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1.0 Overview 
 
This report describes the implementation of a Flash Activated Still Image Capturer, a 
video processing project proposed by Professor Steve Mann.  The basic operation of the 
overall system is as follows: 

1. A camcorder provides a continuous video signal to the Xilinx Multimedia Board 
through the board’s component video input connection. 

2. The ADV7185 video decoder in the board samples the incoming video signal and 
converts it to YCrCb digital format. 

3. A video processing unit, which is enabled through the GPIO, measures the 
luminance of each incoming video frame and compares it to a luminance 
threshold (also specified at runtime through the GPIO). 

4. A bright camera flash in the video picture causes the frame’s luminance to exceed 
the threshold value, prompting the video processing unit to store the subsequent 
frame into external ZBT RAM. 

5. The memory where the picture is stored is read and written to a file by an XMD 
command line script. 

6. This file is read by YCrCb Buffer Viewer, a custom viewing application written in 
Java, which displays the captured picture by sequentially drawing each pixel. 

 
The system was built upon the zbt_test design by Lesley Shannon. This design included a 
MicroBlaze processor and one ZBT RAM bank connected to the OPB bus through an 
External Memory Controller (EMC).  The video input core, vidcap, was connected to the 
OPB bus in master configuration. This core was enabled by the user at runtime through 
the GPIO.  The original vidcap core, written by Monty Nandra, continuously read YCrCb 
digital video data from the board’s video decoder and stored it in 32-bit format on the 
ZBT RAM module.  Modifications were made to the vidcap core to enable measurement 
of the energy of each frame.  The core’s operation was changed such that it would only 
write frames into memory once it has found a frame with an energy measurement that 
exceeds a certain threshold.  A more detailed description of the system’s components can 
be found in section 3.0 of this document. 
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2.0 Results and Future Improvements 
 
The Flash Activated Still Image Capturer successfully measures the brightness of each 
incoming frame by summing the values of each luminance sample sent by the video 
decoder.  This sum is compared to a threshold level, which can be set by writing the 
desired value in the GPIO register.  The value written must end with the last two bits set 
high, as these two bits also function as switches, which enable the video capture module 
to write frames to memory.  Frames are not written to memory until after the module 
senses a frame above the set threshold level. 
 
Although the system works and achieves its objectives, there are some drawbacks that 
can potentially be improved upon: 
   
1) Due to time constraints, we were unable to develop a hardware module that displays 

the captured frame on a VGA or TV monitor once it is stored in memory.  This would 
eliminate the need to transfer the memory contents to a file and open display it using 
the YCrCb Buffer Viewer Java application.   
 

2) It was observed that the system is quite dependent on the light conditions where it is 
being used.  In rooms with bright fluorescent lighting, flash frames become less 
differentiable from regular frames.  This problem may be solved by modifying the 
method by which the energy of each frame is measured such that there is a larger 
discrepancy between normal frames and those with a flash. 

 
3) Ideally, only one frame should be captured and written to memory.  However, we 

found that when only one frame is written, blank spots appear in the picture.  This 
may be due to the fact that since the video capture module is connected to the OPB as 
a master, it must be granted permission to write to the RAM.  This process might not 
be happening fast enough for every sample to be written.  (Note that this is only a 
hypothesis; the system should be simulated and tested further in order to find the 
exact cause of the problem.)  Thus, it was necessary to allow the module to write 
several frames into the same location on the external memory. 

 
4) One might consider modifying the operation of the video processing core so that 

frames are continually written to memory until a flash frame is found, at which point 
writing is halted.  In this case, the last frame written to memory would be the flash 
frame, instead of the subsequent frames.  This is essentially the inverse of the system 
previously described. 
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3.0 Block Description 
 
The following figure is a schematic diagram of the overall system as it was implemented 
on the Xilinx Multimedia Development Board.  The hardware modules shaded in red will 
be described in further detail in this section. 
 

 
 

3.1 Microblaze Processor 
The Microblaze processor does not take part in digital video processing, as this is done by 
the video processing module (see section 3.4).  However, it still plays a relatively 
important role in the system by running the Microblaze Debug Module (MDM).  The 
user must be able to write values to the GPIO to specify the brightness threshold and 
enable the video processing module to write to memory.  The user must also be able to 
access the ZBT RAM directly to transfer its contents to a file.  Access to the GPIO and 
the RAM (as far as we know) can only be done by connecting to the MDM stub through 
XMD. 

3.2 OPB External Memory Controller (EMC) 
The EMC module is used to control reads and writes to the external memory.  The EMC 
is connected to one bank of external memory.  Our project used Lesley Shannon’s 
zbt_test project to implement the external memory.  There is an extra module, 
gen_zbt_addr, which, as stated in the project’s README file, “flips the address bus to 
select the correct bits”. 



 6

 
The following changes were made in Add/Edit Cores: 
 set the base address to 0x80100000 
 set the end address to 0x801fffff 

3.3 OPB General Purpose I/O (GPIO) 
The GPIO module is used to start the flash detector, stop the flash detector and set the 
threshold of the energy.  The GPIO core was added to the project in Add/Edit Cores 
using the following steps: 
 set the base address of the GPIO core to 0x80000300 
 add the GPIO core to the OPB bus as a slave 
 connect the GPIO_d_out signal to inflags signal of vidcap 
 set the WIDTH parameter to 32 

 
The upper 30 bits of the GPIO_d_out signal are used to set the threshold for the vidcap 
core and the lower 2 bits are used as start/stop bits.  To start the flash detector, write a 
0xXXXXXXX3 to address 0x80000300, which is the base address of the GPIO core.  
The threshold of the vidcap core will be set to 0xXXXXXXX0.  To stop or reset the flash 
detector, write a 0x00000000 to address 0x80000300. 

3.4 Video Processor (vidcap) 
The vidcap module is used to capture incoming video data from the off chip decoder and 
write the video data.  A state machine and two counters were added to Monty’s vidcap to 
measure the energy of each video frame and write a configurable number of frames 
following the high energy frame to memory.  The vidcap core was added to the project by 
following these steps: 
In Add/Edit Cores, 
 create a new vidcap instance 
 connect the vidcap core to the OPB as a master 
 add the following signals: 

o led1 
o led2 
o inflags 
o vid_clk 
o YCrCb_in 

 connect the inflags signal to the GPIO_d_out signal of the GPIO core 
 set the C_FBADDR parameter to the frame buffer address 
 set the C_NUM_FRAMES to the number of frames that will be written to memory 

(maximum of 15) 
In the system.ucf file, 
 connect vidcap_0_led1 to the pin for user_led0 
 connect vidcap_0_led2 to the pin for user_led1 
 connect vidcap_0_vid_clk to the 27 Mhz video signal 

(CHAN1_LINE_LOCK_CLOCK1) 
 connect vidcap_0_YCrCb_in to the video data (CHAN1_VIDEO_DATAn) 
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Description of Changes Made 
The original vidcap core was modified by adding two counters and a state machine to 
control the two counters.  One counter is used for summing the luminance of each pixel 
and the other is used for counting the frames that have been written to memory.  The state 
machine is used to control the counters and the states are labeled A through G.  The 
following figure is the state diagram of the state machine. 
 

A: Reset State

B: Looking for Frame
CountFrame_reset = 1

CountEnergy = 1

C: Wait for end of
current frame

D: Wait for start of
next frame

WriteFrame = 1

E: Increment
frame counter

CountFrame_en = 1
WriteFrame = 1

F: Wait for end of
current Frame

WriteFrame = 1

G: All Done

Reset

write_en = 0

write_en = 1 FoundFrame = 0

FoundFrame = 1

otherwise

V_falling = 1

and Fo = 0

V_falling = 1

and Fo = 0
FrameCount >= C_NUM_FRAMES

otherwise

V_falling = 1

and Fo = 0

otherwise

write_en = 1

write_en = 0

 
Description of each state: 

A. In this state the user has not written a number ending in 3 to the GPIO.  The state 
machine will transition to state B when the user starts the flash detector. 

B. In this state the luminance of each pixel is being added to the energy counter, and 
the frame counter is reset.  If the value in the energy counter is greater than the 
threshold set by the GPIO then a FoundFrame signal will go high and the state 
will change to state C. 

C. In this state the frame with high energy has been detected and we are waiting for 
the high energy frame to end so that we can write the following frames to 
memory.  At the end of this frame V_falling will be high and Fo will be low.  
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When this happens the state will chage to state D.  V_falling is high and Fo is low 
for a few clock cycles between each frame. 

D. In this state we are waiting for the beginning of a frame we wish to write.  If the 
frame counter is equal to C_NUM_FRAMES then the state will change to state G.  
Otherwise, we wait for the beginning.  This happens when V_falling is not high 
and/or Fo is not low.  At the beginning of the next frame the state will change to 
E. 

E. In this state the frame counter is incremented.  At the next clock cycle the state 
will change to F. 

F. In the state a frame is written.  At the end of a frame V_falling will be high, Fo 
will be low and the state will change to state D. 

G. In this state all of the frames have been written to memory.  The state machine 
will stay in this state until the user resets the flash detector, at which point the 
state will change to state A. 

 
The vidcap core was simulated using Quartus to ensure that the state machine functioned 
properly and that video data was written to memory.  For more information on the data 
transmitted by the video decoder, please refer to the document “XAPP286: Line Field 
Decoder”, which can be found at the end of this report. 

3.5 YCrCb Buffer Viewer 

 
Since there was not enough time to develop a video output hardware module in the 
Multimedia Board, a Java application was written to display the picture that was captured 
and stored into memory.  The viewer opens a file named cap, which is created by the sst 
script, which can be found in the project directory (to run the script from the project 
directory in XMD, type “source sst” at the command prompt).  The cap file simply lists 
the contents of the ZBT RAM, four bytes per line.  Each line contains the hexadecimal 
values for two luminance (Y) samples and two chrominance (Cr & Cb) samples in the 
following format: 0xY1CrY2Cb.  It is important to note that the values are stored in 
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interlaced format, meaning all the odd video lines are written first, followed by the even 
lines.  The following code segment, extracted from Viewer.java, performs the conversion 
of the file to RGB values for each pixel.   
 
all: for( y=0; y<525; y++ ){ 
    // iterate over all samples per line 
    for( x=0; x<720; x+=2 ){ 
        // read a line from the cap file 
        data = in.readLine(); 
        if(data == null) break all; 
        if(data != ""){ 
            try{ 
                // isolate each value and convert to decimals 
                sY1 = data.substring(2,4); 
                sCr = data.substring(4,6); 
                sY0 = data.substring(6,8); 
                sCb = data.substring(8,10); 
 
                Y1 = Integer.parseInt(sY1,16); 
                Cr = Integer.parseInt(sCr,16); 
                Y0 = Integer.parseInt(sY0,16); 
                Cb = Integer.parseInt(sCb,16); 
            } catch (Exception e){} 
 
            // convert YCrCb values to RGB values 
            Y = (Y1 + Y0)/2; 
            R = 1.164 * (Y-16) + 1.596 * (Cr-128); 
            G = 1.164 * (Y-16) - 0.813 * (Cr-128) - 0.392 * (Cb-128); 
            B = 1.164 * (Y-16) + 2.017 * (Cb-128); 
 
            // limit values to {0,255} 
            if(R>255)   R = 255; 
            if(G>255)   G = 255; 
            if(B>255)   B = 255; 
            if(R<0)     R = 0; 
            if(G<0)     G = 0; 
            if(B<0)     B = 0; 
 
            c = new Color((int)R, (int)G, (int)B); 
            g.setColor(c); 
            if(y<263) 
                // draw odd lines 
                g.drawLine(x,y*2,x+1,y*2); 
            else 
                // draw even lines 
                g.drawLine(x,(y-263)*2+1,x+1,(y-263)*2+1); 
        } 
    } 
} 
 
For more information on the conversion from YCrCb to RGB, and how this may be 
achieved in hardware, please refer to the document XAPP283: Color Space Converter”, 
which can be found at the end of this document. 
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4.0 Design Tree Description 
 
The following items have been included in the submission: 
 
zbt_test: the project main directory.   
 
vidcap_v1_00_b: the modified vidcap core; this can be found in the pcores directory. The 

modified file is vidcap.vhd, which can be found in 
pcores/vidcap_v1_00_b/hdl/vhdl/. 

 
sst: the script which writes the memory contents to a file named cap. 
 
viewer: the directory containing the YCrCb Buffer Viewer application. 
 
Instructions to run the system: 
1) Connect a video camera to the Xilinx Multimedia Board through the component 

video-in connection. 
2) Download the hardware configuration onto the board. 
3) Open XMD and connect to the stub. 
4) Write a value to the GPIO to set the luminance threshold using the following 

command: “mwr 0x80000300 0x02000003”.  This command sets the threshold to 
0x02000000.  The 3 on the end enables the vidcap core to write frames to memory.  
At this time, led1 should turn on. This means that the vidcap core is searching for a 
bright frame. 

5) Use a camera or some other light source to generate a bright frame. 
6) Once a bright frame is found and subsequent frames are written to memory, led1 

should turn off and led2 should turn on. 
7) In XMD, type “source sst” to create the cap file. 
8) Open the cap file using the YCrCb Buffer Viewer application. 
9) Reset the system by typing in the command “mwr 0x80000300 0”. 



Summary The video standard ITU-R.656 uses the sample definition defined in ITU-R BT.601 and 
SMPTE 125M. The standards describe how video field and line timing are embedded in the bit-
parallel data through the use of reserved data words known as timing reference signals 
(TRS)[1] [2]. The MicroBlaze™ and Multimedia development board uses and decodes this 
information to regain the timing of the incoming video stream. This timing is then passed to 
other algorithms inside the device.

The reference design available with this application note decodes TRS information and 
supplies timing control signals to the rest of the video algorithms. The design is a modification 
of design files associated with XAPP248: Digital Video Test Pattern Generators.

Component 
Video Voltages 

The Associated Digital Video Data Values in Each Video Line
The MicroBlaze and Multimedia development board uses an Analog Device decoder, 
ADV7185, to sample (up to four times over-sampling) incoming analog video and convert it to 
digital values. Figure 1 shows how the voltages relate to the digital values sent to the 
Virtex™-II or Spartan™-II device. Notice the 8-bit data values of FFh (decimal 256) and 00h 
(decimal 0) in Figure 1 do not occur in the normal stream of video. Therefore, FFh or 00h can 
be inserted in non-picture parts of a line to mark timing information. These inserted symbols 
are the timing reference signals (TRS), 

Application Note: MicroBlaze and Multimedia Development Board

XAPP286 (1.0) December 13, 2001

Line Field Decoder
Author: Gregg Hawkes

R

Figure 1:  Analog Component Video Voltage Levels and Associated Digital Values
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The MicroBlaze and Multimedia development board supports 10-bit video data coming from the 
decoder device. Notice in Figure 1 how this compares to 8-bit data values. The two extra bits 
beyond the normal 8-bit data are appended to the rightmost part of the 8-bit data and are 
assumed to be fractional. When the fractional parts are zero, the specifications just "leave them 
off". 

For example, the bit pattern 10010001 would be expressed as 145d or 91h, whereas the 
pattern 1001000101 is expressed as 145.25d or 91.4h. In fact, the data paths on the 
development board and inside the Virtex-II device were designed specifically for future MPEG 
investigation and are 12-bits wide. The extra two data bits beyond the10-bit data are appended 
to the MSBs, leaving more "headroom" for calculations.

Figure 2 and Figure 3 summarize the embedded timing format described fully in the video 
standard ITU-R BT.656. The significant components of a single horizontal line are shown; "front 
porch", "horizontal sync", "back porch", and "active video". The number of samples allocated to 
each horizontal line for the NTSC and PAL standards are also shown.

Figure 2:  Composite NTSC (525 Line With Set-up) Horizontal Scan Line Detail
x286_02_082301
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Video Timing 
Information 
Embedded in 
Each Video Line

As shown in the previous figures, the video data words are conveyed as a 27 MHz data stream, 
in the following order: 

Cb0, Y’0, Cr0, Y’1, Cb1, Y’2, Cr1, Y’3, Cb2, Y’4, Cr2, Y’5...

All the data values are sampled on the rising edge of the 27 MHz clock. In an 8-bits-per-word 
implementation, the data values FFh and 00h are used to form the TRS preamble. A TRS 
preamble consists of three words, FFh, followed by 00h, followed by 00h. In 10-bit 
implementations, the data values 3FFh and 000h are used for the TRS preamble. The TRS 
preamble and following XY word are decoded and combined with various counts, such as line 
count, to completely specify the NTSC or PAL timing to the rest of the video algorithms in a 
system design.

Field and frame timing is actually embedded in the data stream by the word following the TRS. 
This word, known as XY can be decoded for different timing events.

The terms SAV and EAV are abbreviations for "Start of Active Video" and "End of Active Video", 
respectively. SAV is identified with the timing reference code (FF 00 00) followed by the XY 
word where bit four of the XY word is a logic Low. EAV is identified as a logic High in bit four of 
the XY word. SAV signals that active video pixels will follow. EAV signals that horizontal 
blanking follows. Figure 4 shows this detailed horizontal pixel information for a horizontal NTSC 
525 line and Figure 5 shows the same information for a PAL 625 line.

Figure 3:  Composite PAL (625 Line With Set-up) Horizontal Scan Line Detail
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Field number and vertical blanking are also conveyed by XY, following a field ID. The "F bit" or 
bit-position six and the "V bit" or bit-position five are decoded as follows:

F = 0, denotes field 1

F = 1, denotes field 2

V = 0, denotes no vertical blanking

V = 1, denotes vertical blanking

Figure 4:  NTSC (525 Line) Horizontal Scan Line Detail, Inserted Codes

Figure 5:  PAL (625 Line) Horizontal Scan Line Detail, Inserted Codes
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Video Line and 
Field Timing

There are more pixels in the blanking period for PAL than NTSC (144 vs. 138), but the number 
of active pixels, in a line, are the same (720). While there are more lines in PAL (625 per frame 
for PAL vs. 525 for NTSC), there are less frames per second (25 for PAL vs. 30 for NTSC). In 
fact, the pixel frequencies are approximately equal.

As ideas and inventions are introduced, video evolves in many different ways creating 
enormous variations in formats. For example, the introduction of computer systems generated 
a desire to mix video broadcast systems and computers further complicating formats with the 
notion of the square pixel. When looking at a table of information about pixels per line, lines per 
frame, and frames per second, a basic understanding of the specific format is necessary.

Figure 6 and Figure 7 show the detail associated with NTSC and PAL vertical information 
conveyed by the standard.

Figure 6:  NTSC (525 Line) Vertical Timing Reference (8-bit Implementation)
x286_06_082401

FF 00 00 XYInserted Vertical
Timing Reference

F V H P3 P2 P1 P0
0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1
1 0 1 1 0 1 0
1 1 0 1 1 0 0
1 1 1 0 0 0 1

P3 = V (XOR) H
P2 = F (XOR) H
P1 = F (XOR) V
P0 = F (XOR) V (XOR) H

Timing Reference Definition (word XY above) where XY = 1, F, V, H, P3, P2, P1, P0

Line # F V H(EAV) H(SAV) Notes

1-3 1 1 1 0 Blanking, Lines 1-9, 9 Lines
4-19 0 1 1 0 Blanking, Lines 10-19, 10 Lines (optional ancillary data except line 14)
20-263 0 0 1 0 Field 1 (Odd) Active Video, 244 Lines
264-265 0 1 1 0 Blanking, Lines 264-272, 9 Lines
266-282 1 1 1 0 Blanking, Lines 273-282, 10 Lines (optional ancillary data except line 277)
283-525 1 0 1 0 Field 2 (Even) Active Video, 243 Lines

Protection Bits Definition
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Figure 8 and Figure 9 shows the vertical detail scope waveforms as if H, V, F, HSYNC, BLANK, 
and VSYNC were decoded from the digital component video and presented. This is essentially 
what the line field decoder state machine does.

Figure 7:  PAL (625 Line) Vertical Timing Reference (8-bit Implementation)
x286_07_082401
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0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1
1 0 1 1 0 1 0
1 1 0 1 1 0 0
1 1 1 0 0 0 1

P3 = V (XOR) H
P2 = F (XOR) H
P1 = F (XOR) V
P0 = F (XOR) V (XOR) H

Timing Reference Definition (word XY above) where XY = 1, F, V, H, P3, P2, P1, P0

Line # F V H(EAV) H(SAV) Notes

1-22 0 1 1 0 Blanking, Lines 1-22, 22 Lines
23-310 0 0 1 0 Field 1 (Odd) Active Video, 288 Lines
311-312 0 1 1 0 Blanking, Lines 311-312, 2 Lines
313-335 1 1 1 0 Blanking, Lines 313-335, 23 Lines
336-623 1 0 1 0 Field 2 (Even) Active Video, 243 Lines
624-625 1 1 1 0 Blanking, Lines 624-625, 2 Lines

Protection Bits Definition
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Figure 8:  Composite NTSC 525 Vertical Timing Detail

Figure 9:  Composite PAL 625 Vertical Timing Detail

x286_08_090501

2 3 4 5 6 7 8 9 10 to
19

20 21525524

Vertical Blank

264 265 266 267 268 269 270 271 272 273 to
282

283 284263262

H

V

F

H

V

F

Even Field

Even Field (Field Two)Odd Field

Odd Field (Field One)

HSYNC

BLANK

HSYNC

VSYNC

VSYNC

Vertical Blank

BLANK

1

Falling edge of V differs from the specification to conform to some older equipment 

Falling edge of V differs from the specification to conform to some older equipment 

x286_09_082401

311 312 313 314 315 316 317 318 319 320 321 336310309

H

V

F Even Field (Field Two)Odd Field

HSYNC

BLANK

VSYNC

Vertical Blank

Vertical Blank

624 625 1 2 3 4 5 6 7 8 9 23623622

H

V

F Even Field Odd Field (Field One)

HSYNC

VSYNC

BLANK
XAPP286 (1.0) December 13, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com


Line Field Decoder
R

Reference 
Design

The reference design for this application note, in both VHDL and Verilog code, is available on 
the Xilinx FTP site at: ftp://ftp.xilinx.com/pub/applications/xapp/xapp286.zip. A simple 
description of the video line and field decoder module state machine function is:

1. Auto detect the format by counting clocks between EAV and SAV

2. Determine and output the horizontal sync or H bit

3. Determine and output the Field bit

4. Determine and output the line and pixel count

This "Line Field Decoder" reference design is a modification of the auto-detect module found in 
XAPP248.  It uses the autodetect code to track the TRS symbols and report the format. Steps 
2, 3, and 4 are added to support other modules in the demonstration board.

The auto-detect module in XAPP248 examines a digital video stream to determine the 
matching video standard. The supported video standards are listed in Table 1.

Since the Microblaze and Multimedia demonstration board only supports NTSC 4:2:2 
component video and PAL 4:2:2 component video, the design could be made smaller by 
eliminating the other standards. XAPP248 has details of a finite state machine used to track 
timing reference symbols.

Once TRS symbols are being tracked accurately, the horizontal sync and field bits are decoded 
by looking at the SAV XY word. The line count must be determined. When the F-bit transitions 
from Low to High, a line counter can be loaded with the correct value based on the format. If 
NTSC then load 266, otherwise use the PAL value of 313.

Conclusion The design receives a pixel clock (27 MHz) used to clock in each Y’, Cr, and Cb value. Currently 
pixels pass through the module with a delay. Future additions to the module might zero them or 
duplicate them during blanked portions of a line. This will produce different effects in the 422 to 
444 module. The outputs of this module are a signal that suggests the incoming video is NTSC 
or PAL (PAL_NTSC_out), a line count (lcnt), the H, V, and F signals and the three sync signals, 
hsync_out, vsync_out, and blank_out. Figure 8 and Figure 9 the signal behavior.

Downstream modules that receive the ITU656 stream will need this information to further 
process and store the input pixels.

Each input video stream will use this code to allow other data path elements and control 
elements examining the input video stream to know what format the stream is (NTSC or PAL), 
and to know what pixels are available and any given time.  The simple control logic easily runs 
at the pixel rate of 27 MHz in the Virtex-II and Spartan-II families.

Table  1:  Supported Video Standards

Video Format Corresponding Standards

NTSC 4:2:2 component video SMPTE 125M, ITU-R BT.601, ITU-R BT.656

NTSC composite video SMPTE 244M, SMPTE 259M

NTSC 4:4:4 component 13.5 MHz sample SMPTE RP174

PAL 4:2:2 component video ITU-R BT.656

PAL composite video EBU 3280-E

PAL 4:2:2 16 x 9 component video ITU-R BT.601

PAL 4:4:4 component 13.5 MHz sample ITU-R BT.799 
8 www.xilinx.com XAPP286 (1.0) December 13, 2001
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The results of the synthesis and implementation are included for this simple controller here:

References: 1. The video standards beginning with ITU come from the International Telecommunication 
Union.  ITU-R BT.656 and by ITU-R BT.601 standards are available on the International 
Telecommunication Union’s web site,  http://www.itu.int/itudoc/itu-r/rec/bt/ for a small 
fee. The SMPTE or Society of Motion Picture and Television Engineers standards can be 
found on http://www.smpte.org and will also require membership or a fee.

2. "Video Demystified", by Keith Jack, published by Harris, ISBN 1-878707-23-X, is a good 
beginners guide to video techniques. It can be read or purchased on line at the following 
URL;  http://www.video-demystified.com

3. Analog Devices ADV7194 Data Sheet, "Professional Extended-10 Video Encoder with 
54 MHz Over Sampling". URL: http://www.analog.com 

Revision 
History

The following table shows the revision history for this document.  

Table  2:  Size and Performance Results using FPGA Express 3.5, Xilinx 3.3i

Part Number Flip-Flops LUT Ports Clock Latency Speed

XC2V1000-5 117 152 38 8 8 ns (125 MHz)

XC2S200-5 117 152 38 8 11 ns (91 MHz)

Date Version Revision

12/13/01 1.0 Initial Xilinx release.
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Summary This application note describes three ways to implement the Y’CrCb Color Space to R’G’B’ 
Color Space conversion necessary in many video designs. The tick marks on red, green, blue, 
and Luma, assume the components are in the gamma corrected space. No gamma correction 
is applied to color difference signals Cr and Cb.

The first implementation shows how to simply write behavioral Verilog to describe the 
conversion equations, and then synthesize to a silicon target. This technique infers 
MULT_ANDs for the constant coefficient multiplier. 

The second implementation uses the Xilinx feature of embedded RAM functioning as a Look-
up Table (LUT), or ROM, to store all possible intermediate results for the terms in the three 
equations. Since three of the seven total terms are identical, only five ROMs are needed. The 
depth of the ROM, 1K, is driven by the color component bit width of 10 bits or studio quality 
video. To target Spartan-II devices, either add more ROMs or use commercial 8-bit video 
instead of 10-bit studio quality.

The third implementation makes use of the embedded multiplier in the Virtex™-II series of 
devices to perform the color space conversion. Again, only five multipliers are used. The Verilog 
model using the embedded multiplier is synthesized, placed, and routed. The design has a 
clock performance of 185 MHz after place and route, using simple constraints.

Color Space 
Definition

The human eye has three types of photoreceptor cells called cones. Stimulating the cells 
causes the human brain to “perceive” color. Colors can be specified, created, and visualized 
using different color formats or “color spaces.”

Different color spaces have historically evolved for different applications. In each case, a color 
space was chosen for reasons that may no longer be applicable. Maybe a choice was made on 
a particular color space because the math elements needed to process were simpler or faster. 
Maybe a certain choice was better because it required less storage and bandwidth on digital 
buses. 

Whatever historical reasons caused color space choices in the past, the convergence of 
computers, the Internet, and a wide variety of video devices, all using different color 
representations, is forcing the digital designer today to convert between them. The objective is 
to have a common color space that all inputs are converted to before algorithms and processes 
are executed. The converters are useful for a number of markets, such as image processing 
and filtering. Their basic function is to convert from one color space to another. This application 
note describes one such conversion.

Application Note: Virtex-II Series

XAPP283 (v1.1) April 22, 2001

Color Space Converter
Author: Latha Pillai

R
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Three Color 
Space 
Examples 

RGB Color Space
RGB color space is a simple and robust color definition used in computer systems and the 
Internet to help ensure that a color is correctly mapped from one platform to another without 
significant loss of color information. RGB uses three numerical components to represent a 
color. This color space can be thought of as a three-dimensional coordinate system whose 
axes correspond to the three components, R or red, G or green, and B or Blue. RGB is the color 
space that computer displays use. RGB corresponds most closely to the behavior of the human 
eye. 

RGB is an additive color system. The three primary colors red, green, and blue are added to 
form the desired color. Each component has a range of 0 to 255, with all three 0s producing 
black and all three 255s producing white.

Y’CbCr Color Space
Y’CbCr Color Space was developed as part of the Recommendation ITU-R BT.601 for 
worldwide digital component video standard and is used in television transmissions. Y’CbCr is 
a scaled and offset version of the YUV color space where Y represents luminance (or 
brightness), U represents color, and V represents the saturation value. Here the RGB color 
space is separated into a luminance part (Y’) and two chrominance parts (Cb and Cr). 

As mentioned earlier, the historical reasons for this choice, over R’G’B’, were to reduce storage 
and bandwidth. Since the eye is more sensitive to change in brightness than change in color, 
the reduction in bandwidth requirement seemed a valid trade for little or no visual difference.

Engineers found that 60 to 70 percent of luminance or brightness is found in the “green color.” 
In the chrominance part Cb and Cr, the brightness information can be removed from the blue 
and red colors.

To generate the same color in the RGB format, all three color components should be of equal 
bandwidth. This requires more storage space and bandwidth. Also, processing an image in the 
RGB space is more complex since any change in the color of any pixel requires all the three 
RGB values to be read, calculations performed, and then stored. If the color information is 
stored in the intensity and color format, some of the processing steps can be made faster.

The result is that Cb and Cr provide the hue and saturation information of the color and Y' 
provides the brightness information of the color. Y' is defined to have a range of 16 to 235 and 
Cb and Cr have a range of 16 to 240 with 128 equal to zero. Because the eye is less sensitive 
to Cb and Cr, engineers did not need to transmit Cr and Cb at the same rate as Y'. Less storage 
and bandwidth was needed, resulting in design costs being reduced.

Converting from 
Y’CrCb to 
R’G’B’

A color in the Y'CrCb color space is converted to the RGB color space using the following 
equations:

Where R'G'B' are gamma-corrected RGB values and Y', Cr, and Cb are 8-bit inputs.

For 10-bit inputs, the equations are:

Figure 1 shows a direct mapping of the above three equations. Notice that three of the seven 
terms are duplicates. This term is computed once and fed to the output adders for the Y', Cr, 
and Cb results.

R’ 1.164 Y’ 16–( ) 1.596 Cr 128–( )+=

G' 1.164 Y' 16–( ) 0.813( ) Cr 128–( )– 0.392 Cb 128–( )–=

B' 1.164 Y' 16–( ) 2.017 Cb 128–( )+=

R’ 1.164 Y’ 64–( ) 1.596 Cr 512–( )+=

G' 1.164 Y' 64–( ) 0.813( ) Cr 512–( )– 0.392 Cb 512–( )–=

B' 1.164 Y' 64–( ) 2.017 Cb 512–( )+=
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Virtex-II 
Implementation 
Examples

The high density, on-chip memory in the Virtex-II designs increase overall system bandwidth by 
providing fast and resource-efficient FIFO buffers, shift registers, and CAMs. With embedded 
multipliers and improved arithmetic functions, Virtex-II solutions deliver over 600 billion MACs/s 
of Xtreme DSP performance.

There are up to 192 18 x 18 signed multipliers in a single device, supporting up to 36-bit signed 
multiplications. Cascading these multipliers supports even larger numbers. The multipliers can 
be combinatorial or pipelined, running between 140 MHz and 250 MHz depending on bit width. 
These features make Virtex-II devices the ideal choice for implementing the color space 
converter.

Verilog Examples

As mentioned at the start of this application note, there are three different implementation 
examples. The following are the results of synthesizing and implementing each example.

Three different implementation examples are detailed in this application note. A fourth example 
is a CoreGen distributed arithmetic approach. The CoreGen approach is not implemented, but 
estimated results are given. The following sections show the results of synthesizing and 
implementing each example.

Implementation Using Behavioral Verilog (gen_model.*)
In this implementation, the basic Y’CrCb2R’G’B’ conversion equations are synthesized using 
Synplicity. All the signals are registered at the input and at the output. The synthesized EDIF file 
is then placed and routed using Design Manager. A timing constraint of 10 ns was given to the 
place and route tool. The implementation results are listed in the following tables.

Notes: 
1. See Verilog file, gen_model.v.

Figure 1:  Block Diagram Showing Math Elements

Y'[7:0]

Cr[7:0]

Cb[7:0]

CE

CLK

+

+

+

X

X

X

X

X

+

+

+ Limit

Limit

Limit R'

G'

B'

x283_01_101701

1.164

1.596

-0.813

-0.392

2.017-128

-128

-16 
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Design Summary

Implementation Using Block RAM as Look-Up ROM (ram_model.*)
Y’, Cb, and Cr are 10-bits wide and so have a range of 0 to 1023. This would give the following 
values for each of the terms in the R’,G’, and B’ equations:

Each of these terms is calculated for all the possible input values. The results can then be 
stored in a 16-bit wide, 1024-deep RAM. Five RAMs are used for the five terms. The address 
lines to the RAMs are the respective input signals that are used in each of the terms. The output 
of the RAM is the data stored in the location addressed by the input signals, Y’, Cr, and Cb. The 
output of the RAMs are added using an adder. The block diagram and the implementation 
results for this method are shown in Figure 2.

Table  1:  Behavioral Implementation Design Summary

Device LUTs FFs Ports Performance

XC2V500-5
(slowest speed grade)

258 52 68 14 ns / 71 MHz 
(inputs and outputs registered

XC2V500-5
(slowest speed grade)

260 85 68 9.4 ns / 106 MHz 
(one intermediate pipe stage)

1.164 Y’ 16–( ) 1.164 0 16–( )to 1023 16–( )[ ] 1.164 16– to1007( )==

1.596 Cr 128–( ) 1.596 0 128–( )to 1023 128–( )[ ] 1.596 128– to 895( )==

0.813 Cr 128–( ) 0.813 0 128–( )to 1023 128–( )[ ] 0.813 128– to 895( )==

0.392 Cb 128–( ) 0.392 0 128–( )to 1023 128–( )[ ] 0.392 128– to 895( )==

2.017 Cb 128–( ) 2.017 0 128–( )to 1023 128–( )[ ] 2.017 128– to 895( )==
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Implementation Results Using Embedded Multiplier in Virtex-II Device 

The model with the instantiated block RAM was synthesized using Synplicity and the resulting 
EDIF file was placed and routed using Design Manager. A timing constraint of 5 ns was given 
to the place and route tool. The implementation results (push button) for the color space 
converter using the instantiated block RAM are as follows:

Notes: 
1. See Verilog file, ram_model.v.

Figure 2:  Implementation Using RAM

Y'

Cr

Cb

CLK

RST

16-bit 1024
deep RAM

1.164(Y'-16)

16-bit 1024
deep RAM

1.596(Cr-128)

16-bit 1024
deep RAM

0.392(Cb-128)

16-bit 1024
deep RAM

0.813(Cr-128)

16-bit 1024
deep RAM

2.017(Cb-128)

+ R'

G'

B'

x283_02_101701

+

+

Table  2:  Block RAM Implementation Design Summary

Device LUTs FFs RAM Ports Performance

XC2V500-5
(slowest speed grade)

60 10 5 68 9 ns / 103 MHz 
(inputs and outputs registered
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Implementation Using Embedded Multiplier (mult_model.*)
The block diagram for the implementation using embedded multiplier is as shown in Figure 3. A 
two’s complement circuit is provided to take care of the negative results for (Y'–16), 
(Cr –128),and (Cb –128) values. The two’s complement circuit can be omitted if the inputs are 
assumed to be in two’s complement format.

Figure 3:  Implementation Using Instantiated Multiplier

Y'[9:0] Cr[9:0]                                               Cb[9:0]

Y-16
ADD/SUB

Cr-128
ADD/SUB

Cb-128
ADD/SUB

Two's
Complement

Two's
Complement

Two's
Complement

1.164 1.596 0.392

P1 P2 P4

P1_int

0.813 2.017

P3 P5

P3_int P2_int P5_int

P4_int

P1 + P2
ADDER

P1 - P3 - P4
ADDER

P1 - P3
ADDER

P1 + P5
ADDER

R int1

G int1

B int1

R'[20:9] G'[20:9] B'[20:9]
x283_03_101701
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Implementation Results Using Embedded Multiplier in Virtex-II Device

The model with the instantiated multiplier was synthesized using Synplicity and the resulting 
EDIF file was placed and routed using Design Manager. A timing constraint of 5 ns was given 
to the place and route tool. The implementation result (push button) for the color space 
converter using the instantiated multiplier is as follows:

Notes: 
1. See Verilog file, mult_model.v.

Design Summary

Reference Design

The VHDL and Verilog reference designs for this application note are available on the Xilinx 
web site in a .zip file:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp283.zip

Conclusion The results of the synthesis and implementations demonstrate how the three examples trade 
off one math resource for another. The behavioral Verilog describing the conversion equations 
uses a resource available in Virtex, Virtex-E, and Virtex-II devices, known as “MULT_AND” to 
form the basis of the multiplies in the equations. No block RAM or embedded multipliers are 
consumed. In the second example, the math resource used is block RAM/ROM, again available 
in all Virtex families. Finally, the Virtex-II family now provides the most flexible math resource for 
DSP in the form of an embedded, high-speed, two’s complement multiplier.

Revision 
History

The following table shows the revision history for this document.  

Table  3:  Embedded Multiplier Implementation Design Summary

Device LUTs FFs
Mult

18 x 18 Ports Performance

XC2V500-5
(slowest speed grade)

131 177 5 68 8.9 ns / 111 MHz 

Date Version Revision

07/11/01 1.0 Initial Xilinx release

04/22/02 1.1 Updated Figure 1 and Figure 2. Changed implementation 
summaries with newer data. Updated to include Virtex-II Pro 
devices. Modified the 10-bit equation on page 2.
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