ECE532 DIGITAL HARDWARE PROJECT

AC97 SOUND CONTROLLER WITH DEVICE DRIVER

Group Report
Caleb Leung (990185615)
Wendy Ng (990096560)

April 12, 2004.

1. Overview

The goal of the project is to fix the AC97 sound controller provided by Xilinx, and give the core added features. In addition, drivers were written for the sound controller so that developers can easily use the AC97 functions.

1.1 Hardware:

The original AC97 controller was provided by Xilinx as part or the MP3 example. The logic consists of 2 main components, the opb_ac97_controller, and the opb_ac97_core. The controller is primarily responsible for communications to other logic within the FPGA, primarily through the OPB and the FSL buses. The core is responsible for controlling the serial data flow between the external AC97 CODEC chip and the FPGA. A block diagram of the system is shown in Figure 1.

[image: image1]
Figure 1: AC97 Controller Block Diagram

The controller provided was not able to record data. This problem was solved by making changes to the opb_ac97_core. After fixing this and other problems with the controller, additional features were created for the controller. Previously, playback was done over the FSL bus, while recording was done over the OPB bus. The revised controller allows the user to select either the FSL or OPB for playback and record during the build stage.

1.2 Software:

A user-written AC97 controller device driver, ac97_v1_00_a, is provided to allow future developers convenient access to playback and record functions. The low-level functions consist of basic write and read operations to and from specific registers. The high-level functions use these functions to enable playback and record as well as perform the actual playback and record functions. Furthermore, functions that allow playback and record using either the FSL or the OPB are provided to match with the hardware setup of the controller. Finally, it was also attempted to set up interrupt functions for the driver. However, due to time limitations of the project, the interrupt functions will need to be further developed.

2 Outcome

The modified controller hardware was able to provide both playback and record functions over the FSL and the OPB bus. This is done by selecting and adjusting the appropriate parameters within the AC97 controller in the add/edit cores wizard. A test was performed where a sound sample is recorded, stored within an array, and played back along with the original sound to produce an echo (Figure 2). The controller was able to do so over both the OPB and the FSL bus.

[image: image2]
Figure 2: Echo Generation Scheme

However, when using the OPB, a lot of noise was produced, and the record FIFO was often found to be full. The suspected reason for this is that the OPB bus is not fast enough to record a sound, store this sound to some memory, and play a sound in real time. Since the processor does not grab record data fast enough, the record FIFO on the OPB fills up, and the sound is recorded only at the rate the sound bytes is removed from the FIFO, causing distortion and noise. Therefore, for real-time processing of sound, the FSL bus should be used. OPB recording may be used if the application is not in real-time.

The successful test on the echo generation scheme also proves the functionality of the AC97 driver functions, which are responsible for initializing the appropriate registers in the Codec chip to set up the playback and record functions, as well as the required enable signals in the AC97 controller to allow playback and record. Initial tests were performed on the basic functions by stepping through the source code using the software debugger, and reading from specific memory locations through XMD to confirm the desired operations were carried out by the driver functions.

Since the hardware for the AC97 controller is set up to allow interrupt functions, driver functions are also set up to allow the user to have an alternative interrupt method in addition to using the general polling method. Currently, the functions to enable the playback interrupt, record interrupt and the AC97 status register interrupt are properly set up. The SetHandler and InterruptHandler functions have been written to handler interrupts. A test which returns a print statement whenever an interrupt occurs was set up to verify the functionality of the functions. However, the first few tests were not yet successful. A suspected cause is that the interrupt ID that is used to connect the AC97 controller interrupt with the interrupt controller was not successfully passed to the xintc_connect function, therefore an interrupt signal was never properly raised. Due to time limitations, the interrupt functions will need to be further developed and the polling method is used for basic playback and record functions.

3 Description of Blocks

3.1 AC97 Controller Hardware

3.1.1 Debugging Stage

The original AC97 controller core from Xilinx was designated as version 1.00a. The controller was designed to record sound using the OPB bus and plays the sound with over an FSL bus. The controller was found to have the following problems:

1. Record function does not work.

2. AC97 status register read-back did not work.

3. Interrupts were not functional.

The problem with record and the AC97 status register record were found to be related. Both were caused by an error in the opb_ac97_core of the controller. The error was due to a misalignment in reading the serial data being shifted in, causing the controller to believe that there was neither valid incoming status register data or sound data.

Data is transmitted and received from the external AC97 CODEC chip using 2 uni-directional serial streams, SData_In and SData_Out (direction is referenced from the external chip). The data is separated into simultaneous frames (in and out frames start and end at the same time), with each frame divided into 12 slots of data. In addition, a clock, Bit_Clk, is generated by the external chip and is transmitted to the controller. The controller sends a signal, Sync, to indicate to the start of a frame. More information on the data protocols of the AC97 CODEC chip use can be found on the manufacturer’s data sheet.

The input stream is read by shifting the SData_In stream sequentially, and then loading the data to the appropriate register at the end of a slot by a Slot_End signal generated in the controller. This signal occurs one clock cycle before the actual end of the slot because the output stream must be loaded before the beginning of the next slot. However, only signals required for playback (i.e. CODEC_RDY) were adjusted in reading the serial stream. Thus, all signals other signals were misaligned, and both recording and AC97 status register readback were not functional. This problem was fixed by adding a one clock cycle delay before reading the shift register data.

Interrupts were not functional because the memory-mapped interrupt enable signals on the controller were not registered. Adding registers to store interrupt enable signals fixed this problem. In addition, no interrupts are available if data is sent on the FSL bus, since interrupts are based on internal FIFO status which is not available if the FSL is used.

3.1.2 Additional Features

The existing controller allowed playback over the FSL bus and record on the OPB bus. Record and playback over both the OPB and the FSL bus was added. The user selects the desired bus to use by adjusting the following parameters in the add/edit cores wizard: C_PLAYBACK_OPB, C_PLAYBACK_FSL, C_RECORD_OPB, C_RECORD_FSL. Setting the desired parameter to 1 activates the listed function over the listed bus. If a function is active over both buses, only the OPB is used. If neither parameter for a function is 1, then the function is disabled.

This option was implemented by using the VHDL generate statement. The parameters are mapped to generics in the VHDL code. These generics are then referenced in the if portion of the generate statements. This means that the bus selection is made before a bitstream is generated, and cannot be changed in software.

In addition, an interrupt has been added to the AC97 status register read/write function. This is because reading status register read and writes requires at least 1 complete frame, which is at least several hundred processor clock cycles long. Therefore, the existing method of polling the controller until 1 frame was complete was very inefficient, and interrupts were added.

AC97 Controller Device Driver

The AC97 Device Driver contains the following .h and .c files: xac97.c, xac97_g.c, xac97_intr.c, xac97_l.h, xac97.h, xac97_i.h.

3.1.3 Low-level driver

The xac97_l.h file is a low-level header file, which defines the necessary low-level driver macros and functions that can be used by other functions throughout the driver. Table 1 shows the offset constants used to access the memory mapped registers for the AC97 controller. Table 2 defines some of the important bits in the status register based on hardware. For the driver functions, the XAC97_mWrite and XAC97_mRead functions allow a general write and read operation for a given offset. The XAC97_mGetStatusReg, XAC97_mSetWriteReg, XAC97_mSetRegAddr, XAC97_GetReadData, and XAC97_mConfReadAccess are specific read and write operations for which the offset has been pre-set. These functions are used in the high level functions in the xac97.c file.

3.1.4 High-level driver

The high-level driver functions are defined in xac97.c. The WriteAC97Reg and ReadAC97Reg functions allow the user to perform easy read or write operation on the AC97 registers. To ensure a successful read or write, polling is used to wait for the access finish signal to go high to complete the operation. In particular, the WriteAC97Reg function is used to initialize the record and playback function on the Codec chip. The ReadAC97Reg function is currently unused.

The XAC97_Initialize function, which initializes an instance of a device driver, and the XAC97_SelfTest function, which verifies that the device and device driver, are made available due to the fact that they are part of a Standard Device Driver API. Both functions take in an instance pointer of type XAC97. This device component data type is defined in the xac97.h file. It is in general not necessary to use these two functions for general playback and record. However, for more complex use of the AC97 controller, the user will be responsible for allocating an instance variable using the driver’s data type, and passing a pointer to this variable and all other API functions. For an example to set up the AC97 controller in software and doing basic playback and record operation, please refer to the README file.

3.1.5 Interrupts

In order to use the interrupt function, the user will need to enable playback, record and status register interrupt. These functions are provided in the xac97_intr.c file. Instead of using the polling method to wait for the Codec access finish signal to go high, the SetHandler and InterruptHandler function are set up such that an interrupt will be triggered when the access finished signal goes high. As mentioned in the Outcome section, the functionality of these two functions is to be verified.

Table 1: Memory Map Registers offset for AC97 controller as defined in xac97_l.h

	Offset wrt base address
	Read

/Write
	Description

	XAC97_INFIFO_OFFSET
	W
	Write 16 bit data sample to playback FIFO

	XAC97_OUTFIFO_OFFSET
	R
	Read 16 bit data sample from record FIFO

	XAC97_FIFO_STATUS_OFFSET
	R
	Status Register

	XAC97_INTERRUPT_OFFSET
	W
	Enable playback, record, or ac97 status register interrupt

	XAC97_REGADDR_OFFSET
	R/W
	AC97 Control Address Register: Sets the 7 bit address of control or status register in the Codec chip to be accessed. Writing to this register clears the “Register Access Finished” status bit

Bit 7 = 0 performs a write to the address specified above. The write data comes from the “AC97 Control Data Write Register” which should be set beforehand.

Bit 7 = 1 performs a read to the address above.

Use parameter:XAC97_CONTROL_REGADDR_READ

	XAC97_REGREAD_OFFSET
	R
	AC97 Status Data Read Register. Returns data from the status register in the Codec that was read by the command above. Data is valid when the “Register Access Finish” flag is set.

	XAC97_REGWRITE_OFFSET
	W
	AC97 Control Data Write Register. Contains the data to be written to the control register in the Codec. This register is used in conjunction with the “AC97 Control Address Register” described above.

	XAC97_SOUNDENABLE_OFFSET
	W
	Enable OPB playback or record

Bit 0 = 1/0 playback enabled/disabled

Bit 1 = 1/0 record enabled/disabled

Table 2: Specific bits in Status Register as defined in xac97_l.h

	CONSTANT NAME
	Bit #
	Description

	XAC97_INFIFO_FULL
	Bit 0
	Playback FIFO full:

0 = Playback FIFO not full

1 = Playback FIFO full

	XAC97_INFIFO_EMPTY
	Bit 1
	Playback FIFO empty:

0 = Playback FIFO not empty

1 = Playbck FIFO empty

	XAC97_REG_ACCESS_FINISHED
	Bit 4
	Register Access Finish:

0 = AC97 Controller waiting for access to control/status register in Codec to complete.

1 = AC97 Controller is finished accessing the control/status register in Codec.

Note: This bit is cleared when there is a write to the “AC97 Control Address Register”

	XAC97_CODEC_RDY
	Bit 5
	Codec Ready:

0 = Codec is not ready to receive commands or data

1 = Codec ready to run

Appendix

HOW TO CREATE USER-WRITTEN DRIVERS

1. Create a new folder called “drivers” under the project directory.

Note:
The driver source files and the MDD file for each driver must be located at specific directories in order for Library Generator to find the files and the drivers.

2. In the folder “drivers”, create another two folders called “src” and “data”

a) The source folder “src” contains all the user-written .h and .c files for the device driver as well as a file named makefile. In the makefile, the user can specify the .h files to be included in the “include” folder during library generation by using the INCLUDFILES parameter.

Note:
For information on the device driver environment, refer to:

Processor IP User Guide (Chapter 7: Device Driver Programmer Guide

For examples of existing device driver codes, go to the foler:

…edk\sw\XilinxProcessorIPLib\drivers
b) The data folder “data” contains a .mdd file and a .tcl file

i) Tool Command Language (Tcl) file is a data generation file that:

· uses the parameters configured in the MSS file for the driver to generate data,

· uses the MDD file to customize the driver depending on different options configured in the MSS file

· can be used to specify the parameters to be included in the xparameters.h file during library generation. (ie. base address, device ID etc)

ii)
Microprocessor Driver Definition (MDD) file contains the configurable parameters.

· Can be used to specify the .h and .c files to be copied over to the project directory during library generation by using the copyfiles parameter.

Note: For more information on MDD files, see:

Embedded System Tools Guide (Chapter 21: Microprocessor Driver Definition

3. Update the .mss file by changing the device driver DRIVER_NAME from ‘generic’ to the new device driver. Also update the DRIVER_VER parameter if there’s more than one version of the driver.

· Microprocessor Software Specification (MSS) files is a file that is supplied by the user as an input to the Library Generator

· It defines the drivers associated with peripherals, standard input/output devices, interrupt handler routines, and other related software features

· The instance Specific Parameter, DRIVER_NAME option, is needed for peripherals that have drivers associated with them.

Note:
For more information on MSS files, refer to:

Embedded System Tools Guide (Chapter 19: Microprocessor Software Specification

4. Generate libraries by going to Tools (Generate Libraries

· The Library Generator is generally the first tool to run to configure libraries and device drivers.

· The specific .h and .c files for the new device driver will be copied over to the microblaze_0 folder along with the other existing drivers.

Note:
For more information on the Library Generator, refer to:

Embedded System Tools Guide (Chapter 7: Library Generator

5. At this point, the device driver functions should be accessible by the user-written main program.

Note: If during compilation, an error that states it could not find a function in one of the .c files, one can avoid the error by adding the .c file that contains the function to the source code and redo compilation. If anyone knows how to fix this, please share it with everyone.

README file

**

 opb_ac97_controller, Rev 3.10a/4.00a

 April 10, 2004

**

Credits

 Hardware Build Instruction: Caleb Leung

 Driver Functions Description : Wendy Ng

**

REVISION HISTORY, HARDWARE

 1.00a : Original Xilinx Version

 3.10a : Fixed Bug for record and register status readback

 Fixed Bug for Interrupt

 Added OPB Playback Option

 Added FSL Record Option

 Added Status_Interrupt Signal

 Added Chipscope Components for Debug

 4.00a : Removed Chipscope Components and Signals

**

XPS Hardware Build Instruction, Xilinx Multimedia Board

IMPORTANT: The Startup Pin, Pin AK5 MUST be driven high for the

 external AC97 CODEC chip to be operational.

NOTE: For the Multimedia Board, only 1 instance of the core should be

 instantiated since there is only 1 external AC97 CODEC

NOTE: For current versions of controller, only level interrupts (high or

 low) are available

Instructions for Generating Core in Add/Edit Core Wizard:

 - select core "opb_ac97_controller" to add

 - select HW version 3.10a for core with chipscope debug, version

 version 4.00a if no chipscope is required

 - Bus connections:

 sopb - slave OPB bus

 sfsl - playback FSL bus (Optional)

 mfsl - record FSL bus (Optional)

 - Port connections:

 OPB_CLK - Internal - Attach to the same net as the CLK for OPB

 Bit_Clk - External - Pin F15

 SData_Out - External - Pin E8

 SData_In - External - Pin B9

 Sync - Internal - Pin E9

 - Parameters:

 C_PLAYBACK_OPB:

 1 - Enable Playback on OPB bus

 0 - Disable Playback on OPB bus

 C_PLAYBACK_FSL:

 1 - Enable Playback on FSL bus (if OPB playback is disabled)

 0 - Disable Playback on OPB bus

 C_RECORD_OPB:

 1 - Enable Record on OPB bus

 0 - Disable Record on OPB bus

 C_RECORD_FSL:

 1 - Enable Record on FSL bus (if OPB Record is disabled)

 0 - Disable Record on OPB bus

 C_FSL_DWIDTH:

 Enter data width of the FSL bus (16 - 32)

 C_PLAY_INTR_LEVEL (Valid only when OPB playback is selected):

 0 - Disable playback interrupt

 1 - Interrupt when playback FIFO is empty

 2 - Interrupt when playback FIFO is less than half empty

 3 - Interrupt when playback FIFO is less than half full

 4 - Interrupt when playback FIFO is not full

 C_REC_INTR_LEVEL (Valid only when OPB record is selected):

 0 - Disable record interrupt

 1 - Interrupt when record FIFO is not empty

 2 - Interrupt when record FIFO is half empty

 3 - Interrupt when record FIFO is half full

 4 - Interrupt when record FIFO is full

 C_STATUS_INTR (AC97 status register access interrupt):

 0 - Disable status register access interrupt

 1 - Enable status register access interrupt

 C_INTR_IS_HIGH

 0 - Low Level Interrupts

 1 - High Level Interrupts

Instrutions for connecting chipscope signals (version 3.10a only)

 Add the following lines in system.mhs

 - Under opb_mdm declaration:

 PORT bscan_tdi = tdi_in

 PORT bscan_reset = reset_in

 PORT bscan_shift = shift_in

 PORT bscan_update = update_in

 PORT bscan_sel1 = sel_in

 PORT bscan_drck1 = drck_in

 PORT bscan_tdo1 = tdo_out

 - Under opb_ac97_controller declaration:

 PORT tdi_in = tdi_in

 PORT reset_in = reset_in

 PORT shift_in = shift_in

 PORT update_in = update_in

 PORT sel_in = sel_in

 PORT drck_in = drck_in

 PORT tdo_out = tdo_out

**

**General software setup required for playback and record using the driver **functions **
Step 1: Initialize the AC97 registers

void init_sound(int sample_rate);

Step 2: Enable playback and record function on the AC97 controller

void
playback_enable(void);

void
record_enable(void);

Note: These two functions are required for both playback and record using either OPB or FSL. To disable the functions, use:

void
playback_disable(void);

void
record_disable(void);

Step 3: Clear FIFO’s. For playback or record using OPB only.

void
playback_fifo_clear(void);

void
record_fifo_clear(void);

Step 4: General record and playback

Using OPB:

Playback:
void
opb_write_playbackfifo(Xuint16 soundbyte);

Record:

Xuint16 opb_read_recordfifo(void);

Using FSL: (use the Fast Simplex Link Interface Macros)

Playback:

microblaze_bwrite_datafsl(Xuint 16 soundbyte,id)

Record:

microblaze_bread_datafsl(Xuint 16 soundbyte,id)

Note: The FSL interface macros are part of the Microblaze BSP (Board Support Package). The Board Support Package is a set of software modules used to access processor specific functions. The stand-alone BSP is used when an application accesses board/processor features directly(without an intervening Operating System layer)

For more info, see: Chapter 29 Stand-Along Board Support Package of Embedded System Tools Guide.
MicroBlaze

�

OPB_AC97_

Core

External AC97 CODEC

External Memory Controller

OPB Slave

OPB Slave

OPB Master

OPB Bus

Playback FSL Bus

Record FSL Bus

Bit_Clk

SData_Out

SData_In

Sync

Data Buffer

+

Input Audio

Output Audio

PAGE
7

[image: image3.emf] OPB_AC97_ Controller

