
book : cover 1 Thu Jan 8 08:57:38 1998

Foundation Express

R

Application Note

Foundation Express
Application Note Supplement

January 1998

0401721

book : cover 2 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

XILINX, XACT, XC2064, XC3090, XC4005, XC5210, XC-DS501, FPGA Architect, FPGA Foundry, NeoCAD,
NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, and TRACE are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation,
HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, Plus Logic, Plustran,
P+, PowerGuide, PowerMaze, Select-RAM, SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing,
WebLINX, XABEL, Xilinx Foundation Series, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776;
5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609;
5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837;
5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018; 5,550,839;
5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529;
5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738;
5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342;
5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480;
5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547;
5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950; 5,657,290;
5,659,484; 5,661,660; 5,661,685; 5,670,897; 5,670,896; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and
foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors
contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume
any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1998 Xilinx, Inc. All Rights Reserved.

R

book : bookTOC.doc i Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement — 0401721 i

Contents

Chapter 1 Introduction

Contents.. 1-1
Features .. 1-2
Design Flow .. 1-5

Chapter 2 Black Box Instantiation

LogiBLOX RAM Modular Design Using VHDL.............................. 2-1
LogiBLOX RAM Modular Design Using Verilog 2-8
Instantiating an XNF file in VHDL or Verilog 2-13
Instantiating an EDIF file into an HDL Design............................... 2-14

Chapter 3 Timing Constraints with Foundation Express

Applying Constraints with the Express GUI 3-1
Xilinx Logical Constraints .. 3-4
Reading Instance Names from an XNF file for UCF Constraints .. 3-5
Instance Names for LogiBLOX RAM/ROM 3-6

Calculating Primitives for a LogiBLOX RAM/ROM Module...... 3-6
Naming Primitives in LogiBLOX RAM/ROM Modules.............. 3-6

Referencing LogiBLOX Entities... 3-7

Chapter 4 Simulation With Foundation Express Netlists

Simulation Flows in 1.4 ... 4-1
Simulation of Modules/Black Box Designs.................................... 4-2
Simulation Flows for Foundation Express..................................... 4-2

Pre-Synthesis RTL Simulation ... 4-2
Post-Synthesis Pre-Route Simulation...................................... 4-3
Post-Map Pre-Route Simulation (FPGAs Only) 4-4
Post-PAR Simulation ... 4-6

book : bookTOC.doc ii Thu Jan 8 08:57:38 1998

ii Xilinx Development System

Foundation Express Application Note Supplement

Simulating a Design With the Foundation Logic Simulator 4-8
Foundation 1.4 Project Structure Overview 4-8
Foundation Express Project Structure Overview 4-9
Creating the Foundation Express Project Structure................. 4-9
Using the Logic Simulator with Express Designs..................... 4-13

Timing Simulation using the Logic Simulator 4-17
Top-level Schematics... 4-17
Top-level HDL Designs .. 4-18

Chapter 5 Schematic Based Design and Foundation Express

Creating HDL Macros with Foundation Express 5-1
Creating the Foundation Project .. 5-1
Compiling HDL Code in Foundation Express 5-1

Importing the Netlist into Foundation Schematic........................... 5-2

Chapter 6 Xilinx Customer Support Information

Registration, Authorization, and Customer Service 6-1
Technical Support ... 6-1

Hotline Access and Hours.. 6-1
Training ... 6-2

Index

book : intro 1 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement — 0401721 1-1

Chapter 1

Introduction

Foundation™ Express is a synthesis tool that utilizes the Synopsys
FPGA Express® technology. This application note will help you to
use Foundation Express in conjunction with the Foundation Series 1.4
design entry and implementation tools.

The FND-BSX and FND-EXP packages contain the new Foundation
Express software. If you are upgrading from the previous 1.3
packages, then you need to update your license.dat file. Xilinx
provides a template file with the new package definitions. Refer to
the “Foundation Express Installation and Security” chapter in the
Foundation Express User Guide for details.

Foundation Express is delivered in the enclosed CD-ROM.

Contents
The Foundation Express package contains the following items:

• Foundation Express Application Note Supplement

• FPGA Express Users Guide

• Foundation Express cover letter and hot sheet

• Foundation Express 2.0 CD

book : intro 2 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

1-2 Xilinx Development System

Features
Foundation Express allows Foundation customers to use Xilinx's new
HDL synthesis technology (provided by Synopsys).

The major new features of Foundation Express include the following:

• high-quality synthesis for all Xilinx device families

a) XC3000A/L, XC3100A/L

b) XC4000E/EX/XL/XV

c) XC5200

d) Spartan

e) XC9500

• VHDL and Verilog support

a) improved Verilog black box support

To instantiate a module in Verilog, you simply define an
empty module containing the names and directions for the
module’s I/O pins and then instantiate the module. The
instances of the module are automatically stored in the final
netlist.

b) updated faster HDL analyzers

The latest (V)HDL analyzer from Synopsys Design Compiler
version 1997.08 contains bug fixes and additional construct
support.

• graphical constraint entry

a) customizable timing groups

b) improved overall system performance requirements

c) You can also specify timing constraints on arbitrary timing
paths, including multi-cycle paths. You can create a subpath
by right-clicking on a path in the pre-optimized
implementation.

book : intro 3 Thu Jan 8 08:57:38 1998

Introduction

Foundation Express Application Note Supplement 1-3

• new Interactive Graphical Timing Analyzer

Foundation Express includes a timing analyzer for timing report
and debugging, which is built on the Paths and Ports constraint
tables. After optimization, the timing verifier displays the
following:

a) The timing for both path groups and subpaths (Paths page).
Double click on the path icon to display or hide the subpaths
of a timing path. Clicking a path or subpath shows the worst
delays to all endpoints in the To group. Clicking an endpoint
shows the complete critical path from the start to endpoints.

b) The input-to-clock and clock-to-output timing (Ports page)
(Timing analyzer support is not available for the Xilinx
XC9500.)

• automatic finite state machine (FSM) optimization

Automatic FSM encoding is supported for enumerated types
(VHDL); use the VHDL template to design your FSM, then
choose One Hot or Binary encoding under Synthesis →
Options → Project .

• improved graphical user interface

The graphical user interface (GUI) has a new look and feel. In
addition to the Design Sources window and the Chip window,
the Error/Warnings window is always displayed. Several
activities, such as entering constraints or viewing results, are
started by clicking the right mouse button. Double clicking on
icons expands or contracts the file or design hierarchy. For
VHDL, libraries other than WORK can be created by clicking the
right mouse button on the project icon and selecting New
Library.

• built-in source editor

The editor interacts with analysis errors and lets you edit source
files. You start the editor and open the file by selecting the design
file icon, clicking the right mouse button, and selecting Edit File.
You can use a menu of editing options by clicking the right
mouse button.

book : intro 4 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

1-4 Xilinx Development System

• M1/XACT option

You can target either M1 or XACT. Targeting M1 turns off the
HBLKNM setting. HBLKNM is used on some look-up tables to
improve the quality of result when using XACT. The switch to
control this feature is under the Xilinx Options spreadsheet of the
pre-optimized implementation.

• choice of optimization parameters

You can synthesize a design for high speed or minimum area.
The switch to control this feature is under the Create
Implementation window. Also with the Low/High effort switch,
you can control the CPU effort for the optimization engine. Low
effort runs faster, though High effort provides better quality of
results. The switch to control this feature is also in the Create
Implementation window.

• GSR mapping for designs including black boxes

Foundation Express can now infer the global set reset (GSR) even
for designs that contain black boxes (when allowed by the
selected device). The switch, which is called Ignore Unlinked
Cells During GSR Mapping, can be found by selecting
Synthesis → Edit Constraints → Xilinx Options of the
pre-optimized implementation.

• enhanced report file

The report file contains much more detailed information on the
pre-optimized as well as the post-optimized design. Detailed
information includes the design's hierarchy, the inferred
operators, the cell count, the timing constraints, and the clock
speed estimates.

If Foundation Express is installed, the HDL Editor provides color-
coding and language assistance for the Verilog language. However,
you cannot synthesize your designs within the HDL Editor. These
designs must be synthesized using Foundation Express.

book : intro 5 Thu Jan 8 08:57:38 1998

Introduction

Foundation Express Application Note Supplement 1-5

Design Flow
Following is an overall flow chart of the design process.

Verilog

Simulation

Library

X8237

XNF VHD V

FPGA Express

Foundation

Implementation Tools

Foundation

Project Manager

Foundation Express

Verilog module

and/or VHDL

component

Verilog and/or

VHDL RTL

Verilog

and/or

VHDL

Netlist

SDF

(Optional)

Optional

Functional Simulation

Foundation

Schematic

Entry

HDL Editor

State

Diagram

Editor

Design

Manager

BIT

and/or

JED file

3rd Party

HDL

Simulator
Flow

Engine

Foundation

Gate-Level

Simulation

VITAL

Simulation

Library

HDL

Testbench

LogiBLOX

COREgen

EDIF Netlist

(Timing optional)

XNF NGO

book : intro 6 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

1-6 Xilinx Development System

book : blackbox 1 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement — 0401721 2-1

Chapter 2

Black Box Instantiation

This chapter describes how to create modular designs using
Foundation 1.4 with Foundation Express.

LogiBLOX RAM Modular Design Using VHDL
This section explains how to instantiate a LogiBLOX module into a
VHDL design using Foundation 1.4 with Foundation Express.

1. Using LogiBLOX, create a RAM module. LogiBLOX for
Foundation Express must be started outside of Foundation so
that you can set the vendor. To start LogiBLOX, select Start →
Programs → Xilinx Foundation Series → LogiBLOX .
When setting up LogiBLOX in the Setup window, set the Vendor
to Synopsys and the Bus Notation as B<I>, as shown in the
following figure. You must also define the Project Directory or
LogiBLOX will build modules in default_directory\bin\nt.

book : blackbox 2 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

2-2 Xilinx Development System

Figure 2-1 LogiBLOX Vendor Setup

In this example, a RAM48X4S is created. Within the Options tab
in the Setup window, select VHDL template and NGO file, as
shown in the following figure.

Figure 2-2 LogiBLOX Options Setup

2. Next, define the type of LogiBLOX module and its attributes. The
Module Name specified for the LogiBLOX module is used as the
name of the instantiation in the VHDL code.

book : blackbox 3 Thu Jan 8 08:57:38 1998

Black Box Instantiation

Foundation Express Application Note Supplement 2-3

Figure 2-3 LogiBLOX Module Selector GUI

When the OK button is pressed, the LogiBLOX module is created.
This module is a collection of several files, including an .ngo file,
(the file merged by NGDBuild) and a .vhi file (used as an
instantiation reference). Make sure the .ngo file is located in your
Xilinx project directory.

book : blackbox 4 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

2-4 Xilinx Development System

Figure 2-4 .VHI File Created by LogiBLOX

The component name is the name given to the LogiBLOX module
in the GUI. The port names are the names provided in the .vhi
file.

3. Using the .vhi file as a reference, write your VHDL code to
instantiate the LogiBLOX RAM module. See the following figure
as an example.

book : blackbox 5 Thu Jan 8 08:57:38 1998

Black Box Instantiation

Foundation Express Application Note Supplement 2-5

Figure 2-5 VHDL File With LogiBLOX Instantiation

For each .ngo file from LogiBLOX, you may have one or more
VHDL files with the .ngo file instantiated. In this example, there
is only one black box instantiation of memory, but multiple calls
to the same module may be done.

4. Read, update (Synthesis → Update), and then implement
(Synthesis → Create Implementation) the design in
Foundation Express.

book : blackbox 6 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

2-6 Xilinx Development System

Figure 2-6 Design Implemented Within Foundation Express

5. (Optional) After implementing the design, select the
implemented design from the Chips window and then select
Synthesis → Edit Constraints . Set all constraints for the
design within the listed tabs. Close the Implementation window.
For more information about constraints, refer to the “Timing
Constraints with Foundation Express” chapter.

6. Optimize the design by selecting Synthesis → Optimize
Chip .

book : blackbox 7 Thu Jan 8 08:57:38 1998

Black Box Instantiation

Foundation Express Application Note Supplement 2-7

Figure 2-7 Design Optimized Within Foundation Express

7. With the optimized design selected, write out the XNF file by
selecting Synthesis → Export Netlist . Express does not
write out an XNF file for the instantiated LogiBLOX component.

8. Take the XNF files written by Express and the .ngo files written
by LogiBLOX and process the design through the Xilinx Design
Implementation software.

book : blackbox 8 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

2-8 Xilinx Development System

LogiBLOX RAM Modular Design Using Verilog
This section explains how to instantiate a LogiBLOX module into a
Verilog design using Foundation 1.4 with Foundation Express.

1. Using LogiBLOX, create a RAM module. LogiBLOX for
Foundation Express must be started outside of Foundation so
that you can set the vendor. To start LogiBLOX, select Start →
Programs → Xilinx Foundation Series → LogiBLOX .
When setting up LogiBLOX in the Setup window, set the Vendor
to Synopsys and the Bus Notation as B<I>, as shown in the
following figure. You must also define the Project Directory or
LogiBLOX will build modules in default_directory\bin\nt.

Figure 2-8 LogiBLOX Vendor Setup

2. In this example, a RAM48X4S is created. Within the Options tab
in the Setup window, select Verilog template and NGO file, as
shown in the following figure.

book : blackbox 9 Thu Jan 8 08:57:38 1998

Black Box Instantiation

Foundation Express Application Note Supplement 2-9

Figure 2-9 LogiBLOX Options Setup

3. Next, define the type of LogiBLOX module and its attributes. The
Module Name specified for the LogiBLOX module is used as the
name of the instantiation in the Verilog code.

Figure 2-10 LogiBLOX Module Selector GUI

book : blackbox 10 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

2-10 Xilinx Development System

When the OK button is selected, the LogiBLOX module is
created. This process creates a number of files, including an .ngo
file, which is a file merged by NGDBuild, and a .vei file, which is
used as an instantiation reference.

Figure 2-11 .VEI File Created by LogiBLOX

4. Using the .vei file as a reference, write your Verilog code to
instantiate the LogiBLOX RAM module. Refer to the “Verilog
File With LogiBLOX Instantiation” figure.

The component name is the name given to the LogiBLOX module
in the GUI. The port names are the names provided in the .vei
file.

book : blackbox 11 Thu Jan 8 08:57:38 1998

Black Box Instantiation

Foundation Express Application Note Supplement 2-11

Figure 2-12 Verilog File With LogiBLOX Instantiation

You now have an .ngo file from LogiBLOX, and one or more
Verilog files with the .ngo file instantiated. In this example, there
is only one instantiation of “memory”, but multiple calls to the
same module may be done.

5. Using the .vei file as a reference, create an empty Verilog module
to represent the black box module. See the following figure.

Figure 2-13 Empty Verilog Module Representing Black Box
Module

book : blackbox 12 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

2-12 Xilinx Development System

6. Read, update (Synthesis → Update), and then implement
(Synthesis → Create Implementation) the design in
Foundation Express.

Figure 2-14 Design Implemented Within Foundation Express

7. (Optional) After implementing the design, select the
implemented design from the Chips window and then select
Synthesis → Edit Constraints . Set all constraints for the
design within the listed tabs. Close the Implementation window.
For more information about constraints, refer to the “Timing
Constraints with Foundation Express” chapter.

8. Optimize the design by selecting Synthesis → Optimize
Chip .

9. Write out the XNF file by selecting Synthesis → Export
Netlist . Express does not write out an XNF file for the
instantiated LogiBLOX component.

book : blackbox 13 Thu Jan 8 08:57:38 1998

Black Box Instantiation

Foundation Express Application Note Supplement 2-13

10. Take the XNF files written by Express and the .ngo files written
by LogiBLOX and process the design through the Xilinx Design
Implementation software.

Instantiating an XNF file in VHDL or Verilog
This section explains how to instantiate an XNF file into a VHDL or
Verilog design using Foundation 1.4 and Foundation Express. This
procedure only works for Unified Library XNF files.

1. Open the XNF file with a text editor. Search for the string
LCANET.

The LCANET line must be either LCANET, 5 or LCANET, 6. If
the search for LCANET turns up an LCANET, 4 or earlier, this
XNF file cannot be used in the M1 flow. Please see the M1
Conversion Guide on the Xilinx website for details on handling
pre-Unified XNF files (LCANET, 4 or earlier).

The name of the XNF file must be the name of the "component"
instantiation in the VHDL code or the name of the "module"
instantiation in the Verilog code.

2. To attach the XNF module in the VHDL/Verilog code, use the
nets named in the PIN records and/or SIG records in the XNF file
as the port names of the component instantiation. The following
figure shows an example XNF file with PIN and SIG records.

Figure 2-15 Portion of XNF File

To reference buses in the instantiation of XNF modules, the nets
named in PIN records and/or SIG records must be of the form.

netname<number>

This designation allows the bus to be referenced in the VHDL
component as a vector data type.

book : blackbox 14 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

2-14 Xilinx Development System

3. Using the filename of the XNF file as the name of the component
and the name of nets in the XNF file as port names, instantiate the
XNF file in the VHDL/Verilog code.

4. Take all VHDL/Verilog design files, read, update (Synthesis →
Update), and then implement (Synthesis → Create
Implementation) the design in Foundation Express.

5. (Optional) After implementing the design, select the imple-
mented design from the Chips window and then select
Synthesis → Edit Constraints . Set all constraints for the
design within the listed tabs. Close the Implementation window.
For more information about constraints, refer to the “Timing
Constraints with Foundation Express” chapter.

6. Optimize the design by selecting Synthesis → Optimize
Chip .

7. With the optimized design selected, write out the XNF file by
selecting Synthesis → Export Netlist . Express does not
write out an XNF file for the instantiated LogiBLOX component.

8. Take the XNF file from Express and XNF file instantiated in the
VHDL/Verilog code and process with the Xilinx Design
Implementation software.

Instantiating an EDIF file into an HDL Design
This procedure shows how to instantiate a purely schematic design
from Foundation into Foundation Express. This procedure uses
Foundation Express as the top level design with the Foundation
Schematic Editor as the module generator.

1. Create a project in the Foundation Project Manager. Name the
project you want to use for instantiating the schematic in the
HDL code. If the project name is “big”, then in Verilog the
module name for the instantiated schematic is “big”.

2. Create a schematic in the Foundation Schematic Editor. This
schematic must not have I/O library components like IBUF,
OBUF, OBUFT. In the schematic, use I/O terminals in place of
I/O components. The name of the I/O terminals will be the name
of the pins for the instantiation in the HDL code. The schematic
may contain hierarchy.

book : blackbox 15 Thu Jan 8 08:57:38 1998

Black Box Instantiation

Foundation Express Application Note Supplement 2-15

Figure 2-16 test1 Design with I/O Terminals

3. After creating the schematics for the design, create an EDIF file
by selecting Options → Export Netlist .

This step creates an EDIF file in the Foundation Project Manager.
The EDIF file will have the extension .edn, and the project name
will be the name of the EDIF file.

4. Instantiate the Foundation schematic.

a) For Verilog, instantiate the Foundation schematic, using the
project name as the instantiated module name and the name
of the I/O terminals as the name of the pin. In this example,
the EDIF file was created in a project called test1.

Figure 2-17 Verilog Instantiation Example

b) For VHDL, instantiate the Foundation schematic, using the
project name as the instantiated module name and the name
of the I/O terminals as the name of the pin. In this example,
the EDIF file was created in a project called test1.

book : blackbox 16 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

2-16 Xilinx Development System

Figure 2-18 VHDL Instantiation Example

5. Take all VHDL/Verilog design files, read, update
(Synthesis → Update), and then implement
(Synthesis → Create Implementation) the design in
Foundation Express.

6. After implementing the design, select the implemented design
from the Chips window and then select Synthesis → Edit
Constraints .

7. Set all constraints for the design within the listed tabs. Close the
Implementation window. For more information about
constraints, refer to the “Timing Constraints with Foundation
Express” chapter.

8. Optimize the design by selecting Synthesis → Optimize
Chip .

9. Write out the XNF file by selecting Synthesis → Export
Netlist .

10. Take XNF files from Express and the EDN file from Foundation
and process with the Xilinx Design Implementation software. All
files must be located in the same directory before processing.

book : constraints 1 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement — 0401721 3-1

Chapter 3

Timing Constraints with Foundation Express

This chapter discusses the following:

• Constraints that Foundation Express can directly apply

• An overview of how to use M1 constraints with Foundation
Express as the top-level design tool or as a module generator for
Foundation schematics

• Information on how to reference instance names in XNF files
from Foundation; when constraints are needed that Foundation
Express cannot apply, a UCF file referencing instance names in
the XNF file must be made.

• Information on how to reference the instances inside LogiBLOX
RAM/ROM modules for creating UCF constraints

Applying Constraints with the Express GUI
After a design has been implemented in Foundation Express, M1
constraints can be applied to a design through three tabs in the
Implementation window. With the implemented design highlighted
in the Chips window, select Synthesis → Edit Constraints . See
the next two figures.

book : constraints 2 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

3-2 Xilinx Development System

Figure 3-1 Implemented Design

Figure 3-2 Constraints Spreadsheets

The Implementation window shown in the preceding figure has three
different tabs where M1 constraints can be applied: Clock, Paths, and
Ports.

book : constraints 3 Thu Jan 8 08:57:38 1998

Timing Constraints with Foundation Express

Foundation Express Application Note Supplement 3-3

• The Clocks tab allows you to specify overall speeds for the clocks
in a design.

• The Paths tab allows you precise control of point-to-point timing
in a design.

• The Ports tab allows OFFSETS, pullups/pulldowns, and pin
locations to be specified in a design.

The timing constraints specified in the Implementation window are
translated into FROM:TO timespecs and placed in the XNF file
Express output. Following is an example:

SYM, TS0, TIMESPEC, TS0=from:pads:to:tgrp_0_DFF=40ns, LIBVER=2.0.0
END

Currently, Express cannot apply all Xilinx M1 constraints to a netlist.

Constraints that Express can apply:

• FROM:TO timespecs which use FFS, LATCHES, and PADS

• Pin location constraints

• Slew rate

• Pullup / Pulldown

Constraints that Express cannot apply:

• TPSYNC

• TPTHRU

• TIG

• OFFSET:IN:BEFORE

• OFFSET:OUT:AFTER

• user-RLOCs, RLOC_ORIGIN, RLOC_RANGE

• non-I/O LOCs

• KEEP

• U_SET,H_SET,HU_SET

• user-BLKNM and user-HBLKNM

• PROHIBIT

book : constraints 4 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

3-4 Xilinx Development System

Express can create its own timegroups by grouping logic with
common clocks and clock enables. In addition, you can form user-
created timing subgroups by right clicking on an existing timing path
and choosing New Sub Path.

Xilinx Logical Constraints
In the M1 design flow, constraints or attributes that can be applied
within a schematic, netlist, or UCF file are known as logical
constraints. For constraints that cannot be applied using the
constraint GUI, a UCF file can be used to specify logical constraints.
Logical constraints restrict the placement or timing of logic in an
FPGA or CPLD design. In order to use a logical constraint correctly,
the "instance" name of the logic in a design must be used. Instance
names are XNF SYM record names, XNF SIG record names, XNF net
names, and EXT record names. For examples of reading these
instance names out of a XNF file from Express, refer to the following
figure.

Figure 3-3 XNF example

In the preceding figure, the SYM record name can be referenced by a
logical constraint by using the instance name, current_state_reg<4>.
A net called N10 or current_state<4> can also be used in a logical
constraint. EXT records correspond to pins used on a package. The
EXT records named CLK, DATA, and SYNCFLG can be referenced in
a pin locking constraint.

For more information on M1 constraints, refer to the “Attributes,
Constraints, and Carry Logic” chapter in the Libraries Guide.

book : constraints 5 Thu Jan 8 08:57:38 1998

Timing Constraints with Foundation Express

Foundation Express Application Note Supplement 3-5

Reading Instance Names from an XNF file for UCF
Constraints

In M1, UCF constraints are applied by referencing instance names
that are found in the XNF file. Instance names for logic in a design
can be found by reading the XNF file. Refer to XNF syntax in the
“XNF example” figure for the examples in this section. The following
examples illustrate valid entries within a UCF file.

• A TNM constraint can be applied to an FF by using the instance
name from the XNF file. Similarly, a LOC/RLOC can be applied:

INST “current_state_reg<4>” TNM=group1;
INST “current_state_reg<4>” LOC=CLB_R5C5;

By attaching a TNM to this flip-flop instance name, this flip-flop
can be referenced in a FROM:TO timing specification. Any
symbol that can have an M1 constraint applied is referenced by
using the string following the keyword: SYM.

• A pin on a device may be locked to a package-specific position by
referencing the EXT record name and adding the .PAD string:

INST “DATA.PAD” LOC=P124;

• An attribute which can be placed on a net, like KEEP or TNM,
can be referenced by referencing the netname on the PIN record
or SIG record:

NET “current_state<4>” KEEP;
NET “current_state<4>” TNM=group2;

A final note on referencing instance names from a XNF file: match the
case. M1 is case-sensitive. If the case of names in the XNF file is not
followed exactly, the M1 implementation software may not be able to
find (or may incorrectly find) an instance name for a constraint.

book : constraints 6 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

3-6 Xilinx Development System

Instance Names for LogiBLOX RAM/ROM
In the Foundation Express methodology, whenever large blocks of
RAM/ROM are needed, LogiBLOX RAM/ROM modules should be
instantiated by the user in the HDL code. With LogiBLOX RAM/
ROM modules instantiated in the HDL code, timing and/or
placement constraints on these RAM/ROM modules and the RAM/
ROM primitives that comprise these modules, are specified in a .ucf
file.

To create timing and/or placement constraints for RAM/ROM
LogiBLOX modules, you must know how many primitives are used
and how the primitives inside the RAM/ROM LogiBLOX modules
are named.

Calculating Primitives for a LogiBLOX RAM/ROM
Module

When a RAM/ROM is specified with LogiBLOX, the RAM/ROM
depth and width are specified. If the RAM/ROM depth is divisible
by 32, then 32x1 primitives are used. If the RAM/ROM depth is not
divisible by 32, then 16x1 primitives are used instead. In the case of
dual-port RAMs, 16x1 primitives are always used. Based on whether
32x1 or 16x1 primitives are used, the number of RAM/ROMs
primitives can be calculated.

For example, if a RAM48x4 was required for a design, RAM16x1
primitives would be used. Based on the width, there would be four
banks of RAM16x1's. Based on the depth, each bank would have
three RAM16x1's.

Naming Primitives in LogiBLOX RAM/ROM Modules
Using the example of a RAM48x4, the RAM primitives inside the
LogiBLOX would be named as follows:

MEM0_0 MEM1_0 MEM2_0 MEM3_0

MEM0_1 MEM1_1 MEM2_1 MEM3_1

MEM0_2 MEM1_2 MEM2_2 MEM3_2

Each primitive in a LogiBLOX RAM/ROM module has an instance
name of MEMx_y, where y represents the primitive position in the
bank of memory, and where x represents the bit position of the RAM/
ROM output.

book : constraints 7 Thu Jan 8 08:57:38 1998

Timing Constraints with Foundation Express

Foundation Express Application Note Supplement 3-7

Referencing LogiBLOX Entities
This section is written in terms of the Verilog example, using the files
illustrated in Figures 3-4 through 3-7. This section also applies to the
VHDL example in Figures 3-8 through 3-11. For information on
compiling these examples, see the “Black Box Instantiation” chapter.

LogiBLOX RAM/ROM modules in the M1 Foundation Express flow
are constrained using a UCF file.

LogiBLOX RAM/ROM modules instantiated in the HDL code can be
referenced by the complete hierarchical instance name. If a LogiBLOX
RAM/ROM module is at the top-level of the HDL code, then the
instance name of the LogiBLOX RAM/ROM module is just the
instantiated instance name. In the case of a LogiBLOX RAM/ROM
that is instantiated within the hierarchy of the design, the instance
name of the LogiBLOX RAM/ROM module is the full hierarchical
path to the LogiBLOX RAM/ROM. The hierarchy level names are
listed from the top level down and are separated by a "_".

In the Verilog example, the RAM32X1S is named "memory". The
memory module is instantiated in the Verilog module "inside" with
an instance name "U1". "inside" is instantiated in the top-level
module "test" with an instance name "U0". Therefore, the RAM32X1S
can be referenced in a UCF file as "U0_U1". For example, to attach a
TNM to this block of RAM, the following line could be used in the
UCF file:

INST “U0_U1” TNM=block1;

Since U0_U1 is composed of two RAM primitives, a timegroup called
block1 is created; the block1 TNM can be used throughout the UCF
file as a timespec end/start point, and/or U0_U1 could have a LOC
area constraint applied to it. If the RAM32X1S has been instantiated
in the top-level file and the instance name used in the instantiation is
U1, then this block of RAM can just be referenced by U1.

Sometimes it is necessary to apply constraints to the primitives that
compose the LogiBLOX RAM/ROM module. For example, if you
choose a floorplanning strategy to implement your design, it may be
necessary to apply LOC constraints to one or more primitives inside a
LogiBLOX RAM/ROM module. Consider the RAM32X2S example.
Suppose that each of the RAM primitives needs to be constrained to a
particular CLB location.

book : constraints 8 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

3-8 Xilinx Development System

Based on the rules for determining the MEMx_y instance names,
using the example from above, each of the RAM primitives can be
referenced by concatenating the full-hierarchical name to each of the
MEMx_y names. The RAM32x2S created by LogiBLOX will have
primitives named MEM0_0 and MEM1_0. So, CLB constraints in a
.ucf file for each of these two items would be:

INST “U0_U1/MEM0_0” LOC=CLB_R10C10;
INST “U0_U1/MEM0_1” LOC=CLB_R11C11;

In the following figure, the LogiBLOX module is contained in the
“inside UO” component.

Figure 3-4 Top-level Verilog File

The following figure illustrates the instantiated LogiBLOX module,
“memory U1”.

book : constraints 9 Thu Jan 8 08:57:38 1998

Timing Constraints with Foundation Express

Foundation Express Application Note Supplement 3-9

Figure 3-5 Verilog File with Instantiated LogiBLOX Module

When the LogiBLOX module is created, a .vei file is created,
which is used as an instantiation reference.

Figure 3-6 VEI File Created by LogiBLOX

Figure 3-7 UCF File for Verilog Example

book : constraints 10 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

3-10 Xilinx Development System

Figure 3-8 Top-level VHDL Example File

book : constraints 11 Thu Jan 8 08:57:38 1998

Timing Constraints with Foundation Express

Foundation Express Application Note Supplement 3-11

Figure 3-9 VHDL File with Instantiated LogiBLOX Module

Figure 3-10 .VHI File Created By LogiBLOX

book : constraints 12 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

3-12 Xilinx Development System

Figure 3-11 UCF File for VHDL Example

book : simulation 1 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement — 0401721 4-1

Chapter 4

Simulation With Foundation Express Netlists

Foundation Express is a synthesis tool only. This chapter outlines the
four simulation flows available when using Foundation Express as
the top-level design tool. This is not a chapter describing the details
of HDL simulation. It is assumed that readers of this chapter already
have HDL simulation knowledge. For more information about
simulation, refer to the Foundation Express User Guide. Also consult
the Logic Simulator manual from the Foundation Project Manager
(Help → Foundation Help Contents → Logic Simulator).

Simulation Flows in 1.4
In the M1 design methodology, there are four possible simulation
flows:

• Pre-synthesis RTL simulation (functional simulation)

• Post-synthesis pre-route simulation (post-translate simulation)

• Post-map pre-route simulation (post-map simulation)

• Post-par simulation (timing simulation).

Each of these simulation flows adds greater accuracy the closer the
design is to completion. By using the same testbench and comparing
the results at each of the simulation stages, you can be confident that
what was synthesized, and/or trimmed, matches your design
specification.

book : simulation 2 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-2 Xilinx Development System

Simulation of Modules/Black Box Designs
In the Foundation Express 1.4 design flow, you can instantiate black
box designs if Express is the top-level tool. Black box modules
instantiated in Express are LogiBLOX modules, LogiCORE, or
unified XNF files. By definition, these instantiated modules cannot be
simulated in the pre-synthesis RTL simulation flow, except for
LogiBLOX instantiations. Pre-synthesis RTL simulation means that
all behavior in the design is described in the HDL code. Instantiated
LogiBLOX can be simulated in pre-synthesis RTL simulation, since
the LogiBLOX tool can create behavioral HDL models which can be
used for pre-synthesis RTL simulation. Instantiated black boxes
without behavior, like an XNF file, can only be functionally simulated
after NGDBuild has been run.

Simulation Flows for Foundation Express
The following subsections briefly describe each of the simulation
flows.

Pre-Synthesis RTL Simulation
Pre-synthesis RTL simulation is traditionally known as functional
simulation. The main purpose of HDL functional simulation is to
determine if the behavior of the HDL is what is expected.

In the existing functional simulation flow with Express, functional
simulation is possible if the HDL code does not have instantiated
FFS, OBUF, and OBUFTs. Instantiated FFS, OBUF, and OBUFTs have
extra pins for simulation of the GSR and GTS. Instantiated
combinatorial logic, RAM/ROM primitives, or IO combinatorial
logic can be simulated. Instantiated LogiBLOX can also be simulated
by using the behavioral model produced by LogiBLOX. If there is no
way to avoid instantiation of FFS, OBUF, and/or OBUFTs, then
another type of simulation should be used: Post-synthesis pre-route
simulation (post-NGDBuild).

1. Collect all HDL files for the design you wish to simulate.

2. Create a testbench file.

3. Read in HDL files and testbench files into the HDL simulation
tool.

book : simulation 3 Thu Jan 8 08:57:38 1998

Simulation With Foundation Express Netlists

Foundation Express Application Note Supplement 4-3

The specific procedures for this flow depend on the HDL simulator.
Please consult your HDL simulator documentation for more
information.

Post-Synthesis Pre-Route Simulation
Post-synthesis pre-route simulation is another simulation flow in M1.
Like pre-synthesis RTL simulation, it is a functional simulation.
However, unlike pre-synthesis RTL simulation, the behavior in this
type of simulation is post-synthesis. With this type of flow, the
synthesized logic behavior is evaluated. But unlike pre-synthesis RTL
simulation, it does not matter if there are instantiated FFS, OBUF,
and/or OBUFTs since NGDBuild (Translate) converts all logic in the
design to simulation primitives (SIMPRIMS). Logic converted to
SIMPRIMS can be simulated by the Xilinx Verilog or VITAL
simulation libraries. The logic simulated in this flow has not been
trimmed. It is always possible that trimming of a design could change
behavior. In the M1 flow, there is no flow to verify that logical
trimming has not changed the design behavior.

1. Synthesize HDL code in Foundation Express to an XNF file.

2. Open the Xilinx Design Manager by selecting Start →
Programs → Xilinx Foundation Series → Design
Manager . Do not open the Design Manager via the Foundation
Project Manager.

3. Open the XNF file in the Xilinx Design Manager.

Perform the following steps:

a) After the Design Manager main window opens, create a new
project directory by selecting File → New Project .

b) In the New project dialog box, select the Browse button for
the input design.

c) Select XNF files from the Files of Type list box. Locate the
XNF from the Look in list box. Click OK.

d) Select Design → New Version . Enter a new version and
click OK.

e) Select Design → New Revision . Enter a new revision and
click OK.

book : simulation 4 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-4 Xilinx Development System

f) If you have any instantiated NGO, EDIF or XNF files in your
design, make sure these files are located in the project
directory.

4. Run Translate from the Design Manager to create an .ngd file.
Translate produces an .ngd file with the device family name (for
example, xc4000e.ngd) that is located in the version directory.
Copy this file into your project directory—the one that contains
the XNF file and any instantiated NGO, EDIF, XNF files.

5. Open a DOS window.

6. From the DOS command line. Run NGD2VHDL or NGD2VER on
the .ngd file produced by Translate. Use the appropriate
command line options for NGD2VHDL or NGD2VER
appropriate to your HDL simulator. The basic syntax without
any options is as follows:

ngd2ver input_file.ngd output_file.v

ngd2vhdl input_file.ngd output_file.vhd

Make sure that you specify an output_file name that does not
overwrite an existing file.

For more information on NGD2VER and NGD2VHDL, see the
“NGD2VER” chapter and the “NGD2VHDL” chapter of the
Development System Reference Guide.

7. Combine the behavioral .v file or .vhd file with the testbench file
and simulate.

Post-Map Pre-Route Simulation (FPGAs Only)
A third type of simulation is post-map pre-route simulation. The M1
MAP tool trims redundant logic from a design and maps logic to the
appropriate technology. Simulating after a design is mapped allows
you to verify that the trimmed and mapped design behavior is still
consistent with pre-synthesis RTL simulation and post-synthesis pre-
route simulation.

Like post-synthesis pre-route simulation, instantiated FFS, OBUF,
and OBUFTs do not make a difference, since all the logic in the design
has already been transformed into SIMPRIMS.

book : simulation 5 Thu Jan 8 08:57:38 1998

Simulation With Foundation Express Netlists

Foundation Express Application Note Supplement 4-5

1. Synthesize HDL code in Foundation Express to create an XNF
file.

2. Open the Xilinx Design Manager by selecting Start →
Programs → Xilinx Foundation Series → Design
Manager . Do not open the Design Manager via the Foundation
Project Manager.

3. Open the XNF file in the Xilinx Design Manager.

Perform the following steps:

a) After the Design Manager main window opens, create a new
project directory by selecting File → New Project .

b) In the New project dialog box, select the Browse button for
the input design.

c) Select XNF files from the Files of Type list box. Locate the
XNF from the Look in list box. Click OK.

d) Select Design → New Version . Enter a new version and
click OK.

e) Select Design → New Revision . Enter a new revision and
click OK.

f) If you have any instantiated NGO, EDIF, or XNF files in your
design, make sure these files are located in the project
directory along with the XNF file.

4. From the Design Manager, run the design through Translate and
Map to create an .ncd file. Map produces an .ncd and an .ngm file
from the .ngd file created by Translate. The .ncd file that is created
is named map.ncd. The file is located in the revision directory.
Copy this file into your project directory—the one that contains
the XNF file and any instantiated NGO, EDIF, or XNF files.

5. Open a DOS window.

6. From the DOS command line, run NGDANNO command to
create an .nga file. The basic syntax of the command is as follows:

ngdanno -o output_file.nga map.ncd map.ngm

book : simulation 6 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-6 Xilinx Development System

7. From the DOS command line, run NGD2VHDL or NGD2VER on
the .nga file produced by NGDANNO. Use the appropriate
command line options for NGD2VHDL or NGD2VER
appropriate to your HDL simulator. The basic syntax without
any options is as follows:

ngd2ver input_file.nga output_file.v

ngd2vhdl input_file.nga output_file.vhd

Make sure that you specify an output_file name that does not
overwrite an existing file.

For more information on NGD2VER and NGD2VHDL, see the
“NGD2VER” chapter and the “NGD2VHDL” chapter of the
Development System Reference Guide.

8. Combine the behavioral .v file or .vhd file with the testbench file
and simulate.

Post-PAR Simulation
The last type of simulation in the M1 flow is the traditional HDL
timing simulation. In this simulation, all timing due to logic levels
and routing is taken into account, along with behavior of the trimmed
and mapped logic. Timing information for a design is back-annotated
into an SDF file. Separation of the timing information into an SDF file
has several advantages.

• Timing information separated into a SDF file allows the Xilinx
design to be simulated in many third party HDL simulators of
choice.

• Separation of timing into an SDF file allows for the increased
speed of timing simulation. Consult your HDL simulator
owner’s manual for more information on SDF features.

1. Synthesize HDL code in Foundation Express to create an XNF
file.

2. Open the Xilinx Design Manager by selecting Start →
Programs → Xilinx Foundation Series → Design
Manager . Do not open the Design Manager via the Foundation
Project Manager.

3. Open the XNF file in the Xilinx Design Manager.

book : simulation 7 Thu Jan 8 08:57:38 1998

Simulation With Foundation Express Netlists

Foundation Express Application Note Supplement 4-7

Perform the following steps:

a) After the Design Manager main window opens, create a new
project directory by selecting File → New Project .

b) In the New project dialog box, select the Browse button for
the input design.

c) Select XNF files from the Files of Type list box. Locate the
XNF from the Look in list box. Click OK.

d) Select Design → New Version . Enter a new version and
click OK.

e) Select Design → New Revision . Enter a new revision and
click OK.

f) If you have any instantiated NGO, XNF, or EDIF files in your
design, make sure these files are located in the project
directory.

4. With the revision highlighted in the Design Manager main
window, select Tools → Flow Engine .

5. Select Setup → Options . Select Produce Timing Simulation
data.

6. To create VHDL or Verilog simulation data and back annotation,
perform the following steps.

a) Click Edit Template for the Implementation template.

b) Within the Interface tab of the Implementation Options
window, select VHDL or Verilog from the Format field.

c) Select Correlate Simulation Data to Input Design.

d) Click OK in the Implementation Options dialog box.

e) Click OK in the Options dialog box.

7. From the Flow Engine window, select Setup → Stop After .

8. Select Timing from the Stop After list box and then click OK.

9. Run the design through the Design Manager Flow Engine by
selecting Flow → Run. Depending on whether you created
VHDL or Verilog simulation data, a time_sim.v or time_sim.vhd
file is created in your project directory. In addition, a time_sim.sdf
file with complete timing data is also produced.

book : simulation 8 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-8 Xilinx Development System

10. Combine the behavioral .v file or .vhd file with the testbench file
and simulate.

Simulating a Design With the Foundation Logic
Simulator

If Foundation Express is used as the top-level design-entry tool, or if
a Foundation Schematic is used as the top-level design with HDL
macros in the schematic, the Foundation 1.4 gate-level simulator can
be used for functional and timing simulation. Simulation using the
gate simulator requires that a flat netlist be created before the
simulator can be used. In the Foundation 1.4 flow, where Foundation
Express is the top-level tool, there are six types of designs that can be
simulated:

a) Pure HDL code

b) HDL code with instantiated LogiBLOX

c) HDL code with instantiated LogiCORE

d) HDL code with instantiated XNF

e) HDL code with instantiated EDIF from 1.4

f) HDL code which is a combination of one or more of b, c, d,
and/or e.

Based on the six design types above and the four simulation flows
available in Foundation 1.4, detailed instructions on simulation are
described. Where possible, these instructions are GUI based. For the
post-Translate and post-map flows, it may be necessary to run
commands in a DOS shell.

Foundation 1.4 Project Structure Overview
In Foundation 1.4, when a project is defined in the Foundation Project
Manager, you must specify the project name and the location of the
project directory. Within the selected project location, a directory
named after the project name is created along with a .pdf file (project
directory file). The .pdf file contains project information regarding the
design files and libraries in the project.

book : simulation 9 Thu Jan 8 08:57:38 1998

Simulation With Foundation Express Netlists

Foundation Express Application Note Supplement 4-9

After defining the project, files can be added to the project by
selecting Document → Add. Design files for a project can reside in
any location. In the interest of organization, your design files should
occupy the directory named after the project.

Foundation Express Project Structure Overview
Like the Project Manager, you must specify the project name and
location. The project name becomes a directory inside the project
location. Inside the directory named after the project, Foundation
Express creates two items: a Workspace directory, which is used by
Foundation Express during synthesis, and an .exp file, which
contains project information. Design files for a Foundation Express
project can reside in any location, although Xilinx recommends the
project directory. Similarly, after synthesizing a design, you may
place the resulting XNF file in any location, although Xilinx
recommends that this file be placed within the Foundation project
directory.

Creating the Foundation Express Project Structure
Follow these procedures to create a Foundation Express Project.

1. Start the Xilinx Foundation Project Manager.

Figure 4-1 Foundation Project Manager Icon

2. Select File → New Project to create a new project in the
directory of your choice.

book : simulation 10 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-10 Xilinx Development System

Figure 4-2 Defining a New Project in the Foundation Project
Manager

Figure 4-3 Specifying Project Name

book : simulation 11 Thu Jan 8 08:57:38 1998

Simulation With Foundation Express Netlists

Foundation Express Application Note Supplement 4-11

Figure 4-4 Foundation Project Manager Project Defined

3. Using the Explorer, create a subdirectory called “express” inside
the directory where the Foundation project was created.

4. Using the Explorer, copy all HDL files into the express
subdirectory. Create new HDL files for the Foundation Express
project within this directory.

5. Start Foundation Express (Start → Programs → Xilinx
Foundation Series → Foundation Express).

6. Create a Foundation Express project inside the express
subdirectory (File → New).

book : simulation 12 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-12 Xilinx Development System

Figure 4-5 Making a New Foundation Express Project

7. Add files to the Foundation Express project from the express
subdirectory.

book : simulation 13 Thu Jan 8 08:57:38 1998

Simulation With Foundation Express Netlists

Foundation Express Application Note Supplement 4-13

Figure 4-6 Adding HDL files to a Foundation Express Project

Using the Logic Simulator with Express Designs
If you are not familiar with the basic operations of the simulator, refer
to the “Functional Simulation” chapter in the Foundation Series User
Guide.

1. Create a Foundation Express project structure. See the
“Foundation Express Project Structure Overview” section for
details.

2. When generating the XNF file from Foundation Express, be sure
that this file is saved into the Foundation project directory. In this
example, this directory is c:\fndtn\active\projects\test.

When using the Foundation 1.4 Logic Simulator, the flow varies
slightly depending on whether the top-level design file is the HDL
file from Express or a Schematic from Foundation.

To simulate a Foundation Schematic with instantiated XNF modules
from Foundation Express, perform the following steps:

book : simulation 14 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-14 Xilinx Development System

1. Refer to the “Schematic Based Design and Foundation Express”
chapter for instructions on importing the XNF files from Express
into the Foundation Schematic.

2. To functionally simulate the design, simply invoke the
Foundation Simulator by clicking the SIM Funct button in the
Foundation Project Manager and simulate as with any other
Foundation design.

To simulate a top-level HDL Express design using the Foundation 1.4
Logic Simulator:

1. Invoke the Xilinx M1 Design Manager from the Xilinx program
group (Start → Programs → Xilinx Foundation Series
→ Design Manager).

2. Create a new project, using the XNF file from Express as the input
file.

3. Create a new version and then a new revision, by selecting
Design → New Version , then Design → New Revision from
the Design Manager.

Figure 4-7 New Version and Revision Created

4. Run the Flow Engine and stop after Translate (Tools → Flow
Engine and then select Setup → Stop After).

book : simulation 15 Thu Jan 8 08:57:38 1998

Simulation With Foundation Express Netlists

Foundation Express Application Note Supplement 4-15

Figure 4-8 Flow Engine Set to Stop after Translate

5. Now, select Flow → Run in the Flow Engine.

6. When the Flow Engine is finished, return to the Foundation
Project Manager and select Tools → Checkpoint
Simulation .

book : simulation 16 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-16 Xilinx Development System

Figure 4-9 Checkpoint Simulation

An .ngd file displays in the Checkpoint Simulation window. The
file name has the same name as the device family of the project.
The extension is .ngd. In this example, since the project's device
family is the 4000EX, the .ngd file created is XC4000EX.ngd.

7. Select the design listed in the Checkpoint Simulation window
and click OK.

book : simulation 17 Thu Jan 8 08:57:38 1998

Simulation With Foundation Express Netlists

Foundation Express Application Note Supplement 4-17

Figure 4-10 Select OK to Convert .ngd File to EDIF

8. After selecting OK in the Checkpoint Simulation window, the
Project Manager indicates that NGD2EDIF is running. When
NGD2EDIF is finished, the Foundation simulator automatically
starts. Proceed with simulation by selecting the signals to
stimulate for the Signals → Add Signals . The signals listed
correspond to the top-level entity ports in VHDL or top-level
module ports in Verilog. For more information on using the
Foundation Simulator, please consult the Foundation Online
Help.

Timing Simulation using the Logic Simulator
This section explains how to perform timing simulation for top-level
schematic and HDL designs.

Top-level Schematics
1. Create a Foundation Express project. See the “Creating the

Foundation Express Project Structure” section for more details.

2. Place and route the design. In the Flow Engine, make sure that
the Produce Timing Simulation Data box is selected. If it is not,
select Setup → Options and check this option.

book : simulation 18 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

4-18 Xilinx Development System

Figure 4-11 Options Dialog Box

3. After implementing the design in the Design Manager, return to
the Foundation Project Manager and click the SIM Timing button
to start timing simulation.

Foundation automatically translates this back-annotated timing
netlist to an EDIF file and loads the simulator.

Top-level HDL Designs
1. Make sure the Xilinx project is located within the Foundation

project directory.

2. Place and route the design in the Design Manager. In the Flow
Engine, make sure that the Produce Timing Simulation Data box
is selected. If it is not, select Setup → Options and check this
option.

3. From the Foundation Project manager, select Tools →
Checkpoint Simulation . Select the design_name.nga file and
click OK.

book : schematics 1 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement — 0401721 5-1

Chapter 5

Schematic Based Design and Foundation
Express

This chapter describes the process for creating an HDL macro with
Foundation Express and then creating a symbol for this macro for
placement within a Foundation schematic. Foundation Express is the
macro generator, and Foundation is the top-level tool.

Creating HDL Macros with Foundation Express
This procedure describes the process for creating an HDL macro with
Foundation Express, and then creating a symbol for this macro for
placement within a Foundation schematic. In this procedure, Founda-
tion Express is the macro generator and Foundation is the top-level
tool.

Creating the Foundation Project
The Foundation project should be created first. If the project has not
yet been created, select File → New Project from the Foundation
Project Manager and choose the appropriate family and desired
project name. For more information on creating and working with
Foundation projects, please refer to the Foundation Series Quick Start
Guide 1.4 and Online Help.

Compiling HDL Code in Foundation Express
Create a project in Foundation Express, if the project does not already
exist, and synthesize the HDL design as described in the Foundation
Express Documentation. When performing the Create
Implementation step, be sure that the Do not insert I/O pads box is
checked.

book : schematics 2 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

5-2 Xilinx Development System

Figure 5-1 Do not insert I/O Pads

When performing the Export Netlist step in Foundation Express,
browse to the Foundation project directory created above and save
the netlist into this directory.

Importing the Netlist into Foundation Schematic
1. Open the Foundation project in the Foundation Project Manager.

2. To import the XNF netlist from Foundation Express into the
Foundation Schematic, select Hierarchy → Create Macro
Symbol from Netlist from the Schematic Editor.

Note: Foundation Express also creates an XSF file in addition to the
XNF file. Foundation uses the XSF file to create bus pins. If you move
the XNF file to the Foundation project, make sure you also move the
XSF file.

This selection imports the netlist into the Foundation project and
creates an associated symbol for placement on the schematic. The
symbol is automatically added to the Foundation project library.

3. To bring up the SC Symbols list, click the SC Symbols icon on the
vertical toolbar.

book : schematics 3 Thu Jan 8 08:57:38 1998

Schematic Based Design and Foundation Express

Foundation Express Application Note Supplement 5-3

4. To place the symbol on the schematic, browse through the SC
Symbols list of library components to find the module. The name
of the module will be the same as the name of the imported XNF
netlist.

Figure 5-2 SC Symbol Icon

5. Place the symbol on the schematic.

book : schematics 4 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

5-4 Xilinx Development System

book : custsup 1 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement — 0401721 6-1

Chapter 6

Xilinx Customer Support Information

For registration, authorization codes, update information, warranty
status, shipping, product issues, and technical support, call Monday
through Friday, 8 a.m. to 5 p.m. Pacific time.

Registration, Authorization, and Customer Service
• United States and Canada (1-800-624-4782)

• Europe (Contact your local Distributor)

• Japan (81-33-297-9912)

• Southeast Asia/All Other Countries (852-2424-5200)

• Facsimile Transmission (1-408-559-0115)

Technical Support

Hotline Access and Hours

Location Telephone Electronic Mail Hours

U.S. and Canada 1-800-255-7778 hotline@xilinx.com Mon, Tues, Wed, Fri:
6:30 a.m. – 5:00 p.m

Thurs:
6:30 a.m. – 4:00 p.m

Pacific Standard Time

Japan 81-33-297-9163 jhotline@xilinx.com Mon, Tues, Thurs, Fri:
9:00 a.m. – 5:00 p.m

Wed:
9:00 a.m. – 4:00 p.m

book : custsup 2 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

6-2 Xilinx Development System

• Technical Support FAX (24 hours/7 days) (1-408-879-4442)

• Internet E-mail Address (24 hours/7 days) (hotline@xilinx.com)

• Xilinx Worldwide Web Site (http://www.xilinx.com)

• Xilinx Student Edition Users (For all technical support and
further information, see http://www.xilinx.com/programs/
univ.htm.)

Training
• Xilinx Training Administrator (1-408-879-5090)

• International customers, contact your local sales representative or
distributor.

France 33-1-3463-0100 frhelp@xlinx.com Mon – Fri:
9:30 a.m. – 12:30 p.m
2:00 p.m. – 5:30 p.m

Germany 49-89-9915-4930 dlhelp@xilinx.com Mon – Thurs:
8:00 a.m. – 12:00 p.m
1:00 p.m. – 5:00 p.m

Fri:
8:00 a.m. – 12:00 p.m
1:00 p.m. – 3:00 p.m

United Kingdom 44-1-932-820821 ukhelp@xilinx.com Mon – Thurs:
9:00 a.m. – 12:00 p.m
1:00 p.m. – 5:30 p.m

Fri:
9:00 a.m. – 12:00 p.m
1:00 p.m. – 3:30 p.m

Location Telephone Electronic Mail Hours

book : bookIX.doc 1 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement — 0401721 I-1

Index

A
area constraints, 3-3
attributes, referencing on nets, 3-5

B
black boxes

instantiation, 2-1
simulating designs, 4-2

buses (XNF file instantiation), 2-13

C
case sensitivity, 3-5
CD-ROM contents, 1-1
Checkpoint Simulation, 4-16
Clocks tab, 3-2
constraint entry, with GUI, 1-2
constraints

applying to primitives, 3-7
applying with GUI, 3-1
area, 3-3
Clocks tab, 3-2
editing for Verilog, 2-12, 2-14
editing for VHDL, 2-6, 2-14
limitations in Express, 3-3
LogiBLOX RAM/ROM, 3-6
logical, 3-4
Paths tab, 3-3
Ports tab, 3-3
TNMs, 3-5
Xilinx M1 non-usable in Express, 3-3
Xilinx M1 usable in Express, 3-3

D
design flow diagram, 1-5

E
EDIF files

creating, 2-15
instantiating into Verilog, 2-14
instantiating into VHDL, 2-14
Verilog instantiation example, 2-15
VHDL instantiation example, 2-15

Export Netlist, 2-7, 2-12, 2-14, 2-15
EXT records, 3-4, 3-5

F
features, 1-2
flow, design, 1-5
FROM:TO timespecs, 3-3
functional simulation, limitations, 4-2

G
graphical constraint entry, 1-2
graphical user interface, 1-3
GSR mapping, 1-4
GUI, 1-3

H
HDL

files, adding to project, 4-13
macros, creating in Express, 5-1

book : bookIX.doc 2 Thu Jan 8 08:57:38 1998

Foundation Express Application Note Supplement

I-2 Xilinx Development System

I
I/O

cells, 2-14
pads, 5-2
terminals, 2-14

implement
Verilog, 2-12, 2-14
VHDL, 2-5, 2-14

instance names
case sensitivity, 3-5
for UCF files, 3-5
LogiBLOX RAM/ROM, 3-6

instantiation
black boxes, 2-1
EDIF files into Verilog, 2-14
EDIF files into VHDL, 2-14
LogiBLOX into Verilog files, 2-8
LogiBLOX into VHDL files, 2-1, 2-5
XNF files into Verilog, 2-13
XNF files into VHDL, 2-13

L
LCANET, 2-13
LogiBLOX

.vei files, 2-10

.vhi files, 2-3, 2-4
calculating primitives, 3-6
initiating from Program group, 2-1, 2-8
instance names for RAM/ROM
modules, 3-6
instantiated in Verilog, 3-9
instantiated in VHDL, 3-11
instantiating in Verilog designs, 2-8
instantiating in VHDL designs, 2-1
naming primitives, 3-6
referencing in Express, 3-7
referencing in UCF files, 3-7
referencing primitives, 3-7

Logic Simulator, using with designs, 4-8,
4-13

logical constraints, 3-4

N
NET record names, 3-5
netlists, importing into Express, 5-2
NGD2VER, 4-4, 4-6
NGD2VHDL, 4-4, 4-6
NGDANNO, 4-5

O
Optimize

Verilog, 2-12, 2-14
VHDL, 2-6, 2-14

P
Paths tab, 3-3
PIN names, 3-4
PIN records, 2-13
pins, locking to a package, 3-5
Ports tab, 3-3
post-map pre-route simulation, 4-4
post-par simulation, 4-6
post-synthesis pre-route simulation, 4-3
pre-synthesis RTL simulation, 4-2
primitives

applying constraints to, 3-7
for LogiBLOX RAM/ROM, 3-6
naming in LogiBLOX modules, 3-6

project structure
creating for Foundation Express, 4-9
Foundation 1.4, 4-8
Foundation Express, 4-9

S
schematics

instantiating into Verilog, 2-14
instantiating into VHDL, 2-14

SIG names, 3-4
SIG records, 2-13
simulation

black box designs, 4-2
Logic Simulator, 4-8, 4-14
modules, 4-2

book : bookIX.doc 3 Thu Jan 8 08:57:38 1998

Index

Foundation Express Application Note Supplement I-3

post-map pre-route, 4-4
post-par, 4-6
post-synthesis pre-route, 4-3
pre-synthesis RTL, 4-2
timing, 4-17
types, 4-1

SYM record names, 3-4
synthesis

Verilog, 2-12
Verilog designs, 1-4

T
timing simulation, 4-17
TNM constraints, 3-5

U
UCF files

example, 3-9, 3-12
referencing LogiBLOX, 3-7
using instance names from XNF files,

3-5
update

Verilog, 2-12, 2-14
VHDL, 2-5, 2-14

V
VEI files, 2-10, 3-9
Verilog

EDIF instantiation example, 2-15
editing constraints, 2-12, 2-14
example file, 3-8
file with instantiated LogiBLOX, 3-9
implementing, 2-12, 2-14
LogiBLOX instantiation, 2-8
optimizing, 2-12
schematic instantiation, 2-14
synthesizing, 2-12
UCF files, 3-9
updating, 2-12
with Foundation Express enabled, 1-4
writing out XNF files, 2-12

XNF file instantiation, 2-13
VHDL

EDIF instantiation example, 2-15
editing constraints, 2-14
example file, 3-10
file with instantiated LogiBLOX, 3-11
implementing, 2-14
LogiBLOX instantiation, 2-5
optimizing, 2-6
schematic instantiation, 2-14
UCF files, 3-12
XNF file instantiation, 2-13

VHI files, 2-3, 2-4, 3-11

X
XNF files

instance names for UCF files, 3-5
instantiating into Verilog, 2-13
instantiating into VHDL, 2-13
referencing buses, 2-13
writing out for Verilog, 2-12, 2-14
writing out for VHDL, 2-7, 2-14

XNF netlists, importing into schematics,
 5-2

book : back 5 Thu Jan 8 08:57:38 1998

Printed in U.S.A. © 1998 Xilinx, Incorporated

The Programmable Logic CompanySM

R

0401721

