
ECE352 Computer Organization II
Department of Electrical and Computer Engineering

University of Toronto

Project: Simple Processor Implementation

In this lab, you will implement a simple 16-bit processor in the FLEX10k70 FPGA located on the
Ultragizmo board. The processor will be able to execute a limited set of instructions which will be
stored in the SRAM also located on the Ultragizmo board. In addition to designing the circuitry
for the processor, you will also need to design an SRAM controller to access the SRAM.

Your design should have two modes of operation. In the first mode of operation, 68000 accesses to
the SRAM are enabled. This mode enables the user to store instructions to the SRAM (that the
simple processor will execute) and read data from the SRAM (that the simple processor has mod-
ified). In this mode, the simple processor will be idle. The second mode will disable 68000
accesses and start the simple processor. In this mode, the simple processor can access the SRAM.
Use one of the switches on the protoboard to set the mode (‘0’- m68k, ‘1’- processor). Call this
signalm68k_master.

High Level Organization

The figure below shows how the processor interacts with the outside world. The processor is able
to address 512 words of the SRAM (256 for code, 256 for user data). You should implement the
datapath such that all instructions are located in the address space from 0-256. Any data addressA
referenced by aload/store instruction should be mapped to 256+A. This prevents the user from
accidently overwriting their code.

Data/Instruction reads are accomplished by asserting theSram_Read signal and latching the
value on theData_from_Sram bus after a sufficiently long delay. Data writes are accomplished
by asserting theSram_Write signal with the data value on theSramDatabus.

1. The Simple Processor

A block diagram of the simple processor you are to implement is given on the following page.

SRAM
Controller SRAM

Control Circuit

Datapath

SramAddr[8..0]

SramData[15..0]

Data_from_Sram[15..0]

Sram_Read

Sram_Write

P
ro

ce
ss

or

FLEX10K70

R2[15..0]

PC[15..0]

R0[15..0]

R1[15..0]

R3[15..0]

IR[15..0]

Temp[15..0]

Z[15..0]

ENCODER

P
C

ou
t

IR
ou

t
Z

ou
t

R
0o

ut
R

1o
ut

R
2o

ut
R

3o
ut

F
ro

m
S

R
A

M
ou

t

SramAddr[8..0]

SramData[15..0]

SRAM
Read

SRAM
Write

PortIN[7..0]

PortOUT[7..0]

Count[15..0]

Config[7..0]

PC_R0

S

Inc

Add

Sub
ALU

Read

Write

Data_from_SRAM[15..0]

P
or

tIN
ou

t

C
ou

nt
ou

t

PC_in

R0_in

R1_in

R2_in

R3_in

IR_in

Temp_in

Config_in

PortOUT_in

cnt_clk

BUS

MUX

A brief description of some of the components in the processor is given in the table. Although not
indicated in the block diagram, each register is connected to the same clock signal and global
reset. Also note that registers that are connected to the bus have an input enable called
register_namein. It controls when the value on the bus is stored in the register.

The SRAM interface in the block diagram was not included in the table. It is worth mentioning
that all signals that are output to the SRAM memory are registered. Providing combinational sig-
nals as outputs could cause glitches on these signals which in turn could cause corruption of
stored data.

Component Description

R0, R1, R2, R3 Four general purpose registers that can be used for simple computa-
tions.

PC Theprogram counter holds the address of the next instruction to be
fetched from memory. Upon fetching the instruction, the program
counter is incremented by the ALU so that it points to the next instruc-
tion. The program counter should be initialized to ‘0’ on start-up.

IR Theinstruction register holds the instruction brought in from memory.
This allows the processor to read other locations from memory without
loss of the current instruction.

ALU A simple ALU which can add, subtract and increment the value at its
inputs.

Temp A register that holds an intermediate or temporary value. It is useful
when the processor needs to execute an addition or subtraction opera-
tion.

Z A register that holds the output value from the ALU. Again this plays an
important role in any arithmetic operation.

S A register to hold a status bit called “zero”. It indicates whether the
result of a subtraction is equal to zero.

PortOUT[7..0] A register used for I/O whose outputs are connected to pins on the pro-
cessor. It is used to write data to external devices (e.g. LEDs).

PortIN[7..0] A register used for I/O whose inputs are connected to pins on the pro-
cessor. It is used to read data from external devices (e.g. switches).

Count A 16-bit counter which can be used to time events. Note that the
counter is connected to an external clock,cnt_clock.

Config [7..0] A register to hold the configuration bits for the counter. Currently only
one bit will be used to enable the counter.

MUX - Encoder Allows data on bus according to which signal is asserted on the encoder.

TheSramAddr is generated by a multiplexer that selects between the values ofPC andR0. This
functionality is needed because the SRAM address can either be provided by thePC on instruc-
tion fetches or by registerR0 on data accesses.

TheSRAM_Read andSRAM_Write signals are generated registered versions of theRead and
Write signals asserted by your control circuit. TheSramData signals are registered values of the
bus lines. Thus data is constantly being sent to the SRAM memory, however theSRAM_Write
signal must be asserted for memory values to actually be changed.

Omitted from the block diagram is the control circuit for the processor. It will be described in
more detail after the discussion on instructions.

Instruction Format

All instructions are stored in the following format:

• OP-CODE is a 4-bit field that can describe up to 16 instructions. Only 7 instructions will be
needed for this lab.

• X is a 2-bit field that indicates the destination register for the operation. For example when X
is set to “01” then the destination refers toR1.

• Y is a 2-bit field that indicates the source register for the operation.
• DATA is an 8-bit field used for holding constant values for corresponding to the operation.

This field may not be needed by all operations. In these cases, it may be set to any value.

Instructions

OP-CODE X Y DATA

NAME OP-CODE ACTION

movi 0000

move 0001

load 0010

Load the contents of memory location into .

store 0011

add 0100

sub 0101

halt 0110 Stop executing. Do no fetch any more instructions.

RX DATA←

RX RY←

RX R0()←

R0 RX

R0() RY←

RX RX RY+←

RX RX RY–←

Control Circuitry

You are responsible for creating control circuitry that works together with the datapath to imple-
ment the simple instruction set given. Your control circuit should be implemented as a state
machine which controls the input enable signals to the registers, the inputs to the encoder, PC_R0,
Read, Write, Inc, Add and Sub. You should begin by drawing a state diagram that details the
sequence of control steps needed to implement each instruction.

To start, consider that you will need the 4 steps at the beginning of every instruction to fetch the
current instruction from memory, place it in the instruction register (IR), and increment the pro-
gram counter to the next instruction location.

Your control circuit should also use theOP-CODE, X, andY fields of the instruction register as
inputs, so that it can assert the appropriate outputs depending on the instruction fetched from
memory.

2. Project Milestones

The project will last for 3 lab periods. At the end of each of the three lab periods you will be
marked based on the following weekly goals.

Week 1

Implement the simple processor with the following instructions:movi, move, load, store, add, sub
andhalt. You are not required to implement the counter or the I/O port registers for now. For this
first part you also do not need to connect your processor to the SRAM on the Ultragizmo board.
To make things simpler initially, it is recommended you use the RAM on the FLEX10K70. This

bne 0111 if S≠0

mvin 1000

mvout 1001

mvcnt 1010

mvcfg 1011

T1

T2

T3

T4

NAME OP-CODE ACTION

PC DATA←

RX PortIn←

PortOUT RY←

RX Count←

Config RY←

PCR0 PC SRAMout Read,,=

SRAMout IRin,

PCout Increment,

Zout PCin,

way you can fully test your processor in the simulator. A template for the processor and the top
level design file is provided on the webpage. Also, a file called test.mif is provided which will
show you how to initialize the RAM in the FLEX10K70.

Week 2

Add the counter, configuration register, I/O port registers and the remaining instructions to your
implementation. Write some test code (a test.mif file) to exercise each instruction.

Week 3

Connect your processor to the SRAM. Add an input signal calledm68k_master to your control
circuit. Your processor should wait until this signal goes low before attempting to fetch and exe-
cute any instructions. Note that this is the same signal discussed in the introduction of the lab,
which also serves to multiplex address and control lines to the SRAM.

After you have connected your simple processor to the SRAM, you will need to be able to write
instructions to the SRAM for your processor to execute. Instead of entering each instruction with
monitor commands, download an “assembly program” to the SRAM (just as you would any other
assembly program to memory). The assembly program should only contain anorg statement and
DC directives.

Write machine code for a reaction timer to be executed on your processor implementation. Dem-
onstrate that it works.

