Final Project Report

ECE 532H1S

Team Esso

Professor Paul Chow

Danny Nguyen

991006353

Rohit S. Singh

991054041

Table of Contents
3Project Overview

3Initial Goals

3Modified Goals

4Block Diagram

4Initial Block Layout

6Modified Block Layout

7Sources for IP

8Outcome

8Initial Goals

8Initial Work

10Later Progress

12Software

14Description of Blocks

14Core: EMC

14Core: GPIO

14Core: Vidcap

15Description of Design Tree

15Files Included

Project Overview

Initial Goals

The initial goal for the project was to use the Xilinx EDK along with the Xilinx Virtex II Multimedia Board to develop a complex number recognition system. Essentially, the system would allow the user to enter in a four-digit (decimal) number, which would subsequently be recognized by the program. Our software program would then perform various operations on the given number to produce a four-digit output. The user was to specify these operations before program compilation.

The system was to accept a single analog image channel (in standard NTSC format) as an input and produce a single analog image channel as an output (also in standard NTSC format). The output was to be routed to a monitor or television capable of displaying S-Video data.

Modified Goals

As the project progressed, it became apparent that the goals our team had initially set in place were too high. For one thing, we assumed that the driver construction component of the project could be completed within a week. This assumption proved to be unrealistic. If anything, constructing the drivers proved to be the most difficult task in the given project. As a consequence, we were forced to re-evaluate our goals on almost a weekly basis. After two weeks, we had given up on handling multiple digits, and by the end of the third, we had decided that we would no longer be outputting the recognized number to a screen. Our modified goals were as follows:

· To produce a system that could capture a number and reproduce it on the Xilinx port.

· To recognize the value of the number entered and to store that value into memory.

The simplification of our goals was an inevitable outcome of our discovering the limitations on the devices provided, on the time provided for the completion of the project, and on our own abilities.

Block Diagram

Initial Block Layout

[image: image1.wmf]Output (8)

Main Memory

(5)

Input (1)

S-Video Input

ADV 7185 (2)

Digitized 10 Channel Video Signal

Image

Repainting

Block (6)

ZBT Memory

(3)

Image

Recognition

Black (4)

Digitized Signal

Digitized Mask

Number

Signal

Digitized Mask

Masks for 0 to 9

Masks for 0 to 9

10 Channel Signal

ADV7195 (7)

Analog Video Signal

Number

Figure 1: Initial Block Layout

Blocks:

(1) Input – The standard input was expected to be a standard 525-line input from an NTSC source, such as a camera or a video camera. The S-Video input was then to be sent to the ADV7185 module.

(2) ADV7185 – The video decoder chip present on the Multimedia board. It converts a standard S-Video input to a Digitized 10 channel video signal. This signal was to be sent to the ZBT Memory.

(3) ZBT Memory – External memory used by the Multimedia board, each segment is capable of storing up to 2MB of memory. The memory was to be used to store a copy of the captured image, masks for the numbers from 0 to 9, and a digitized mask for the captured image.

(4) Image Recognition Block – A piece of software that was to generate a mask of the captured image, compare the mask with digits from 0 to 9, and from that comparison determine which number was entered. The entered number was then to be stored in main memory.

(5) Main Memory – A memory address where the image recognition block would store its outputted value.

(6) Image Repainting Block – A software module to examine the digitized mask and compare it to the masks for the digits from 0 to 9. After the comparison, it would remove the number from the image, paint the correct number onto the image (using the provided masks) and then output the result to the ADV7195 chip.

(7) ADV7195 – The video encoder chip provided on the Xilinx board, it was to take the input from the Image Repainting Block and redirect it to a standard S-Video output source.

(8) Output – A S-Video output source that takes an analog input from the video encoder chip. The device must be a television screen or monitor capable of processing NTSC input.

Modified Block Layout

[image: image2.wmf]Main Memory

(5)

Input (1)

S-Video Input

ADV 7185 (2)

Digitized 10 Channel Video Signal

ZBT Memory

(3)

Image

Recognition

Black (4)

Digitized Signal

Digitized Mask

Number

Masks for 0 to 9

Digitized Mask

Output (6)

Figure 2: Modified Block Layout

Blocks:

(1) Input – The standard input was expected to be a standard 525-line input from an NTSC source, such as a camera or a video camera. The S-Video input was then to be sent to the ADV7185 module.

(2) ADV7185 – The video decoder chip present on the Multimedia board. It converts a standard S-Video input to a Digitized 10 channel video signal. This signal was to be sent to the ZBT Memory.

(3) ZBT Memory – External memory used by the Multimedia board, each segment is capable of storing up to 2MB of memory. The memory was to be used to store a copy of the captured image, masks for the numbers from 0 to 9, and a digitized mask for the captured image.

(4) Image Recognition Block – A piece of software that was to generate a mask of the captured image, compare the mask with digits from 0 to 9, and from that comparison determine which number was entered. The entered number was then to be stored in main memory.

(5) Main Memory – A memory address where the image recognition block would store its outputted value.

(6) Output – The digitized mask was to be sent to the Xilinx port running on a local PC. The Xilinx port would simply output the mask – which would appear to be similar to original image.

Sources for IP

Vidcap Core – Courtesy of Monty.

ZBT Core – Courtesy of Leslie.

GPIO Core – Built into the Xilinx EDK.

Outcome

Initial Goals

The goals of the project and how they are to be accomplished are described in the overview section above. The main goal that was set was to be able to read in the video data from an external source such as a camera, process the data, and then output the result to a monitor. However not all of these goals were achieved due to time constraints.

Initial Work

Initially, the team spent time in trying to get the hardware to work, namely the video input to work since the video output was not necessary in the early stages of the design. In trying to accomplish this task numerous documents were examined – including documentations on the I2C, decoder, and encoder. An extensive study was also conducted to determine just how these three components were connected. Documents on component video and how it is sampled using the decoder were also examined. It was discovered that the decoder and encoder are separate chips that are located on the multimedia board while the I2C is implemented as a core on the FPGA chip. The basic function of the I2C is to control the operation of the decoder and encoder such as their startup and shutdown.

Having explored all the documentation and having established how things are connected, the team set out to determine the location of the input pins on the FPGA that are hardwired to the pins of the data output from the decoder. The first thing that the team tried was using the GPIO to read data from the input video data pins on the FPGA and dump the data to memory. However, having read the documents and having learned that the decoder must be controlled by the I2C, it was decided that the I2C core must be included in the system. Debugging when the different pins of the I2C core were connected to the output pins of the FPGA that are hardwired to the decoder proved to be costly in terms of time. These pins include CHAN1_I2C_CLOCK and CHAN1_I2C_DATA. Many errors persisted and prevented the system from generating bitstream. After many trials, it was assumed that the problem could be attributed to the fact that the decoder is able to dump data to the input pins of the FPGA automatically once there is an input video signal. Using this information, the team decided to exclude the I2C core and instead just use the GPIO to read data and dump the data to memory. This decision was the result of the assumption that the decoder starts outputting data automatically without having to connect the pins of the I2C core to it – a reasonable assumption since the operation of the I2C is so complicated that the user shouldn’t reasonably need to include it considering its simple mode of operation.

At this point, the only cores that were used were the EMC core (courtesy of Lesley) that allows access to the external ZBT memory and the GPIO. The GPIO width was set to 10 and used to input video data from the video decoder by connecting the 10 bits of the GPIO to the output pins from the decoder that are hardwired to the FPGA. Now, once the video input signal is detected, the decoder will start writing data to the GPIO. The data can then be read by the microblaze processor and written to the ZBT memory. This process is depicted in the figure below.

[image: image3.wmf]Camera

Multimedia

Board

Comp Vid Input

Decoder

FPGA

ZBT

memory

bank

GPIO

Microblaze

Processor

OPB

EMC

 Figure 3: Initial Hardware Setup

The result of this setup is that the data is getting written to the GPIO and the memory in the ZBT did change. However, the data was not properly written to memory. The data is written in the following ways. First of all, the GPIO data is read and then written to the base address of the ZBT memory, one byte at a time. Since only the active area of the video is required, the first byte of the data is compared with the value of 0xFF, which indicates that the first active area has been reached. Once this value is found, then the next byte of data can be read from the decoder through the GPIO and written to the next memory location after the base address. The data will continue to be written until the next 0xFF value is encountered. This will indicate that it is the end of the active area. However, after the active area has been written, it was discovered that the number of bytes that are written are incorrect since it is not equal to the number of bytes that should be in the active area of one line of an NTSC video signal, namely 1440. This information is from the documentation of how the video signal is being read by the decoder.

Later Progress

The reason that the incorrect number of bytes was written to the memory is that the microblaze processor is not fast enough to capture all the data from the decoder. Therefore, a video core must be written to read the data from the decoder and dump it into the memory without having to go through the microblaze processor. It was decided that Monty’s vidcap core would be used to read the memory from the decoder. It has a clock pin, which must be connected to the CHAN1_LINE_LOCK_CLOCK1 pin from the decoder. The purpose of this is to make sure the decoder and the vidcap core are in sync and that the vidcap core reads the correct number of bytes from the decoder. The vidcap also contained two input pins called inflags. These pins were used to control the operation of the vidcap. If the inflags pins were both set to high, then the vidcap would read data from the decoder and dump the data to the memory. If they were both set to low, then the vidcap would not read any data and will stop writing the data to the memory. Finally, the vidcap had 10 input pins that had to be connected to the data pins from the decoder so that this data can be read. There also was a parameter in this core known as the buffer address that had to be set to the base address of the ZBT memory. The reason for this is to ensure that the vidcap start writing the data from the decoder to the correct memory location. The connection of the new system is now shown below.

[image: image4.wmf]

Multimedia

Board

Camera

Comp Vid Input

Decoder

FPGA

Microblaze

Processor

OPB

vidcap

GPIO

EMC

Z

BT

M

emory

Bank

Figure 4: Modified Hardware Setup

One major problem that was encountered involved the ability to write the program code to the ZBT memory. The inclusion of the vidcap core in the system prevented the program code from being written to the ZBT memory, though the ZBT memory was still accessible within the code. It was believed that the vidcap core was keeping the OPB bus busy since it is constantly writing to the ZBT memory; therefore, the program code was not able to be sent to the OPB. An effort was made to fix this problem by setting the GPIO data register to 0 by default so that once the bitstream is downloaded, the vidcap core will be turned off by default. This did not fix the problem so the modification of the vidcap core was tried but that also did not solve the problem.

The decision was made to not place the program code in the ZBT memory but to place the code in the block ram memory on the FPGA. It was quickly realized that the Lesley’s zbt_test system that is being used in this project was created with only 8kB of memory available on the FPGA for the program code. This inadequate for our purposes, and so some time was spent to search for the parameter defined in the system that controls the memory allocation on the FPGA – which turned out to be the high address of the lmb located in the system.uhs file. The amount of memory that is to be allocated is just the difference between the high address and the base address. Setting to high address to 0x0000FFFF more than the base address gave a memory allocation of 64 kb on the FPGA.

Software

While the hardware was being debugged the software part was also being written at the same time. The first part of the software that was written is the code that allows the YCrCb value to be converted to RGB and then to stored in the RGB format not as 24 bits per pixel but rather 4 bits per pixel in an effort to save memory. The conversion was done using floating point matrix operations.

The second part of the software is the code that allows the RGB values that has been converted from YCrCb to be read in to be used for mask generation. The processing involves the step of assuming that the first pixel is from the background of the image. The next step in the code is to search the entire image for pixel values that are close to the first pixel value of the first pixel and then averaging the background pixel value to one single value. This process of searching and averaging is also done for the pixels that are located within the number. Once the two averages are obtained they are then used to generate the mask of the image where a one in the mask represents the pixel that is within the number and a zero represents the background pixel. This mask does not require much memory since each pixel is represented by a single bit, so it can easily fit within the ZBT memory.

The final part of the software was the algorithm that processes the mask and determines which number the image is displaying. This could be accomplished in many ways, where the simplest way is to take the ratio of the total number of ones in the mask to the total number of zeros and then compare that number to the numbers stored in memory that corresponds to each number from 0 to 9. However, this method seems to be very unreliable since the ratios between the numbers from 0 to 9 are not strikingly different from one another, so the noise and the error from capturing a clean image can easily produce a mask with very different number of ones. The second method for number recognition that was tried was the so called tree method, where numbers are separated in different groupings and are placed at different nodes within a tree where if two numbers have the same parent node, then each of them share a common feature. However, this method turned out to be taking a very long time to implement since it is very complicated. Also, the problem of speed was also considered when this algorithm was attempted.

In summary, there are three parts to the software component of this project: the conversion algorithm, the mask generation algorithm, and the number recognition algorithm. How they are all used to determine the decision of the number displayed in the image is shown in the figure below.

[image: image5]
Figure 5: Software Layout

When these algorithms were being tested, it was quickly realized that speed can become a major problem. The part that was particular slow was the conversion from YCrCb to RGB, which took around 10 minutes to complete for every single image. The change from floating point operations to integer operation did not speed up the processing by a significant amount. Therefore, it was quite tedious to test to see if the code was working. It was then decided that instead of using color images, black and white images would be used. This would greatly reduce the amount of time it takes to get to the point where the image mask is generated since no conversion from YCrCb is necessary since only the luminance value is considered. If the luminance is high, then that means it’s detecting a white pixel and if it’s low then it’s detecting a black pixel. The testing of this code involves reading in the black and white image, generate the image mask and then display the mask using xil_printf, where a bit value 0 represents a white space and a bit value of 1 represents a black box. We were successful in generating and displaying the correct mask for the image after many trials and errors and many adjustments of the tolerances when generating the masks. However, due to the lack of time, we were unable to test the number recognition code with the generated masks.

Description of Blocks

Core: EMC

Description: This is the external memory controller core that is required to use the external ZBT memory. It has been set up in Lesley’s zbt_test system and was used in the design of this project as the system to start with. In order to use this core, some modifications had to be made. The difference between the base address and the high address in the parameters tab of this core is initially very low. Thus, this results in inadequate memory allocation for use in the ZBT memory back, far fewer than what one bank is capable of storing. Therefore, the base address parameter was changed to 0x80100000 and the high address parameter 0x801FFFFF, which represents approximately 1 MB of memory.

It is also worth noting the fact that the default system memory size allocated in the zbt_test system was 8192B – which is insufficient for most applications. It can be expanded to the full 65 576B by changing the lbram and ibram start and end addresses to 0 and 64K respectively. This change is to be implemented in the system.uhs file.

Core: GPIO

Description: This core is used to control the operation of the vidcap core. It is instantiated with a width of 2 and is connected to the inflags pins of the vidcap core. Writing a 3 to the data register of this core with turn the vidcap on while writing a 0 to the data register will turn the vidcap off.

Core: Vidcap

Description: This core is provided by Monty, which has an input clock pin that must be connected to the CHAN1_LINE_LOCK_CLOCK1 pin of the decoder in order for its operation to be in sync with the decoder. The two inflags pins must be connected to the GPIO pins in order to be able to turn the vidcap on and off. When the vidcap is on it will read in the video data from the decoder and starting writing only the active area of the data to the memory location in the ZBT memory bank. The base address of where the vidcap writes to is defined in the buffer parameter of this core and must be changed to correspond to the base address of the memory in the ZBT. When the vidcap is off, then no data is written to the ZBT. The 10 input pins of the vidcap core must connect to the 10 data pins that come from the decoder.

Description of Design Tree

Files Included

1. System files:

system.xmp – This file is required to open the project in XPS

system.mhs – This file contains all the information of the cores. This is the hardware specification file.

system.mss

2. pcores folder:

clk_align_v_1_00_a – One of the many cores needed for the zbt memory.

gen_zbt_addr_v1_00_a – One of the many cores needed for the zbt memory.

vidcap – Monty’s video input core.

2. data folder:

system.ucf – This file is where the connections between the pins of the cores and the pins of the FPGA are defined.

2. code folder:

number_reg2.c – Contains the main function

number.c – used together with color.c to convert from YCrCb to RGB

number.h

color.c – used together with number.c to convert from YCrCb to RGB

color.h

All the pcores contain the necessary vhdl, .mpd, and .pao files corresponding to that core that is needed for that core to be used in the project.

The numbers determine the place of the files in the design tree. For example, 1 is the top of the tree, 2 is the next level, 3 is the next level after 2, and so on.

Final decision of number

Number recognition algorithm

Mask of image

Mask generation algorithm

RGB data

YCrCb to RGB conversion algorithm

YCrCb data

PAGE
1

_1143228187.vsd

_1143228813.unknown

_1143228493.unknown

_1143227695.vsd

