ECE352 Computer @anization Il
Department of Electrical and Computer Engineering
University of Toronto

Project: Simple Processor Implementation

In this lab, you will implement a simple 16-bit processor in the FLEX10k70 FPGA located on the
Ultragizmo board. The processor will be ablexeate a limited set of instructions which will be
stored in the SRAM also located on the Ultragizmo board. In addition to designing the circuitry
for the processoyou will also need to design an SRAM controller to access the SRAM.

Your design should ka two modes of operation. In the first mode of operation, 68000 accesses to
the SRAM are enabled. This mode enables the user to store instructions to the SRAM (that the
simple processor wilbecute) and read data from the SRAM (that the simple processor has mod-
ified). In this mode, the simple processor will be idle. The second mode will disable 68000
accesses and start the simple processdnis mode, the simple processor can access the SRAM.
Use one of the switches on the protoboard to set the mode (‘0’- m68k, ‘1’- processor). Call this
signalm68k_mastet

High Level Organization

The figure belar shavs haw the processor interacts with the outsidelad. The processor is able
to address 512 evds of the SRAM (256 for code, 256 for user dataj ¥hould implement the
datapath such that all instructions are located in the address space from Oy2btafaddress
referenced by bad/store instruction should be mapped266+A. This preents the user from
accidently @erwriting their code.

j, SramAddr[8..0]
I

| SramData[15..0]
I

L

Data_from_Sram[15..0

|
|
|
I § Datapath il
(7 | Sram_Read SRAM
-
: g : Sram_Write - Controller SRAM
| O |
| v b
: Control Circuit :
e — o FLEX10K70

Data/Instruction reads are accomplished by assertin§rima_Readsignal and latching the
value on thdata_from_Srambus after a sticiently long delayData writes are accomplished
by asserting th&ram_Write signal with the dataalue on the&SramData bus.

1. The Simple Pocessor
A block diagram of the simple processor you are to implementes @n the follaving page.

PC_n PC_RO
PC[15..0] B
-
SramAddr[8..0] —»
RO_in
RO[15..0]
I P SramData[15..0—»
R1 in
R1[15..0]
Read SRAM >
Write
R2_in
¢ »| FR2.0 Write SRAM| o
Read
R3 in
R3[15..0] Data_from_SRAM[15..0]
.
IR_in PortOUT[7..0] ——»
PortOUT _in
IR[15..0] _
Temp_in POF“N[?..O] -——
Temp[15..0]
>
I * Config[7..0]
v Config_in
Inc —
\/ Count[15..0] | ent-clk
Add
Sub ALU §
=
y 5 5 5
S 2w
S 5 €
S Z[15..0] s 3 LSL
| RR
YYVYVVVVYYY
MUX A ENCODER
Prireed
235335532
O & lgl o - c% ™
a = @roeoo

A brief description of some of the components in the processaeis gji the table. Although not
indicated in the block diagram, eaclgigter is connected to the same clock signal and global
reset. Also note thatgesters that are connected to thes Ihae an input enable called
register_name;,,. It controls when thealue on the s is stored in the gester

The SRAM interéce in the block diagramas not included in the table. It i©vth mentioning
that all signals that are output to the SRAM memory ajistered. Praiding combinational sig-
nals as outputs could cause glitches on these signals which in turn could cause corruption of

stored data.

Component Description
RO, R1, R2, R3 | Four general purposegisters that can be used for simple computa-
tions.

PC Theprogram counter holds the address of thexténstruction to be
fetched from memoryJpon fetching the instruction, the program
counter is incremented by the ALU so that it points to th instruc-
tion. The program counter should be initialized to ‘O’ on start-up.

IR Theinstruction register holds the instruction brought in from memory
This allons the processor to read other locations from memory without
loss of the current instruction.

ALU A simple ALU which can add, subtract and increment tidaevat its
inputs.

Temp A register that holds an intermediate or temporaye. It is useful
when the processor needs x@eute an addition or subtraction opera-
tion.

4 A register that holds the outpualie from the ALU. Agin this plays an
important role in ay arithmetic operation.

S A register to hold a status bit called “zero”. It indicates whether the
result of a subtraction is equal to zero.
PortOUT[7..0] | A register used for I/O whose outputs are connected to pins on the pro-
cessorlt is used to write data toernal deices (e.g. LEDs).
PortIN[7..0] A register used for I/O whose inputs are connected to pins on the pro-
cessorlt is used to read data fromternal deices (e.g. switches).
Count A 16-bit counter which can be used to tirver@s. Note that the
counter is connected to arternal clockcnt_clock.
Config [7..0] A register to hold the configuration bits for the coun@urrently only
one bit will be used to enable the counter
MUX - Encoder | Allows data on s according to which signal is asserted on the encpder

The SramAddr is generated by a multipler that selects between thewes ofPC andRO. This
functionality is needed because the SRAM address can eitheniigeprby thePC on instruc-
tion fetches or by gsterR0O on data accesses.

The SRAM_ReadandSRAM_Write signals are generatedyistered ersions of thé&kead and
Write signals asserted by your control circuit. BramData signals are igistered alues of the
bus lines. Thus data is constantly being sent to the SRAM mehawgver theSRAM_Write
signal must be asserted for memoayues to actually be changed.

Omitted from the block diagram is the control circuit for the proce#seill be described in
more detail after the discussion on instructions.
Instruction Format

All instructions are stored in the follang format:

OP-CODE X Y DATA

 OP-CODE is a 4-bit field that can describe up to 16 instructions. Only 7 instructions will be
needed for this lab

» X is a 2-bit field that indicates the destinatiogister for the operation.of example when X
is set to “01” then the destination referdb.

* Y is a 2-bit field that indicates the sourcgiseer for the operation.

* DATA is an 8-bit field used for holding constaatues for corresponding to the operation.
This field may not be needed by all operations. In these cases, it may be getaioan

Instructions
NAME OP-CODE ACTION
movi 0000 Ry — DATA
move 0001
Ry = Ry
load 0010
Ry « (Ry)
Load the contents of memory locati®y into Ry .
store 0011 (Ry) - Ry
add 0100
Ry « Ry *Ry
sub 0101
Ry = Ry=Ry
halt 0110 Stop executing Do no fetch apmore instructions.

NAME OP-CODE ACTION
bne 0111 PC - DATA if S#¥0
mvin 1000 Ry < Portin
mvout 1001 PortOUT < RY
mvcnt 1010 Ry « Count
mvcfg 1011 Config « Ry,

Control Circuitry

You are responsible for creating control circuitry thatks together with the datapath to imple-
ment the simple instruction set/gn. Your control circuit should be implemented as a state
machine which controls the input enable signals to tetes, the inputs to the encode€_RO,
Read, Write, Inc, Add and Sulou should bgin by draving a state diagram that details the
sequence of control steps needed to implement each instruction.

To start, consider that you will need the 4 steps at thmi@g of eery instruction to fetch the
current instruction from memarplace it in the instruction gester (R), and increment the pro-
gram counter to the reinstruction location.

T1 PCRO = PC, SRAMout, Read
T2 SRAMout, IRin
T3

PCout, Increment

T4 Zout, PCin

Your control circuit should also use @&-CODE, X, andY fields of the instruction ggster as
inputs, so that it can assert the appropriate outputs depending on the instruction fetched from
memory

2. Project Milestones

The project will last for 3 lab periods. At the end of each of the three lab periods you will be
marked based on the follang weekly goals.

Week 1

Implement the simple processor with the falliog instructionsmovi, move, load, store, add, sub
andhalt. You are not required to implement the counter or the 1/0O pgidtess for nw. For this

first part you also do not need to connect your processor to the SRAM on the Ultragizmo board.
To male things simpler initiallyit is recommended you use the RAM on the FLEX10K70. This

way you can fully test your processor in the simulgdaiemplate for the processor and the top
level design file is pnaded on the webpage. Also, a file called test.mif ivipied which will
shawv you hav to initialize the RAM in the FLEX10K70.

Week 2

Add the counterconfiguration rgister 1/0 port rgisters and the remaining instructions to your
implementation. Write some test code (a test.mif filexey@se each instruction.

Week 3

Connect your processor to the SRAM. Add an input signal calé®k masterto your control
circuit. Your processor shouldai until this signal goes Vo before attempting to fetch angee

cute amy instructions. Note that this is the same signal discussed in the introduction of the lab,
which also sems to multiple& address and control lines to the SRAM.

After you hae connected your simple processor to the SRAM, you will need to be able to write
instructions to the SRAM for your processor xe&ute. Instead of entering each instruction with
monitor commands, dmload an “assembly program” to the SRAM (just as yould ary other
assembly program to memory). The assembly program should only contampsaatement and

DC directives.

Write machine code for a reaction timer to keaaited on your processor implementation. Dem-
onstrate that it wrks.

