ECE532
Light Vectoring Project: Image Capture & Processing
Group Report

Blair Fort

Nathalie Chan King Choy

April 12, 2004
1. Overview

1.1 Introduction
This project is meant to implement the picture “addition” part of Dr. Steve Mann’s Light Vectoring concept presented during an ECE532 lecture in Feb. 2004. Light Vectoring involves flashing a bright light at different parts of an object or environment, detecting these flashes, taking a picture at the moment of the flash, and “adding together” the collected pictures to form a full picture of the object or environment.

1.2 Goals
The main goal of this project was to use a video camera, the Xilinx MultiMedia Board, and Xilinx ISE and EDK tools to create a design to implement the picture “addition” part of Light Vectoring. The design would have to detect a trigger signal, capture the video frame at that instant, process the frame and add it to the picture already in memory. In order to see that this worked, we would have to display the resulting combined picture to a monitor.

1.3 Original Design
The original design incorporated a MicroBlaze soft core processor to handle interrupts that indicated a “flash” or a system reset had occurred and is illustrated in Figure 1. The actual system is described in section 1.4.

Figure 1: Original Picture "Addition" Design
[image: image1.jpg]protocsl

Frame
Buffer

e
e = Computation
e IR ey o
[s e O o
S
2y M o comte
e
¥ sidiaalil |rtertace.
% e
Nl [N
I o Taeo
wolon i)
et Gt 1
coor Sacion
-

“Faatr] [Feset
Buton | | Buttan

The video would be fed into a frame buffer. When the “flash” interrupt was detected, the current frame would be sent for processing. GPIO switches would indicate the colour to be used for the new picture (so that the component pictures could be distinguished in the sum picture). The filter would then add the new frame to the frame being stored for output. The monitor would display whatever was in the output buffer.

1.4 Final Design
The final design was implemented entirely in hardware, without a Microblaze, because we determined that the system would be faster and the design less complicated if we avoided Microblaze and its bus protocols. The design is illustrated in Figure 2.

Figure 2: Final Picture “Addition” Design
[image: image2.jpg]oo 13z

Do 25z

Video ot Processing

‘e Pl | 42210 4.4.4 | YorCh 1o RGB
Decader_| converter | Canverter

Frame Cartre
wilnteracing

Z6T Cortroler

‘Dete, A, il
Bus intertaces

| e—] 5t verpen

Mode SVGA
Cortroler

. .
Modie

G vemary

Cortroler

Z6T Cortroler

Data, Acr, il
Bus intertaces

T

Zar

Fiter Cartraller

e o] coor
iocuie |reacer Jrier

The incoming video is fed to the line field decoder, which extracts pixel timing information. The missing Cr and Cb components in the video stream are filled in by the 4:2:2 to 4:4:4 converter, and the full YCrCb stream is converted to RGB. The frame capture module then de-interlaces the odd and even lines of video and has the memory controller write the lines to ZBT memory. The VGA memory controller handles the reads and writes of the SVGA controller and the filter controller. The filter controller provides the pixel values from the VGA ZBT and the frame ZBT to the colour filter, which filters based on information from the pushbutton reader. The SVGA controller then reads the resulting frame from the memory and displays it to the monitor.

1.5 IP Used
Table 1: VHDL/Verilog IP Blocks
	File
	IP Purpose
	Origin

	LIGHTVECTORING.v
	Top level design file
	Written by Blair

	ADDR_BUS_INTERFACE.v
	Defines address bus interface for ZBT RAM controller
	Modified from *. Bit Mapped Mode SVGA

	BM_MODE_SVGA_CTRL.v
	SVGA controller
	Modified from *. Bit Mapped Mode SVGA

	CTRL_BUS_INTERFACE.v
	Defines the control bus interface for the ZBT RAM controller.
	Modified from *. Bit Mapped Mode SVGA

	DATA_BUS_INTERFACE.v
	Defines the data bus interface for the ZBT RAM controller
	Modified from *. Bit Mapped Mode SVGA

	dcm_27to13.vhd
	DCM to split 27 MHz clock
	CoreGen

	dcm_50to25.vhd
	DCM to split 50 MHz clock
	CoreGen

	DRIVE_DAC_DATA.v
	Steers data to SVGA
	Modified from *. Bit Mapped Mode SVGA

	filter.v
	Colour filter module
	Written by Nathalie

	FILTER_CONTROLLER.v
	Connects filter, pushbutton data and memory signals
	Written by Blair

	FRAME_CAPTURE_WITH

_DEINTERLACING.v
	Frame capture module
	Written by Blair

	lf_decode.v
	Line Field Decoder
	Modified from XAPP 286 lf_decode.v

	MEMORY_CTRL.v
	Memory controller module
	Modified from *. Bit Mapped Mode SVGA

	MY_MEMORY_INITIALIZE.v
	Memory initialization module
	Written by Blair

	pb_data.v
	Pushbutton input module
	Written by Blair

	PIPELINES.v
	Data pipelines for ZBT data WRITES and a latch for the data READs
	Modified from *. Bit Mapped Mode SVGA

	pixel_add_module.v
	Wraps lookup_ram (lookup_ram_.v CoreGen module) and does addition by lookup
	Written by Nathalie

	SVGA_TIMING_GENERATION.v
	Timing & control signal generator for DAC & VGA output connector
	Modified from *. Bit Mapped Mode SVGA

	top_input.v
	Top level video input file
	Written by Nathalie

	v422to444_v2mult_24t.v
	4:2:2 to 4:4:4 converter
	Modified from XAPP 294 v422to444_v2mult_24t.v, but mostly rewritten by Nathalie

	VGA_MEMORY_CTRL.v
	Memory controller module
	Modified from *. Bit Mapped Mode SVGA

	ycrcb2rgb_v2mult.v
	YCrCb to RGB converter
	Modified from ycrcb2rgb_v2mult.v

	ZBT_CONTROL.v
	ZBT controller
	Modified from *. Bit Mapped Mode SVGA

* http://www.xilinx.com/products/boards/multimedia/examples.htm
2. Outcome

2.1 Results
The system achieves what we set out to do. We are able to capture pictures, “greyscale” them, force them to a given colour, add them to the existing frame in memory, and display the outcome. Adding only new image pixels that are above a selected threshold was also successfully implemented.

2.2 How Well It Works
The resolution of the pictures is not very good, but higher resolutions did not work out because of the clock speeds that we had available on the board. We believe that the SVGA output on the board has problems transmitting black pixels because black always comes out partly green. The monitors do not have this problem when connected to a PC, so we believe it is the board that cannot output (R,G,B) = (0,0,0) very well. Also, a few lines in the picture lose their pixel values and simply appear as black or white. We were able to resolve most timing issues that caused information to be lost, but a few would not go away.

2.3 Suggestions for Further Work or Improvements
More complex clock circuits could be investigated to use the clocks available on the board to achieve the clock rates required for higher resolution SVGA output.

Timing simulation of the modules could be done to search for the remaining timing issues that cause lines or partial lines of pixel values to be lost.

If more complex processing is required for the filter then using a MicroBlaze might be worthwhile, though this would involve a significant amount of work to convert the current design to use the OPB and test its functionality.

The finalized design can then be integrated with the other half of the Light Vectoring project: flash detection. The flash detector would replace the take_picture dipswitch in LIGHT_VECTORING.v.

3. Description of the Blocks

3.1 ADDR_BUS_INTERFACE.v
The ADDR_BUS_INTERFACE module comes from the ADDR_BUS_INTERFACE.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The only modifications involved using parameters instead of those defined in defines.v. This module was tested by running it in the FPGA, as part of the test to see if memory contents could be displayed on a monitor, and since it worked the first time no additional testing was needed.

3.2 BM_MODE_SVGA_CTRL.v

The BM_MODE_SVGA_CTRL module comes from the BM_MODE_SVGA_CTRL.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The modifications involved removing the part related to user memory and the BUFG. The user memory part was removed because it gave access to the memory only during blanking which is very useful for video, but for displaying still frames it was easier to turn off the display until the whole frame is loaded. This module was tested using Modelsim by inputting the clock and seeing if the correct time information came out.

3.3 CTRL_BUS_INTERFACE.v

The CTRL_BUS_INTERFACE module comes from the CTRL_BUS_INTERFACE.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. No modifications were needed. This module was tested by running it in the FPGA, as part of the test to see if memory contents could be displayed on a monitor, and since it worked the first time no additional testing was needed.

3.4 DATA_BUS_INTERFACE.v

The DATA_BUS_INTERFACE module comes from the DATA_BUS_INTERFACE.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The only modifications involved using parameters instead of those defined in defines.v. This module was tested by running it in the FPGA, as part of the test to see if memory contents could be displayed on a monitor, and since it worked the first time no additional testing was needed.

3.5 DRIVE_DAC_DATA.v

The DRIVE_DAC_DATA module comes from the DRIVE_DAC_DATA.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The modifications involved adding a clk and reset signal, and adding code to display colour bars for testing purposes. This module was tested using Modelsim, in conjunction with the BM_MODE_SVGA_CTRL module.
3.6 filter.v

The colour_filter module preprocesses the incoming R, G, B values according to the pushbutton data that selects colours and threshold values. The R/G/B channels are only allowed to be added if they are above the threshold, if a threshold is selected, and if the colour for that channel is selected. Then, the R, G, and B values have to be sent 1-by-1 through the pixel adder. It instantiates the add_pixels module to add the pixels to the previously stored image. The behaviour was tested in ModelSim.

3.7 FILTER_CONTROLLER.v

The filter_controller module steps through the different states of frame processing. It handles the clearing of the SVGA frame buffer on reset, filtering of the first picture (which has nothing to combine with), filtering of subsequent pictures, and enabling memory writes when the resulting filtered image is ready. It instantiates the MY_MEMORY_INITIALIZE module to initialize memory, colour_filter module to do filtering, and pb_data module to get the user input for colour and threshold settings. This module was tested on the board by checking to see if a correct image could be outputted to the screen depending on the pushbutton inputs selected.

3.8 FRAME_CAPTURE_WITH_DEINTERLACING.v

The FRAME_CAPTURE_WITH_DEINTERLACING module steps through the different states of frame capture, based on the NTSC Component Video Standard. It handles the clearing of the frame buffer when a new frame comes in, writes only data for valid pixels (it ignores blanking values), and de-interlaces the memory writes such that the odd and even lines of the image form the full picture. It instantiates the MY_MEMORY_INITIALIZE module to initialize memory. This modules was tested in Modelsim by checking to see if it created the correct output once its activate signal goes high.

3.9 lf_decode.v

The lf_decode module comes from the lf_decode.v file of the XAPP286 example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/Video_Input_Processing_Examples.zip. The modifications involved removing the NTSC/PAL detection code, since it is known that the video will be NTSC, removing a comma in the module input/output signal list that was causing errors in the tools, making the design handle 8-bit pixel input instead of 10-bit, making use of the checkbits to verify the timing reference symbols, and adding a counter to keep track of pixels in case timing reference symbols are messed up. The behaviour was tested in ModelSim.
3.10 LIGHT_VECTORING.v

The LIGHT_VECTORING module is the top-level of the project. It simply instantiates all the next level modules and connects them together. It instantiates two DCMs to divide the 27 MHz and 50 MHz clocks in half for pixel processing and video output, respectively. It instantiates the top-level video input module to take care of video input. It instantiates the FRAME_CAPTURE_WITH_DEINTERLACING module to take the processed video input and write it, de-interlaced, to the ZBT frame buffer RAM. It instantiates the MEMORY_CTRL module to control the ZBT frame buffer RAM. It instantiates the FILTER_CONTROLLER module to control the colour and threshold filtering of incoming frames, and their “addition” to the existing light vector image. It instantiates the VGA_MEMORY_CTRL to control the SVGA ZBT frame buffer RAM. It instantiates the BM_MODE_SVGA_CTRL module to control the output to the SVGA monitor connected to the Multimedia Board. The corresponding UCF file, light_vectoring.ucf, connects the input and output signals to the appropriate pins. The module was tested by compiling and programming it to the board.

3.11 lookup_ram.v/lookup_ram.vhd

The lookup_ram module is an 8-bit wide by 65,536 deep ROM made from 32 x 18 kbit SelectRAMs. It was initialized in CoreGen with the result of t = sqrt(u2 + v2), clipped to the range [0,255]. It is used in pixel_add_module.v. It was tested when pixel_add_module.v was tested.

3.12 MEMORY_CTRL.v

The MEMORY_CTRL module comes from the MEMORY_CTRL.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The only modifications involved using parameters instead of those defined in defines.v. This module was tested by running it in the FPGA, as part of the test to see if memory contents could be displayed on a monitor, and since it worked the first time no additional testing was needed.

3.13 MY_MEMORY_INITIALIZE.v

The MY_MEMORY_INITIALIZE module handles memory initializations. It steps through addresses when initialization is in progress and sets initialization data to be 0. It is used by the FILTER_CONTROLLER and FRAME_CAPTURE_WITH_DEINTERLACING modules. This module was tested using Quartus II v3.0.

3.14 pb_data.v

The pb_data module is based on the PB_SCAN_DATA_IN module in PB_SCAN_DATA_IN.v in the Push Button Scan example at http://www.xilinx.com/products/boards/multimedia/docs/examples/PB_SCAN.zip. The pb_data module latches data coming in from the CPLD and sets a signal high that acts like an “interrupt” to the rest of the light-vectoring system. This module was tested using Quartus II v3.0.

NOTE: startup must be set to 1 for pushbuttons to work!

3.15 PIPELINES.v

The PIPELINES module comes from the PIPELINES.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The only modifications involved using parameters instead of those defined in defines.v. This module was tested by running it in the FPGA, as part of the test to see if memory contents could be displayed on a monitor, and since it worked the first time no additional testing was needed.

3.16 pixel_add_module.v

The add_pixels module takes 2 pixel values in the range [0,255] and addresses into the initialized lookup_ram to get the desired computed value. It then registers the output. It instantiates the lookup_ram module to do the lookup. The behaviour was tested in ModelSim.
3.17 SVGA_TIMING_GENERATION.v

The SVGA_TIMING_GENERATION module comes from the SVGA_TIMING_GENERATION.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The only modifications involved using parameters instead of those defined in defines.v and using a smaller address space for the output frame. This module was tested using Modelsim, in conjunction with the BM_MODE_SVGA_CTRL module.

3.18 top_input.v

The top_input module is the top level file for the video input processing modules. It simply instantiates the submodules and connects them together. It instantiates lf_decode to do line field decoding (extracting timing information from the video input stream). It instantiates v422to444_v2mult_24t to convert the video data from 4:2:2 to 4:4:4. It instantiates ycrcb2rgb_v2mult to handle RGB conversion. The behaviour was tested in ModelSim.
3.19 v422to444_v2mult_24t.v

The v422to444_v2mult_24t module is based on the v422to444_v2mult_24t.v file of the XAPP294 example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/Video_Input_Processing_Examples.zip. The modifications involved dropping Xilinx’s complicated 24 term algorithm with multiplications and just using the average of the adjacent 2 values to replace the missing Cr and Cb values in the video input stream. This should provide sufficient quality since the application note states that even replication of values is tolerable for VHS quality video. The behaviour was tested in ModelSim.
3.20 VGA_MEMORY_CTRL.v

The VGA_MEMORY_CTRL module comes from the MEMORY_CTRL.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The only modifications involved changing the module name and using parameters instead of those defined in defines.v. This module was tested by running it in the FPGA, as part of the test to see if memory contents could be displayed on a monitor, and since it worked the first time no additional testing was needed.

3.21 ycrcb2rgb_v2mult_justY.v

The module is based on the ycrcb2rgb_v2mult.v file of the XAPP283 example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/Video_Input_Processing_Examples.zip. For the first stage of integration, the modifications involved changing the design to be an 8-bit YCrCb design instead of a 10-bit YCrCb design. Once it was determined that we could capture, convert, and display RGB colour images, the RGB values were all set to the luminance Y to give the final light vectoring effect. With all three colour channels having the same value, we would be able to select combinations of the three to give Red, Green, Blue, Purple, Cyan, Yellow, and White versions of the incoming image, so that when it combined with the previous image on display the separate components could still be distinguished. The RGB conversion code was left intact and only commented out in the RGB assignment so that RGB could be easily restored.

3.22 ZBT_CONTROL.v

The ZBT_CONTROL module comes from the ZBT_CONTROL.v file of the Bit Mapped Mode SVGA example design at http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip. The only modifications involved using parameters instead of those defined in defines.v. This module was tested by running it in the FPGA, as part of the test to see if memory contents could be displayed on a monitor, and since it worked the first time no additional testing was needed.

4. Description of the Design Tree

4.1 Main Directory
See Table 1 (Section 1.5) for a description of the VHDL/Verilog files in the main directory.

	File
	Purpose
	Origin

	dcm_27to13.xaw
	Generated file for the dcm core
	CoreGen

	dcm_27to13_arwz.ucf
	Template of options that can be pasted into the project UCF file. (They were not)
	CoreGen

	dcm_50to25.xaw
	Generated file for the dcm core
	CoreGen

	dcm_50to25_arwz.ucf
	Template of options that can be pasted into the project UCF file. (They were not)
	CoreGen

	Final_Version.npl
	ISE Project file
	ISE

	light_vectoring.ucf
	Describes constraints and pin connections for the project.
	Written by Blair

	lookup_ram.coe
	Memory initialization vector for the SelectRAM lookup table.
	Written by Nathalie (with help from MS Excel)

	lookup_ram.mif
	Memory initialization file for simulating the SelectRAM lookup table.
	CoreGen

	Rest of lookup_ram.*
	Generated files for the lookup_ram core
	CoreGen

4.2 Testing Directory
	File
	Purpose
	Origin

	expectedrgb.txt
	Expected values for RGB conversion when the YCrCb to RGB conversion code is reinstated.
	Written by Nathalie (with help from MS Excel)

	TEST_422444.ANT
	Verilog testbench for 4:2:2 to 4:4: converter
	HDL Bencher

	test_422444.tbw
	Testbench waveform file for 4:2:2 to 4:4:4 converter
	HDL Bencher

	TEST_LFDEC.ANT
	Verilog testbench for line field decoder
	HDL Bencher

	test_lfdec.tbw
	Testbench waveform file for line field decoder
	HDL Bencher

	TEST_YCCRGB.ANT
	Verilog testbench for YCrCb to RGB converter (When the conversion code is reinstated)
	HDL Bencher

	test_yccrgb.tbw
	Testbench waveform file for YCrCb to RGB converter (When the conversion code is reinstated)
	HDL Bencher

4.3 Original_Files Directory
This directory contains the original IP files from example designs.

5. References

ADV7185 datasheet

http://www.analog.com/UploadedFiles/Data_Sheets/436811360ADV7185_0.pdf
COE File answer record

http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=11744
Constraints Guide

http://toolbox.xilinx.com/docsan/xilinx5/data/docs/cgd/cgd0001_1.html
EDK docs

http://www.xilinx.com/ise/embedded/edk_docs.htm
I2C example

http://www.xilinx.com/products/boards/multimedia/docs/examples/IIC_vidtest_edk3_2_sp1.zip
iMPACT web help

http://toolbox.xilinx.com/docsan/xilinx6/help/impact/impact.htm
ISE Quick Start Tutorial

In ISE Help menu

ITU-R BT.656-4 (NTSC)

www.inst.eecs.berkeley.edu/~cs150/Documents/ITU656.doc
ModelSim page

http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=modelsim_xe
MULT18x18

http://toolbox.xilinx.com/docsan/xilinx6/books/data/docs/lib/lib0290_258.html
Answer 13182:

http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=13182
Multimedia Board user guide

http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Multimedia_UserGuide.pdf
Multimedia Board datasheet

http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Multimedia_Schematics.pdf
No Default Binding Answer Record

http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=13034
Synthesis and Verification Design Guide

<installdir>/doc/useinglish/books/docs/sim

SVGA example

http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_SVGA.zip
v2vhd

www.reptechnic.com.au/v2vhd.html
Video Input Processing app notes

http://www.xilinx.com/products/boards/multimedia/docs/examples/Video_Input_Processing_Examples.zip
Virtex II User guide

<EDK install dir>/doc/VirtexIIPlatFPGA_uguide.pdf

