

ECE532H1S Final Report

FLASH ACTIVATED STILL IMAGE CAPTURER

Team Members: Andrew Michell 990879144
 Enrico Baldovino 990884101
Submitted to: Professor Paul Chow
 April 12, 2004

 2

Contents

1.0 Overview.. 3

2.0 Results and Future Improvements.. 4

3.0 Block Description .. 5

3.1 MicroBlaze Processor... 5

3.2 OPB External Memory Controller (EMC) ... 5

3.3 OPB General Purpose I/O (GPIO) ... 6

3.4 Video Processor (vidcap) ... 6

3.5 YCrCb Buffer Viewer .. 8

4.0 Design Tree Description .. 10

 3

1.0 Overview

This report describes the implementation of a Flash Activated Still Image Capturer, a
video processing project proposed by Professor Steve Mann. The basic operation of the
overall system is as follows:

1. A camcorder provides a continuous video signal to the Xilinx Multimedia Board
through the board’s component video input connection.

2. The ADV7185 video decoder in the board samples the incoming video signal and
converts it to YCrCb digital format.

3. A video processing unit, which is enabled through the GPIO, measures the
luminance of each incoming video frame and compares it to a luminance
threshold (also specified at runtime through the GPIO).

4. A bright camera flash in the video picture causes the frame’s luminance to exceed
the threshold value, prompting the video processing unit to store the subsequent
frame into external ZBT RAM.

5. The memory where the picture is stored is read and written to a file by an XMD
command line script.

6. This file is read by YCrCb Buffer Viewer, a custom viewing application written in
Java, which displays the captured picture by sequentially drawing each pixel.

The system was built upon the zbt_test design by Lesley Shannon. This design included a
MicroBlaze processor and one ZBT RAM bank connected to the OPB bus through an
External Memory Controller (EMC). The video input core, vidcap, was connected to the
OPB bus in master configuration. This core was enabled by the user at runtime through
the GPIO. The original vidcap core, written by Monty Nandra, continuously read YCrCb
digital video data from the board’s video decoder and stored it in 32-bit format on the
ZBT RAM module. Modifications were made to the vidcap core to enable measurement
of the energy of each frame. The core’s operation was changed such that it would only
write frames into memory once it has found a frame with an energy measurement that
exceeds a certain threshold. A more detailed description of the system’s components can
be found in section 3.0 of this document.

 4

2.0 Results and Future Improvements

The Flash Activated Still Image Capturer successfully measures the brightness of each
incoming frame by summing the values of each luminance sample sent by the video
decoder. This sum is compared to a threshold level, which can be set by writing the
desired value in the GPIO register. The value written must end with the last two bits set
high, as these two bits also function as switches, which enable the video capture module
to write frames to memory. Frames are not written to memory until after the module
senses a frame above the set threshold level.

Although the system works and achieves its objectives, there are some drawbacks that
can potentially be improved upon:

1) Due to time constraints, we were unable to develop a hardware module that displays

the captured frame on a VGA or TV monitor once it is stored in memory. This would
eliminate the need to transfer the memory contents to a file and open display it using
the YCrCb Buffer Viewer Java application.

2) It was observed that the system is quite dependent on the light conditions where it is
being used. In rooms with bright fluorescent lighting, flash frames become less
differentiable from regular frames. This problem may be solved by modifying the
method by which the energy of each frame is measured such that there is a larger
discrepancy between normal frames and those with a flash.

3) Ideally, only one frame should be captured and written to memory. However, we

found that when only one frame is written, blank spots appear in the picture. This
may be due to the fact that since the video capture module is connected to the OPB as
a master, it must be granted permission to write to the RAM. This process might not
be happening fast enough for every sample to be written. (Note that this is only a
hypothesis; the system should be simulated and tested further in order to find the
exact cause of the problem.) Thus, it was necessary to allow the module to write
several frames into the same location on the external memory.

4) One might consider modifying the operation of the video processing core so that

frames are continually written to memory until a flash frame is found, at which point
writing is halted. In this case, the last frame written to memory would be the flash
frame, instead of the subsequent frames. This is essentially the inverse of the system
previously described.

 5

3.0 Block Description

The following figure is a schematic diagram of the overall system as it was implemented
on the Xilinx Multimedia Development Board. The hardware modules shaded in red will
be described in further detail in this section.

3.1 Microblaze Processor
The Microblaze processor does not take part in digital video processing, as this is done by
the video processing module (see section 3.4). However, it still plays a relatively
important role in the system by running the Microblaze Debug Module (MDM). The
user must be able to write values to the GPIO to specify the brightness threshold and
enable the video processing module to write to memory. The user must also be able to
access the ZBT RAM directly to transfer its contents to a file. Access to the GPIO and
the RAM (as far as we know) can only be done by connecting to the MDM stub through
XMD.

3.2 OPB External Memory Controller (EMC)
The EMC module is used to control reads and writes to the external memory. The EMC
is connected to one bank of external memory. Our project used Lesley Shannon’s
zbt_test project to implement the external memory. There is an extra module,
gen_zbt_addr, which, as stated in the project’s README file, “flips the address bus to
select the correct bits”.

 6

The following changes were made in Add/Edit Cores:
 set the base address to 0x80100000
 set the end address to 0x801fffff

3.3 OPB General Purpose I/O (GPIO)
The GPIO module is used to start the flash detector, stop the flash detector and set the
threshold of the energy. The GPIO core was added to the project in Add/Edit Cores
using the following steps:
 set the base address of the GPIO core to 0x80000300
 add the GPIO core to the OPB bus as a slave
 connect the GPIO_d_out signal to inflags signal of vidcap
 set the WIDTH parameter to 32

The upper 30 bits of the GPIO_d_out signal are used to set the threshold for the vidcap
core and the lower 2 bits are used as start/stop bits. To start the flash detector, write a
0xXXXXXXX3 to address 0x80000300, which is the base address of the GPIO core.
The threshold of the vidcap core will be set to 0xXXXXXXX0. To stop or reset the flash
detector, write a 0x00000000 to address 0x80000300.

3.4 Video Processor (vidcap)
The vidcap module is used to capture incoming video data from the off chip decoder and
write the video data. A state machine and two counters were added to Monty’s vidcap to
measure the energy of each video frame and write a configurable number of frames
following the high energy frame to memory. The vidcap core was added to the project by
following these steps:
In Add/Edit Cores,
 create a new vidcap instance
 connect the vidcap core to the OPB as a master
 add the following signals:

o led1
o led2
o inflags
o vid_clk
o YCrCb_in

 connect the inflags signal to the GPIO_d_out signal of the GPIO core
 set the C_FBADDR parameter to the frame buffer address
 set the C_NUM_FRAMES to the number of frames that will be written to memory

(maximum of 15)
In the system.ucf file,
 connect vidcap_0_led1 to the pin for user_led0
 connect vidcap_0_led2 to the pin for user_led1
 connect vidcap_0_vid_clk to the 27 Mhz video signal

(CHAN1_LINE_LOCK_CLOCK1)
 connect vidcap_0_YCrCb_in to the video data (CHAN1_VIDEO_DATAn)

 7

Description of Changes Made
The original vidcap core was modified by adding two counters and a state machine to
control the two counters. One counter is used for summing the luminance of each pixel
and the other is used for counting the frames that have been written to memory. The state
machine is used to control the counters and the states are labeled A through G. The
following figure is the state diagram of the state machine.

A: Reset State

B: Looking for Frame
CountFrame_reset = 1

CountEnergy = 1

C: Wait for end of
current frame

D: Wait for start of
next frame

WriteFrame = 1

E: Increment
frame counter

CountFrame_en = 1
WriteFrame = 1

F: Wait for end of
current Frame

WriteFrame = 1

G: All Done

Reset

write_en = 0

write_en = 1 FoundFrame = 0

FoundFrame = 1

otherwise

V_falling = 1

and Fo = 0

V_falling = 1

and Fo = 0
FrameCount >= C_NUM_FRAMES

otherwise

V_falling = 1

and Fo = 0

otherwise

write_en = 1

write_en = 0

Description of each state:

A. In this state the user has not written a number ending in 3 to the GPIO. The state
machine will transition to state B when the user starts the flash detector.

B. In this state the luminance of each pixel is being added to the energy counter, and
the frame counter is reset. If the value in the energy counter is greater than the
threshold set by the GPIO then a FoundFrame signal will go high and the state
will change to state C.

C. In this state the frame with high energy has been detected and we are waiting for
the high energy frame to end so that we can write the following frames to
memory. At the end of this frame V_falling will be high and Fo will be low.

 8

When this happens the state will chage to state D. V_falling is high and Fo is low
for a few clock cycles between each frame.

D. In this state we are waiting for the beginning of a frame we wish to write. If the
frame counter is equal to C_NUM_FRAMES then the state will change to state G.
Otherwise, we wait for the beginning. This happens when V_falling is not high
and/or Fo is not low. At the beginning of the next frame the state will change to
E.

E. In this state the frame counter is incremented. At the next clock cycle the state
will change to F.

F. In the state a frame is written. At the end of a frame V_falling will be high, Fo
will be low and the state will change to state D.

G. In this state all of the frames have been written to memory. The state machine
will stay in this state until the user resets the flash detector, at which point the
state will change to state A.

The vidcap core was simulated using Quartus to ensure that the state machine functioned
properly and that video data was written to memory. For more information on the data
transmitted by the video decoder, please refer to the document “XAPP286: Line Field
Decoder”, which can be found at the end of this report.

3.5 YCrCb Buffer Viewer

Since there was not enough time to develop a video output hardware module in the
Multimedia Board, a Java application was written to display the picture that was captured
and stored into memory. The viewer opens a file named cap, which is created by the sst
script, which can be found in the project directory (to run the script from the project
directory in XMD, type “source sst” at the command prompt). The cap file simply lists
the contents of the ZBT RAM, four bytes per line. Each line contains the hexadecimal
values for two luminance (Y) samples and two chrominance (Cr & Cb) samples in the
following format: 0xY1CrY2Cb. It is important to note that the values are stored in

 9

interlaced format, meaning all the odd video lines are written first, followed by the even
lines. The following code segment, extracted from Viewer.java, performs the conversion
of the file to RGB values for each pixel.

all: for(y=0; y<525; y++){
 // iterate over all samples per line
 for(x=0; x<720; x+=2){
 // read a line from the cap file
 data = in.readLine();
 if(data == null) break all;
 if(data != ""){
 try{
 // isolate each value and convert to decimals
 sY1 = data.substring(2,4);
 sCr = data.substring(4,6);
 sY0 = data.substring(6,8);
 sCb = data.substring(8,10);

 Y1 = Integer.parseInt(sY1,16);
 Cr = Integer.parseInt(sCr,16);
 Y0 = Integer.parseInt(sY0,16);
 Cb = Integer.parseInt(sCb,16);
 } catch (Exception e){}

 // convert YCrCb values to RGB values
 Y = (Y1 + Y0)/2;
 R = 1.164 * (Y-16) + 1.596 * (Cr-128);
 G = 1.164 * (Y-16) - 0.813 * (Cr-128) - 0.392 * (Cb-128);
 B = 1.164 * (Y-16) + 2.017 * (Cb-128);

 // limit values to {0,255}
 if(R>255) R = 255;
 if(G>255) G = 255;
 if(B>255) B = 255;
 if(R<0) R = 0;
 if(G<0) G = 0;
 if(B<0) B = 0;

 c = new Color((int)R, (int)G, (int)B);
 g.setColor(c);
 if(y<263)
 // draw odd lines
 g.drawLine(x,y*2,x+1,y*2);
 else
 // draw even lines
 g.drawLine(x,(y-263)*2+1,x+1,(y-263)*2+1);
 }
 }
}

For more information on the conversion from YCrCb to RGB, and how this may be
achieved in hardware, please refer to the document XAPP283: Color Space Converter”,
which can be found at the end of this document.

 10

4.0 Design Tree Description

The following items have been included in the submission:

zbt_test: the project main directory.

vidcap_v1_00_b: the modified vidcap core; this can be found in the pcores directory. The

modified file is vidcap.vhd, which can be found in
pcores/vidcap_v1_00_b/hdl/vhdl/.

sst: the script which writes the memory contents to a file named cap.

viewer: the directory containing the YCrCb Buffer Viewer application.

Instructions to run the system:
1) Connect a video camera to the Xilinx Multimedia Board through the component

video-in connection.
2) Download the hardware configuration onto the board.
3) Open XMD and connect to the stub.
4) Write a value to the GPIO to set the luminance threshold using the following

command: “mwr 0x80000300 0x02000003”. This command sets the threshold to
0x02000000. The 3 on the end enables the vidcap core to write frames to memory.
At this time, led1 should turn on. This means that the vidcap core is searching for a
bright frame.

5) Use a camera or some other light source to generate a bright frame.
6) Once a bright frame is found and subsequent frames are written to memory, led1

should turn off and led2 should turn on.
7) In XMD, type “source sst” to create the cap file.
8) Open the cap file using the YCrCb Buffer Viewer application.
9) Reset the system by typing in the command “mwr 0x80000300 0”.

Summary The video standard ITU-R.656 uses the sample definition defined in ITU-R BT.601 and
SMPTE 125M. The standards describe how video field and line timing are embedded in the bit-
parallel data through the use of reserved data words known as timing reference signals
(TRS)[1] [2]. The MicroBlaze™ and Multimedia development board uses and decodes this
information to regain the timing of the incoming video stream. This timing is then passed to
other algorithms inside the device.

The reference design available with this application note decodes TRS information and
supplies timing control signals to the rest of the video algorithms. The design is a modification
of design files associated with XAPP248: Digital Video Test Pattern Generators.

Component
Video Voltages

The Associated Digital Video Data Values in Each Video Line
The MicroBlaze and Multimedia development board uses an Analog Device decoder,
ADV7185, to sample (up to four times over-sampling) incoming analog video and convert it to
digital values. Figure 1 shows how the voltages relate to the digital values sent to the
Virtex™-II or Spartan™-II device. Notice the 8-bit data values of FFh (decimal 256) and 00h
(decimal 0) in Figure 1 do not occur in the normal stream of video. Therefore, FFh or 00h can
be inserted in non-picture parts of a line to mark timing information. These inserted symbols
are the timing reference signals (TRS),

Application Note: MicroBlaze and Multimedia Development Board

XAPP286 (1.0) December 13, 2001

Line Field Decoder
Author: Gregg Hawkes

R

Figure 1: Analog Component Video Voltage Levels and Associated Digital Values

+700 mV

-350 mV

+350 mV

-300 mV

-300 mV

240

128

 16

235

16

225 LEVELS

220 LEVELS

DecimalChroma Pr, Pb

Luma Y'

Note the 8-bit blanking values are: Y' = 10h, Cr, Cb = 80h

040

200

3C0

10 bit

3AC

040

8 bit

F0

80

10

EB

10

Digital Codes as They
Relate to Voltages

x286_01_090501
XAPP286 (1.0) December 13, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/xapp/xapp248.pdf
http://www.xilinx.com/xapp/xapp248.pdf

Line Field Decoder
R

The MicroBlaze and Multimedia development board supports 10-bit video data coming from the
decoder device. Notice in Figure 1 how this compares to 8-bit data values. The two extra bits
beyond the normal 8-bit data are appended to the rightmost part of the 8-bit data and are
assumed to be fractional. When the fractional parts are zero, the specifications just "leave them
off".

For example, the bit pattern 10010001 would be expressed as 145d or 91h, whereas the
pattern 1001000101 is expressed as 145.25d or 91.4h. In fact, the data paths on the
development board and inside the Virtex-II device were designed specifically for future MPEG
investigation and are 12-bits wide. The extra two data bits beyond the10-bit data are appended
to the MSBs, leaving more "headroom" for calculations.

Figure 2 and Figure 3 summarize the embedded timing format described fully in the video
standard ITU-R BT.656. The significant components of a single horizontal line are shown; "front
porch", "horizontal sync", "back porch", and "active video". The number of samples allocated to
each horizontal line for the NTSC and PAL standards are also shown.

Figure 2: Composite NTSC (525 Line With Set-up) Horizontal Scan Line Detail
x286_02_082301

REFERENCE WHITE - 100 IRE

BLACK LEVEL - 7.5 IRE
BLANK LEVEL - 0 IRE

SYNCH LEVEL - 40 IRE

720 samples (0 - 719)122 samples

16 samples

Back
Porch

Front
Porch

Active Video

Horiz.
Sync

MAX EXCURSION with CHROMA - 131 IRE

 MIN CHROMA
 BURST - 23 IRE

 MAX CHROMA
 BURST 20 IRE

1 Volt peak-to-peak

429 Cb’ samples per total line (at 6.75 MHz)

429 Cr’ samples per total line (at 6.75 MHz)

858 (0 - 857) Y’ samples per total line (at 13.5 MHz)

138 samples (720 - 857)

Digital Line
Start

Digital Line
End

H, V, and F
Transition
Here

16 samples
2 www.xilinx.com XAPP286 (1.0) December 13, 2001
1-800-255-7778

http://www.xilinx.com

Line Field Decoder
R

Video Timing
Information
Embedded in
Each Video Line

As shown in the previous figures, the video data words are conveyed as a 27 MHz data stream,
in the following order:

Cb0, Y’0, Cr0, Y’1, Cb1, Y’2, Cr1, Y’3, Cb2, Y’4, Cr2, Y’5...

All the data values are sampled on the rising edge of the 27 MHz clock. In an 8-bits-per-word
implementation, the data values FFh and 00h are used to form the TRS preamble. A TRS
preamble consists of three words, FFh, followed by 00h, followed by 00h. In 10-bit
implementations, the data values 3FFh and 000h are used for the TRS preamble. The TRS
preamble and following XY word are decoded and combined with various counts, such as line
count, to completely specify the NTSC or PAL timing to the rest of the video algorithms in a
system design.

Field and frame timing is actually embedded in the data stream by the word following the TRS.
This word, known as XY can be decoded for different timing events.

The terms SAV and EAV are abbreviations for "Start of Active Video" and "End of Active Video",
respectively. SAV is identified with the timing reference code (FF 00 00) followed by the XY
word where bit four of the XY word is a logic Low. EAV is identified as a logic High in bit four of
the XY word. SAV signals that active video pixels will follow. EAV signals that horizontal
blanking follows. Figure 4 shows this detailed horizontal pixel information for a horizontal NTSC
525 line and Figure 5 shows the same information for a PAL 625 line.

Figure 3: Composite PAL (625 Line With Set-up) Horizontal Scan Line Detail

x286_03_082401

REFERENCE WHITE - 100 IRE

BLACK LEVEL - 7.5 IRE
BLANK LEVEL - 0 IRE

SYNCH LEVEL - 40 IRE

720 samples (0 - 719)132 samples

16 samples

Back
Porch

Front
Porch

Active Video

Horiz
Sync

MAX EXCURSION with CHROMA - 131 IRE

 MIN CHROMA
 BURST - 23 IRE

 MAX CHROMA
 BURST 20 IRE

1 Volt peak-to-peak

432 Cb’ samples per total line (at 6.75 MHz)

432 Cr’ samples per total line (at 6.75 MHz)

864 (0 - 863) Y’ samples per total line (at 13.5 MHz)

144 samples (720 - 863)

Digital Line
Start

Digital Line
End

H, V, and F
Transition
Here

12 samples
XAPP286 (1.0) December 13, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Line Field Decoder
R

Field number and vertical blanking are also conveyed by XY, following a field ID. The "F bit" or
bit-position six and the "V bit" or bit-position five are decoded as follows:

F = 0, denotes field 1

F = 1, denotes field 2

V = 0, denotes no vertical blanking

V = 1, denotes vertical blanking

Figure 4: NTSC (525 Line) Horizontal Scan Line Detail, Inserted Codes

Figure 5: PAL (625 Line) Horizontal Scan Line Detail, Inserted Codes

x286_04_082401

Note 1: FF 00 00 XY - Timing Reference (EAV and SAV)
Note 2: Digital Blanking Data = 80,10,80,10...
Note 3: Video Data Words Are Conveyed (27MWords/s) Cb, Y, Cr, Y, Cb, Y, etc.

Horizontal Sync Pulse

Analog
Line N-1

Analog
Line N

Cb
360

Y
720

Sample 720

Cr
000

Y
001

Sample 001

Cr
359

Y
719

Sample 719

Cr
428

Y
857

Sample 857

Cb
000

Y
000

Sample 000

Cb
001

Y
002

Sample 002

Digital
Line N-1

Digital
Line N

Cb
368

Y
736

Sample 736

Cr
367

Y
735

Sample 735

Inserted Digital Blanking Code

Last
Sample

Cb
361

Y
722

Sample 722

Cr
360

Y
721

Sample 721

80 10

Cr
427

Y
855

Sample 855

Cb
428

Y
856

Sample 856

80 10

Inserted Vertical
Timing Reference
(H Changes Here)

Inserted Vertical
Timing Reference

(H, V, F Changes Here)

EAV SAV

00 00 XYFF FF 00 00 XY

x286_05_082401

Note 1: FF 00 00 XY - Timing Reference (EAV and SAV)
Note 2: Digital Blanking Data = 80,10,80,10...
Note 3: Video Data Words Are Conveyed (27MWords/s)Cb, Y, Cr, Y, Cb, Y, etc.

Horizontal Sync Pulse

Analog
Line N-1

Analog
Line N

Cb
360

Y
720

Sample 720

Cr
000

Y
001

Sample 001

Cr
359

Y
719

Sample 719

Cr
431

Y
863

Sample 863

Cb
000

Y
000

Sample 000

Cb
001

Y
002

Sample 002

Digital
Line N-1

Digital
Line N

Cb
366

Y
732

Sample 732

Cr
367

Y
731

Sample 731

Inserted Digital Blanking Code

Last
Sample

Cb
361

Y
722

Sample 722

Cr
360

Y
721

Sample 721

80 10

Cr
430

Y
861

Sample 861

Cb
431

Y
862

Sample 862

80 10

Inserted Vertical
Timing Reference
(H Changes Here)

Inserted Vertical
Timing Reference

(H, V, F Changes Here)

EAV SAV

00 00 XYFF FF 00 00 XY
4 www.xilinx.com XAPP286 (1.0) December 13, 2001
1-800-255-7778

http://www.xilinx.com

Line Field Decoder
R

Video Line and
Field Timing

There are more pixels in the blanking period for PAL than NTSC (144 vs. 138), but the number
of active pixels, in a line, are the same (720). While there are more lines in PAL (625 per frame
for PAL vs. 525 for NTSC), there are less frames per second (25 for PAL vs. 30 for NTSC). In
fact, the pixel frequencies are approximately equal.

As ideas and inventions are introduced, video evolves in many different ways creating
enormous variations in formats. For example, the introduction of computer systems generated
a desire to mix video broadcast systems and computers further complicating formats with the
notion of the square pixel. When looking at a table of information about pixels per line, lines per
frame, and frames per second, a basic understanding of the specific format is necessary.

Figure 6 and Figure 7 show the detail associated with NTSC and PAL vertical information
conveyed by the standard.

Figure 6: NTSC (525 Line) Vertical Timing Reference (8-bit Implementation)
x286_06_082401

FF 00 00 XYInserted Vertical
Timing Reference

F V H P3 P2 P1 P0
0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1
1 0 1 1 0 1 0
1 1 0 1 1 0 0
1 1 1 0 0 0 1

P3 = V (XOR) H
P2 = F (XOR) H
P1 = F (XOR) V
P0 = F (XOR) V (XOR) H

Timing Reference Definition (word XY above) where XY = 1, F, V, H, P3, P2, P1, P0

Line # F V H(EAV) H(SAV) Notes

1-3 1 1 1 0 Blanking, Lines 1-9, 9 Lines
4-19 0 1 1 0 Blanking, Lines 10-19, 10 Lines (optional ancillary data except line 14)
20-263 0 0 1 0 Field 1 (Odd) Active Video, 244 Lines
264-265 0 1 1 0 Blanking, Lines 264-272, 9 Lines
266-282 1 1 1 0 Blanking, Lines 273-282, 10 Lines (optional ancillary data except line 277)
283-525 1 0 1 0 Field 2 (Even) Active Video, 243 Lines

Protection Bits Definition
XAPP286 (1.0) December 13, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Line Field Decoder
R

Figure 8 and Figure 9 shows the vertical detail scope waveforms as if H, V, F, HSYNC, BLANK,
and VSYNC were decoded from the digital component video and presented. This is essentially
what the line field decoder state machine does.

Figure 7: PAL (625 Line) Vertical Timing Reference (8-bit Implementation)
x286_07_082401

FF 00 00 XYInserted Vertical
Timing Reference

F V H P3 P2 P1 P0
0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1
1 0 1 1 0 1 0
1 1 0 1 1 0 0
1 1 1 0 0 0 1

P3 = V (XOR) H
P2 = F (XOR) H
P1 = F (XOR) V
P0 = F (XOR) V (XOR) H

Timing Reference Definition (word XY above) where XY = 1, F, V, H, P3, P2, P1, P0

Line # F V H(EAV) H(SAV) Notes

1-22 0 1 1 0 Blanking, Lines 1-22, 22 Lines
23-310 0 0 1 0 Field 1 (Odd) Active Video, 288 Lines
311-312 0 1 1 0 Blanking, Lines 311-312, 2 Lines
313-335 1 1 1 0 Blanking, Lines 313-335, 23 Lines
336-623 1 0 1 0 Field 2 (Even) Active Video, 243 Lines
624-625 1 1 1 0 Blanking, Lines 624-625, 2 Lines

Protection Bits Definition
6 www.xilinx.com XAPP286 (1.0) December 13, 2001
1-800-255-7778

http://www.xilinx.com

Line Field Decoder
R

Figure 8: Composite NTSC 525 Vertical Timing Detail

Figure 9: Composite PAL 625 Vertical Timing Detail

x286_08_090501

2 3 4 5 6 7 8 9 10 to
19

20 21525524

Vertical Blank

264 265 266 267 268 269 270 271 272 273 to
282

283 284263262

H

V

F

H

V

F

Even Field

Even Field (Field Two)Odd Field

Odd Field (Field One)

HSYNC

BLANK

HSYNC

VSYNC

VSYNC

Vertical Blank

BLANK

1

Falling edge of V differs from the specification to conform to some older equipment

Falling edge of V differs from the specification to conform to some older equipment

x286_09_082401

311 312 313 314 315 316 317 318 319 320 321 336310309

H

V

F Even Field (Field Two)Odd Field

HSYNC

BLANK

VSYNC

Vertical Blank

Vertical Blank

624 625 1 2 3 4 5 6 7 8 9 23623622

H

V

F Even Field Odd Field (Field One)

HSYNC

VSYNC

BLANK
XAPP286 (1.0) December 13, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Line Field Decoder
R

Reference
Design

The reference design for this application note, in both VHDL and Verilog code, is available on
the Xilinx FTP site at: ftp://ftp.xilinx.com/pub/applications/xapp/xapp286.zip. A simple
description of the video line and field decoder module state machine function is:

1. Auto detect the format by counting clocks between EAV and SAV

2. Determine and output the horizontal sync or H bit

3. Determine and output the Field bit

4. Determine and output the line and pixel count

This "Line Field Decoder" reference design is a modification of the auto-detect module found in
XAPP248. It uses the autodetect code to track the TRS symbols and report the format. Steps
2, 3, and 4 are added to support other modules in the demonstration board.

The auto-detect module in XAPP248 examines a digital video stream to determine the
matching video standard. The supported video standards are listed in Table 1.

Since the Microblaze and Multimedia demonstration board only supports NTSC 4:2:2
component video and PAL 4:2:2 component video, the design could be made smaller by
eliminating the other standards. XAPP248 has details of a finite state machine used to track
timing reference symbols.

Once TRS symbols are being tracked accurately, the horizontal sync and field bits are decoded
by looking at the SAV XY word. The line count must be determined. When the F-bit transitions
from Low to High, a line counter can be loaded with the correct value based on the format. If
NTSC then load 266, otherwise use the PAL value of 313.

Conclusion The design receives a pixel clock (27 MHz) used to clock in each Y’, Cr, and Cb value. Currently
pixels pass through the module with a delay. Future additions to the module might zero them or
duplicate them during blanked portions of a line. This will produce different effects in the 422 to
444 module. The outputs of this module are a signal that suggests the incoming video is NTSC
or PAL (PAL_NTSC_out), a line count (lcnt), the H, V, and F signals and the three sync signals,
hsync_out, vsync_out, and blank_out. Figure 8 and Figure 9 the signal behavior.

Downstream modules that receive the ITU656 stream will need this information to further
process and store the input pixels.

Each input video stream will use this code to allow other data path elements and control
elements examining the input video stream to know what format the stream is (NTSC or PAL),
and to know what pixels are available and any given time. The simple control logic easily runs
at the pixel rate of 27 MHz in the Virtex-II and Spartan-II families.

Table 1: Supported Video Standards

Video Format Corresponding Standards

NTSC 4:2:2 component video SMPTE 125M, ITU-R BT.601, ITU-R BT.656

NTSC composite video SMPTE 244M, SMPTE 259M

NTSC 4:4:4 component 13.5 MHz sample SMPTE RP174

PAL 4:2:2 component video ITU-R BT.656

PAL composite video EBU 3280-E

PAL 4:2:2 16 x 9 component video ITU-R BT.601

PAL 4:4:4 component 13.5 MHz sample ITU-R BT.799
8 www.xilinx.com XAPP286 (1.0) December 13, 2001
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp286.zip
ftp://ftp.xilinx.com/pub/applications/xapp/xapp248.zip
http://www.xilinx.com

Line Field Decoder
R

The results of the synthesis and implementation are included for this simple controller here:

References: 1. The video standards beginning with ITU come from the International Telecommunication
Union. ITU-R BT.656 and by ITU-R BT.601 standards are available on the International
Telecommunication Union’s web site, http://www.itu.int/itudoc/itu-r/rec/bt/ for a small
fee. The SMPTE or Society of Motion Picture and Television Engineers standards can be
found on http://www.smpte.org and will also require membership or a fee.

2. "Video Demystified", by Keith Jack, published by Harris, ISBN 1-878707-23-X, is a good
beginners guide to video techniques. It can be read or purchased on line at the following
URL; http://www.video-demystified.com

3. Analog Devices ADV7194 Data Sheet, "Professional Extended-10 Video Encoder with
54 MHz Over Sampling". URL: http://www.analog.com

Revision
History

The following table shows the revision history for this document.

Table 2: Size and Performance Results using FPGA Express 3.5, Xilinx 3.3i

Part Number Flip-Flops LUT Ports Clock Latency Speed

XC2V1000-5 117 152 38 8 8 ns (125 MHz)

XC2S200-5 117 152 38 8 11 ns (91 MHz)

Date Version Revision

12/13/01 1.0 Initial Xilinx release.
XAPP286 (1.0) December 13, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com
http://www.itu.int/itudoc/itu-r/rec/bt/
http://www.smpte.org
http://www.video-demystified.com
http://www.analog.com
http://www.analog.com

Summary This application note describes three ways to implement the Y’CrCb Color Space to R’G’B’
Color Space conversion necessary in many video designs. The tick marks on red, green, blue,
and Luma, assume the components are in the gamma corrected space. No gamma correction
is applied to color difference signals Cr and Cb.

The first implementation shows how to simply write behavioral Verilog to describe the
conversion equations, and then synthesize to a silicon target. This technique infers
MULT_ANDs for the constant coefficient multiplier.

The second implementation uses the Xilinx feature of embedded RAM functioning as a Look-
up Table (LUT), or ROM, to store all possible intermediate results for the terms in the three
equations. Since three of the seven total terms are identical, only five ROMs are needed. The
depth of the ROM, 1K, is driven by the color component bit width of 10 bits or studio quality
video. To target Spartan-II devices, either add more ROMs or use commercial 8-bit video
instead of 10-bit studio quality.

The third implementation makes use of the embedded multiplier in the Virtex™-II series of
devices to perform the color space conversion. Again, only five multipliers are used. The Verilog
model using the embedded multiplier is synthesized, placed, and routed. The design has a
clock performance of 185 MHz after place and route, using simple constraints.

Color Space
Definition

The human eye has three types of photoreceptor cells called cones. Stimulating the cells
causes the human brain to “perceive” color. Colors can be specified, created, and visualized
using different color formats or “color spaces.”

Different color spaces have historically evolved for different applications. In each case, a color
space was chosen for reasons that may no longer be applicable. Maybe a choice was made on
a particular color space because the math elements needed to process were simpler or faster.
Maybe a certain choice was better because it required less storage and bandwidth on digital
buses.

Whatever historical reasons caused color space choices in the past, the convergence of
computers, the Internet, and a wide variety of video devices, all using different color
representations, is forcing the digital designer today to convert between them. The objective is
to have a common color space that all inputs are converted to before algorithms and processes
are executed. The converters are useful for a number of markets, such as image processing
and filtering. Their basic function is to convert from one color space to another. This application
note describes one such conversion.

Application Note: Virtex-II Series

XAPP283 (v1.1) April 22, 2001

Color Space Converter
Author: Latha Pillai

R

XAPP283 (v1.1) April 22, 2001 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Color Space Converter
R

Three Color
Space
Examples

RGB Color Space
RGB color space is a simple and robust color definition used in computer systems and the
Internet to help ensure that a color is correctly mapped from one platform to another without
significant loss of color information. RGB uses three numerical components to represent a
color. This color space can be thought of as a three-dimensional coordinate system whose
axes correspond to the three components, R or red, G or green, and B or Blue. RGB is the color
space that computer displays use. RGB corresponds most closely to the behavior of the human
eye.

RGB is an additive color system. The three primary colors red, green, and blue are added to
form the desired color. Each component has a range of 0 to 255, with all three 0s producing
black and all three 255s producing white.

Y’CbCr Color Space
Y’CbCr Color Space was developed as part of the Recommendation ITU-R BT.601 for
worldwide digital component video standard and is used in television transmissions. Y’CbCr is
a scaled and offset version of the YUV color space where Y represents luminance (or
brightness), U represents color, and V represents the saturation value. Here the RGB color
space is separated into a luminance part (Y’) and two chrominance parts (Cb and Cr).

As mentioned earlier, the historical reasons for this choice, over R’G’B’, were to reduce storage
and bandwidth. Since the eye is more sensitive to change in brightness than change in color,
the reduction in bandwidth requirement seemed a valid trade for little or no visual difference.

Engineers found that 60 to 70 percent of luminance or brightness is found in the “green color.”
In the chrominance part Cb and Cr, the brightness information can be removed from the blue
and red colors.

To generate the same color in the RGB format, all three color components should be of equal
bandwidth. This requires more storage space and bandwidth. Also, processing an image in the
RGB space is more complex since any change in the color of any pixel requires all the three
RGB values to be read, calculations performed, and then stored. If the color information is
stored in the intensity and color format, some of the processing steps can be made faster.

The result is that Cb and Cr provide the hue and saturation information of the color and Y'
provides the brightness information of the color. Y' is defined to have a range of 16 to 235 and
Cb and Cr have a range of 16 to 240 with 128 equal to zero. Because the eye is less sensitive
to Cb and Cr, engineers did not need to transmit Cr and Cb at the same rate as Y'. Less storage
and bandwidth was needed, resulting in design costs being reduced.

Converting from
Y’CrCb to
R’G’B’

A color in the Y'CrCb color space is converted to the RGB color space using the following
equations:

Where R'G'B' are gamma-corrected RGB values and Y', Cr, and Cb are 8-bit inputs.

For 10-bit inputs, the equations are:

Figure 1 shows a direct mapping of the above three equations. Notice that three of the seven
terms are duplicates. This term is computed once and fed to the output adders for the Y', Cr,
and Cb results.

R’ 1.164 Y’ 16–() 1.596 Cr 128–()+=

G' 1.164 Y' 16–() 0.813() Cr 128–()– 0.392 Cb 128–()–=

B' 1.164 Y' 16–() 2.017 Cb 128–()+=

R’ 1.164 Y’ 64–() 1.596 Cr 512–()+=

G' 1.164 Y' 64–() 0.813() Cr 512–()– 0.392 Cb 512–()–=

B' 1.164 Y' 64–() 2.017 Cb 512–()+=
2 www.xilinx.com XAPP283 (v1.1) April 22, 2001
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Virtex-II
Implementation
Examples

The high density, on-chip memory in the Virtex-II designs increase overall system bandwidth by
providing fast and resource-efficient FIFO buffers, shift registers, and CAMs. With embedded
multipliers and improved arithmetic functions, Virtex-II solutions deliver over 600 billion MACs/s
of Xtreme DSP performance.

There are up to 192 18 x 18 signed multipliers in a single device, supporting up to 36-bit signed
multiplications. Cascading these multipliers supports even larger numbers. The multipliers can
be combinatorial or pipelined, running between 140 MHz and 250 MHz depending on bit width.
These features make Virtex-II devices the ideal choice for implementing the color space
converter.

Verilog Examples

As mentioned at the start of this application note, there are three different implementation
examples. The following are the results of synthesizing and implementing each example.

Three different implementation examples are detailed in this application note. A fourth example
is a CoreGen distributed arithmetic approach. The CoreGen approach is not implemented, but
estimated results are given. The following sections show the results of synthesizing and
implementing each example.

Implementation Using Behavioral Verilog (gen_model.*)
In this implementation, the basic Y’CrCb2R’G’B’ conversion equations are synthesized using
Synplicity. All the signals are registered at the input and at the output. The synthesized EDIF file
is then placed and routed using Design Manager. A timing constraint of 10 ns was given to the
place and route tool. The implementation results are listed in the following tables.

Notes:
1. See Verilog file, gen_model.v.

Figure 1: Block Diagram Showing Math Elements

Y'[7:0]

Cr[7:0]

Cb[7:0]

CE

CLK

+

+

+

X

X

X

X

X

+

+

+ Limit

Limit

Limit R'

G'

B'

x283_01_101701

1.164

1.596

-0.813

-0.392

2.017-128

-128

-16
XAPP283 (v1.1) April 22, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Design Summary

Implementation Using Block RAM as Look-Up ROM (ram_model.*)
Y’, Cb, and Cr are 10-bits wide and so have a range of 0 to 1023. This would give the following
values for each of the terms in the R’,G’, and B’ equations:

Each of these terms is calculated for all the possible input values. The results can then be
stored in a 16-bit wide, 1024-deep RAM. Five RAMs are used for the five terms. The address
lines to the RAMs are the respective input signals that are used in each of the terms. The output
of the RAM is the data stored in the location addressed by the input signals, Y’, Cr, and Cb. The
output of the RAMs are added using an adder. The block diagram and the implementation
results for this method are shown in Figure 2.

Table 1: Behavioral Implementation Design Summary

Device LUTs FFs Ports Performance

XC2V500-5
(slowest speed grade)

258 52 68 14 ns / 71 MHz
(inputs and outputs registered

XC2V500-5
(slowest speed grade)

260 85 68 9.4 ns / 106 MHz
(one intermediate pipe stage)

1.164 Y’ 16–() 1.164 0 16–()to 1023 16–()[] 1.164 16– to1007()==

1.596 Cr 128–() 1.596 0 128–()to 1023 128–()[] 1.596 128– to 895()==

0.813 Cr 128–() 0.813 0 128–()to 1023 128–()[] 0.813 128– to 895()==

0.392 Cb 128–() 0.392 0 128–()to 1023 128–()[] 0.392 128– to 895()==

2.017 Cb 128–() 2.017 0 128–()to 1023 128–()[] 2.017 128– to 895()==
4 www.xilinx.com XAPP283 (v1.1) April 22, 2001
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Implementation Results Using Embedded Multiplier in Virtex-II Device

The model with the instantiated block RAM was synthesized using Synplicity and the resulting
EDIF file was placed and routed using Design Manager. A timing constraint of 5 ns was given
to the place and route tool. The implementation results (push button) for the color space
converter using the instantiated block RAM are as follows:

Notes:
1. See Verilog file, ram_model.v.

Figure 2: Implementation Using RAM

Y'

Cr

Cb

CLK

RST

16-bit 1024
deep RAM

1.164(Y'-16)

16-bit 1024
deep RAM

1.596(Cr-128)

16-bit 1024
deep RAM

0.392(Cb-128)

16-bit 1024
deep RAM

0.813(Cr-128)

16-bit 1024
deep RAM

2.017(Cb-128)

+ R'

G'

B'

x283_02_101701

+

+

Table 2: Block RAM Implementation Design Summary

Device LUTs FFs RAM Ports Performance

XC2V500-5
(slowest speed grade)

60 10 5 68 9 ns / 103 MHz
(inputs and outputs registered
XAPP283 (v1.1) April 22, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Implementation Using Embedded Multiplier (mult_model.*)
The block diagram for the implementation using embedded multiplier is as shown in Figure 3. A
two’s complement circuit is provided to take care of the negative results for (Y'–16),
(Cr –128),and (Cb –128) values. The two’s complement circuit can be omitted if the inputs are
assumed to be in two’s complement format.

Figure 3: Implementation Using Instantiated Multiplier

Y'[9:0] Cr[9:0] Cb[9:0]

Y-16
ADD/SUB

Cr-128
ADD/SUB

Cb-128
ADD/SUB

Two's
Complement

Two's
Complement

Two's
Complement

1.164 1.596 0.392

P1 P2 P4

P1_int

0.813 2.017

P3 P5

P3_int P2_int P5_int

P4_int

P1 + P2
ADDER

P1 - P3 - P4
ADDER

P1 - P3
ADDER

P1 + P5
ADDER

R int1

G int1

B int1

R'[20:9] G'[20:9] B'[20:9]
x283_03_101701
6 www.xilinx.com XAPP283 (v1.1) April 22, 2001
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Implementation Results Using Embedded Multiplier in Virtex-II Device

The model with the instantiated multiplier was synthesized using Synplicity and the resulting
EDIF file was placed and routed using Design Manager. A timing constraint of 5 ns was given
to the place and route tool. The implementation result (push button) for the color space
converter using the instantiated multiplier is as follows:

Notes:
1. See Verilog file, mult_model.v.

Design Summary

Reference Design

The VHDL and Verilog reference designs for this application note are available on the Xilinx
web site in a .zip file:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp283.zip

Conclusion The results of the synthesis and implementations demonstrate how the three examples trade
off one math resource for another. The behavioral Verilog describing the conversion equations
uses a resource available in Virtex, Virtex-E, and Virtex-II devices, known as “MULT_AND” to
form the basis of the multiplies in the equations. No block RAM or embedded multipliers are
consumed. In the second example, the math resource used is block RAM/ROM, again available
in all Virtex families. Finally, the Virtex-II family now provides the most flexible math resource for
DSP in the form of an embedded, high-speed, two’s complement multiplier.

Revision
History

The following table shows the revision history for this document.

Table 3: Embedded Multiplier Implementation Design Summary

Device LUTs FFs
Mult

18 x 18 Ports Performance

XC2V500-5
(slowest speed grade)

131 177 5 68 8.9 ns / 111 MHz

Date Version Revision

07/11/01 1.0 Initial Xilinx release

04/22/02 1.1 Updated Figure 1 and Figure 2. Changed implementation
summaries with newer data. Updated to include Virtex-II Pro
devices. Modified the 10-bit equation on page 2.
XAPP283 (v1.1) April 22, 2001 www.xilinx.com 7
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp283.zip
http://www.xilinx.com

	xapp286_04.pdf
	Summary
	Component Video Voltages
	The Associated Digital Video Data Values in Each Video Line

	Video Timing Information Embedded in Each Video Line
	Video Line and Field Timing
	Reference Design
	Conclusion
	References:
	Revision History

	xapp283.pdf
	Summary
	Color Space Definition
	Three Color Space Examples
	RGB Color Space
	Y'CbCr Color Space

	Converting from Y'CrCb to R'G'B'
	Virtex-II Implementation Examples
	Verilog Examples
	Implementation Using Behavioral Verilog (gen_model.*)
	Design Summary

	Implementation Using Block RAM as Look-Up ROM (ram_model.*)
	Implementation Results Using Embedded Multiplier in Virtex-II Device

	Implementation Using Embedded Multiplier (mult_model.*)
	Implementation Results Using Embedded Multiplier in Virtex-II Device
	Design Summary
	Reference Design

	Conclusion
	Revision History

