal : Chap4.frm 2 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-2 Xilinx Development System

Design Flow
The Foundation Series design tools interface supports the following
design flows:

• top-level schematic entry with the Xilinx Unified Libraries
components, LogiBLOX symbols, or both

• schematic entry with Unified Library components with some
components expressed as HDL or state machine macros

• all-VHDL design

• mixed-VHDL designs with schematic-based, state machine, or
LogiBLOX instantiated components

• finite state machine diagram entry

For a detailed description of the design methodologies, refer to the
“Design Methodologies” chapter in the Foundation Series User Guide.

Note: If you purchased Foundation Express, then this HDL software
tool supports designs having top-level HDL descriptions (either
VHDL and Verilog). Refer to the Foundation Express Application Note
Supplement for details.

The following two figures illustrate the basic design flow for FPGAs
and CPLDs. For detailed design flow illustrations, refer to the
“Design Flow” section of the Foundation Series User Guide. If you
purchased Foundation Express, consult the Foundation Express
Application Note Supplement for design flow information.

qstartFinal : Chap4.frm 3 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-3

Figure 3-1 Foundation Overall Design Flow for FPGAs

X8088

DESIGN ENTRY
CHECKPOINT

VERIFICATION

IMPLEMENTATION

Creation of Device

Programming

Data

Interactive

Hardware

Debugging (Optional)

PROM File

Formatting

Multi-Pass

PAR

Post-Place and Route

Static Timing Analysis

Post-Map

Static Timing

Analysis

User-Created Stimulus

User-Created Stimulus

Accessed from

Project Manager

Logic Block Delays Only

Gate-Level

Functional

Simulation

Post-

Place and Route

Gate-Level

Timing Simulation

Accessed from

Design Manager

Schematic

LogiBLOX

HDL

(XVHDL/XABEL)

Finite State

Machine Diagram

Netlist Merging

Mapping to Target

Architecture

Knowledge-Driven

Place and Route

qstartFinal : Chap4.frm 4 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-4 Xilinx Development System

Figure 3-2 Foundation Overall Design Flow for CPLDs

DESIGN ENTRY
CHECKPOINT

VERIFICATION

IMPLEMENTATION

Creation of Device

Programming

Data

JTAG

Programmer

Post-Implementation

Static Timing Analysis

User-Created Stimulus

User-Created Stimulus

Accessed from

Project Manager

Gate-Level

Functional

Simulation

Post-

Implementation

Gate-Level

Timing Simulation

Accessed from

Design Manager X8228

Schematic

HDL

(XVHDL/XABEL)

Finite State

Machine Diagram

CPLD Fitter

qstartFinal : Chap4.frm 5 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-5

Using the Foundation Design Entry Tools
This section describes the basic procedure for using the design entry
tools.

Starting the Foundation Project Manager
To start the Project Manager, double click on the Project Manager icon
in the Foundation Series program group. The icon to click is shown in
the following figure.

The Foundation design tools environment (the Project Manager) is
shown in the following figure.

qstartFinal : Chap4.frm 6 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-6 Xilinx Development System

Figure 3-3 Foundation Project Manager

If this is the first time you have opened the Project Manager, a dialog
box will pop up, asking if you want to open an existing project or
create a new one.

qstartFinal : Chap4.frm 7 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-7

To create a new project, follow these steps:

1. Open the Foundation Project Manager.

2. Select File → New Project .

3. Enter a name for the project. Change the directory for the project,
if desired, by using the Browse button.

4. Choose the appropriate family, part, and speed grade.

5. Click OK.

For more information about creating new projects in Foundation,
refer to Foundation’s online help system. For detailed information
about the Project Manager, refer to the online help by selecting Help
→ Foundation Help Contents → Project Manager . Also see the
 “Project Manager” section in the Foundation Series User Guide.

Creating Top-Level Schematic Designs
You can create a variety of top-level designs:

• all schematic designs

• schematic designs with instantiated HDL macros

• schematic designs with instantiated LogiBLOX modules

• schematic designs with instantiated state machine macros

For a detailed description of the procedures for creating these types
of designs, refer to the “Top-level Schematic Designs” section in the
Foundation Series User Guide.

For a discussion of schematic design issues, refer to the “Schematic
Design Entry” chapter in the Foundation Series User Guide.

qstartFinal : Chap4.frm 8 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-8 Xilinx Development System

Creating Top-level VHDL Designs
You can create a variety of top-level schematic VHDL designs:

• all-VHDL designs

• designs with instantiated schematic macros

• designs with instantiated state machine macros

• designs with instantiated Xilinx Unified Library components

• designs with instantiated LogiBLOX modules

• designs with instantiated netlist modules

For a detailed description of the procedures for creating these types
of designs, refer to the “Top-level VHDL Designs” section in the
Foundation Series User Guide.

For a discussion of HDL design issues, refer to the “HDL Design
Entry and Synthesis” chapter in the Foundation Series User Guide.

If you purchased Foundation Express, you can also use this software
to create your VHDL designs. For information on how to create top-
level VHDL designs w with Express, refer to the Foundation Express
Application Note Supplement.

Creating State Machine Designs
State machine designs typically start with the translation of a concept
into a “paper design,” usually in the form of a state diagram or a
bubble diagram. The paper design is converted to a state table and
then into the source code itself.

A State Machine design can be used in the following ways:

• top-level design

• a module in a schematic

• a module in VHDL

For a detailed discussion of the design steps, refer to the “State
Machine Designs” section in the Foundation Series User Guide.

For a description of a sample state machine, refer to the “State
Machine Designs” chapter in the Foundation Series User Guide.

qstartFinal : Chap4.frm 9 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-9

Using Foundation Express (Optional)
You can create VHDL and Verilog designs if you purchased the
optional Foundation Express package. For details about this separate
package, refer to the Foundation Express User Guide and the Foundation
Express Application Note Supplement.

Using the Foundation Design Implementation Tools
This section describes the design implementation tools.

Benefits of Using the Design Manager
The Xilinx Design Manager is the graphical interface that manages
the implementation versions and revisions created during the design
process. Results of these implementations are made available in
reports and may be accessed through the Design Manager’s Report
Browser.

The Design Manager also provides on-screen pushbutton access to
the other Xilinx tools, such as the Flow Engine, Timing Analyzer,
PROM File Formatter, EPIC Report Browser, and various navigation
and information tools.

qstartFinal : Chap4.frm 10 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-10 Xilinx Development System

Starting the Xilinx Design Manager
To start the Xilinx design implementation tools, click on the Imple-
ment M1 button in the Project Flowchart area, shown below.

The Foundation Design Manager is shown in the following figure.

Figure 3-4 Foundation Design Manager

qstartFinal : Chap4.frm 11 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-11

Implementing a Design
From the Design Manager menu (refer to the following figure), select
Design → Implement .

Figure 3-5 Design Manager Menus and Toolbar

In the Implement dialog, select the part and click on Run. The Design
Manager automatically creates a new version and revision.
Additional versions are created when the netlist is modified and re-
implemented. Also, additional revisions are created when the same
netlist is re-implemented with new options or constraints.

The Design Manager invokes the Flow Engine to process the design.
The Flow Engine interface prominently displays the status of each
phase of the design, as shown in the following figures.

Figure 3-6 Flow Engine Shows All Design Segments
Completed (FPGAs)

qstartFinal : Chap4.frm 12 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-12 Xilinx Development System

Figure 3-7 Flow Engine Shows All Design Segments
Completed (CPLDs)

Translate
The Flow Engine’s first step, Translate, merges all of the input
netlists. This is accomplished by running NGDBuild. For a complete
description of NGDBuild, refer to the “NGDBuild” chapter of the
Development System Reference Guide.

MAP (FPGAs)
The next step is Map. Map optimizes the gates and trims unused
logic in the merged NGD netlist. Map also maps the design’s logic
resources; logic in the design is mapped to resources on the silicon,
and a physical design rule check is performed. The mapping process
is accomplished by running the MAP executable. For more
information about MAP, refer to the “MAP—The Technology
Mapper” chapter in the Development System Reference Guide.

Place and Route (FPGAs)
Once the design is mapped, the Flow Engine places and routes the
design. In the place stage, all logic blocks, including the configurable
logic blocks (CLB) and input/output blocks (IOB) structures, are
assigned to specific locations on the die.

If timing constraints have been placed on particular logic
components, the placer tries to meet those constraints by moving the
corresponding logic blocks closer together.

qstartFinal : Chap4.frm 13 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-13

In the routing stage, the logic blocks are assigned specific
interconnect elements on the die. If timing constraints have been
placed on particular logic components, the router tries to meet those
constraints by choosing a faster interconnect. The place and route
(PAR) process is accomplished by running the PAR executable. For
more information about PAR, refer to the “PAR—Place and Route”
chapter in the Development System Reference Guide.

CPLD Fitter (CPLDs)
The CPLD fitter implements designs for the XC9500 devices. The
fitter outputs several files: fitting report (design_name.rpt), static
timing report (design_name.tim), guide file (design_name.gyd,
programming file (design_name.jed for XC9000), and timing
simulation database (design_name.nga).

For detailed information about implementing CPLD designs, refer to
the online DynaText books, CPLD Schematic Design Guide and CPLD
Synthesis Design Guide. Also refer to the Foundation online help.

Configure
After place and route, the Flow Engine translates the physical
implementation into a binary stream. The binary stream is used to
program the FPGA. The binary stream is saved as a configuration file
(.BIT) using the BitGen executable. For more information about the
BitGen executable, refer to the “BitGen” chapter in the Development
System Reference Guide.

Interpreting the Reports
The reports provide information on logic trimming, logic
optimization, timing constraint performance, and I/O pin
assignment. To access the reports, go to the Report Browser. (To open
the Report Browser, select the Design Manager command,
Utilities → Report Browser). To open a particular report,
double click on its icon, as shown in the “Report Browser” figure,
below.

qstartFinal : Chap4.frm 14 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-14 Xilinx Development System

Translation Report

The translation report (.BLD) contains warning and error messages
from the three translation processes: conversion of the EDIF or XNF
style netlist to the Xilinx NGD netlist format, timing specification
checks, and logical design rule checks. The report lists the following:

• missing or untranslatable hierarchical blocks

• invalid or incomplete timing constraints

• output contention, loadless outputs, and sourceless inputs

Figure 3-8 Report Browser

Map Report (FPGAs)

The Map Report (.MRP) contains warning and error messages
detailing logic optimization and problems in mapping logic to
physical resources. The report lists the following information:

• Erroneously removed logic. Sourceless and loadless signals can
cause a whole chain of logic to be removed. Each deleted element
is listed with progressive indentation, so the origins of removed
logic sections are easily identifiable; their deletion statements are
not indented.

• Logic that has been added or expanded to optimize speed.

• The Design Summary section lists the number and percentage of
used CLBs, IOBs, flip-flops, and latches. It also lists occurrences
of architecturally-specific resources like global buffers and
boundary scan logic.

Note: The Map Report can be very large. To find information, use key
word searches. To quickly locate major sections, search for the string
‘---‘ , because each section heading is underlined with dashes.

qstartFinal : Chap4.frm 15 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-15

Place and Route Report (FPGAs)

The Place and Route Report (.PAR) contains the following
information:

• The overall placer score. The placer score measures the
“goodness” of the placement. Lower is better. The score is
strongly dependent on the nature of the design and the physical
part that is being targeted, so meaningful score comparisons can
only be made between iterations of the same design targeted for
the same part.

• The Number of Signals Not Completely Routed should be zero
for a completely implemented design. If non-zero, you may be
able to improve results by using re-entrant routing or the multi-
pass place and route flow.

• The timing summary at the end of the report details the design’s
asynchronous delays. For information on timing constraint
performance and synchronous delays, refer to the “Static Timing
Analysis” section later in this chapter.

Pad Report

The Pad Report lists the design’s pinout in three ways:

• Signals are referenced according to pad numbers.

• Pad numbers are referenced according to signal names.

• PCF file constraints are listed. This section of the Pad Report can
be cut and pasted into the .PCF file after the SCHEMATIC END;
statement to preserve the pinout for future design iterations.

Selecting Options
Options specify how a design is optimized, mapped, placed, routed,
and configured. Options are grouped into objects called
implementation templates and configuration templates. Each
template defines an implementation or configuration approach. For
example, one implementation style could be Quick Evaluation, while
another could be Timing Constraint Driven.

qstartFinal : Chap4.frm 16 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-16 Xilinx Development System

Figure 3-9 Flow Engine Options Dialog Box

You can have multiple templates in a project. By choosing a template,
you are choosing an implementation or configuration style. To access
the options and templates

• Select the Options button in the Implement dialog or from the
Flow Engine menu select Setup → Options .

• In the Program Option Templates portion of the Options Dialog,
select the Edit Template button for Implementation or
Configuration to access the associated template.

• From the Design Manager menu, select Utilities →
Template Manager .

qstartFinal : Chap4.frm 17 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-17

The default options settings are able to accommodate most
implementations. For information on the options, select Help →
Contents from the Design Manager menu.

Using Constraint Files
The design implementation tools allow you to control the
implementation of a design by entering constraints. There are two
basic types of constraints that you can apply to a design: location
constraints and timing constraints. Location constraints are used to
control the mapping and positioning of the logic elements in the
target device. The most common location constraints are pad
constraints. They are used to lock the pins of the design to specific I/
O locations so that the pin placement is consistent from revision to
revision.

Timing constraints tell the software which paths are critical, and
therefore, need closer placement and faster routing. Conversely,
timing constraints also tell the software which paths are not critical
and therefore do not need closer placement or faster routing. Both the
placer and the router can be timing constraint driven.

Design, Netlist, and User Constraints
Constraints can be entered throughout the design entry and
implementation processes. Constraints can be entered during the
design entry phase by adding them to a schematic, specifying them to
a synthesis tool, or listing them in a user constraint file. These three
approaches differ in the following ways:

• Constraints entered directly in the input design are known
simply as design constraints and are ultimately placed in the
design netlist.

• If you want your constraints separated from the input design
files, or if you want to modify your constraints without having to
completely re-synthesize your design, you can create a user
constraints file design_name.ucf.

qstartFinal : Chap4.frm 18 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-18 Xilinx Development System

Creating A User Constraint File
The user constraint file (.UCF) is a user-created ASCII file that holds
timing and location constraints. It is read by NGDBuild during the
translate process, and is combined with an EDIF or XNF netlist into
an NGD file. If a UCF file exists with the same name as the top-level
netlist, then it will automatically be read. Otherwise, specify a file for
User Constraints in the Options dialog.

The following example shows how to lock I/Os to pin locations and
how to write Timespec and Timegroup constraints.

Figure 3-10 Locking I/Os to Pin Locations

X8076

IPAD OPAD

OPAD8

IBUF

FRED

JIM[7:0] JACK[7:0]

TED NED

OBUF

LOU[7:0]

IPAD8 IBUF8

IBUF8

Schematic of Hierarchy Block

Hierarchy Block

LOU[7:0] IT[7:0]

qstartFinal : Chap4.frm 19 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-19

This is a UCF comment

The constraints below lock the I/O signals to pads.

The net name that connects to the pad is used to
constrain the I/O.

The pin grid array packages use pin names like B3 or
T1, instead of P<Pin Number>.

Lock the input pins

NET FRED LOC = P18;
NET JIM<0> LOC = P20;
NET JIM<1> LOC = P23;
NET JIM<2> LOC = P24;
NET JIM<3> LOC = P25;
NET JIM<4> LOC = P26;
NET JIM<5> LOC = P27;
NET JIM<6> LOC = P28;
NET JIM<7> LOC = P38;

Lock the output pins

NET NED LOC = P19;
NET HIERARCHY_BLOCK/<IT0> LOC = P44
NET HIERARCHY_BLOCK/<IT1> LOC = P45
NET HIERARCHY_BLOCK/<IT2> LOC = P46
NET HIERARCHY_BLOCK/<IT3> LOC = P47
NET HIERARCHY_BLOCK/<IT4> LOC = P48
NET HIERARCHY_BLOCK/<IT5> LOC = P49
NET HIERARCHY_BLOCK/<IT6> LOC = P50
NET HIERARCHY_BLOCK/<IT7> LOC = P462

For more information on constraint precedence, refer to the
“Constraint Precedence” section in the Foundation Series User Guide.

qstartFinal : Chap4.frm 20 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-20 Xilinx Development System

This example shows how to specify timing constraints.

Figure 3-11 Specifying Timing Constraints

X8075

QD

C C

QD
MAY

CLK_PD CLK

IPAD IBUF OBUF OPAD

BUFGIPAD

TOM TIM JIM JOE

QD

A[3:0]

WE*

*

* Nets not used in timing constraints.

C

C

QD
JEN

CLK2_PD CLK2_I CLK2

IPAD OPAD

SYNCHRONOUS

RAM OFDIFD

IBUF BUFGIPAD

BOB VAL AL
QD

C

qstartFinal : Chap4.frm 21 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-21

---User Constraint File (UCF):

This is a comment

Period specifies minimum PERIOD of CLK net. Offset specifies that
data on MAY can arrive up to 6 ns before the clock edge arrives on CLK.

NOTE: Period constraints do not apply to elements in output pads.

NET CLK PERIOD = 20 ns ;
NET MAY OFFSET = IN : 6ns : before : CLK_PD ;

Groups all clocked loads of CLK2 into CLK2_LOADS timegroup
Groups all clocked loads of VAL into VAL_LOADS
timegroup TNM # => Timegroup NaMe

NET CLK2 TNM=CLK2_LOADS ;
NET VAL TNM=VAL_LOAD ;

Specifies worst case speed of path from IPAD to CLK2 # loads. Includes
pad, buffer, and net delays. TS0l is a Timespec identifier; it can
have names of the form TS<string>. PADS (CLK2_PD) is a Timegroup name
specified inside of a Timespec.

TIMESPEC TS01=FROM : PADS (CLK2_PD) : TO : CLK2_LOADS=15ns ;

Specifies the maximum frequency for all loads clocked by CLK2.

TIMESPEC TS02=FROM : CLK2_LOADS : TO : CLK2_LOADS=30Mhz;

Specifies the minimum delay on the path from Synchronous RAM to OFD.
Includes clock-to-out delay, net delay, and setup time.

TIMESPEC TS03=FROM : CLK2_LOADS : TO : VAL_LOAD+15000ps ;

qstartFinal : Chap4.frm 22 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-22 Xilinx Development System

Guiding Implementation
In the Foundation Series 1.4 tools, guiding is used during map, place,
and route. Guiding a design can significantly reduce runtimes, since
less processing has to occur.

During a typical design process, a design is modified and
implemented many times. The changes are such that from one
implementation to the next there are many parts of the design that do
not change. Guiding a design accelerates iterative implementations
by reusing the unchanged sections from a previous implementation
on current implementations. The software therefore only has to
spend time generating implementations for sections of the designs
that have changed.

To select a previous implementation to guide a current
implementation, open the Options dialog. In the Guide Design
dropdown list, you can select previously implemented revisions,
Project Clipboard, Custom, or None.

The Project Clipboard is used to save the guide data of revisions that
are being overwritten. Guide data can be saved to the Project
Clipboard by selecting the Copy previous_revision Guide Data to
Project Clipboard button in the Implement dialog. NCD files created
outside of the project can be used for guiding by selecting the Custom
option. In the Custom dialog popup, be sure to enter 1) a mapped
NCD file, and 2) a placed and routed NCD file. If guide files aren’t
needed, select None.

Exact Guide Mode
When guiding in exact mode, the unchanged logic is not modified in
any way. This mode is fastest, but least flexible. Use this mode if the
design iteration requires only minor changes. Exact mode is the
default mode. It can be selected by having the Match Guide Design
Exactly option enabled in the Options dialog.

Leveraged Guide Mode
When guiding in leveraged mode, the mapping, place, or route of the
unchanged logic can be modified if the tools need to make layout
changes to accommodate new logic. Use this mode if significant
changes have occurred, such as re-synthesis of an entire hierarchical
block.

qstartFinal : Chap4.frm 23 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-23

Leveraged mode is automatically selected when the Match Guide
Design Exactly button is not selected in the Options dialog.

Static Timing Analysis
Timing analysis can be performed at several stages in the
implementation flow to estimate delays. A post-map timing report
can be generated to evaluate the effects of logic delays on timing
constraints, clock frequencies, and path delays. A post-place-and-
route timing report that incorporates both block and routing delays
can be generated as a final summary of the design’s timing
constraints, clock frequencies, and path delays. Detailed timing
constraint, clock, and path analysis for post-map or post-place-and-
route implementations are done with the interactive Timing Analyzer
tool.

Static Timing Analysis After Map (FPGAs Only)
Post-map timing reports can be very useful in evaluating timing
performance. Although route delays are not accounted for, the logic
delays can provide valuable information about the design.

If logic delays account for a significant portion (> 50%) of the total
allowable delay of a path, the path may not be able to meet your
timing requirements once routing delays are added. In fact, if the
logic-only-delays exceed the total allowable delay for a path or
constraint, then the place-and-route process can be skipped
altogether, since the routing delays will only cause the path’s timing
to degrade.

Routing delays typically account for 40% to 60% of the total path
delays. By identifying problem paths, you can mitigate potential
problems before investing time in place and route. You can redesign
the logic paths to use less levels of logic, tag the paths for specialized
routing resources, move to a faster device, or allocate more time for
the path.

If logic-only-delays account for much less (<15%) than the total
allowable delay for a path or timing constraint, then very low
placement effort levels can be used by the place and route software.
In these cases, reducing effort levels allow you to decrease runtimes
while still meeting performance requirements.

qstartFinal : Chap4.frm 24 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-24 Xilinx Development System

Static Timing Analysis After Place and Route (FPGAs
Only)

Post-PAR timing reports incorporate all delays to provide a
comprehensive timing summary. If a placed and routed design has
met all of your timing constraints, then you can proceed by creating
configuration data and downloading a device. On the other hand, if
you identify problems in the timing reports, you can try fixing the
problems by increasing the placer effort level, using re-entrant
routing, or using multi-pass place and route. You can also redesign
the logic paths to use fewer levels of logic, tag the paths for
specialized routing resources, move to a faster device, or allocate
more time for the paths.

Edit the implementation template to modify the placer effort level.
For information on re-entrant routing or multi-pass place and route,
see the “Advanced Implementation Flows (FPGAs Only)” section at
the end of this chapter.

Summary Timing Reports
Summary reports show timing constraint performance and clock
performance. Implementing a design in the Flow Engine can
automatically generate summary timing reports. To create summary
timing reports, perform the following steps:

1. Open the Options dialog. For a post-map report, select the
Produce Logic Level Timing Report button. For a post-PAR
report select the Produce Post Layout Timing Report button.

2. To modify the reports to highlight path delays or paths that have
failed timing constraints, 1) edit the template implementation,
2) select the timing tab, and 3) select a report format.

3. Once MAP or PAR has completed, the respective timing reports
appear in the Report Browser.

Detailed Timing Analysis
To perform detailed timing analysis, select Tools → Timing
Analyzer from the Design Manager menu. You can specify specific
paths for analysis, discover paths not affected by timing constraints,
and analyze the timing performance of the implementation based on
another speed grade. For path analysis, perform the following:

qstartFinal : Chap4.frm 25 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-25

• Choose sources. From the Timing Analyzer menu, select Path
Filters → Path Analysis Filters → Select Sources .

• Choose destinations. From the Timing Analyzer menu, select
Path Filters → Path Analysis Filters → Select
Destinations .

• To create a report, select Analyze → All Paths .

To switch speed grades

• Select Options → Speed Grade . After a new speed grade is
selected, all new Timing Analyzer reports will be based on the
design running with new speed grade delays. The design does
not have to be re-implemented, because the new delays are read
from a separate data file.

Creating Simulation Files
Once the design is implemented, a timing simulation can be
performed to ascertain if the timing requirements and functionality
of your design have been met. Timing simulation can save
considerable time by reducing the time spent debugging test boards
in the lab. Functional simulation can also potentially save time by
uncovering design bugs before running PAR.

When Can Simulation Data be Created?
The design implementation tools allow you to create simulation data
after each major processing step. This means that you can create
functional simulation netlists, after the design has been merged
together by NGDBuild in the Translate process, and timing
simulation netlists after the design has been placed and routed by
PAR for FPGAs or fitted by the CPLD fitter for CPLDs. Additionally,
for FPGAs, you can create simulation data after the design has been
mapped or after the design has been placed but not routed. For a
graphical representation of when you can conveniently simulate your
design, refer to the “Foundation Overall Design Flow for FPGAs”
figure and the “Foundation Overall Design Flow for CPLDs” figure
near the start of this chapter.

For FPGAs, simulation data created after the design has only been
mapped contains timing data based on the CLB and IOB block
delays, and all net (interconnect) delays are set to zero.

qstartFinal : Chap4.frm 26 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-26 Xilinx Development System

Post-map simulation allows you to ensure that the design’s current
implementation will give the place and route software sufficient
margin to route the design and still stay within your timing
requirements.

Simulation data created after the design has been placed, but not
routed, contains accurate block delays and estimates for the net
delays. Post-place simulation can be used as an incremental
simulation step between post-map simulation and a complete post-
route timing simulation.

To simulate at any of these intermediate stages, select Tools →
Checkpoint Simulation from the Foundation Project Manager,
and choose the appropriate netlist to be simulated.

Creating Functional Simulation Data
For schematic and HDL designs, the functional simulation netlists are
created in the Foundation design entry tools environment. Simply
click on the SIM Funct button in the Project Manager Flowchart area
to invoke the Simulator and load the netlist. The SIM Funct button is
shown in the following figure.

For designs that include underlying netlists (XNF or EDIF), the
design must first be “translated” in the Xilinx Design Manager in
order to merge in these additional netlists. Follow these steps to
translate the design, and then invoke the simulator and load the
functional netlist.

1. Click on the Xilinx M1 button in the Foundation Project Manager
to invoke the Design Manager.

2. Select Design → New Version and then Design → New
Revision .

3. With the new revision highlighted, go into the Flow Engine by
clicking on the Flow Engine toolbar icon.

4. From within the Flow Engine, select Setup → Stop After and
then choose the Stop After Translate option.

qstartFinal : Chap4.frm 27 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-27

5. Click OK, then click the Run button in the Flow Engine.

6. After Translate is complete, go back to Foundation Project
Manager and select Tools → Checkpoint Simulation .

Choose the appropriate .NGD file from the Revision which was
just created and click OK. This invokes the simulator and loads
the netlist.

For details about functional simulation, refer to the “Functional
Simulation” chapter in the Foundation Series User Guide.

For additional information about functional simulation, see the
“Performing Functional Simulation” section of the Foundation Series
User Guide:

Creating Timing Simulation Data
Before performing timing simulation, ensure that you have generated
a timing annotated netlist and created timing vectors. See the “Post-
Implementation Timing Simulation” chapter in the Foundation Series
User Guide for details.

To create timing simulation data, open the Xilinx Design Manager
Implementation Options dialog, and select the Produce Timing
Simulation Data option. Click OK. After the Implementation process
is complete, return to the Foundation Project Manager, and click on
the SIM Timing button, shown below. This invokes the Simulator
and loads the timing simulation netlist.

For additional information about simulation, refer to the
“Performing Functional Simulation” section of the Foundation Series
User Guide.

qstartFinal : Chap4.frm 28 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-28 Xilinx Development System

Downloading a Design
An implemented FPGA design can be downloaded directly from
your PC using the Hardware Debugger program and the XChecker
cable.

The Hardware Debugger can download a BIT file or a PROM file:
MCS, EXO, or TEK file formats. A BIT file contains configuration
information for an FPGA device.

For more information on using either the Hardware Debugger or the
XChecker cable, see the Hardware Debugger Reference/User Guide.

An implemented CPLD design can be downloaded from your PC
using the JTAG Programmer. See the JTAG Programmer Guide for
details.

Creating a PROM
An FPGA or daisychain of FPGAs can be configured from serial or
parallel PROMs. The PROM File Formatter can create MCS, EXO, or
TEK style files. The files are read by a PROM programmer that turns
the image into a PROM.

A HEX file can also be used to configure an FPGA or a daisychain of
FPGAs through a microprocessor. The file is stored as a data structure
in the microprocessor boot-up code.

In-circuit Debugging
Once a design has been downloaded to an FPGA, snapshots of
internal signal states can be captured and read using the Hardware
Debugger program and the XChecker cable. You can display the
signal states as waveforms in the Hardware Debugger. This
capability allows you to test and debug your design in a real-time
environment as it interfaces with the other components on your
board. You can also control the states of your state machines by
controlling when clock edges are sent to your system clock input.

For more information on in-circuit debugging, the Hardware
Debugger, or the XChecker cable, see the Hardware Debugger
Reference/User Guide.

qstartFinal : Chap4.frm 29 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-29

Advanced Implementation Flows (FPGAs Only)
The place and route software, PAR, has features that allow it to
process complex designs that have tight timing requirements and/or
are difficult to route. PAR options can be varied in many different
ways; the following sections discuss the most common strategies.

Re-entrant Routing
PAR can take an implemented design as an input and re-route it. If
your design is placed but not routed, PAR will use the placement and
just spend time routing the design. If your design is partially routed,
PAR will use the existing placement and routing and only spend time
routing the unrouted signals. If your design is completely placed and
routed but not meeting timing specifications, PAR can start from
where it left off and continue re-routing the design to come up with
an implementation that meets your timing specifications.

As PAR is running, it continually updates the NCD file with its
current placement and routing information. As long as an NCD file
exists that is at least placed, PAR can used it for re-entrant routing. To
initiate re-entrant routing,

1. In the Design Manager, select the implemented revision and then
select the Flow Engine button in the toolbox.

2. In the Flow Engine, select the Setup → Advanced menu.

3. In the Advanced dialog, select the Allow Re-Entrant Route
button, which enables the re-entrant route options:

• Optional: If meeting timing specifications is a critical goal,
then select Use Timespecs During Re-entrant Route. If
meeting timing specifications is not critical, do not select this
option, because timing-driven routing takes much longer to
process than non-timing-driven routing.

• Optional: Select the number of re-entrant routing passes to be
performed. If left in “Auto,” PAR will continue to perform
routing iterations until either 1) it determines that it is no
longer making significant progress, or 2) the design
constraints have been fully met.

qstartFinal : Chap4.frm 30 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-30 Xilinx Development System

• Optional: Select the number of clean-up passes to run. Clean-
up passes are run after the “main” routing passes are
complete. Two types of clean-up routing passes can be
invoked—cost-based and delay-based. The effectiveness of
each type depends on the design, device, and constraints of
the implementation. No predictable criteria can be suggested
to choose one style over the other. The best methodology is to
select no more than three passes for each (in most cases, a
single pass for each is sufficient), and use the PAR report to
determine which was most effective and try using more
clean-up passes of that style.

4. Click on OK (in the Advanced dialog) to submit the options. This
causes the Place and Route icon in the Flow Engine to show a
loop back arrow and the Re-Entrant route label.

5. If you are specifying timing or location constraints, you may
want to relax them to give PAR more flexibility. If you modify the
UCF file, you must step backwards with the Flow Engine and re-
run Translation in order to incorporate the changes. Since your
design is already implemented, step back to the beginning of
Place and Route using the Step Backward button at the bottom of
the Flow Engine, and then click the button to start again.

Multi-pass Place-and-Route
If a design has not completed routing or has not yet met timing
constraints, then you can use PAR to perform a more extensive search
for a solution. PAR can produce multiple placed and routed revisions,
each revision with varying implementations. PAR scores each
implementation, choosing the best revisions based on the score. By
choosing the best implementation from a large population, PAR is
more likely to find a solution that meets your requirements.

If you are using the Foundation Series 1.4 software on a network,
then to significantly reduce runtime, the place and route passes can
be run in parallel by executing each pass on a separate machine. To
initiate Multi-Pass Place-and-Route:

qstartFinal : Chap4.frm 31 Tue Dec 23 06:35:17 1997

Foundation Overview

Foundation Series Quick Start Guide 1.4 3-31

1. In the Design Manager, select a version (not a revision), and then
from the menu choose Design → FPGA Multi-Pass Place &
Route .

2. In the FPGA Multi-Pass Place and Route dialog, select a value for
the Starting Strategy. The Starting Strategy is a value that
initializes the place-and-route algorithms. Each iteration receives
an incremented value of the starting strategy. For initial runs, set
the Starting Strategy to 1, since 0 was used in your previous
single-pass run.

3. Select the number of iterations to run.

4. Select the number of iterations to save. Based on the design score,
only the files from the best runs are saved.

5. Click on OK to launch the multi-pass place and route process.

Note: If you are running on an NT workstation and want to run on
multiple NT workstations, select a nodelist file. A nodelist file is a
user-created ASCII file that lists the names of the workstations on
which you want to run. Each name should be on a separate line. Do
not include tabs or spaces in the file.

qstartFinal : Chap4.frm 32 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

3-32 Xilinx Development System

qstartFinal : Chap5.frm 1 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 4-1

Chapter 4

In-depth Tutorial

This chapter guides you through a typical FPGA design procedure
using a design called Calc, a 4-bit processor with a stack. The design
example used in this tutorial demonstrates many system features that
you can apply to your own designs.

In the first part of the tutorial, you use the Foundation design entry
tools to complete the design. Next, you use the Logic Simulator to
perform functional simulation. In the third part, you use the Xilinx
Design Manager to implement the design. Next, you verify timing
with the Logic Simulator and download the bitstream to a Xilinx
demonstration board. Finally, an incremental design change is made
and the design is recompiled to reflect the change.

Note: Although this tutorial describes the steps for creating and
processing an FPGA design, most of the steps can be applied in the
same manner to CPLD designs.

This chapter includes the following sections:

• “Design Flow” section

• “Getting Started” section

• “Targeting an XC9500 Device” section

• “Completing the Calc Design” section

• “Controlling Implementation from the Schematic” section

• “Modifying the Design for Non-XC4000 Family Devices” section

• “Using LogiBLOX (Optional)” section

• “Using the State Editor (Optional)” section

• “Using the HDL Editor and XVHDL (Optional)” section

• “Other Special Components (Optional)” section

qstartFinal : Chap5.frm 2 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-2 Xilinx Development System

• “Using a Constraints File” section

• “Functional Simulation” section

• “Using the Design Implementation Tools” section

• “Timing Simulation” section

• “Examining Routed Designs with EPIC” section

• “Verifying the Design Using a Demonstration Board” section

• “Making Incremental Design Changes” section

• “Further Reading” section

Design Flow
An incremental design methodology is described in this tutorial. In
incremental design, the design is processed, a small change is made,
and the design is processed again. Place-and-route information from
the previous design cycle is used to constrain subsequent cycles.
When this method is used, design performance remains relatively
stable across design versions. Also, place-and-route time is
considerably reduced since information from previous design cycles
is leveraged.

The tutorial design can be targeted for an XC4000E or XC9500 device.
You can use a Xilinx demonstration board to test the functionality of
the design. Make sure your demonstration board and software
support your selected device. To determine compatibility, refer to the
release documents that came with your software package.

The two figures immediately following show the flow of the design
once you are past the design entry phase and are either fine-tuning or
determining the feasibility of your design. This phase of the design
process is called the design implementation phase. The figures show,
respectively, 1) FPGA (design implementation step) and 2) CPLD
(design implementation step).

qstartFinal : Chap5.frm 3 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-3

Figure 4-1 Foundation Series 1.4 Design Flow (FPGA Design
Implementation Step)

Report Browser

Design Manager Flow Engine

X7923

Translate

MAP

PROM File Formatter Hardware Debugger

Configure

Timing Analyzer

EPIC Design Editor

Timing Simulation

Data

Functional

SImulation Data

Place and Route

Simulator

SXNFUCF

Constraints Netlists

NCF EDIF XNF

Logic-Level

Timing Report

Post-Layout

Timing Report

* Flow supported by command line.

*

*

qstartFinal : Chap5.frm 4 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-4 Xilinx Development System

Figure 4-2 Foundation Series 1.4 Design Flow (CPLD Design
Implementation Step)

Note: See the “Design Flow” section of the “Foundation Overview”
chapter for more information about Xilinx Foundation design flows.

Report Browser

Design Manager
Flow Engine

X8090

Translate

Fit

JTAG Programmer

BitstreamTiming Analyzer

Timing Simulation

Data

Functional

SImulation Data

Simulator

SXNFUCF

Constraints Netlists

NCF EDIF XNF

Fitting

Report

Timing

Report

* Flow supported by command line.

*

*

qstartFinal : Chap5.frm 5 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-5

Getting Started
The following subsections describe the basic requirements for
running the tutorial.

Nomenclature
In this tutorial, the following terms are used:

• “XC4000 family” includes XC4000E/L, XC4000EX, XC4000L,
XC4000XV, and XC4000XL devices.

• “Right-click” means click the right mouse button. Unless
specified, all other mouse operations are performed with the left
mouse button.

Throughout this tutorial, file names, project names, and directory
names (paths) are specified in lower case, and the design is referred
to as Calc.

Required Software
The Xilinx Foundation Series package, Version 1.4 or later, is required
to perform this tutorial.

Note: Some optional sections of the tutorial require specific
Foundation Series features, available only with certain licensed
packages.

Installing the Tutorial
This tutorial assumes that the software is installed in the default
location c:\fndtn\active. If you have installed the software in a
different location, substitute your installation path for
c:\fndtn\active.

The tutorial projects are optionally installed (as sample projects)
when you install the Foundation Series software. If you have
installed the software, but are not sure whether the tutorial projects
were installed, check for directories named
c:\fndtn\active\projects\calc*. These directories contain the various
tutorial files.

qstartFinal : Chap5.frm 6 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-6 Xilinx Development System

Note: Refer to the “Setting Up the Foundation Tools” chapter for
installation instructions. For even more detailed instructions, refer to
the Foundation Series 1.4 Install and Release Document.

Tutorial Project Directories and Files
During the tutorial installation, the c:\fndtn\active\projects\calc
project directory is created, and the tutorial files are copied into this
directory. This directory is missing some files because you will create
them in the tutorial. However, solutions projects with all input and
output files are also provided; they are listed in the following table.

The three solutions project directories contain the design files for the
completed tutorial, including schematics and the bitstream file.To
conserve disk space, some intermediate files are not provided. Do not
overwrite any files in the solutions directories.

The calc project contains an incomplete copy of the tutorial design. A
few intermediate files are also included, and you will create the
remaining files when you perform the tutorial. As described in a later
step, you can copy the Calc project to another area and perform the
tutorial in this new area. The following table lists some of the
directories and files in the calc_4ke solution project directory.

Table 4-1 Tutorial Project Directories

Directory Description

calc Main tutorial project directory

calc_4ke Solution for XC4003E-PC84

calc_9k Solution for XC95108-PC84

calc_blx Solution for XC4003E-PC84 using LogiBLOX, ABEL,
and VHDL

qstartFinal : Chap5.frm 7 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-7

Starting the Project Manager
1. Double click on the Foundation Series Project Manager icon on

your desktop or select Programs → Foundation Series →
Foundation Series Project Manager from the Start menu.

Figure 4-3 Project Manager Icon

2. If this is the first time you have run the Project Manager, it will
ask if you wish to create a new project or open an existing project.
Select Open an Existing Project and click OK.

If this is not the first time you have run the Project Manager,
select File → Open Project .

3. In the Directories list, browse to c:\fndtn\active\projects. In the
Projects list, double click on calc to open it.

There are three sections in the Project Manager window: 1) the
Hierarchy Browser, 2) the Project Flowchart, and 3) the Message
Window.

Table 4-2 Directories/Files in the Calc_4k Project Directory

Directory or
File Name

Description

calc.sch Top-level schematic

calc_4ke.edn EDIF netlist file

calc_4ke.ucf User constraints file

xproj\ Project directory for the implementation tools

calc_4ke.bit Configuration bitstream created by BitGen

qstartFinal : Chap5.frm 8 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-8 Xilinx Development System

Hierarchy Browser

The Hierarchy Browser displays the project source files in a
hierarchical tree. This allows you to quickly navigate to any point in
your design.

Initially, only the top-level file(s) are displayed. Next to each filename
is an icon which tells you the type of file (schematic, HDL file, state
machine, library, text file). If a file contains lower levels of hierarchy,
the icon will have a “+” in the lower right corner. You can expand the
tree by clicking on this icon.

You can open a file for editing by simply double clicking on the
filename in the browser.

Project libraries are also listed in the Hierarchy Browser. The Project
Manager automatically configures the appropriate Xilinx libraries
based on the target device family.

Figure 4-4 Hierarchy Browser

Project Flowchart

The Project Flowchart is a graphical view of the design process to
guide you through the steps necessary to create, implement, and
verify a design.

qstartFinal : Chap5.frm 9 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-9

Figure 4-5 Project Flowchart

Message Window

Errors, warnings, and informational messages are displayed in the
Message Window. Errors are displayed in red, warnings in blue, and
informational messages in black.

Figure 4-6 Message Window

Copying the Tutorial Files
You can either work within the calc directory as it has been installed
from the CD, or you can make a copy to work on. Perform the
following steps to make a working copy of the tutorial files:

1. Select File → Copy Project .

2. Under the Destination section, type “mycalc” in the Name field.

3. Click OK.

4. Select File → Open Project .

qstartFinal : Chap5.frm 10 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-10 Xilinx Development System

5. Scroll down in the project list and select mycalc. Click Open.

6. The mycalc project may contain two UCF files. If this is the case,
select the mycalc.ucf file. Select Document → Remove or press
Del to remove the file from the project. Click Yes to confirm the
removal of the file.

Note: This does not delete the file from disk. If you mistakenly
remove a file from a project, select Document → Add to add it back.

Starting the Schematic Editor
To open the Calc schematic sheet in the Schematic Editor, perform the
following steps:

1. Click on the Schematic Editor button in the Project Flowchart, or
double click on CALC.SCH in the Hierarchy Browser.

2. The calc.sch schematic should be automatically opened. If it is
not, select File → Open; select the CALC sheet; click OK.

qstartFinal : Chap5.frm 11 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-11

Figure 4-7 Top-level Schematic for Calc

qstartFinal : Chap5.frm 12 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-12 Xilinx Development System

Executing Commands
There are three ways to execute commands within the Foundation
tools: pulldown menus, hotkeys, and toolbar buttons. This tutorial
will instruct you to use the pulldown menus in most cases.

Hotkeys

The keyboard can be used to execute various commands. These
“hotkeys” are listed next to the commands within the pulldown
menus. Some of the hotkeys are the function keys, some are single
letters, and some require the Ctrl or Alt keys. They are not
customizable.

Toolbar Buttons

There are also two toolbars that are active around the main Schematic
Editor window. Hold your mouse over the buttons to see their
function.

Manipulating the Screen
Under the Display pulldown menu, you will find a series of
commands that modify the viewing area of the Schematic Editor
window.

Targeting an XC9500 Device
The incomplete Calc design is configured for an XC4003E-PC84 part.
If you want to target a demonstration board with this device, skip
this section and go directly to the “Completing the Calc Design”
section. If you are targeting an XC9500 family device, you must
change the project type to reference the XC9500 library instead of the
XC4000E library.

The procedure provided below changes every Xilinx component in
the Calc design from the XC4000E library to the XC9500 library. In the
Xilinx Unified Libraries, components which are common to multiple
device families have identical footprints and pinouts. This allows you
to easily retarget projects to different device families, provided only
library parts common to the two families are used. You must
manually replace any library parts that are not common to both
families. This example shows a situation where this may happen.

qstartFinal : Chap5.frm 13 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-13

Note: Although an XC4000E-to-XC9500 conversion is shown here,
this procedure may be used to retarget from any Xilinx family to any
other Xilinx family.

To retarget the Calc project to the XC9500 family,

1. In the Schematic Editor, select View → Preferences →
General .

2. In the General Settings dialog box, uncheck the Add Libraries
to Project box. Click OK.

Note: Leaving this box checked may result in an invalid netlist.

3. In the Project Manager, click on the Design Info button, located in
the Project Flowchart area. The Design Info dialog box appears.

4. In the Project Info section, select the XC9500 family. If desired,
change the target part and speed grade.

5. Click OK, then click Yes to save the change.

Since the automatic adding of libraries was disabled in step 2, only
components that have equivalents in the target technology are
translated. Those components that do not have an equivalent in the
target technology do not appear in the converted schematics. For
example, an XC4000E RAM component has no equivalent in an
XC9500 device. Therefore, if you retarget an XC4000E project with
RAM components to an XC9500 device, blank spaces are left where
the RAM components were placed on the original schematic. These
portions of your design must be modified by hand. Refer to the
“Modifying the Design for Non-XC4000 Family Devices” section for
more information about how to make these edits.

Completing the Calc Design
If you need to stop the tutorial at any time, be sure to save the work
you have done by first selecting File → Save from the menus.

Design Description
The top-level schematic of the Calc design has been created for you.
Each of the blocks in the schematic, such as CONTROL or ALU, is
linked to a second-level macro that describes its logic.

qstartFinal : Chap5.frm 14 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-14 Xilinx Development System

Additionally, any second-level macro can contain another block that
references a third-level drawing, and so on. This organization is
known as a hierarchical structure.

In this tutorial, you add some symbols to the ALU block schematic to
complete it. First, you create the ANDBLK2 symbol and its
underlying schematic and then add them to the schematic.
Additionally, you add symbols from the Unified Libraries to the ALU
block. After the ALU block is finished, you add the STARTUP block
to the top-level Calc schematic to tie the device’s global reset network
to a device pin. To complete the design entry, you add a CONFIG
block, which lists a set of instructions that dictate how the
implementation tools should process the design.

Calc is a 4-bit processor with a stack. The processor performs
functions between an internal register and either 1) the top of the
stack or 2) data input from external switches. The results of the
various operations are stored in the register and displayed in
hexadecimal on a seven-segment display. The top value in the stack is
displayed in binary on a bar LED. A count of the items in the stack is
displayed as a “gauge” on another bar LED.

The design consists of the following functional blocks:

• ALU

Contains the arithmetic functions of the processor.

• CONTROL

Decodes the input opcodes into control lines for the STACK and
ALU blocks.

• STACK

A four-nibble storage device. It is implemented using
synchronous RAM in an XC4000E device. The RAM4_9K macro,
which uses flip-flops, can be substituted for the RAM16X4S
macro in this block to implement the stack in an XC9500 or other
non-XC4000 family device.

• DEBOUNCE

Debounces the “execute” switch, providing a one-shot output.

qstartFinal : Chap5.frm 15 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-15

• SEG7DEC

Decodes the output of the ALU for display on the 7-segment
decoder.

• CLOCKGEN

Uses an internal oscillator circuit in XC4000 family devices to
generate the clock signal. When targeting an XC9500 device, it is
replaced by an input pad and a clock buffer.

• BARDEC

Shows how many items are on the stack on a “gauge” of four
LEDs.

• SWITCH7

Latches the input coming from the switches on the
demonstration board.

Creating the ANDBLK2 Symbol
1. Select Hierarchy → New Symbol Wizard . The Design Wizard

appears.

The Design Wizard guides you through the process of creating a
macro symbol. It also creates a “skeleton” file based on the pins
defined and the type of macro (schematic, ABEL, VHDL, or state
machine). The State Editor and the HDL Editor (described later in
this tutorial) also use the Design Wizard.

2. Click Next.

3. In the Symbol Name field, type “andblk2”. In the Contents
section, select Schematic.

4. Click Next.

5. Click New to create a new pin. In the Name field, type “a[3:0]”.

Note: You can also type “a” in this field and use the arrow buttons in
the Bus section to select the bus indices.

qstartFinal : Chap5.frm 16 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-16 Xilinx Development System

Figure 4-8 ANDBLK2 Symbol After Adding Pin a[3:0]

6. Repeat step 5 for input pin b[3:0].

7. Repeat step 5 for q[3:0], but this time select Output in the
Direction section.

qstartFinal : Chap5.frm 17 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-17

Figure 4-9 Completed ANDBLK2 Symbol

8. Click Next.

Note: In the Comments section, you can type text that will appear on
the symbol when it is placed. You can also define a longer comment
that only appears in the SC Symbols Window when you are placing
components.

9. Click Next, then click Finish.

The Symbol Wizard automatically creates and opens a schematic
sheet with I/O terminals corresponding to the defined symbol
pins.

Note: If the schematic is not automatically created, the most likely
cause is that Empty was selected in step 4. Repeat steps 1-9, and click
Yes or OK when prompted to overwrite the existing symbol.

qstartFinal : Chap5.frm 18 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-18 Xilinx Development System

Creating the ANDBLK2 Schematic
You have created the symbol for ANDBLK2. The next step is to create
a schematic for this macro. The schematic can then be referenced in a
higher-level schematic by placing the symbol.

Opening the Schematic

1. If the ANDBLK2 schematic is not open, select File → Open. The
Open Sheet dialog box appears.

2. Click Browse, select andblk2.sch from the files list, then click OK.
Zoom in until all of the I/O terminals are clearly visible.

Adding Components

1. From the menu bar, select Mode → Symbols or click on the
Symbols Toolbox button in the vertical toolbar. This opens the SC
Symbols window. The SC Symbols window lists available
components from all of the libraries associated with this project.

2. Select AND2. You can also type “AND2” in the bottom of the SC
Symbols Window. Then move the mouse back into the schematic
window.

3. Move the symbol outline to the location shown in the following
figure and click the left mouse button to place the object.

qstartFinal : Chap5.frm 19 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-19

Figure 4-10 Placing a Component

Placing Additional Components

Place more components of the same type by clicking three times on
the AND2 component (the same component that you have already
placed once) and then moving each component to the desired
location. When completed, close the SC Symbols window to exit the
Symbols mode.

Moving a Component

If you make a mistake when placing a component, you can easily
move the component.

1. Press Esc to exit the Symbols Mode.

2. Select the component to be moved. Make sure that no other
components are selected (clicking on a blank area of the
schematic unselects everything).

3. Click and drag to correctly place the component.

qstartFinal : Chap5.frm 20 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-20 Xilinx Development System

Figure 4-11 Component Placements for ANDBLK2

Adding Buses

Sometimes it is convenient to draw a set of signals as a bus rather
than as several separate wires.

Add buses to the schematic as follows:

1. Select Mode → Draw Buses or click on the Draw Buses button in
the vertical toolbar.

2. The ANDBLK2 schematic has some bus “stubs” connected to I/O
terminals which represent the symbol pins as defined with the
Symbol Wizard. Click on the end of the stub, then move the
mouse to a new position. Click to make a corner in the bus.

3. Terminate the bus by double clicking. This opens a dialog box
where you can define the bus name, width, and the type of I/O
terminal used.

qstartFinal : Chap5.frm 21 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-21

4. Click Bus End (the bus name and I/O terminal were defined with
the Symbol Wizard). Add the three buses shown in the figure
below.

If you make a mistake, press Esc to exit the Draw Buses mode.
Then click on the bus you want to delete so that it is highlighted.
Press Del to remove the bus.

5. After adding the three buses shown below, press Esc or right-
click to exit the Draw Buses mode.

Figure 4-12 ANDBLK2 Schematic with Buses

Adding Bus Taps

Next, nets must be added to attach the appropriate pins on the AND2
components to the buses. Nets that connect a bus to another
component are called bus taps. The Schematic Editor can
automatically name the bus taps as they are drawn.

You may want to enlarge the view of the schematic to make it easier
to draw the nets.

1. Select Mode → Draw Bus Taps or click on the Draw Bus Taps
button in the vertical toolbar.

qstartFinal : Chap5.frm 22 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-22 Xilinx Development System

2. Click on the A[3:0] bus.

The status bar at the bottom of the window displays the message
Expand Bus Tap: A0 . This tells you that the next bus tap drawn
will be labeled A0.

Note: The default is to start at 0 and increment as bus taps are drawn.
You can use the up and down arrow keys to change which bus bit
will be tapped. If the last key you press is the down arrow, the bus
taps will decrement as they are drawn.

3. Click on the top input pin of the top AND2 component to draw
the bus tap. The status bar now reads Expand Bus Tap: A1 .

Figure 4-13 Drawing a Bus Tap

4. Click on the top input pins of the other AND2 components to
place bus taps for A1 through A3.

5. Click on the B[3:0] bus. Now the status bar reads Expand Bus
Tap: B0 .

6. Add the remaining bus taps as shown in the figure below. Press
Esc twice or right-click to exit the Draw Bus Taps mode.

qstartFinal : Chap5.frm 23 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-23

Figure 4-14 Completed ANDBLK2 Schematic

Connectivity

The logical connection between the symbol and its underlying
schematic is done through the use of I/O terminals. The name of each
pin on the symbol must have a corresponding terminal in the
underlying schematic.

The Symbol Wizard automatically places I/O terminals on the
schematic. You can add I/O terminals by clicking on the I/O
Terminal button in the vertical toolbar. When you save a macro, the
Schematic Editor checks the I/O terminals against the corresponding
symbol. If there is a discrepancy, you can let the software update the
symbol automatically, or you can modify the symbol manually.

qstartFinal : Chap5.frm 24 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-24 Xilinx Development System

Saving the Schematic

The schematic is now complete.

1. Save the schematic by selecting File → Save or clicking on the
Save icon in the horizontal toolbar.

All errors, warnings, and informational messages are displayed
in the Message Window in the Project Manager. If any errors are
issued, resolve them and save the schematic again.

2. Select File → Close .

Completing the ALU Schematic
So far you have created the ANDBLK2 macro. The next step is to
complete the ALU schematic.

1. If the CALC schematic is not open, select File → Open, select
the CALC sheet, and click OK.

2. Select Hierarchy → Hierarchy Push or click on the Hierarchy
Push/Pop button in the vertical toolbar.

3. Double click on the ALU symbol. This will push into the
schematic below the symbol.

4. Press Esc or right-click to exit the Hierarchy Push/Pop mode.

Placing User-created Components

The ANDBLK2 symbol can now be placed on the schematic as shown
in the figure below. Place the symbol using the same procedure you
used to place the AND2 gate when you created the ANDBLK2
schematic.

1. Use the Display menu commands to zoom into the empty area
near the center of the schematic, below the ORBLK2 symbol.

2. Click on the Symbols Toolbox button.

3. Scroll down and select the ANDBLK2 component from the SC
Symbols window and place it in the empty area.

qstartFinal : Chap5.frm 25 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-25

4. Press Esc to exit the Symbols mode.

Notice that the SC Symbols window remains open. This allows
you to quickly place additional symbols without having to click
on the Symbols Toolbox icon again.

Figure 4-15 Adding ANDBLK2 to ALU Schematic

qstartFinal : Chap5.frm 26 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-26 Xilinx Development System

Placing Library Components

The next step is to add the FD4RE and AND5B2 components to the
ALU schematic. Both of these components are available in the Xilinx
Unified Libraries. The FD4RE component consists of four flip-flops
with clock enables. The AND5B2 component is a five-input AND
gate with two inputs inverted (“bubbled,” hence the “B”).

1. Zoom into the open area in the lower right corner.

2. Select the FD4RE component by using the scroll bar or by typing
the name in the SC Symbols window.

3. Place the component in the lower right corner of the schematic,
according to the figure below.

4. Repeat steps 2 and 3 to place an AND5B2 component, as shown
in the figure below.

5. Close the SC Symbols window.

Figure 4-16 Adding FD4RE and AND5B2 to ALU Schematic

Adding Nets, Buses, and Labels

Next complete the addition of the FD4RE and AND5B2 symbols by
adding buses, bus taps, nets, and labels as follows:

qstartFinal : Chap5.frm 27 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-27

1. Add the necessary buses, bus taps, and nets to complete
connections for FD4RE and AND5B2 as you did for the
ANDBLK2 schematic. The figure below displays the labeled nets
and buses for FD4RE and AND5B2. To add a net, select Mode →
Draw Wires or click on the Draw Wires button in the vertical
toolbar. Draw nets in the same way as you draw buses (double
click to create a hanging end).

2. To add labels to nets, double click on the net. Type the label in the
Net Name field. The nets should be labeled as shown.

3. When you end a bus by double clicking (to create a hanging
stub), a dialog box appears. Enter the label in the Bus Name field,
and in the I/O Marker list box, select None.

Figure 4-17 Nets, Buses and Labels for FD4RE and AND5B2

Next, complete the addition of ANDBLK2 to the ALU schematic.

4. Add the buses shown in the figure below to connect ANDBLK2.
Add a label to the output bus in the same way that net labels are

qstartFinal : Chap5.frm 28 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-28 Xilinx Development System

added. The figure below displays the labeled nets and buses for
ANDBLK2.

Note: You may want to reposition the ANDBLK2 symbol to make the
buses neater. If you move a component, any nets or buses connected
to it will move as well. This indicates that the connections have been
made successfully.

Figure 4-18 Bus and Label for ANDBLK2

Changing Symbol References

It is important to add references to symbols. Error and warning
messages often specify symbol references, and references also appear
in simulation netlists. Also, net names at lower levels of hierarchy are
specified using the following format:

symbol_reference1/symbol_reference2/net_label

In the ALU schematic, references have already been added to the
MUXBLK2, XORBLK2, ORBLK2, and MUXBLK5 blocks.

To add a reference to the ANDBLK2 component, follow these steps.

1. Double click on the ANDBLK2 symbol. The Symbol Properties
dialog box appears.

qstartFinal : Chap5.frm 29 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-29

2. In the Reference field, type ANDBLK2; click Apply. Click OK.

Note: Foundation requires that all references end with a number.

Figure 4-19 Adding Symbol References to ALU Schematic

3. Give the FD4RE component the reference ALUVAL1.

The completed ALU schematic is shown in the following figure.

qstartFinal : Chap5.frm 30 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-30 Xilinx Development System

Figure 4-20 Completed ALU Schematic

Saving the ALU Schematic

Save the schematic. If errors occur, resolve them and then save the
schematic again.

Exploring Xilinx Library Elements
The Xilinx libraries contain three types of elements. Primitives are
basic logic elements, such as the AND2 gates that you previously
placed in ANDBLK2. Soft macros are schematics created by
combining primitives and other soft macros. Relationally Placed
Macros (RPMs) are soft macros that contain placement information.
RPMs are currently only available in the XC4000 family libraries.

All three types of library elements are placed on a schematic in
exactly the same way.

qstartFinal : Chap5.frm 31 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-31

Viewing a Xilinx Soft Macro

Soft macro schematics are similar to schematics you create for your
own projects.

Open the schematic underneath the FD4RE symbol as follows:

1. Click on the Hierarchy Push/Pop button.

2. Double click on the FD4RE symbol.

Figure 4-21 FD4RE Schematic from XC4000E Library

3. Select Hierarchy → Hierarchy Pop or double click on an
empty space in the schematic to return to the ALU schematic.

qstartFinal : Chap5.frm 32 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-32 Xilinx Development System

Viewing a Xilinx RPM (XC4000 Family Only)

Note: The following description of RPMs contains detailed
information on the XC4000E architecture. Refer to The Programmable
Logic Data Book for more information on the XC4000E CLB structure
and fast carry logic.

If your project is not targeted for an XC4000E device, read this
section, but do not perform any of the commands. Continue the
tutorial with the next section, the “Returning to the Calc Schematic”
section.

The ALU contains a component from the Xilinx library, ADSU4,
which is a four-bit wide adder/subtracter. If your project is targeted
for an XC4000E device, this schematic is implemented as a
Relationally Placed Macro (RPM). If your project is targeted for an
XC9500 device, the ADSU4 is implemented without this placement
information.

RPM schematics are similar to schematics you create for your own
projects. You can load one of these schematics and use the File →
Save As command to save it under another name. You can then edit
this new schematic to customize it to your needs.

Elements placed in the ADSU4 RPM schematic include CY4
components and FMAPs. The CY4 symbol specifies fast carry logic
functionality from the schematic. Fast carry logic is a hardware
feature in XC4000 family parts that allows very fast arithmetic
functions.

The FMAPs map logic functions into function generators within the
configurable logic blocks (CLBs), which are arranged in a rectangular
grid in the die. Both the CY4 symbols and FMAP symbols have
RLOC parameters on them. RLOCs assign relative CLB locations to
the components. You can use carry symbols as well as FMAPs and
other mapping components to create RPMs. However, knowledge of
them is not necessary to use RPMs. Only expert users should create
new macros containing carry logic. For a description of these
components, see the “Attributes, Constraints, and Carry Logic”
chapter in the DynaText online Libraries Guide.

qstartFinal : Chap5.frm 33 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-33

Push into the ADSU4 schematic as follows:

1. Click on the Hierarchy Push/Pop button.

2. Double click on the ADSU4 symbol. Press Esc or right-click to
exit the Hierarchy Push/Pop mode.

3. Zoom into the upper portion of the schematic as shown in the
following figure.

Figure 4-22 Upper Portion of the ADSU4 RPM Schematic

4. Double click on the FMAP symbol in the upper right corner. The
Symbol Properties dialog box appears.

The RLOC parameter is set to R0C0.G, indicating that this
function is mapped to the G function generator of the upper-
leftmost (row zero, column zero) CLB in the RPM. RPM origins
are in the upper left corner.

qstartFinal : Chap5.frm 34 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-34 Xilinx Development System

Figure 4-23 RLOC Parameter on FMAP Component

5. Click OK to return to the ADSU4 schematic window.

6. Use the scroll bars on the sides of the window to pan around the
schematic and look at the RLOCs.

The logic is mapped to three CLBs, designated as R0C0, R1C0,
and R2C0. Therefore, this RPM uses three CLBs that are arranged
in a column. The number of CLBs used and the shape of each
RPM is documented in the online Libraries Guide. Note that these
locations are relative, not absolute. Regardless of the RPMs
absolute location inside the target device, the logic associated
with the FMAP with the location R0C0 is always at the top, R1C1
is in the CLB directly below, and so on.

7. Select Hierarchy → Hierarchy Pop to return to the ALU
schematic.

Returning to the Calc Schematic
1. Select Hierarchy → Hierarchy Pop to return to the top level

Calc schematic.

2. Press Esc or right-click to exit the Hierarchy Push/Pop mode.

qstartFinal : Chap5.frm 35 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-35

Using the XC4000E Oscillator
If your project is not targeted for the XC4000 family, read this section,
but do not perform any of the commands.

The XC4000 family devices contain an on-chip oscillator. The
frequency of this oscillator is not precise, but is suitable for designs
that do not need a highly accurate clock, such as Calc.

Figure 4-24 CLOCKGEN Schematic

The CLOCKGEN schematic contains an XC4000E library part, OSC4.
This symbol represents the on-chip oscillator that generates nominal
clock frequencies of 8 MHz, 500 kHz, 16 kHz, 490 Hz, and 15 Hz. Calc
uses the 15 Hz output from this component when targeted for
XC4000 family devices. The clock output from OSC4 is buffered
through a BUFG global clock buffer.

XC4000E devices have eight on-chip clock buffers: one BUFGP
(primary global buffer) and one BUFGS (secondary global buffer) in
each corner of the device. Although it is possible to use them for
other purposes, BUFGPs are best used to route externally-generated
clock signals. BUFGSs have more flexibility and can be used to route
any large fan-out net, even if it is internally sourced. A BUFG symbol
can represent either type of buffer and allows the implementation
software to choose which type of global buffer is best. Using a BUFG
also facilitates retargeting to other Xilinx device families, since it can
represent any type of global buffer in any family. The BUFG in the
Calc schematic is substituted for a BUFGS during implementation,
because the clock is generated internally by the on-chip oscillator.

qstartFinal : Chap5.frm 36 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-36 Xilinx Development System

See the online Libraries Guide and The Programmable Logic Data Book
for more information on global clock buffers for Xilinx devices.

Controlling Implementation from the Schematic
The following subsections explain how to control design
implementation within your schematic.

Assigning Pin Locations (XC4000 Family Only)
Xilinx recommends that you let the automatic placement and routing
program, PAR, define the pinout of your design. Pre-assigning
locations to the pins can sometimes degrade the performance of the
place-and-route tools. However, it is usually necessary, at some point,
to lock the pinout of a design so that it can be integrated into a PCB
(printed circuit board).

The initial pinout should be defined by running the place-and-route
tools without pin assignments, then locking down the pin placement
so that it reflects the locations chosen by the tools. The pins in the
Calc design must be assigned locations so that it can function in a
Xilinx demonstration board. Because the design is simple and timing
is not critical, these pin assignments will not adversely affect the
ability of PAR to place-and-route the design.

Pin locations are specified by attaching a LOC parameter to a pad
component. Assign a LOC parameter to the pad associated with the
STACKLED0 signal on the Calc schematic as follows:

1. Double click on the OPAD connected to the net labeled
STACKLED0. The Symbol Properties dialog box appears.

2. In the Parameters section, add a new parameter with these
values:

Name: LOC

Description: P60

qstartFinal : Chap5.frm 37 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-37

Figure 4-25 Assigning a Location to a Pad

3. Click Add. The parameter appears in the list box.

4. Notice the single black dot to the left of the parameter. This
indicates that only the Description field will be displayed on the
schematic. Double click on the parameter until two dots are
shown. This indicates that both the Name and Description fields
will be displayed on the schematic.

5. Click Apply. You will see the parameter, next to the OPAD.

6. Click OK to close the window.

The other pin locations for the Calc design have been placed in a data
file known as a constraint file.

Valid pin locations vary depending on the package. PLCC, HQFP,
and other “numeric-only” package pins are designated with a P
followed by the pin number, such as P17. PGA and other grid-array
package pins use alphanumerics such as A12. The Programmable Logic
Data Book lists the pinouts of each FPGA and CPLD for each package
that Xilinx supplies.

qstartFinal : Chap5.frm 38 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-38 Xilinx Development System

Controlling Slew Rate
Output slew rate can be modified by assigning a FAST parameter
(constraint) to an output pad, as shown in the following figure. The
default slew rate is SLOW. “Fast” pads have different timing
specifications and draw more current than “slow” (slew-rate-limited)
pads. Slow pads are used by default. See The Programmable Logic Data
Book for timing specifications for the various slew rate modes.

Add the FAST parameter to the STACKLED[3:0] pads as follows:

1. Double click on the OPAD connected to the net labeled
STACKLED0.

2. In the Parameters section, add a new parameter with these
values:

Name: FAST

Leave the Description field blank.

3. Click Add. Double click on the parameter in the list until two
black dots are displayed.

Figure 4-26 Designating a FAST Pad

qstartFinal : Chap5.frm 39 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-39

4. Click OK. You will see the parameter next to the OPAD.

The parameter may be displayed on top of the other OPADs. To
move a symbol’s parameters, double click on the symbol. In the
parameter Parameters section, click Move. Use the mouse to
position the parameters and click the left mouse button to place
them.

5. Repeat steps 1 through 4 for the remaining OPADs connected to
the STACKLED nets.

Figure 4-27 LOC and FAST Parameters on STACKLED Pads

Using I/O Flip-flops
Xilinx XC4000 family devices have two flip-flops in each I/O block
(IOB). Each pad has an associated input flip-flop and output flip-flop.
You can also configure input flip-flops as level-sensitive latches and
output flip-flops can be 3-stated. You access these elements using the
library components IFD, ILD, OFD, and OFDT, as well as other
higher-level macros that contain these components. For more
information on these library elements, consult the online Libraries
Guide.

IOB flip-flops can be used to free up internal CLB resources. In this
design, IOB flip-flops are used to register the switch inputs. As
shown in the figure below, the SWITCH7 macro attached to the input
bus SW[7:0] in the lower left area of the schematic has an underlying
schematic that consists of seven IFDs.

qstartFinal : Chap5.frm 40 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-40 Xilinx Development System

Figure 4-28 SWITCH7 Schematic Using Input Flip-Flops

Saving the Calc Schematic
Before continuing, save the changes made to Calc.

Modifying the Design for Non-XC4000 Family
Devices

At this point in the tutorial, you have created or edited the following
schematic files: CALC, ALU, and ANDBLK2. The design is currently
suitable for use only in an XC4000 family device. This is because
these devices have several features not found in other Xilinx device
families. Two of these features are the on-chip memory built into the
XC4000 CLB and the on-chip oscillator.

qstartFinal : Chap5.frm 41 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-41

RAM Stack Implementation
The RAM stack is implemented using a 16x4 RAM component from
the XC4000E library, which occupies two CLBs.

Although the stack is only 4x4, memory components are only
available in 16x1 or 32x1 increments, so only one fourth of the
memory addresses are used. A stack four times as deep could be
implemented in the same two CLBs. An equivalent flip-flop
implementation of the stack would require 16 flip-flops or 8 CLBs.

A device-independent stack has been implemented by replacing the
RAM16X4S with a register file that emulates a synchronous RAM
with a set of flip-flops and multiplexers. This implementation can be
used for any Xilinx device.

Note: If you are targeting an XC4000 family device, skip this section.

Make the stack a device-independent schematic as follows:

1. Push into the STACK symbol.

If you turned off the Add Libraries to Project option, a message
appears saying:

There are missing symbol in [STACK] schematic.

ATTENTION!

The automatic adding of libraries to the project is
disabled.

Do you want to continue loading?

2. Click Yes to load the schematic. The empty space in the upper
right corner is where the RAM component used to be.

3. Click on the Symbols Toolbox button and select the RAM4_9K
component.

4. Place the RAM4_9K symbol in the empty space where the
RAM16X4S symbol was. You may need to adjust the symbol so
that the hanging wires meet up with the symbol pins.

5. Close the SC Symbols window.

6. Select the RAM4_9K symbol. Place the symbol.

qstartFinal : Chap5.frm 42 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-42 Xilinx Development System

7. Click on the Connect Symbol button in the horizontal toolbar.
This connects the hanging wires to the symbol pins. Verify that
the connections were made by clicking and dragging the
RAM4_9K symbol. All of the connected nets will move with the
symbol. If any nets are not connected, select the end of the
hanging wire and drag it over the appropriate symbol pin.

8. The A3 pin on the RAM16X4S does not exist on the RAM4_9K
symbol. Although the detached GND symbol and net are
trimmed during the implementation process, you can clean up
the schematic by deleting them. Select the GND symbol, then
press Del to delete the component. The net connected to the GND
will be deleted as well.

9. Save the updated STACK schematic. You may be prompted with
the message:

Schematic [STACK] has been automatically corrected!

Do you wish to continue updating this file?

10. Click Yes to save the schematic.

Removing the XC4000E Oscillator
If you are targeting the Calc design to an XC9500 or other device
outside the XC4000 family, you must also remove the CLOCKGEN
circuitry, which includes the OSC4 component, and replace it with an
external source.

1. Select the CLOCKGEN component in calc.sch, then click on the
Disconnect Symbol button in the horizontal toolbar.

2. Press Del to delete the component.

3. Add components, nets, and labels as shown below.

4. Save the Calc schematic.

qstartFinal : Chap5.frm 43 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-43

Since the CLK signal is now sourced by a pad, it must be
generated externally.

Figure 4-29 Device-Independent Clock Source

qstartFinal : Chap5.frm 44 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-44 Xilinx Development System

Using LogiBLOX (Optional)
LogiBLOX is a tool that allows you to quickly synthesize modules for
common functions such as adders, counters, and multiplexers. It
allows you to create components of any bus width (e.g., a 17-bit
adder) and automatically uses the best architectural resources for a
particular target device. In this section, the ADSU4 component in the
ALU schematic is replaced with a LogiBLOX adder.

Note: LogiBLOX is only supported in Foundation Standard and
Standard-VHDL packages and does not support CPLDs.

To replace the ADSU4 symbol with a LogiBLOX module,

1. Push into the ALU symbol and select the ADSU4 component.

2. Click on the Disconnect Symbol button in the horizontal toolbar.

3. Press Del to delete the component.

4. In the Project Manager, select Tools → LogiBLOX or from the
Schematic Editor, select Options → LogiBLOX . The LogiBLOX
Module Selector dialog box appears.

5. In the Module Name field, type addsub4. This will be the
component name for the new LogiBLOX module.

6. In the Module Type field, use the pulldown tab to select Adders/
Subtracters. The symbol will be updated to show this type of
component. The Bus Width field should show 4.

7. In the Operation field, use the pulldown tab to select Add/
Subtract.

8. Single click with the left mouse button to place a check mark in
the Carry Input, Carry Output, and Sum boxes. Deselect any
other checkboxes. The LogiBLOX Module Selector dialog box
should resemble the following figure.

qstartFinal : Chap5.frm 45 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-45

Figure 4-30 LogiBLOX Module Selector Dialog Box

9. Click on OK. A symbol and an EDIF model will be created for
this LogiBLOX component. This will take a few moments.

10. After the LogiBLOX symbol has been created, place it in the
space left by the ADSU4. Do not worry about lining up pins with
nets right now.

11. Complete the schematic by connecting the existing nets and
buses. To move a net or bus, click and drag the end of the net or
bus.

The locations of some pins are different with the LogiBLOX
component, as well as the fact that data inputs and output are
now bus-wide. Your schematic should resemble the following
figure.

qstartFinal : Chap5.frm 46 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-46 Xilinx Development System

Figure 4-31 Completed ALU Schematic with LogiBLOX

12. Save the ALU schematic.

Using the State Editor (Optional)
Note: To use the State Editor, you must have either XABEL or
X-VHDL installed.

The State Editor is a tool that converts a graphical description of a
finite state machine into a behavioral description in either ABEL or
VHDL. In this section, the STATMACH schematic macro in the
STACK schematic is replaced with a state machine macro.

Creating a State Machine Macro
1. Click on the State Editor button in the Project Flowchart. A dialog

box appears.

2. Click OK to use the Design Wizard.

qstartFinal : Chap5.frm 47 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-47

3. Click Next.

4. Make sure that VHDL is selected, then click Next.

5. Specify a file name of STATEMAC, then click Next.

6. Add the following input and output ports. This procedure is
identical to that used to create the ANDBLK2 symbol. When all
ports have been added, click Next.

• Inputs: STACKEN, PUSH, FULL, EMPTY, CLK, RESET

• Outputs: UPDOWN, WRITEN, ADDREN

7. Make sure that One state machine is selected, then click Finish.

The Design Wizard defines the inputs and outputs of the state
machine, based on the information entered in step 6. It also
determines that CLK is the clock input, based on the port name. The
default name of the state register is Sreg0.

Defining States
1. Select FSM→ State or click on the State button in the vertical

toolbar.

Place the state bubble as shown below. The default state name is
S1.

qstartFinal : Chap5.frm 48 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-48 Xilinx Development System

Figure 4-32 Placing a State

2. Click on the state name to select it, then click again to edit the
text.

3. Type WAITPUSH and press Return. Now the state name extends
outside the state bubble.

4. Click on the state bubble to select it. Click and drag the small
squares to change the size and shape of the bubble. When the
state bubble is large enough, click and drag the state name to
center it in the bubble.

5. Repeat steps 1-4 to create a second state named HANDLEPUSH.

These are the only states needed for this state machine.

To ensure that the state machine powers up in the correct state,
you must define an asynchronous reset condition. This reset will
not be connected in the schematic, but its presence directs the
VHDL compiler to define the state encoding so that the machine
will power up in the correct state.

qstartFinal : Chap5.frm 49 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-49

Figure 4-33 WAITPUSH and HANDLEPUSH States

6. Select FSM→ Reset or click on the Reset button in the vertical
toolbar.

7. Place the reset symbol as shown in the figure. Click inside the
WAITPUSH state bubble to define this as the reset state.

8. To define the reset as asynchronous, right-click on the reset
symbol and select Asynchronous.

qstartFinal : Chap5.frm 50 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-50 Xilinx Development System

Figure 4-34 State Machine with Reset Defined

Defining Transitions, Conditions and Actions
Now it is time to define transitions, conditions, and actions.

Transitions define the movement from one state to another. They are
drawn as arrows between state bubbles.

If there is more than one transition leaving a state, you must associate
a condition with each transition. A condition is a Boolean expression.
When the condition is true, the machine moves along the transition
arrow.

Actions are HDL statements that are used to make assignments to
output ports or internal signals. Actions can be executed at several
points in the state diagram. The most commonly used actions are
state actions and transition actions. State actions are executed when
the machine is in the associated state. Transition actions are executed
when the machine goes through the associated transition.

Note: Conditions and actions must be defined using the syntax of the
target HDL (ABEL or VHDL).

1. Select FSM→ Transition or click on the Transition button in
the vertical toolbar.

qstartFinal : Chap5.frm 51 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-51

2. Click inside the WAITPUSH state bubble to start the transition.
To create a bend in the arrow, move down and to the left and
click. Click inside the HANDLEPUSH state bubble to complete
the transition.

Figure 4-35 Drawing a Transition

3. Select FSM→ Condition or click on the Condition button in the
vertical toolbar.

4. Click on the transition arrow. A text box appears.

5. Enter the following condition.

STACKEN=’1’ and PUSH=’1’ and FULL=’0’

6. Select FSM→ Action → Transition or click on the Transition
Action button in the vertical toolbar.

qstartFinal : Chap5.frm 52 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-52 Xilinx Development System

7. Click on the transition arrow. A text box appears.

8. Enter the following actions. Click anywhere outside the text box
to end the entry.

ADDREN <= ‘1’;
UPDOWN <= ‘1’;
WRITEN <= ‘1’;

9. Click and drag the condition and action text boxes to the posi-
tions shown below.

Figure 4-36 Adding Conditions and Actions

10. Add the remaining transitions, conditions, and actions as shown
below.

qstartFinal : Chap5.frm 53 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-53

Figure 4-37 Completed State Diagram

Note: The transition from the HANDLEPUSH state to the
WAITPUSH state does not require a condition, since it is the only
transition leaving that state.

11. Select File → Save to save the state diagram.

Generating and Compiling VHDL Code
1. Select Project → Create Macro .

The state diagram is converted into VHDL code, which is
compiled, and a symbol is generated. A dialog box will pop up to
inform you that the symbol has been successfully created.

2. Click OK to close the dialog box.

3. Select File → Exit to close the State Editor.

qstartFinal : Chap5.frm 54 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-54 Xilinx Development System

Placing the Macro
The final step is to replace the schematic-based component with the
state machine macro.

1. Open the Calc schematic and push into the STACK symbol.

2. Select the STATMACH component and click on the Disconnect
Symbol button in the horizontal toolbar.

3. Press Del to delete the component.

4. Place the STATEMAC symbol in the space left by the
STATMACH. The pins may not line up with the hanging nets.

5. Drag the hanging nets to connect them to the appropriate symbol
pins.

Using the HDL Editor and XVHDL (Optional)
Note: XVHDL is only supported in Foundation Base-VHDL,
Standard-VHDL, and Foundation Express packages.

The HDL Editor facilitates the creation of text-based macros by color-
coding the source file, providing a syntax checker, and supplying
language templates for common constructs. In this section, the
SEG7DEC schematic macro is replaced with a VHDL macro.

Creating a VHDL Macro
1. Click on the HDL Entry button in the Project Flowchart. A dialog

box appears.

2. Click OK to use the Design Wizard.

3. Click Next.

4. Make sure that VHDL is selected, then click Next.

qstartFinal : Chap5.frm 55 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-55

5. Specify a file name of SEG7DECV, then click Next.

6. Add the following input and output ports. This procedure is
identical to that used to create the ANDBLK2 symbol. When all
ports have been added, click Finish.

• Inputs: Q[3:0]

• Outputs: A, B, C, D, E, F, G

The Design Wizard creates a “skeleton” VHDL file, based on the
information entered in step 6. VHDL keywords are displayed in red,
and comments are displayed in green. The “skeleton” SEG7DECV
VHDL code created by the Design Wizard is shown below:

library IEEE;
use IEEE.std_logic_1164.all;

entity seg7decv is
port (

q: in STD_LOGIC_VECTOR (3 downto 0);
a: out STD_LOGIC;
b: out STD_LOGIC;
c: out STD_LOGIC;
d: out STD_LOGIC;
e: out STD_LOGIC;
f: out STD_LOGIC;
g: out STD_LOGIC

);
end seg7decv;

architecture seg7decv_arch of seg7decv is
begin

-- <<enter your statements here>>

end SEG7DECV_arch;

qstartFinal : Chap5.frm 56 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-56 Xilinx Development System

Creating and Editing VHDL Code
1. Place the cursor at the beginning of the line reading:

-- <<enter your statements here>>

2. From the menus, select Tools → Language Assistant . The
Language Assistant window appears. The Language Assistant
contains two types of templates.

• Language Templates—samples of common VHDL
constructs, such as IF statements.

• Synthesis Templates—samples of commonly used logic
functions, such as counters.

3. Click on the “+” next to Synthesis templates to view the list of
available templates.

4. Select the HEX2LED Converter. The template is displayed in the
right half of the window.

Figure 4-38 Language Assistant Window

5. Click Use to insert the template into your VHDL code.

qstartFinal : Chap5.frm 57 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-57

The template takes a 4-bit vector called HEX and outputs a 7-bit
vector called LED. These names do not match the port names
used for the SEG7DECV macro.

6. Make the necessary edits to complete the SEG7DECV macro. The
completed VHDL source code is shown below:

library IEEE;
use IEEE.std_logic_1164.all;

entity seg7decv is
port (

q: in STD_LOGIC_VECTOR (3 downto 0);
a: out STD_LOGIC;
b: out STD_LOGIC;
c: out STD_LOGIC;
d: out STD_LOGIC;
e: out STD_LOGIC;
f: out STD_LOGIC;
g: out STD_LOGIC

);
end seg7decv;

architecture seg7decv_arch of seg7decv is
signal led: std_logic_vector (6 downto 0);

begin

--HEX-to-seven-segment decoder
-- HEX: in STD_LOGIC_VECTOR (3 downto 0);
-- LED: out STD_LOGIC_VECTOR (6 downto 0);
--
-- segment encoding
-- 0
-- ---
-- 5 | | 1
-- --- <- 6
-- 4 | | 2
-- ---
-- 3

with q select
LED<= “1111001” when “0001”, --1

“0100100” when “0010”, --2
“0110000” when “0011”, --3
“0011001” when “0100”, --4
“0010010” when “0101”, --5
“0000010” when “0110”, --6

qstartFinal : Chap5.frm 58 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-58 Xilinx Development System

“1111000” when “0111”, --7
“0000000” when “1000”, --8
“0010000” when “1001”, --9
“0001000” when “1010”, --A
“0000011” when “1011”, --B
“1000110” when “1100”, --C
“0100001” when “1101”, --D
“0000110” when “1110”, --E
“0001110” when “1111”, --F
“1000000” when others; --0

-- Assign LED[6:0] to outputs A through G

A <= LED(0);
B <= LED(1);
C <= LED(2);
D <= LED(3);
E <= LED(4);
F <= LED(5);
G <= LED(6);

end seg7decv_arch;

7. Select File → Save to save the file.

Compiling with XVHDL
1. Select Project → Create Macro .

The VHDL code is compiled, and a symbol is generated. A dialog
box will pop up to inform you that the symbol has been
successfully created.

2. Click OK to close the dialog box.

3. Select File → Exit to close the HDL Editor.

Placing the Macro
The final step is to replace the schematic-based component with the
VHDL macro.

1. Open the Calc schematic and select the SEG7DEC component.

2. Click on the Disconnect Symbol button in the horizontal toolbar.

qstartFinal : Chap5.frm 59 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-59

3. Press Del to delete the component.

4. Place the SEG7DECV symbol in the space left by the SEG7DEC.
The pins may not line up with the hanging nets.

5. Drag the hanging nets to connect them to the appropriate symbol
pins.

Other Special Components (Optional)
This section describes some optional components.

The STARTUP Block (XC4000 Family Only)
The STARTUP block allows some aspects of the design to be
controlled globally. In this section, STARTUP is used to connect an
external signal to the global set/reset net which is built into the
XC4000E architecture. This global net connects to all flip-flops in the
device and sets or resets them asynchronously (set or reset is
determined at the flip-flop level). An advantage to using the global
net is that no routing resources are used. For more information on
STARTUP, see the online Libraries Guide.

The STARTUP symbol is used here to implement a system-wide reset
signal called NOTGBLRESET. This signal is active-Low; therefore,
when NOTGBLRESET is low, the Calc circuitry is reset.

1. In the Calc schematic, add the components, nets, and labels as
shown in the figure. An inverter is added to the signal path
because the GSR pin on STARTUP is active-High. Also, since GSR
is implicitly connected to all reset logic throughout the device,
GBLRESET is connected only to the GSR pin on the STARTUP
symbol and is not explicitly connected to any flip-flops in the
design.

qstartFinal : Chap5.frm 60 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-60 Xilinx Development System

Figure 4-39 Adding the STARTUP Symbol

2. Save the Calc schematic.

The CONFIG Symbol
The CONFIG symbol can be used to document implementation
options on the schematic. In this section, the CONFIG symbol will be
used to specify a fast configuration rate (FAST is an option to the
BitGen program).

1. Place the CONFIG symbol in the lower right corner of the Calc
schematic.

2. Double click on the CONFIG symbol to add parameters.

3. Under the Parameters section, enter the Name as “ConfigRate”
and the Description as “FAST” and click ADD.

4. Double click on the parameter until two dots are shown, then
click Apply.

5. Click MOVE to adjust the placement of the parameter on the
schematic. Place the parameter text within the CONFIG symbol
as shown below.

qstartFinal : Chap5.frm 61 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-61

Figure 4-40 Adding the CONFIG Symbol

6. Save the Calc schematic.

qstartFinal : Chap5.frm 62 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-62 Xilinx Development System

Using a Constraints File
A constraints file supplies constraints information in a textual form.
Sometimes this method is more efficient than putting constraints on a
schematic. An sample constraints file is shown below; this is the user
constraints file, calc.ucf, which is supplied with this tutorial. The
constraints file syntax is the same for all device families.

The place-and-route software must be instructed to read and apply
the .ucf file when the design is read into the Design Manager. This
procedure is detailed in the “Using Constraint Files” section of the
“Foundation Overview” chapter.

inst SWITCH<7> LOC=p19;
inst SWITCH<6> LOC=p20;
inst SWITCH<5> LOC=p23;
inst SWITCH<4> LOC=p24;
inst SWITCH<3> LOC=p25;
inst SWITCH<2> LOC=p26;
inst SWITCH<1> LOC=p27;
inst SWITCH<0> LOC=p28;

inst A LOC=p49;
inst B LOC=p48;
inst C LOC=p47;
inst D LOC=p46;
inst E LOC=p45;
inst F LOC=p50;
inst G LOC=p51;
inst OFL LOC=p41;

inst GAUGE<3> LOC=p61;
inst GAUGE<2> LOC=p62;
inst GAUGE<1> LOC=p65;
inst GAUGE<0> LOC=p66;

inst STACKLED<3> LOC=p57;
inst STACKLED<2> LOC=p58;
inst STACKLED<1> LOC=p59;
inst STACKLED<0> LOC=p60;

inst NOTGBLRESET LOC=p56;

qstartFinal : Chap5.frm 63 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-63

Functional Simulation
Functional simulation is performed before design implementation to
verify that the logic that you have created is correct.

Starting the Logic Simulator
1. Click on the SIM Funct button in the Project Flowchart. You will

be prompted to update the schematic netlist, because you
modified the schematic but did not write out a netlist.

2. Click Yes. A functional simulation netlist is created and loaded
into the Logic Simulator.

The Logic Simulator opens a Waveform Viewer window with
Simulator toolbar.

Waveform Viewer

All simulation information is displayed in this window:

• signals that are being monitored

• stimulators applied to signals

• signal states at the selected point in time

• waveforms of signals over time

The Waveform Viewer also contains a toolbar.

qstartFinal : Chap5.frm 64 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-64 Xilinx Development System

Figure 4-41 Waveform Viewer

Simulator Toolbar

This toolbar contains buttons for common simulation operations,
such as running or restarting the simulation.

Figure 4-42 Simulator Toolbar

Selecting Nets to Probe
You can select the signals that you would like to monitor during
simulation either through the Logic Simulator interface or from the
Schematic Editor.

Adding Probes From the Logic Simulator

1. Select Signal → Add Signals or click on the Select Component
button in the Waveform Viewer. The Component Selection
window appears.

qstartFinal : Chap5.frm 65 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-65

This window is divided into three panes. The leftmost pane lists
buses and nets on the selected level of hierarchy. The center pane
lists the schematic components on the selected level of hierarchy.
The rightmost pane displays the design hierarchy. The top level
(Root) is selected by default.

Figure 4-43 Component Selection Window

qstartFinal : Chap5.frm 66 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-66 Xilinx Development System

2. In the leftmost pane, double click on CLK. A red check mark
appears next to the signal name to indicate that the signal is being
displayed in the Waveform Viewer.

3. Double click on the following buses and nets to add them to the
Waveform Viewer:

• (ALUVAL3, ALUVAL0)

• (STACKOUT3, STACKOUT0)

• (SWITCH7, SWITCH0)

• CLK

• PUSH

• STACKEN

4. Click Close to close the Component Selection window.

Adding Probes From the Schematic Editor

1. To switch to the Schematic Editor, select Tools → Schematic
Capture or click on the SC button in the horizontal toolbar The
Schematic Editor becomes the active window. If the Schematic
Editor is not running, it is opened and calc.sch is loaded.

2. Select Mode → Testpoints . This brings up the SC Probes
toolbox. The Probe tool is selected by default.

qstartFinal : Chap5.frm 67 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-67

Figure 4-44 SC Probes Toolbox

3. Find the EXEC net (output of the DEBOUNCE component). Click
on the net label to add a probe to the net.

The probe appears as a small gray box next to the net label. There
are also probes on the buses and nets that were selected from the
Logic Simulator. When the simulation is running, the gray boxes
will change color to reflect the current state of the net. Probes on
buses do not change color; the bus value is displayed (in
hexadecimal) inside the gray box.

Figure 4-45 Calc Schematic With Simulation Probes

qstartFinal : Chap5.frm 68 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-68 Xilinx Development System

4. To switch back to the Logic Simulator, select File → Go To
Simulator or click on the Simulator button in the horizontal
toolbar or the SC Probes toolbox. The probe you placed from the
Schematic Editor is now listed in the Waveform Viewer.

Manipulating Buses
The SWITCH[7:0] bus is more conveniently viewed as SWITCH[6:0]
(the opcode bits) and SWITCH7 (the execute switch).

1. Select the SWITCH7 bus in the Waveform Viewer.

2. Right-click to bring up the Signal menu and select Bus →
Flatten . This breaks the bus up into individual signals.

3. Select the SWITCH6 signal.

4. Hold down the Shift key and select the SWITCH0 signal to select
all seven signals.

5. Right-click and select Bus → Combine .

You can see what signals comprise a bus without flattening it.

6. Select View → Buses or click on the Bus On/Off button in the
Waveform Viewer.

All buses in the Waveform Viewer are expanded to show the
individual signals. The LSB of a bus is denoted by a “*” and the
MSB is denoted by a “$”. This determines how the bus value is
displayed in the Waveform Viewer and how stimulus values are
applied to the bus (if it is an input). All other signals that are part
of a bus are denoted by a “+”.

Notice that the SWITCH6 bus is currently backwards (bit 6 is the
LSB and bit 0 is the MSB).

7. Click on the Bus On/Off button again to collapse the buses into a
single line in the Waveform Viewer.

qstartFinal : Chap5.frm 69 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-69

8. Select the SWITCH6 bus.

9. Right-click and select Bus → Change Direction .

10. Expand the buses again to verify that SWITCH6 is now the MSB.
Collapse the buses when you are done.

Figure 4-46 Selected Nets and Buses

Assigning Stimulators
The Logic Simulator provides some basic stimulators: simple clocks,
keyboard (interactive) stimulators, and constants. To define complex
waveforms, you can create your own stimulators.

Select Signal → Add Stimulators or click on the Select Stimulus
button in the Waveform Viewer. The Stimulator Selection window
appears.

qstartFinal : Chap5.frm 70 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-70 Xilinx Development System

Figure 4-47 Stimulator Selection Window

This window contains different types of stimulators.

• The Keyboard section contains the interactive stimulators.
Pressing the appropriate keyboard letter will toggle the
stimulator between 0 and 1. The keyboard area also contains the
stimulators for a constant 0 or 1.

• The Clocks section is used to assign user-defined clock
waveforms. This section also contains the Custom Select (CS)
button. Refer to the Logic Simulator online help for more
information about these buttons.

• The two rows of round LEDs represent the bits of a free-running
16-bit counter (true and inverted bits). This counter can be used
to generate clock signals of various frequencies with a 50% duty
cycle.

• The row of square LEDs is used to assign user-defined formulas.
Up to 16 formulas can be assigned to these LEDs.

The buttons along the bottom of the window are used to delete,
enable, disable, or change the drive strength of stimulators. Refer to
the Logic Simulator online help for more information about these
buttons.

qstartFinal : Chap5.frm 71 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-71

Defining the Clock

1. In the Waveform Viewer, select the CLK signal.

2. In the Stimulator Selection window, click on the far right yellow
LED (B0). The Waveform Viewer updates to show that CLK will
be driven by the B0 stimulator.

The frequency of the free-running counter can be customized to
suit your needs. For this design, you want CLK to have a 100 ns
period. To force the simulation to run faster, you can also change
the simulation precision to 100 ps.

Note: For functional simulation, you could change the precision to 1
ns or more. For timing simulation, Xilinx recommends keeping the
precision at either 10 ps or 100 ps to ensure that all delays are
simulated accurately.

3. From the menus, select Options → Preferences . The
Preferences dialog box appears.

4. Click on the Simulation Precision drop-down list and select
100ps.

5. Click on the B0 Period drop-down list and select 100ns.

6. Click OK.

qstartFinal : Chap5.frm 72 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-72 Xilinx Development System

Figure 4-48 Setting Simulation Preferences

Defining Formulas

1. In the Stimulator Selection window, click on Formula. The Set
Formula dialog appears.

2. Double click on F0 to select it.

3. In the Edit Formula field, type the following:

[0]200[61]500[0d]500[7b]600[3f]500[7b]500[50]500

4. Click on Accept. The formula is displayed in the Formula
Stimulators list.

This defines F0 as a bus stimulator which has value 0 for 200 ns,
61 (hex) for 500 ns, etc. This formula will be used to stimulate the
SWITCH[6:0] set of inputs to perform the following commands:

00: ADD 0 to register value (the ALUVAL bus should be 0).
61: LOAD register with the value 1 (ALUVAL = 1).
0D: ADD D (13) to register value (ALUVAL = E).
7B: PUSH register value to stack (STACKOUT = E).
3F: XOR register value with F (ALUVAL = 1).
7B: PUSH register value to stack (STACKOUT = 1).
50: CLEAR register value (ALUVAL = 0).

qstartFinal : Chap5.frm 73 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-73

Figure 4-49 Defining a Formula

5. Double click on F1.

6. In the Edit Formula field, type the following and click on Accept:

H200 (L200H300)2 L200H400 (L200H300)3

This defines F1 as a stimulator which is high for 200 ns, then
repeats the following pattern twice: low for 200 ns, then high for
300 ns. Then it is low for 200 ns, etc.

Note: Spaces were used to make the formula syntax easier to
understand. Spaces are ignored by the simulator and will be removed
from the formula when you click Accept.

7. Click on Close.

qstartFinal : Chap5.frm 74 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-74 Xilinx Development System

8. In the Waveform Viewer, select the SWITCH6 bus.

9. In the Stimulator Selection window, click on the far right square
LED (F0).

10. Repeat steps 8-9 to assign the F1 stimulator to SWITCH7.

11. Click on Close.

Saving the Input Waveforms
Now that you have selected the nets and buses you wish to view, and
have assigned stimulators, you can save this information as a test
vector (.TVE) file. You can load the test vectors for timing simulation,
or for functional simulation after making design changes (as long
none of the selected nets have been deleted or renamed).

1. Select File → Save Waveform .

2. In the File Name field, type “calcsim1.tve” and click OK.

Simulating the Circuit
The Simulator toolbar contains two buttons for running the
simulation: Short and Long. These buttons can be customized to run
the simulation for any length of simulation time.

Figure 4-50 Short Step

Figure 4-51 Long Step

1. Select Options → Simulation Step . The Step dialog box
appears.

2. Use the drop-down lists to set the Short Step to 200 ns and the
Long Step to 1 us (1000 ns).

qstartFinal : Chap5.frm 75 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-75

Figure 4-52 Customizing the Simulation Step Buttons

3. Click Set Step to confirm the settings, then click Close.

4. To run the simulation, click the Long button three times and the
Step button once.

5. To get a better view of the waveforms, click on the Zoom Out
button in the Waveform Viewer until the time scale reads 50ns/
div .

qstartFinal : Chap5.frm 76 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-76 Xilinx Development System

Figure 4-53 Simulation Results

6. Switch back to the Schematic Editor to see the probe values
annotated directly on the schematic.

qstartFinal : Chap5.frm 77 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-77

Figure 4-54 Probe Values on the Schematic

7. Select File → Exit to close the Schematic Editor.

8. In the Logic Simulator, select File → Exit .

qstartFinal : Chap5.frm 78 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-78 Xilinx Development System

Using the Design Implementation Tools
The design implementation tools take a design, represented by an
EDIF file, and implement it in an FPGA or CPLD. You can also use
the design implementation tools to generate timing information that
you can import into the Logic Simulator.

This section gives a brief overview of the design implementation
flow. For a more in-depth discussion of the flow, including advanced
implementation options, see the online Development System Reference
Guide.

1. Click on the Implement M1 button in the Project Flowchart to
invoke the Design Implementation Tools. The Project Manager
performs the following steps:

• Creates an EDIF netlist representing the design (this step is
not performed if a current EDIF netlist exists).

• Starts the Xilinx Design Manager (if the Design Manager is
already running, it becomes the active application).

The Design Manager is a graphical design-flow and revision
manager. Each project has associated with it objects known as
“versions” and “revisions.” Versions represent logic changes in a
design (for example, adding a new block of logic, replacing an
AND gate with an OR gate, or adding a flip-flop); revisions
represent different executions of the design flow on a single
design version, usually with new implementation options (for
example, higher place-and-route effort, a change in part type, or
experimentation with new bitstream options). In the next step,
you make a new version and revision on which you run the
implementation design flow.

qstartFinal : Chap5.frm 79 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-79

Figure 4-55 Design Manager

2. Within the Design Manager, select Design → Implement . This
brings up the Implement dialog box.

qstartFinal : Chap5.frm 80 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-80 Xilinx Development System

Figure 4-56 Implement Dialog Box

3. The Project Manager writes the target part into the EDIF netlist. If
you wish to target a different device, click Select to display a
listing of available devices. Select a family, device, package, and
speed grade, then click OK. The part number is inserted into the
Part field in the Implement dialog box.

4. Click on Options. The Options dialog box appears.

qstartFinal : Chap5.frm 81 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-81

Figure 4-57 Options Dialog Box

5. Click Browse by the User Constraints field. Select the calc.ucf file
from the project directory, then click OK.

6. Under Optional Targets, make sure the following are selected:

• Produce Timing Simulation Data: This generates a back-
annotated EDIF netlist for timing simulation.

• Produce Configuration Data: This generates a programming
bitstream suitable for downloading into the Xilinx device.

• Produce Post Layout Timing Report: This generates a timing
report file based on how the design is actually routed.

qstartFinal : Chap5.frm 82 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-82 Xilinx Development System

You can also select the following option:

Produce Logic Level Timing Report: This generates a
preliminary (pre-place-and-route) timing report based on the
number of logic levels in each signal path. Since it is
generated before the place-and-route layout step, it only
contains estimated delays for device routing. Looking at this
report before place-and-route can be useful for determining if
your timing requirements can be met.

7. Click OK to return to the Implement dialog box.

8. Verify that the version is “ver1” and the revision is “rev1”. Then
click Run. The Flow Engine comes up as shown in the figure
below.

Figure 4-58 Flow Engine

qstartFinal : Chap5.frm 83 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-83

The status bar shows the progress of the implementation flow
with the following stages:

• Translate: converts the design EDIF file into an NGD (Native
Generic Design) file.

• Map: groups basic elements such as flip-flops and gates into
logic blocks (“comps”); also generates a logic-level timing
report if selected.

• Place&Route: places comps into the device, and routes the
signals between them.

• Timing: generates timing simulation data and the post-layout
timing report.

• Configure: generates a bitstream suitable for downloading
into a device.

When implementation is complete, an Implementation Status box
appears with the following message:

Implementing revision ver1->rev1 completed
successfully.

9. Click OK in the Implementation Status dialog to return to the
Design Manager. Note that the status of rev1 is (Implemented,
OK). This means that the revision has reached the Implemented
state with no errors.

10. Select File → Exit to close the Design Manager. Click Yes to
confirm that you wish to exit.

qstartFinal : Chap5.frm 84 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-84 Xilinx Development System

Timing Simulation
Timing simulation uses the block and routing delay information from
the routed design to give a more accurate assessment of the behavior
of the circuit under worst-case conditions.

Invoking the Logic Simulator for Timing Simulation
1. Click on the SIM Timing button in the Project Flowchart. The

timing simulation netlist that was created by the Design
Implementation Tools is loaded into the Logic Simulator.

Note that the list box in the toolbar reads Timing . This indicates
that the simulator is operating in Timing mode.

2. Select File → Load Waveform . In the dialog box, select
calcsim1.tve and click OK.

The signals and stimulators you saved during functional simula-
tion are loaded into the Waveform Viewer. The simulation mode
is also changed back to Functional mode.

3. Select timing from the drop-down list box at the end of the
horizontal toolbar.

Note: The Logic Simulator can operate in two other modes, which are
not used for most designs. Refer to the online help for information
about simulation modes.

Asserting Global Reset
The global reset signal must be pulsed at the beginning of all timing
simulations. This signal sets or resets all flip-flops in the chip.
Whether a flip-flop is set or reset depends on the target device family,
and whether it is an FDPE or an FDCE flip-flop. The default configu-
ration for all flip-flops is to function as a reset flip-flop.

qstartFinal : Chap5.frm 85 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-85

Without STARTUP

Note: This section applies to designs in which the STARTUP block
has not been used. If you have an XC4000 family design that has the
STARTUP block in it, go to the “With STARTUP (XC4000 Family
Only)” section.

This signal does not exist on the schematic, but it does exist in the
device and in the timing simulation netlist. The name and polarity of
the global reset signal depends on the target device family, as shown
in the following table.

1. Add the GSR (or PRLD) signal to the Waveform Viewer.

2. Select Signal → Add Stimulators .

3. Using the procedure described in the “Defining Formulas”
section, assign the following formula to the F2 stimulator:

H100L3000

4. In the Waveform Viewer, select the GSR (or PRLD) signal.

5. In the Stimulator Selection window, click on the F2 LED.

6. Click Close.

This will pulse the global reset signal high for 100 ns, then drive it
low for the remainder of the simulation.

With STARTUP (XC4000 Family Only)

Note: This section applies to designs in which the STARTUP block
has been used. If you have a design without a STARTUP block, follow
the instructions in the “Without STARTUP” section.

The global reset signal in the XC4000 family is not hard-wired to a
package pin and need not appear on one at all. If you want access to
the global reset net from an external pin, place the STARTUP compo-
nent in your schematic and attach an IPAD and IBUF to the GSR pin.

Table 4-3 Global Reset Signals

Dev. Family Net Name Polarity

XC4000 GSR Active-High

XC9500 PRLD Active-High

qstartFinal : Chap5.frm 86 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-86 Xilinx Development System

This pad becomes an active-High global set/reset signal. You can also
use an internally generated signal to drive the GSR pin of the
STARTUP component. There is also an active-High Global Three
State signal (GTS) that you can access in the same way. See the online
Libraries Guide for more information on the STARTUP symbol.

1. Add the NOTGBLRESET signal to the Waveform Viewer.

2. Select Signal → Add Stimulators .

3. Using the procedure described in the “Defining Formulas”
section, assign the following formula to the F2 stimulator:

L100H3000

4. In the Waveform Viewer, select the NOTGBLRESET signal.

5. In the Stimulator Selection window, click on the F2 LED.

6. Click Close.

This formula pulses the NOTGBLRESET signal low for 100 ns, then
drives it high for the remainder of the simulation. Note that, because
of the inverter in the path from NOTGBLRESET to the GSR pin of the
STARTUP block, this signal is active-Low.

Running the Simulation
The simulation preferences, options settings, and zoom level are
saved from the last time you used the Logic Simulator.

1. Click on the Long button three times and the Step button once.

You may need to zoom in on the waveforms to see the timing
delays. You can quickly zoom in on an area by clicking on the
time ruler and dragging over the period you wish to zoom in on.

2. Click and drag over the time period near 1 us, where the
ALUVAL3 bus changes from 1 to E.

3. To measure the delay between the rising edge of CLK and the
change on the ALUVAL3 bus, select Waveform → Measure-
ments → Measurements On . The cursor changes into a double
headed horizontal arrow, with a vertical arrow on the left.

4. Position the vertical arrow beneath the rising edge of the CLK
signal and click to mark the beginning of the measurement. The
vertical arrow moves to the right.

qstartFinal : Chap5.frm 87 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-87

5. Click on the ALUVAL3 bus transition to complete the
measurement. A green line appears to mark the measurement.

6. Select Waveform → Measurements → Measurements On
again to exit the Waveform Measurement mode. You may need to
zoom in further to see the measurement value displayed in the
Waveform Viewer.

Figure 4-59 Measuring Delays

7. After examining the waveforms, exit the Logic Simulator.

Examining Routed Designs with EPIC
Note: This section applies only to FPGA designs. If you are targeting
a CPLD such as an XC9000 device, skip to the “Making Incremental
Design Changes” section.

At this point in the tutorial, the design process is complete. If you
would like to see how the design has been implemented, you can take
a graphical look at your placed and routed design using the Editor
for Programmable Integrated Circuits, (EPIC). You can access EPIC
from the toolbar in the Design Manager.

qstartFinal : Chap5.frm 88 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-88 Xilinx Development System

EPIC provides several useful functions, such as

• manual placement of a pre-routed design

• manual editing of a routed design

• static timing analysis

EPIC is explained in a separate tutorial. See the “EPIC Tutorial”
chapter of the EPIC Reference/User Guide. Before starting this tutorial,
be sure to select the ver1 → rev1 revision of the design in the project
view.

Verifying the Design Using a Demonstration Board
Note: This section applies only to FPGA designs. If you are targeting
a CPLD such as an XC9000 device, skip to the “Making Incremental
Design Changes” section.

A bitstream has been created during the Configure stage in the Flow
Engine. At this point, you are ready to download the bitstream using
a parallel download cable or the more versatile XChecker cable
connected to your PC. The XC4000E version of the Calc design is
suitable for download into an FPGA demonstration board available
from Xilinx.

Downloading is accomplished with the Hardware Debugger. To
invoke the Hardware Debugger, select Tools → Hardware
Debugger from the menu bar, or click on the Hardware Debugger
button in the toolbar. If you are using an XChecker cable, you can also
use the Hardware Debugger to read back information from the
device to verify both the configuration as well as the state of memo-
ries and registers within the device.

The Hardware Debugger is explained in a separate tutorial. See the
“CALC Tutorial” chapter of the Hardware Debugger Reference/User
Guide. Before starting this tutorial, be sure to select the ver1 → rev1
revision of the design in the project view.

qstartFinal : Chap5.frm 89 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-89

Making Incremental Design Changes
After initially placing and routing a design, it is often necessary to go
back to the schematic and make slight modifications to the original
design. When this situation occurs, much of the place-and-route
information from the previous design iteration can be reused, as
much of it is unchanged. This process is known as incremental
design, and the NCD file (containing partition, placement, and
routing information) from the prior place-and-route iteration is called
the guide file.

Since much of the place-and-route information is extracted from the
guide file, the place-and-route time is greatly reduced. The reuse of
place-and-route information also results in more stable timing over a
number of guided place-and-route iterations. Once a section of your
design passes your timing requirements, guided design ensures that
it will pass in the future, even if other parts of the design are
modified.

In this section of the tutorial, you make a small change to the
schematic and reprocess the design using the guide option in the
mapping program (MAP) and the place-and-route program (PAR).

Note: A small design change is the addition, removal, or replacement
of only a small amount of logic in the design; the exact amount is
dependent on the size of the design. If radical changes are made to a
design, especially changes to existing portions of the design, it may
be disadvantageous to guide the design.

Making an Incremental Schematic Change
Make a simple change to the Calc schematic that will be visible
immediately on the demonstration board. For example, assume that
the reset opcode is no longer needed and needs to be removed form
the design. This can be done by grounding the ‘R’ pins of the FDRE
and FD4RE macros in the ALU schematic. The logic that generated
the original reset signal, and the logic it drove, is automatically
optimized out of the netlist by the MAP program.

1. In the Project Manager, expand the hierarchy view by clicking on
the icon next to calc.sch.

2. Double click on ALU to start the Schematic Editor.

3. Zoom in on the lower right quadrant of the schematic.

qstartFinal : Chap5.frm 90 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-90 Xilinx Development System

4. Select the AND5B2 component that generates the QRESET net
feeding the FDRE and FD4RE.

5. Select Edit → Delete or press Del to delete the component.

6. Connect a GND symbol to the R pin of the FD4RE symbol, as
shown in the figure below.

7. Save the schematic and exit the Schematic Editor.

Figure 4-60 Grounding the Reset Logic

qstartFinal : Chap5.frm 91 Tue Dec 23 06:35:17 1997

In-depth Tutorial

Foundation Series Quick Start Guide 1.4 4-91

Translating the Incremental Design
Translate the guided Calc design by turning on the guide options in
Flow Engine. The following instructions demonstrate an alternative
method of running Flow Engine that offers more control over the
implementation flow.

1. In the Xilinx Design Manager, select calc, then choose Design →
New Version .

2. The New Version dialog box appears with the Name field
automatically filled in as “ver2”. You may also add a comment to
the new version. This comment appears in the project view next
to the version number. Click OK.

Note: You can add a comment to any version or revision in the
project view by selecting that version or revision, then selecting
Design → Properties .

3. Select the newly created “ver2” in the project view, then select
Design → New Revision .

4. The New Revision dialog box appears with the Name field
automatically filled in as “rev1” and the Part field automatically
filled in as “XC4003E-4-PC84”. You may add a comment to the
new revision if you wish. Click OK.

5. Select the newly created “rev1” in the project view, then select
Tools → Flow Engine . Alternatively, you can click the Flow
Engine button in the Toolbox.

The Flow Engine appears. However, unlike the procedure you
used in the first revision, the implementation flow does not start
automatically. This allows you to step forward and even
backward through the implementation flow by individual stages,
using the buttons at the bottom of the Flow Engine window or
the selections underneath the Flow menu.

6. Select Setup → Options from the menu bar. The Options dialog
box appears as before.

7. Go through the different options as before and verify that the
settings are the same as in the previous revision.

qstartFinal : Chap5.frm 92 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

4-92 Xilinx Development System

8. In the Guide Design field, select Last. This sets the previous
revision of the placed and routed design. In this case, it has the
same effect as selecting ver1 → rev1.

9. Click OK to return to Flow Engine.

10. Run the implementation as before by clicking the Run icon (on
the far left) at the bottom on the Flow Engine window.

11. When all steps have completed successfully, select Flow →
Close to exit Flow Engine.

Verifying the Change in the Demonstration Board
Verify that the change was performed by downloading the new
bitstream to the demonstration board, as you did previously. As
before, see the “CALC Tutorial” chapter of the Hardware Debugger
Reference/User Guide for more information. Before running through
this tutorial, make sure that the ver2 → rev1 revision is selected in the
project view.

Further Reading
This tutorial has given you the information necessary to complete a
typical design cycle using the 1.4 version of Foundation. There are
many commands and options available within both the design entry
tools and the design implementation tools that are not covered in this
tutorial. Refer to the online help files and the online manuals
(viewable with the DynaText browser) for complete documentation
of all the features in this release.

qstartFinal : Glossary.frm 1 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 A-1

Appendix A

Glossary

This appendix contains definitions and explanations for terms used
in the Foundation Series Quick Start Guide 1.4.

aliases
Aliases, or signal groups, are useful for probing specific groups of
nodes.

attribute
Attributes are instructions placed on symbols or nets in an FPGA
schematic to indicate their placement, implementation, naming,
direction, or other properties.

BLD file
The translation report that contains warning and error messages from
the three translation processes: conversion of the EDIF or XNF style
netlist to the Xilinx NGD netlist format, timing specification checks,
and logical design rule checks.

block
A group consisting of one or more logic functions. Also called CLB.

component
A component is an instantiation or symbol reference from a library of
logic elements that can be placed on a schematic.

qstartFinal : Glossary.frm 2 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

A-2 Xilinx Development System

constraint
Constraints are specifications for the implementation process. There
are several categories of constraints: routing, timing, area, mapping,
and placement constraints.

Using constraints, you can force the placement of logic (macros) in
CLBs, the location of CLBs on the chip, and the maximum delay
between flip-flops.

CLBs are arranged in columns and rows on the FPGA device. The
goal is to place logic in columns on the device to attain the best
possible placement from the standpoint of both performance and
space.

design entry tools
A set of tools accessible from the Project Manager. These tools include
the Schematic Editor, State Editor, and HDL Editor.

An optional package, Foundation Express, contains the VHDL and
Verilog design languages.

design implementation tools
A set of tools that comprise the mainstream programs offered in the
Xilinx design implementation tools. The tools are: NGDBuild, MAP,
PAR, NGDAnno, TRCE, all the NGD2 translator tools, BitGen,
PROMGen, and EPIC.

EDIF2NGD
EDIF2NGD reads the constraints in an NCF (netlist constraints file)
file and adds the constraints to the output NGO file.

guided mapping
An existing NCD file is used to “guide” the current MAP run. The
guide file may be used at any stage of implementation: unplaced or
placed, unrouted or routed.

qstartFinal : Glossary.frm 3 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 A-3

HDL
HDL (hardware description language).

LCA file
An LCA file is a mapped file of a Xilinx design produced by an earlier
software release.

LCA2NCD
LCA2NCD converts an LCA file to an NCD file. The NCD file
produced by LCA2NCD can be placed and routed, viewed in EPIC,
analyzed for timing, and back-annotated.

locking
Lock placement applies a constraint to all placed components in your
design. This option specifies that placed components cannot be
unplaced, moved, or deleted.

LogiBLOX
Xilinx design tool for creating high-level modules such as counters,
shift registers, and multiplexers.

logic
Logic is one of the three major classes of ICs in most digital electronic
systems: microprocessors, memory, and logic is used for data
manipulation and control functions that require higher speed than a
microprocessor can provide.

macro
A macro is a component made of nets and primitives, flip-flops or
latches, that implements high-level functions, such as adders,
subtractors, and dividers. Soft macros and RPMs are types of macros.

A macro can be unplaced, partially placed or fully placed, and it can
also be unrouted, partially routed, or fully routed. See also “physical
macro.”

qstartFinal : Glossary.frm 4 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

A-4 Xilinx Development System

MCS file
An MCS file is an output from the PROMGen program in Intel’s
MCS-86 format.

MDF file
An MDF (MAP directive file) file is a file describing how logic was
decomposed when the design was originally mapped. The MDF file
is used for guided mapping using Xilinx Development System
software. The MDF file enables the MAP program to recreate the
decompositions chosen when the design was first mapped.

MRP file
An MRP (mapping report) file is an output of the MAP run. It is an
ASCII file containing information about the MAP run. The informa-
tion in this file contains DRC warnings and messages, mapper warn-
ings and messages, design information, schematic attributes,
removed logic, expanded logic, signal cross references, symbol cross
references, physical design errors and warnings, and a design
summary.

NCD file
An NCD (netlist circuit description) file is the output design file from
the MAP program, LCA2NCD, PAR, or EPIC. It is a flat physical
design database correlated to the physical side of the NGD in order to
provide coupling back to the user’s original design. The NCD file is
an input file to MAP, PAR, TRCE, BitGen, and NGDAnno.

NGA file
An NGA (native generic annotated) file is an output from the
NGDAnno run. An NGA file is subsequently input to the appropriate
NGD2 translation program.

qstartFinal : Glossary.frm 5 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 A-5

NGDAnno
The NGDAnno program distributes delays, setup and hold time, and
pulse widths found in the physical NCD design file back to the
logical NGD file. NGDAnno merges mapping information from the
NGM file, and timing information from the NCD file and puts all this
data in the NGA file.

NGDBuild
The NGDBuild program performs all the steps necessary to read a
netlist file in XNF or EDIF format and create an NGD file describing
the logical design.

NGD file
An NGD (native generic database) file is an output from the
NGDBuild run. An NGD file contains a logical description of the
design expressed both in terms of the hierarchy used when the design
was first created and in terms of lower-level Xilinx primitives to
which the hierarchy resolves.

NGM file
An NGM (native generic mapping) file is an output from the MAP
run and contains mapping information for the design. The NGM file
is an input file to the NGDAnno program.

PAR (Place and Route)
PAR is a program that takes an NCD file, places and routes the
design, and outputs another NCD file. The NCD file produced by
PAR can be used as a guide file for reiterative placement and routing.
The NCD file can also be used by the bitstream generator, BitGen.

path delay
A path delay is the time it takes for a signal to propagate through a
path.

qstartFinal : Glossary.frm 6 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

A-6 Xilinx Development System

PCF file
The PCF file is an output file of the MAP program. It is an ASCII file
containing physical constraints created by the MAP program as well
as physical constraints entered by you. You can edit the PCF file from
within EPIC.

physical Design Rule Check (DRC)
Physical Design Rule Check (DRC) is a series of tests to discover
logical and physical errors in the design. Physical DRC is applied
from EPIC, BitGen, PAR, and Hardware Debugger. By default, results
of the DRC are written into the current working directory.

physical macro
A physical macro is a logical function that has been created from
components of a specific device family. Physical macros are stored in
files with the extension .nmc. A physical macro is created when EPIC
is in macro mode. See also “macro.”

pin
A pin can be a symbol pin or a package pin. A package pin is a phys-
ical connector on an integrated circuit package that carries signals
into and out of an integrated circuit. A symbol pin, also referred to as
an instance pin, is the connection point of an instance to a net.

pinwires
Pinwires are wires which are directly tied to the pin of a site (that is,
CLB, IOB).

route
The process of assigning logical nets to physical wire segments in the
FPGA that interconnect logic cells.

qstartFinal : Glossary.frm 7 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 A-7

route-through
A route that can pass through an occupied or an unoccupied CLB site
is called a route-through. You can manually do a route-through in
EPIC. Route-throughs provide you with routing resources that would
otherwise be unavailable.

states
The values stored in the memory elements of a device (flip-flops,
RAMs, CLB outputs, and IOBs) that represent the state of that device
for a particular readback (time). To each state there corresponds a
specific set of logical values.

TRCE
TRCE (Timing Reporter and Circuit Evaluator) “trace” is a program
that will automatically perform a timing analysis on a design using
available timing constraints. The input to TRCE is a mapped NCD file
and, optionally, a PCF file. The output from TRCE is an ASCII timing
report which indicates how well the timing constraints for your
design have been met.

(Historical note: TRCE should not be confused with the UNIX trace
command. The UNIX trace command is used to trace system calls
and signals).

TWR file
A TWR (Timing Wizard Report) file is an output from the TRCE
program. A TWR file contains a logical description of the design
expressed both in terms of the hierarchy used when the design was
first created and in terms of lower-level Xilinx primitives to which the
hierarchy resolves.

UCF file
A UCF (user constraints file) contains user-specified logical
constraints.

qstartFinal : Glossary.frm 8 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

A-8 Xilinx Development System

wire
A wire is either 1) a net or 2) a signal.

qstartFinal : qstartFinalIX.doc 1 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4 — 0401697 01 I-1

Index

A
ABEL6, 1–4
added or expanded logic, 3–14
alias, definition, A–1
asynchronous reset, 4-49
attribute, definition, A–1
attributes

also called properties, 1–17
various ways to enter, 3–17

B
BIT file, 3–13
BLD file, 3–14
block

definition, A–1
delays, 3–3, 3–4, 3–25

Boolean expressions, 4-50
boundary scan systems, 1–17
BSDL file, 1–17
bubble, state, 4-47
bus taps, adding, 4-21
buses

drawing in Schematic Editor, 4-20
manipulating, 4-68

byte-wide configuration PROM, 1–16

C
carry logic, 4-32
checkpoint

simulation, initializing, 3–26
verification, in Figure, 3–3, 3–4

CLBs
"look inside" with EPIC, 1–15
freeing resources, 4-39
placement and interconnect, 4-34
relationship to constraints, A–2

clock signals, 4-42, 4-47, 4-70
clock-to-pad timing, 3–21
color (on-screen)

interpreting, 1–7, 4-55
compiling VHDL files, 4-58
components

adding, 4-18
definition, A–1
deleting, 4-59
IOB, 4-39
moving, 4-19

CONFIG components, 4-14, 4-60
configuration bitstream, 3–13, 3–28
configuration templates, 3–15
constraint

definition, A–2
files, 3–17, 4-62
processed by EDIF2NGD, A–2

controlling pin placement, 3–18
conventions

online documents, vi
typographical, v

cost-based routing, 3–30

qstartFinal : qstartFinalIX.doc 2 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

I-2 Xilinx Development System

CPLD fitter
description, 3–13
devices supported, 1–16
shown in design flow, 3–4

CPLDs
design flow, 3–4, 4-4
downloading designs, 3–28
fitter, 3–13
flow engine, 3–12
guide files, 1–17
new features, 1–16
new properties available, 1–17
online help, 1–17
with LogiBLOX modules, 4-44

CST file (obsolete), 1–18
customer service, obtaining, 2–5

D
D flip-flop, 1–16
daisychain, of FPGAs, 3–28
debugging, 3–28
decoders, HEX-to-7-segment, 4-57
delay-based routing, 3–30
delays, routing versus logic, 3–23
demonstration board, 4-88
design entry tools

installation, 2–3
new features, 1–2
using, 3–5

design flows, supported types, 3–2
design implementation tools

compatibility with XNF, 1–1
definition, A–2
features, 1–12
installation, 2–4
using, 3–9

Design Manager
benefits of using, 3–9, 4-78
Flow Engine, 4-82, 4-91
Implement Dialog Box, 4-80
menus, 3–11
options, 3–15

revision (new), creating, 4-91
starting, 3–10
version (new), creating, 4-91

design methodologies, contrasted, 4-2
design metrics

overall placer score, 3–15, 3–30
physical design rule check, 3–12

design properties, 1–17
design rule check

definition, A–6
performed by MAP, 3–12

design, downloading
creating PROM, 3–28
FAST constraints, 4-60
XChecker cable, 4-88

device support, 1–2
documentation

installing, 2–4
online, 1–11

E
EDIF netlists, 1–3, 1–12, 3–18
EDIF2NGD

definition, A–2
handling constraints, A–2

E-mail, technical support, 2–6
EPIC, 1–15, 4-87
equipment, suggested, 2–2
erroneously removed logic, 3–14
exact guide mode, 3–22
EXO file, 3–28
EXORmacs file, 1–16

F
fast carry logic, 4-32
FAST constraints, 4-38, 4-60
features, 1–1
finite state machines, 4-46
Fitter

shown in design flow, 4-4
targets CPLDs, 1–16

qstartFinal : qstartFinalIX.doc 3 Tue Dec 23 06:35:17 1997

Index

Foundation Series Quick Start Guide 1.4 I-3

flip-flops
D-type, 1–16
I/O, 4-39
T-type, 1–16

Flow Engine
benefits of using, 1–15
creates binary stream, 3–13
Options Dialog Box, 3–16, 4-81
status bar, 3–11, 3–12, 4-82

Foundation 1.4
CPLD design flow, 4-4
FPGA design flow, 4-3
Project Manager, 3–5
running on a network, 1–14, 3–30
supported families, 1–2

Foundation Express
installing, 2–4
new features, 1–8
using, 3–9
Verilog enabling, 1–6

4-bit processor with a stack, 4-1
FPGAs

daisychaining, 3–28
new features, 1–12

functional simulation, 3–25, 4-63

G
global set/reset, 4-59, 4-86
global three state signal (GTS), 4-86
guide files, 1–17, 3–22
guided mapping

avoiding radical changes, 4-89
definition, A–2
enabling for your design, 3–22

H
Hardware Debugger, 1–16, 3–28, 4-88
hardware requirements (PCs), 2–3
HDL

definition, A–3
macros, 4-54

HDL Editor
color (on-screen), interpreting, 4-55
HDL Design Wizard, 4-54
language assistant templates, 1–6

help system, 1–11
HEX-to-7-segment decoders, 4-57
hierarchical designs, 4-14
hierarchy browser, 4-8
hotkeys, 4-12

I
I/O flip-flops, 4-39
I/O pads, 4-86
I/O terminals, 4-23
IEEE 1149.1 standard, 1–17
IF statement, 1–6
Implement M1 button, 3–10, 4-78
implementation

advanced flows, 3–29
creating a new version, 3–11
default options, 3–17
exact guide mode, 3–22
in-circuit debugging, 3–28
interpreting reports, 3–13
leveraged guide mode, 3–22
MAP, 3–12
PAR, 3–12
physical view, 1–15
reusing unchanged sections, 3–22
templates, 3–15
translate, 3–12

in-circuit debugging, 3–28
incremental design changes, 4-89
installation

design entry tools, 2–3
design implementation tools, 2–4
Foundation Express, 2–4
getting started, 2–2
online documentation, 2–4
tutorial, 2–4

interconnect delays, 3–25
IOB component(s), 4-39

qstartFinal : qstartFinalIX.doc 4 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

I-4 Xilinx Development System

J
JTAG Programmer

description, 1–17
shown in design flow, 4-4

K
keyboard shortcuts, 4-12

L
labels, adding, 4-26
language assistant templates, 1–6
LCA file

definition, A–3
upward compatibility, 1–1

LCA2NCD, definition, A–3
least significant bit, 4-68
leveraged guide mode, 3–22
libraries

Library Manager, 1–7
provided by Xilinx, 4-30
sorting, 1–7

Library Manager, 1–7
license.dat file, 2–5
licenses, obtaining, 2–5
location constraints, 3–17
lock placement

definition, A–3
example, 3–18
for matching printed circuit board,
 4-36

LogiBLOX
definition, A–3
features, 1–3
types of modules, 1–3
use for FPGAs only, 4-44

logic
added or expanded, 3–14
collapsing, 1–17
definition, A–3
delays, 3–23
erroneously removed, 3–14

M
macros

definition, A–3
HDL, 4-54
soft, 4-30
state machine, 4-46

MAP
making changes to a schematic, 4-89
reports, 1–13
shown in design flow, 4-3
timing report, 3–23
trims unused logic, 3–12

mapping report, 3–14
MCS file

created by PROM File Formatter, 1–16
definition, A–4
supported file format, 3–28

MDF file, definition, A–4
memory requirements, 2–3
merging input netlists, 3–12
message window, 4-9
minimizing timing delays, 3–12
most significant bit, 4-68
MRP file, definition, A–4
multi-pass place-and-route, 3–30

N
NCD files

definition, A–4
updating, 3–29
using as guide files, 3–22, 4-89

netlists
merging, 3–12
optimization, 1–12
supported, 1–12

nets
adding, 4-26
delays, 3–25

network compatibility, 2–4
NGA file, definition, A–4

qstartFinal : qstartFinalIX.doc 5 Tue Dec 23 06:35:17 1997

Index

Foundation Series Quick Start Guide 1.4 I-5

NGD files
contains user constraints, 3–18
definition, A–5

NGDAnno, definition, A–5
NGDBuild

definition, A–5
performs translation, 3–12

NGM file, definition, A–5
nodelist file, 3–31

O
online documentation, 1–11
online help, 1–11, 1–17
operating systems supported, 2–2
optimization

of netlists, 1–12
use guide files, 3–22

options, importance of, 3–15
oscillators, on-chip, 4-40
output pads, controlling output slew rate,
4-38

output slew rate, 4-38

P
package support, 2–3
pad report, 3–15
pads

constraints, 3–17
numbers, 3–15

PAR
algorithms, 3–31
assigning pin locations, 4-36
definition, A–5
examining constraints, 3–12
improvements, 1–13
making small change to a schematic,
 4-89
multiple iterations, 1–14
places and routes the design, 3–13
producing multiple revisions, 3–30
reports, 1–13

shown in design flow, 3–3
timing report, 3–24

parallel processing, 3–30
path delays

controlling with constraints, 3–17
definition, A–5
problems, detecting, 1–14

PCF file
definition, A–6
Pad report, 3–15

performance, improving with distributed
computing, 1–14

physical design rule check, 3–12
physical macro, definition, A–6
pins

definition, A–6
pinouts, finding, 4-37
placement, controlling, 3–18

pinwires, definition, A–6
place and route report, 3–15
placer

score, 3–15, 3–30
timing constraint driven, 3–17

platforms, supported, 2–2
post-map simulation, advantages of, 3–26
probes, adding, 4-64, 4-66
project flowchart, 4-8
Project Manager

hierarchy browser, 4-8
message window, 4-9
new features, 1–2
project flowchart, 4-8
starting, 3–5

project, creating new, 3–7
PROM File Formatter, 1–16, 3–28
PROM file, downloading, 3–28
prototyping with Hardware Debugger,
1–16, 3–28

qstartFinal : qstartFinalIX.doc 6 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

I-6 Xilinx Development System

R
RAM

retargeting to different architecture,
4-13

stack, 4-41
real-time debugging, 3–28
re-entrant routing, 1–14, 3–29
Relationally Placed Macros

See RPMs
Report Browser

shown in design flow, 4-3
shown in figure, 3–14
view timing reports, 3–24

reports
interpreting, 3–13
MAP, 1–13
mapping, 3–14
PAR, 1–13
pinout of design, 3–15
place and route report, 3–15
post-map timing report, 3–23
post-place-and-route timing report,
 3–23
summary timing, 3–24
timing summary, 3–15
translation, 3–14

reset, asynchronous, 4-49
revision (new), creating, 4-91
RLOC constraints, 4-33
route

definition, A–6
timing constraint driven, 3–17

route-through, definition, A–7
routing methods

place-and-route, multi-pass, 3–30
re-entrant route, 1–14, 3–29

RPMs, 4-30
runtimes, minimizing, 2–2, 3–22

S
schematic designs, 3–7
Schematic Editor

new features, 1–4
starting, 4-10

schematics
connectivity, 4-23
opening, 4-18

SEDIF netlist, 1–12
serial-wide configuration PROM, 1–16
setup

See installation
signal states, displaying, 3–28
simulation

controlling pace and duration, 4-74
files, creating, 3–25
results, viewing, 4-76
shown in design flow, 4-3
using EDIF netlists, 1–6

Simulation Macro Editor, 1–7
simulator

appearance of probe, 4-67
new features, 1–6
toolbox, 4-64

slew rate, 4-38
soft macros

See RPMs
speed grades, switching, 3–25
stack

implementing, 4-41
synchronous RAM, 4-14

STARTUP components, 4-14, 4-59, 4-85
State Editor

Design Wizard, 4-47
features, 1–6
starting, 4-46

state machines
creating designs, 3–8
creating macros, 4-46

qstartFinal : qstartFinalIX.doc 7 Tue Dec 23 06:35:17 1997

Index

Foundation Series Quick Start Guide 1.4 I-7

states
definition, A–7
graphical representation, 4-53
view with Hardware Debugger, 1–16

static timing analysis, 1–14, 3–23
stimulator, choosing, 4-70
stimulus file, 4-74
swap space required, 2–2
SXNF netlist, 1–12
Symbol Editor, new features, 1–8
synchronous RAM, 3–21
system requirements

memory, 2–2
swap space, 2–2

T
T flip-flop, 1–16
technical support, obtaining, 2–6
TEK file, 3–28
TEKHEX file, 1–16
templates, implementation and
configuration, 3–15
test(bench) file, 4-74
Timespec and Timegroup constraints, 3–
18, 3–21
timing analysis

detailed, 3–24
report, 1–16

timing analysis, static
after map, 1–14, 3–23
after place-and-route, 1–14, 3–24
using EPIC, 4-88

Timing Analyzer, 1–15
timing constraints

benefit of using, 3–17
clock-to-pad timing, 3–21
example, 3–20
using PAR to solve, 3–30

timing delays
measuring, 4-86
minimizing, 3–12

timing report
post-map, 1–14, 3–23
post-place-and-route, 1–14, 3–24

timing simulation
advantages of, 3–25
create data, 3–27
Logic Simulator, 4-84

toolbox, simulator, 4-64
top-level designs

schematic designs, 3–7
VHDL, 3–8

transitions, creating, 4-50
translate, 3–12
translation report, 3–14
translation, of design, 4-91
TRCE, definition, A–7
tutorial, VHDL, installing, 2–4
.tve file, 4-74, 4-84
TWR file, definition, A–7

U
UCF files

creating, 3–18
definition, A–7
example, 4-62
using, 3–17

V
Verilog, with Foundation Express enabled,
 1–6, 1–10
versions, creating, 3–11, 4-91
VHDL

compiler upgraded, 1–4
creating macros, 4-54
designs, creating, 3–8
entity declaration, 4-57
files, compiling, 4-58
files, editing, 4-56
HDL Editor, 4-54

Vital-compliant VHDL, 1–15

qstartFinal : qstartFinalIX.doc 8 Tue Dec 23 06:35:17 1997

Foundation Series Quick Start Guide 1.4

I-8 Xilinx Development System

W
Waveform Viewer, 4-64
waveforms

displaying, 3–28
saving in files, 4-74

Windows 95/NT, 2–2
wires

definition, A–8
external pins, 4-85

X
XABEL

features, 1–4
running on networks, 2–4

XC9500, 4-13
XChecker cable, 3–28, 4-88
Xilinx technical support, 2–6
XNF

files, backward compatibility, 1–12
files, compatibility, 1–1
netlists, 1–12, 3–18

XVHDL compiler, 1–4, 4-54

Z
zooming

in, 4-86
out, 4-75

