Human Seeing Aid Development

Peter Oakham & Simon So

April 12, 2004

Digital Hardware - ECE532
Division of Engineering Science
University of Toronto

Contents

1 Preface

1.1 Background L
1.2 Running Your Application
1.3 Hardware Cores e
Introduction

2.1 Goals . .o e

2.2 Design Components

2.3 The Moving Target .

The Audio Component

3.1 AC9T core
3.2 LM4549
3.3 AC97 Core
3.4 AC97 Controller . .
3.5 Tone Generator . . .

The Video Component

4.1 Implementing Video Fetch and Store 0.
4.2 YCrCb to RGBO e
4.3 Single Frame Variationo Lo
4.4 Driver Code e

Video to Audio Processing

11

12

12

12

13

13

14

14

14

5.1 C Implementation - Colour Averages

5.2 Coreldeas e
5.2.1 Colour Amplitude Frequency Matching
5.2.2 Fourier Domain Analysis
5.2.3 Stereo Fourier Signal
524 Beyond e

The Design Trees
6.1 Audio

6.2 Video

Outcome

Conclusion

Additional Video Information - Chipsets

VHDL Code
B.1 Video Component
B.2 Reference Video Code

B.3 AudioCode

C code

Simulations

Specifications Sheets

16

16

16

16

17

18

18

18

25

25

60

63

63

1 Preface

Our project utilizes the sound and video hardware of the Xilinx MicroBlaze”™ processor version
1.0 and Multimedia board. This report will describe first our project overview, the detail description
of each component and finally our accomplishments. But before we get into the details, well give
some background information of the system we are using

1.1 Background

The MicroBlaze’™ processor is implemented onto the chipset Xilinx Virtex II. Firstly, we like to
explain some of the basic terminology that are used throughout the report to avoid confusion

e Physical Device the ASIC or FPGA that is off-chip on the Multimedia board, i.e., the external
memory, RS232

e Hardware a component that is on-chip, there are default components and user defined com-
ponents

e Software C program that is written, compiled, run by the processor.

The MicroBlaze™™ processor is what is known as a soft processor: meaning that functionality
can be added and deleted. The flexibility of having a soft processor is that you can build your
system based on your specific applications, thus no extra real estate is wasted because you dont
need that feature. What does it mean by functionality can changed? A processor has certain
functions, i.e., it may have a UART which communicates with the serial hardware RS232" | if one
doesnt need to use the serial port, then he/she can choose not to incorporate the UART into the
processor. There are many components that can be incorporate into the processor depending on
ones need, and these components are known as cores.

Note that the addition or subtraction of functionality can be changed statically. The cores inside
the processor is determined and programmed into the FPGA. Once the FPGA is programmed, it
will contain those specific cores. During operation, these cores cannot be changed. Think of cores
as constants in a C program, you can change it before complication, but once its compiled, they
cannot be changed during run-time.

1.2 Running Your Application

There are two ways you can implement a designs, in software or in hardware. To implement a
design in hardware required the knowledge of VHDL or Verilog, currently, Xilinx provides support

'RS232 an IC (hardware) that communicates with the serial port of the computer

Virtex II
Imb

MicroBlaze

Processor

Imb

¥ ¥
User-defined Default

Cores Cores

¥

Physical device

Figure 1: diagram to show MicroBlaze processor and H/W, like the one on the mid-term

for VHDL for us, so we recommend you to use VHDL. Building designs in hardware has advantage
of faster data processing, and there are certain things that must be design in hardware. Let me
give you some examples, say you would like to implement a multiplier?, you can create a hardware
multiplier using VHDL as you would have done in your Digital course. Then you will incorporate
this multiplier as a core in your processor. Now you have a multiplier that will do multiplication
in real-time®. An example of something needs to be hardware would be a UART, because the
UART needs to communicate with the RS232. And so it needs to process data in real-time and in
synchronous with the clock; hence it must be implement in hardware.

Software implementation of a design refers to assembly codes. You dont have to write assemble
code to get assembly, the Xilinx tools provides a C compiler which generates the assembly code.
And so if you were to create a multiplier for instance like our previous example, you could write
the code as follows:

int a, b, c;

int main() {
c =a* b; // multiply a and b
return c;

¥

It is important to understand, although it is much easier to implement multiplication function
in software, the multiplication does not perform as quickly as it would have in hardware. Although
multiplication is relatively simple operation and the difference is not that noticeable, operations
such as FFT is more advantageous done in hardware than software.

1.3 Hardware Cores

Building cores is one of the most challenging and pain-stacking tasks of a design. Fortunately,
Xilinx has many standard components that can aid your designs, for example, from simple flip
flops and shift registers to complex multipliers and FIFOs. If you have the Xilinx ISE installed,
you will find documentation about the standard library in following directory:

<Drive:>\<installed folder name>\doc\usenglish\books\docs\1lib\

There are also other intellectual properties provided by Xilinx designer which you can download
and use. You can find them in www.xilinx.com, in the section Product and Services, the link IP

2 A multiplier core is a basic primitive and can be implement by CORE Generator

3Real-time refers to process data as soon as becomes available. For instance, a AND gate or a flip-flop process
data in real-time, as soon as two inputs are change, the output changes or the clock changes, the output changes
respectively. Software on the other hand does not process data in real-time, each operation takes certain amount of
clock cycle to process.

Center under the heading Design Resources. These are usually more complex cores that provide
specific application. I recommend that you look over it before starting any design; you might find
cores that exist which can give you what you need.

2 Introduction

2.1 Goals

The objective of our project is to use video as input and convert the signal into an audio signal.
The conversion ideally should be done in hardware using a fourier space to smooth out and match
different time domains. To implement such a complex function, we decided to create our design in
the standard design hierarchy:

e Software - abstract level, written in C, calls on drivers, and process audio to video
e Driver - written in C, provides an interface to the hardware VHDL cores

e Hardware - written in VHDL, provides access to external chipsets and process data

The cores implemented are the video core, zbt external memory controller, and audio core.

2.2 Design Components

Video Core The video core’s purpose is to take in one frame of video from the off-board video
decoder, convert it from a YCrCb signal into an RGB signal, and finally store the frame in the ZBT
memory. The information from the video input also needs to be separated into pixel data versus
spacing and blanking information; only the pixel data is stored. The video data when stored also
needs to be easily accessible and readily useful for video processing.

ZBT Core The external memory core interfaces the FPGA to the external memory. The data
is received from the video core is written and stored in the external memory. These data will later
be processed and convert to an audio signal.

Audio Core The audio core contains two major components, a tone generator and an ac97 core.
The tone generator creates tones. A tone is basically a square wave of a particular frequency. In
order to play that tone, the signal needs to be sample and convert into a 16-bit value per sample.
The 16-bit value is then sent to the ac97 core. The ac97 core deals with the timing and data format
that is required to interface the ac97 compliant CODEC used is National Semiconductor LM4549.
The CODEC converts the digital signal to analog and outputs to speakers.

Design Concept

Muxed
Selector

ZBT

4

LPF

4

ACO97 Controller

Video Decipher

GPIO2

0 " Video Core <:|

P

B 3

*" GPIO
microBlaze

Figure 2: The Ultimate Design Goal’s Block Diagram

The core is foundation of the design, though it cannot function by itself. Drivers are written to
control functions of the cores. All cores contain a block that interfaces with the OPB bus. And so
drivers can give instructions to the cores for certain functions, i.e. initialize the LM4549.

The software layer is the highest of the hierarchy. It uses function provided by the drivers. The
layer contains the main of the program, it initialize the video and sound hardware. After that, it
takes the video data and processes it into audio data. The value is passed to the audio core and
changes the tone and amplitude of the signal.

2.3 The Moving Target

Originally the goal was to have almost all features implemented in hardware. As time drew on
however it became increasingly obvious that there was insufficient time to implement everything in
Hardware. The end result is that a lot of functions that were schedule to be created in hardware
were either moved up to the software level or they were downgraded slightly. The end result is
shown in figure 3

A Note About Time Usage Lastly a quick note should be made about effective time usage.
In retrospect a lot of the development of this project should have been done as a team instead of
different persons pioneering different efforts.

3 The Audio Component

The function of the audio core is to generate different tones and output the sound to speakers
or headphones. The audio consist of two parts: a tone generator and a AC97 core. This section
describes the detail of the two components.

3.1 AC97 core

The AC97 core deals with the interface from the MicroBlaze to the LM4549 physical device. We
first briefly describe the input data and output data format from LM4549.

Four pins are designated to interface witht LM4549, and they are SYNC, BIT_CLK, SDATA_IN,
and SDATA _OUT. This is only a quick reference guide to control the LM4549, for further detail,
please refer to the LM4549 data sheet in appendix E. We will denote our terminology the same
as the data sheet. SDATA _OUT is referred to signal output from the controller and input to the
LM4549 as drawn in the figure below.

<: AC97 Controlley - GPIO

Design Concept

ZBT In Software
Single " i
Frequency / GPiO2
4 0 .
LPF p I | Video Core
, B ‘

microBlaze

Figure 3: The Current Implementation of the Design

AC97 Controller LM4549

YN g EWNC

BILCLK |g BIT.CLK
$DATA OUT p SDATR OUT
DATA IV |g SDATA IN

Figure 4: Controller and 1L.M4549

3.2 LM4549

The LM4549 samples the audio signal with a certain sample rate specified by the user at initial-
ization. We will discuss briefly on the initialization and some basic register for LM4549 at the end
this section.

Output Frame SDATA _OUT, Controller Output to LM4549 Input FEach sample of the
data is stored in a Frame. A Frame is made up of 256 bits and is divided into thirteen Slots (0-12).
In each Slot, the MSB is send first. The beginning of each frame is marked by a rising edge of
the sync signal. Different slot is designated to contain different types of information. Table 1
summarizes the functionality of each slot.

Table 1: Slot Functionality Summary

Slot No Slot Name Information Number of
bits per slot
0 Tag phase 16
1 Control address The address of register for read or write 20
2 Register value The value of the to be written or read from 20
3-4 PCM DAC data (L/R channel) 18 bit value of stream data 20
5-12 Reserved Padded with zeroes 20

The LM4549 samples the bits on the negative edge of the BIT_CLK signal. To start sending
data, drive the SYNC signal high. LM4549 will detect the SYNC signal on the next negative edge
of the BIT_CLK, and trigger the LM4549 to expect the first bit (the most significant bit of slot 0)
on the next negative edge of BIT_CLK as shown in the Figure below. As you can see, the first bit
received is actually the second bit relative to the rising edge of the SYNC signal. The SYNC signal
will stay high for 16 BIT_CLK cycle and then go low until the end of the frame, the SYNC signal
marks Slot #0, which is also call the Tag Phase of the Frame.

SDATA_OUT: Slot 0 Tag Phase
The reason that Slot 0 is known as the Tag Phase is because it labels which slot contains valid data
and needs to be registered by the LM4549. The table below outlines the function of each bit.

SDATA _OUT: Slot 1 Read/Write, Control Address Slot 1 indicates the address of the
register which the controller would like to read or write to. The MSB of (bit 19) controls whether it
is a Read or Write operation and (18 to 12) identities the address of the register. If a read operation
of an address is requested, the value of the register will output in Slot 2 of the subsequent frame.

SDATA_OUT: Slot 2 Control Data Slot 2 is contains data to be written into the registers

10

SLOT# o L 2 3 4 5 & 7 i 9 10 " 12

SYNC
A LINK
CUTGEOIMG CMD | CMD | PCM | PCM
FRAMES: TAG | 2em | oaTa LerT | RiGHT RSRV| RSRV || RERV | ASRY | RSRV | RSRV | RSRV | RERV
SDATA_OUT
& LI Codac 1D 1o select targel codee in multple codes configurabons
AL LINK
INCOMING STAT | STAT | PCM | PCM
FRAMES TAG | snm patal Lerr [rigHr RSRV| RSRV | RERV | HSRY | RERV | RSRV | RERY | RERV
SDATA_IM »
! N Sial Hequesl bds, 11 & 10 lo reques] dals rem Oubgoeng Skols 3 & 4 N
1 TAG |]
PH-“-SE DATA PHASE -
AU
FIGURE 3. AC Link Bidirectional Audio Frame
- Tag Phase - DBHP'IEEG—'I-‘
:_‘ 0.8 :
(48 kHz) ¥

S A S B Ty

Walkd Sh:q Bil 12
s N E e EEEENE

| : f
E'Elﬁfm’ ise—Tap bils: Frasme and Siat "Vald" bits, Codec 10— SLOT 1 : SLOTS Z o 12—
150t {x} = 1" Mdicates ime siot x contains velid PCM data | Read /'Wrhe Reques, | Dets: Commandand -
{Cogea |D = (101, D0 - codec adtvesa for rulliple codecs | Command Addrans | Autia :

Fravessslid

Figure 5: SYNC, Bit_CLK, and SDATA_OUT waveform

Table 2: default

Bit Description Comment
15 Valid Frame 1 = Frame contains valid data
14 Control register address 1 = Valid Control Address in slot 1 (Primary Codec only)
13 Control register data 1 = Valid Control Register Data in Slot 2 (Primary Codec ony)
12 Left DAC data in Slot 3 1 = Valid PCM Data in Slot 3
11 | Right DAC data in Slot 4 1 = Valid PCM Data in Slot 4
10:2 Not used All 0s
1:0 Codec ID (ID1, ID0) The codec ID is used in a multi-codec system
to identify the target Secondary codec for the Control
Register address and/or data sent in the Output frame

11

Table 3: default

Bit Description Comment
19 Read/Write 1 = Read
0 = Write
18:12 | Register Address | Identifies the Status/Command register for read/write
11:0 Reserved All 0s

Table 4: default

Bit Description Comment

19:4 | Control Register | Value of the Register, zeroes if operation is read
Write Data

3:0 Reserved All 0s

SDATA _OUT: Slot 3 & 4 Playback Left or Right Channels Slot 3 and 4 contains data
for the channel, since the CODEC is only 18-bit resolution, the 18 MSB should be used.

Table 5: default

Bit Description Comment
19:0 PCM DAC Data Slots used to stream data to DACs for all Primary or
(Left/Right Channels) Secondary modes, set unused bits to Os

3.3 AC97 Core

The core is driven by the BIT_CLK generated by the LM4549. The core is divided into 3 major
sections: generates the SYNC signal, create SDATA_OUT, and handling SDATA _IN.

SYNC Signal Generation The SYNC signal goes high as soon as the start_Sync signal goes
high. After 16 clock cycles, it will generate a reset_Sync which will pull the SYNC signal low. To
keep track of the slot number, a 16-bit shift register and a 4-bit shift register is designated to do
so. The reason to use two shift register is so that we can count 16 bit for slot 0 and 20 bit for
the remaining slots. The 16-bit shift register starts counting when either start_Sync goes high or
output from 4-bit shift register, delay_4 goes high. The signal delay_4 goes high when slot_end goes
high for slot 1 to 12. Finally, a 13-bit shift register is used, enable only by signal slot_end to keep
track to start/end of a frame. Refer to the simulation in the Appendix D.

Create SDATA _OUT To shift data out, we used three processes: a counter that counts the
slot number, a mux to setup what data to shift into the signal vector new_data_out according to

12

the slot number, and a serial data shift register to shift data from new_data_out one by one. Refer
to the simulation in the Appendix D.

Handling SDATA IN To handle incoming data, we setup process which is controlled by the
bits of slot 0.

3.4 AC97 Controller

The AC97 Controller instantiates the AC97 Core and a FIFO, it also contains a decoder which
interface with the OPB bus. The decoder uses the bit 31 to 8 of the address of the OPB bus to
determine whether the processor is trying to access this core. Bit 7 to 0 is reserved for instructions
used in the core. The data output of the AC97 core is hooked up to the FIFO directly to stored
sound data.

3.5 Tone Generator

The tone generator is basically a clock divider. It uses the BIT_CLK as a reference. Refer to
Appendix for reference.

4 The Video Component

The video component is designed to save a single frame of video when asked to by the microblaze.
The key portion however is that the signal is in one format, YCrCb, while ideally the signal should
be saved as RGB0. The full code from the video component is included in appendix B.1. The
component itself could be divided into several different components. These portions are not entirely
obvious from examining the code. In fact in examining the code one of the problems that presents
itself is the order in which the code was written. The subsections included are in the order the
code was written.

To understand the code a bit of understanding about the nature of the digital video signal
is necessary. When the signal is transmitting pixels they arrive in pairs Y,Cr Y,Cb. Each Y
represent information about the brightness of individual pixel, while the Cr and Cb components give
information about the colour components of the pixels. For any given pixel Cr and Cb information
are used to determine the pixels quality but information about the Cr and the Cb are only given
every second pixel. The reasoning behind this is the eye is more sensitive to brightness information
then colour information and bandwith is at a premium.

13

4.1 Implementing Video Fetch and Store

This component was designed initially by a different group to perform the task of reading in
the video data, parcelling it up and delivering it to the ZBT RAM. Although a similar one was in
development by this group an already working component was to good to pass up. The code has
since been modified to include the properties of modifying the data and taking in only single frames
instead of video streams. Key signals in this code include the "newdata” signal which decides when
the signal to the OPB bus, the pixel data is both valid and should be updated. The TRS signal
is used as a marker within the video signal and is trickled down to the newdata signal and others
when it is determined what is being marked. A TRS marker could be simply part of an end of a
line or it could be a beginning of a frame marker.

Whenever the newdata signal goes high two pixels are moved onto the pixel bus ”pixeldata”.The
first 8 bits of the data are for the Y (luminance) component of the pixel and the next 8 bits give
the local Cr value. The next 16 bits start with the Y (luminance) component of the second pixel
and then follows with the local Cb value. This pixel bus is later transfered onto the the OPB bus
so long as the data is valid which is then transferred to the ZBT RAM.

The CPU makes use of this core in signalling the core when to stop capturing or to continue.
This is done using the vector port, inflags, which is connected to the GPIO making for a very
simple interface. This is expanded in However this is improved later on in section 4.3 in order to
implement in hardware single frame capture.

4.2 YCrCb to RGBO0

The format presented above in many ways allows for easy conversion to RGB0. Before being
transferred to the Pixel data bus the data can be delayed for under one video clock cycle or 29
nanoseconds. Within this time a set of process’ are implemented that generate the RGB data.
The YCrCb HDL code that describes this transition is generally only mathematical relations. The
only interesting component is the MULT18X18 multiplier, which is a Vertex II primitive. It was
implemented in hopes of producing faster VHDL code and allowing the calculations to be performed
within a clock period. The mathematically the transformation between colour spaces is:

R = 1.164(Y — 16) + 1.596(Cr — 128) (1)
G = 1.164(Y’ — 16)(0.813)(Cr — 128)0.392(Cb — 128) (2)
B =1.164(Y" — 16) + 2.017(Cb — 128) (3)

This is implemented easily by removing half of the horizontal pixels. This implementation instead
of approximating the Cr and Cb values only evaluates every second pixel and uses the next the Cb

14

value.* The result is RGB data at 8 bits a piece which is then padded with zeros to create a 32 bit
word or an RGBO pixel.

4.3 Single Frame Variation

So now the code captures the data needed however the implementation constantly captures the
video data as it arrives and the project only requires the ability to capture specific frames. In order
to do this the ”inflags” port vector is expanded to include a secondary two bit signal. This signal
now can be reset over the GPIO. A counter takes note of when the first piece of video information
has been captured. When this has occurred twice logically one frame has been captured and hence
it shuts down this logic block. It is then reset by writing zeroes to the two highest bits of the three
bit GPIO.

4.4 Driver Code

The driver code for the video is actually relatively simple. It consists solely of writing the correct
bits to the GPIO to get the video core to capture a single frame. It also has an off function which
guarantees that the video core is shut off. Since the video core operates as a master on the OPB
it should be noted that stopping it while it is writing a frame may be difficult. The drivers are
included in appendix C.

5 Video to Audio Processing

The function of converting the video from the visual space into the audio space in a final imple-
mentation must be done in hardware. This is the portion however that received the least attention
due to the amount of work required to simply get the video and audio cores working. The core
was therefore rendered simply in C code instead. An example of this code which would need to be
integrated into the audio code is included in appencdix C

5.1 C Implementation - Colour Averages

The C implementation uses the simplest implementation and hence is easily implementable in
software as it is not highly processor intensive. The c-code may be able to run in less time then it
take to process a single frame into the ZBT buffer. The algorithm used simply runs an average of
all the RGB values in a single row. The resulting numbers represent the respective intensities of
the the colours in the image. These value could then be used either to select from pre-determined
audio cues or to create an appropriate frequency amplitude hybrid matching the RGB space onto

“You may be noticing that in fact the image will be compress horizontal resulting in a distrotion. Although
this can be easily fixed, for this project there should be more then enough information in the remaining image that
dropping half of the horizontal pixels shouldn’t affect anything.

15

three frequencies. The first is a simple proof of concept while the later provides a more intense
image. It can be imagined that the a bright white image would be a loud chord of three distinct
tones, while a pre-dominantly dull yellow image would be a less intense combination of two tones.

5.2 Core Ideas

Core ideas® presents some of the ideas about possible hardware implementations of video to audio
conversion. Most of these ideas would need to ideally be implemented without using a ZBT address
space and instead be implemented almost entirely in hardware attached directly to the output of
the video inputs core. In order to have enough freely available memory it may be necessary to
reduce the size of the image, which is easily accomplished by either skipping pixels or entire lines.

5.2.1 Colour Amplitude Frequency Matching

This would be a simple method of doing what is done in C code currently. If this is the chosen
method it could be done with possibly very few lines of VHDL. This implementation only requires
the contribution of the strength of each colour, which could be added to a running average. Hence
it could be used to build a very simple design that did not require external memory.

5.2.2 Fourier Domain Analysis

This method entails moving the video spectrum into a Fourier domain and then transforming it
back by changing the sampling frequency into one appropriate to the audio domain. This already
has the difficulty of sampling frequency matching it would be difficult to figure out which signals
to reject outright and which to keep. For instance some signals may be to unpleasant to listen to.
This should actually be a fairly easy method to implement in concept as it would only require a
data storage length of at most 320 * 2 * 3 bytes (3 colours * 2 signals - source and its fourier - and
320 pixels) . Also the algorythm could begin to work on the first pixel when it arrived allowing it
to process while the signal is being created.

5.2.3 Stereo Fourier Signal

The Fourier method could also be expanded to give a stereo signal. The exact same code which
generates the audio signal in the horizontal could then be used to generate a second signal in the
vertical. These two could then be used as left and right audio channels the stereo audio effect might
be able to yield a larger image perception in the listener.

SPun Intended

16

5.2.4 Beyond

Further there are many other interesting implementations that could be done. Perhaps sequential
frames could be compared and the difference between them would generate the audio. Or rough
patterns could attempt to be detected in the signal to true and give the wearer an idea of the sur-
roundings. For instance a strong contrast which would result in a lot of high frequency noise under
fourier analysis, could instead be dealt with by detecting the contrast and creating a signal around
that mimics that location. Also with considerably more time the 3-D audio codec’s developed by
places like NASA could be used here to implement a more visual audio.

6 The Design Trees

The design tree is unfortunately forked in this design. Two designers worked seperatly and an
audio as well as a video design tree have been created. The hope that one tree would germinate the
other and create a third tree that would bloom remains unfulfilled. A description of both existing
trees is included below.

6.1 Audio
6.2 Video

The video core has currently makes use of four cores in the pcores directory, and some C-driver
code. The C-driver code is written but actually outside of the directory structure; it is included
separately. The cores inside the pcores directory include two cores from the ZBT example, one
implementation of the snooopy core and the video processing core. The UCF file has been modified
appropriately to accommodate all of these changes.

7 Outcome

In general this project has not been overtly successful. The project successfully generated two
cores an audio and a video and ¢ code to translate between the two. However, neither the video
nor the audio core successfully implements in reality. In fact both cores happen independently
developed the same problem of not interfacing with the OPB correctly. Although the there may
be different or simple solutions to these problems they still are inherently currently not working.
Unfortunately this means it is impossible to determine if the logic actually is working correctly in
either core.

The main problem existing with this project is that it was approached from two different angles.
The video and the audio were develop by independent developers, when it would have been more

17

efficient to work together on the same core. Dolling out tasks evenly is not always the best approach.

To finish this implementation a few steps need to be taken. First the audio and the video cores
need to be corrected so that they operate within current parameters. Next a core which translates
video to audio could be written and implemented. This could follow any of the models outlined
in section 5.2, Core Ideas. Further to this the audio and video cores would need to be expanded
accordingly.

8 Conclusion

This project is a worthwhile and directly useful one. It could easily be made into one which
is directly applicable to several circumstances. However the implementation at this rate of work
requires at least another 4 months of work to truly deliver an audio image.

18

APPENDIX

A Additional Video Information - Chipsets

The Multimedia board contains both a video encoder and a video decoder. Although the video
decoder is the focus of this project, the two are similar and of the same make. The video encoder is
an ADV7194 and the video decoder is an ADV7185, full schematics for both can be found in PDF
format on the web. Both devices use an 12C interface for configuration, however for the the video
input (the 7185) generally configuration is unnecessary. When a video source is plugged into the
multimedia board the chipset automatically recognizes the signal and its type and begins coding
the signal into a digital one. As well the decoder has the property of automatically recognizing
whether a signal is connected to the S-Video or Composite video inputs. The digital signal, along
with a clock is immediately transmitted to the FPGA on a set of pins listed in multimedia boards
info package.

The video encoder on the other hand requires a signal from the [2C interface in order to begin
encoding the information for the output. Without this signal the encoder will not produce an
output. Also the Video output does not detect where a connector is attached a video output source
must be chosen in order for it to work.

B VHDL Code

B.1 Video Component

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity vidcap is --USER-- change entity name

generic
(
C_OPB_AWIDTH : INTEGER := 32;
C_OPB_DWIDTH : INTEGER := 32;
C_DEV_BURST_ENABLE : INTEGER := 0;
C_DEV_MAX_BURST_SIZE : INTEGER := 64;
C_FAMILY : string := "virtex2";
C_FBADDR : std_logic_vector(0 to 31) := X"00005000"
)3
port

19

--Required OPB bus ports, do not add to or delete

Mn_ABus : out std_logic_vector(0 to C_OPB_AWIDTH - 1);
Mn_DBus : out std_logic_vector(0 to C_OPB_DWIDTH - 1);
Mn_request : out std_logic;
Mn_busLock : out std_logic;
Mn_select : out std_logic;
Mn_RNW : out std_logic;
Mn_BE : out std_logic_vector(0 to C_OPB_DWIDTH/8 - 1);
Mn_seqAddr : out std_logic;
0OPB_Clk : in std_logic := ’0’;
OPB_Rst : in std_logic := ’0’;
OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH - 1) := (others => ’0’);
OPB_MGrant : in std_logic := ’0’;
OPB_xferAck : in std_logic := ’0’;
OPB_errAck : in std_logic := ’0’;
OPB_retry : in std_logic := ’0’;
OPB_timeout : in std_logic := ’0’;
--User ports
ledl : out std_logic; -- these our old and not necessary
led2 : out std_logic;
YCrCb_in : in std_logic_vector(9 downto 0); -- video in
vid_clk : in std_logic; -— video clock in
inflags : in std_logic_vector(0 to 2) -- control flags from ublaze / GPIO
)3
end entity vidcap;
architecture imp of vidcap is
signal Mn_select_s : std_logic := ’0’;
signal Mn_request_s : std_logic := ’0’;
signal go : std_logic_vector (1 downto 0); -- my control variable
signal pixeldata : std_logic_vector (31 downto 0) := X"00000000"; -- what’s put on th
signal vidcount : std_logic_vector (0 to 31); -- kinda like pixel number across
-- signal cnt : std_logic_vector (0 to 31) := X"00000000";
signal write_ena : std_logic; -- monty’s control variable
signal H_rg : std_logic_vector (4 downto 0);
signal H_rising : std_logic;
signal TRS : std_logic;
signal V_falling : std_logic;
signal V_rising : std_logic;
signal YCrCb_rgl : std_logic_vector (9 downto 0);
signal YCrCb_rg2 : std_logic_vector (9 downto 0);
signal YCrCb_rg3 : std_logic_vector (9 downto 0);
signal YCrCb_rg4 : std_logic_vector (9 downto 0);

20

signal YCrCb_rgb

--Edit by Peter Oakham : Mar.

signal north
signal change

signal Red
signal Blue
signal Green
signal Redl
signal Bluel
signal Greenl

std_logic_vector (9 downto 0);

24th

std_logic := ’1’; -- and of monty and peter’s control variab:
std_logic := ’0’; -- indicator of a call from the inflags

std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector

—-- These constants are used to multiply to obtain
constant constl: std_logic_vector(17 downto 0)
constant const2: std_logic_vector(17 downto 0)
constant const3: std_logic_vector(17 downto 0)
constant const4: std_logic_vector(17 downto 0)
constant constb: std_logic_vector(17 downto 0)
signal P1,P2,P3,P4,P5: std_logic_vector(35 downto
constant Maskaraid: std_logic_vector(35 downto 0)

signal ext_y: std_logic_vector(17 downto 0);

signal ext_cr: std_logic_vector(17 downto 0);
signal ext_cb: std_logic_vector(17 downto 0);

signal oldvidcount
signal checkplease

-- the primitive multiplier
component MULT18X18

(7 downto 0); --Final RGB values

(7 downto 0);

(7 downto 0);

(35 downto 0); -- out of bounds RGB values
(35 downto 0);

(35 downto 0);

RGB

"000000000100101011"; -- 1.164 = 01.001010
= "000000000110011000"; -- 1.596 = 01.100110¢
= "000000000011010000"; -- 0.813 = 00.110100¢
= "000000000001100100"; -- 0.392 = 00.011001¢

"000000001000000100"; -- 2.017 = 10.000001

0); -- products of multipliacation

:= X"FFFFFFCOO"; --"1111111111111111111111

--sign extending inputs for multiplier

std_logic_vector (0 to 31); -- delayed one vidcount
std_logic_vector (0 to 2); -- data ready for pixeldata

port(
A,B : in std_logic_vector (17 downto 0);
P : out std_logic_vector (35 downto 0)
)3

end component;

—--end of Edit

—-- control signals enbedded in video

signal Fo
signal Ho
signal Vo

signal MstReq2

signal MstReq3

signal NewData
begin

ledl <= write_ena;

--led2 <= cnt(22);

std_logic;
std_logic;
std_logic;

std_logic;

std_logic;
std_logic;

21

write_ena <= inflags(0);

Mn_busLock <= ’0°’;

Mn_RNW <= ’07;

Mn_BE <= (others => ’1’);
Mn_seqAddr <= ’0’;

Mn_request <= Mn_request_s;
Mn_select <= Mn_select_s;

-- allows a inflags to be called without interference
process (inflags)
begin
change <= ’17;
end process;

—-- these are 0OPB events unaltered from Monty’s code
process (0OPB_Clk)
variable addr : std_logic_vector(0 to C_OPB_AWIDTH - 1);
begin
if go(1) = ’0’ and OPB_Clk’event and OPB_Clk = ’1’ then
-- reset signals
if OPB_Rst = ’1’ then
Mn_select_s <= ’0’;
MstReq2 <= ’0’;
elsif OPB_MGrant = ’1’ then
MstReq2 <= ’0’;
Mn_select_s <= ’17;
elsif MstReq3 = ’0’ then
MstReq2 <= NewData;
end if;

if OPB_xferAck = ’1’ or OPB_timeout = ’1’ or OPB_retry = ’1’ then
Mn_select_s <= ’0’;
end if;

MstReq3 <= NewData;

end if;
end process;

-- the TRS signal see the text

TRS <= ’1’ when YCrCb_rg2(9 downto 2)
and YCrCb_rg3(9 downto 2)
and YCrCb_rg4(9 downto 2)

""00000000"
"00000000"
"11111111" else ’0’;

Mn_request_s <= ((NewData and not MstReq3) or MstReq2) and not Mn_select_s;

22

NewData <= write_ena and not (Ho or vidcount(30) or OPB_Rst);

-- used to allow simple comparison below
North <= Mn_select_s AND (NOT go(1)) ;

Mn_DBus <= pixeldata when (North = ’1’) else (others => ’Z’); --considering switching to no
Mn_ABus <= ("0000000000" & (vidcount(10 to 29) & "00") + C_FBADDR)
when (North = ’1’) else (others => ’Z7%);

Ho <= H_rg(0) or H_rg(4) ;

H_rising <= H_rg(0) and not H_rg(1l) ;

V_rising <= (TRS and YCrCb_rgi(7)) and not Vo ;
V_falling <= (TRS and not YCrCb_rgl(7)) and Vo ;

-- whenever the video clock goes high
process (vid_clk)
begin -- reset 7
if (OPB_Rst = ’1’ or go(l) = ’1’) then

YCrCb_rgl <= (others => ’0’) ;
YCrCb_rg2 <= (others => ’0°) ;
YCrCb_rg3 <= (others => ’0’) ;
YCrCb_rg4 <= (others => ’0°) ;
YCrCb_rgh <= (others => ’0’) ;

Fo <= 70’ ;
Vo <= ’0’ ;
H_rg <= "00000";
vidcount <= (others => ’0’);
elsif vid_clk’event and vid_clk = ’1’ then
YCrCb_rgl <= YCrCb_in ; -— move the video data down the pipe
YCrCb_rg2 <= YCrCb_rgl ;
YCrCb_rg3 <= YCrCb_rg2 ;
YCrCb_rg4 <= YCrCb_rg3 ;
YCrCb_rgb <= YCrCb_rg4 ;

if (TRS = ’1’) then -- are we at the begining of a line or not
Fo <= YCrCb_rgl(8) ;
Vo <= YCrCb_rgl(7) ;
H_rg(4 downto 0) <= H_rg(4 downto 1) & YCrCb_rgi(6) ;
else
Fo <= Fo ;
Vo <= Vo ;
H_rg(4 downto 0) <= H_rg(3 downto 0) & H_rg(0) ;
end if;

oldvidcount <= vidcount;

if V_falling = ’1’ and Fo = ’0’ then

23

vidcount <= (others => ’0’);

elsif H_rg(4) = ’1’ and H_rg(3) = ’0’ then
vidcount (30 to 31) <= "Q00";

elsif Ho = ’1’ then
vidcount (30) <= ’17;

else
vidcount <= vidcount + 1;
end if;
if((oldvidcount ="00000000000000000000000000000000") and (vidcount(0) = ’1’)) then
go <= go + "O1"; -- when go reaches two it shuts off the process’
elsif change = ’1’ then
change <= ’0’ ; -- reset change
go <= inflags(2) & inflags(l); -- reset inflags allowing the process to go ahead
end if;

--cnt <= cnt + 1;
end if;
end process;

process (NewData)
begin

-- when newdata is ready it is sign extended to go into the multiplier
ext_y <= "0000000" & ((’0’ & YCrCb_rg2) - "00001000000");
ext_cr <= "0000000" & ((’0’ & YCrCb_rg3) - "01000000000") ;
ext_cb <= "0000000" & ((’0’ & YCrCb_rgb5) - "01000000000") ;

end process;

-- multiplier is not clocked and for our purposes is assumed to be instantaneous
multla: MULT18X18 port map (A => constl, B => ext_y, P => P1);

mult2a: MULT18X18 port map (A => comnst2, B => ext_cr, P => P2);

mult3a: MULT18X18 port map (A => const3, > ext_cr, P => P3);

mult4a: MULT18X18 port map (A => const4, > ext_cb, P => P4);

multba: MULT18X18 port map (A => constb, > ext_cb, P => P5);

0 W w
Il

-- end process; -—— SoS

-- create RGB signal
process (P5)
begin
Redl <= P1 + P2;
Greenl <= P1 - P3 - P4;
Bluel <= P1 + P5;
end process;

—-- fix out of boundedness

24

process (Redl)
begin
if (Red1(35) = ’1’) then
Red <= "00000000";
elsif ((Redl and maskaraid) > 0) then
Red <= "11111111";
else
Red <= Red1(9 downto 2);
end if;
checkplease <= checkplease + 1;
end process;

process(Greenl)
begin
if (Green1(35) = ’1’) then
Green <= "00000000";
elsif ((Greenl and Maskaraid) > 0) then
Green <= "11111111";
else
Green <= Greenl1(9 downto 2);
end if;
checkplease <= checkplease + 1;
end process;

process(Bluel)
begin
if (Bluel(35) = ’1’) then
Blue <= "00000000";
elsif ((Bluel and maskaraid) > 0) then
Blue <= "11111111";
else
Blue <= Bluel(9 downto 2);
end if;
checkplease <= checkplease + 2;
end process;

-- queue data to go onto OPB bus.
Process(checkplease(2))
begin
if OPB_Rst = ’1’ then
pixeldata <= (others => ’0’);
elsif NewData’event and NewData = ’1’ then
pixeldata(31 downto 24) <=
pixeldata(23 downto 16) <=
pixeldata(15 downto 8) <
pixeldata(7 downto 0) <
end if;

25

-- SoS

-- SoS

-- SoS

Red (7 downto 0);
Green(7 downto 0);

Blue(7 downto 0); --&
(others => ’0%);

instead of

I= 0, change to > 1

instead of != ’0’, change to > 1

instead of != ’0’, change to > 1

- Y1 --R
-~ Cr0 -- G
-- Y0 --B

--Cb0O -0

checkplease <= "000";
end process;

-- End of Edit

end architecture imp;

B.2 Reference Video Code

B.3 Audio Code

- steofeokok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk ok ok o
- ** Copyright Xilinx, Inc. *x*

-- ** All rights reserved. *ok

- steokeok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok o k

-- Filename: opb_ac97_controller.vhd

—-- Description:

—- VHDL-Standard: VHDL’93

—-- Structure:

-- opb_ac97_controller.vhd

—-- Author: goran

—-- Edited by: Simon So

-- Revision: $Revision: 2.1 $

-- Date: $Date: 2004/04/03 10:42:08 $
-- History:

-- goran 2002-01-09 First Version
- Simon 2004-04-03 Second Version

—-- Naming Conventions:
- active low signals: "x_n"

26

- clock signals:

-- reset signals:

- generics:

- user defined types:

- state machine next state:

- state machine current state:
-= combinatorial signals:

- pipelined or register delay signals:

-= counter signals:

- clock enable signals:

- internal version of output port
- device pins:

-- ports:

- processes:

- component instantiations:

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity OPB_AC97_CONTROLLER is
generic (

"clk", "clk_div#", "clk_#x"
IIrSt n , IIrSt_nll

I|C *ll

"x_TYPE"

"*_l’lS"

“*_CS"

"*_COIII"

II*_d#ll

"*Cnt*"

II*_CeII

II*_ill

II*_pinll

- Names begin with Uppercase
"*_PROCESS"
"<ENTITY_>I_<#|FUNC>

C_OPB_AWIDTH integer 1= 32;
C_OPB_DWIDTH integer 1= 32;
C_BASEADDR std_logic_vector(0 to 31) := X"FFFF_8000";
C_HIGHADDR std_logic_vector := X"FFFF_80FF";
C_PLAYBACK integer = 1;
C_RECORD : integer = 0;
-- value of 0,1,2,3,4
-— 0 = No Interrupt
--— 1 = empty Nr_0f_Valid_Words = 0O
-- 2 = halfempty Nr_0f_Valid_Words = 0-7
-- 3 = halffull Nr_0f_Valid_Words = 8-16
-— 4 = full Nr_0f_Valid_Words 16
C_PLAY_INTR_LEVEL : integer =1;
C_REC_INTR_LEVEL integer = 4;
C_FSL_DWIDTH integer 1= 32
)3

port (
-- Global signals
OPB_Clk : in std_logic;
OPB_Rst in std_logic;
-- OPB signals
OPB_ABus in std_logic_vector(0 to 31);
OPB_BE in std_logic_vector(0 to 3);
OPB_RNW in std_logic;

OPB_select : in std_logic;
OPB_seqAddr : in std_logic;

OPB_DBus : in std_logic_vector(0 to 31);
OPB_AC97_CONTROLLER_DBus : out std_logic_vector(0 to 31);
OPB_AC97_CONTROLLER_errAck : out std_logic;
OPB_AC97_CONTROLLER _retry : out std_logic;

OPB_AC97_CONTROLLER_toutSup : out std_logic;
OPB_AC97_CONTROLLER_xferAck : out std_logic;

-- Interrupt signals
Playback_Interrupt : out std_logic;
Record_Interrupt : out std_logic;

-- CODEC signals

Bit_Clk : in std_logic;
Sync : out std_logic;
SData_Out : out std_logic;
Shata_In : in std_logic

-- PlayBack FSL signals

--FSL_S_Clk : out std_logic;
--FSL_S_Read : out std_logic;
--FSL_S_Data : in std_logic_vector(0 to C_FSL_DWIDTH-1);

--FSL_S_Control : in std_logic;
--FSL_S_Exists : in std_logic
)3

end entity OPB_AC97_CONTROLLER;

—--library opb_ac97_controller_v1_00_a;
--use opb_ac97_controller_v1_00_a.all;
--library Common_v1_00_a;

--use Common_v1_00_a.pselect;

library unisim;
use unisim.all;

--library opb_ac97_controller_v1_00_a;
--use opb_ac97_controller_v1_00_a.opb_ac97_core;

architecture IMP of OPB_AC97_CONTROLLER is
component opb_freq_gen is

generic (
C_freq_spec_bit : integer :=16 -- 5 use 5 bit for sim purpose

28

)

port (
-- signals
Data_out : out std_logic_vector(0 to 15); -- shift out 16 bit data
Bit_clk : in std_logic; —-- bit_clk from the ac97

Enable : in std_logic
)3

end component opb_freq_gen;

component opb_ac97_core is

generic (
C_PLAYBACK : integer := 1;
C_RECORD : integer := 0
)3

port (
-- signals belonging to Clk clock region
Clk : in std_logic;
Reset : in std_logic;
AC97_Reg_Addr in std_logic_vector(0 to 6);
AC97_Reg_Read in std_logic;
AC97_Reg_Write_Data in std_logic_vector(0 to 15);
AC97_Reg_Read_Data : out std_logic_vector(0 to 15);
AC97_Reg_Access in std_logic;
AC97_Got_Request : out std_logic;
AC97_Reg_Finished : out std_logic;
AC97_Request_Finished : in std_logic;
CODEC_RDY : out std_logic;
In Data_FIFO : in std_logic_vector(0 to 15);
In_Data_Exists : in std_logic;
in_FIFO_Read : out std_logic;

Out_Data_FIFO : out std_logic_vector(0 to 15);
Out_FIFO_Full : in std_logic;
Out_FIFO_Write : out std_logic;

-- signals belonging to Bit_Clk clock region
Bit_Clk : in std_logic;
Sync : out std_logic;
SData_Out : out std_logic;
SData_In : in std_logic);

end component opb_ac97_core;

component pselect is
generic (

C_AB : integer;

C_AW : integer;

29

C_BAR : std_logic_vector);

port (
A : in std_logic_vector(0 to C_AW-1);
AValid : in std_logic;
ps : out std_logic);

end component pselect;

component SRL_FIFO is

generic (
C_DATA_BITS : integer;
C_DEPTH : integer);

port (
Clk : in std_logic;
Reset : in std_logic;

Clear_FIFO : in std_logic;
FIFO_Write : in std_logic;

Data_In : in std_logic_vector(0 to C_DATA_BITS-1);
FIFO_Read : in std_logic;

Data_Out : out std_logic_vector(0 to C_DATA_BITS-1);
FIFO_Full : out std_logic;

Data_Exists : out std_logic;

Half_Full : out std_logic;

Half_ Empty : out std_logic

)3

end component SRL_FIFO;

component FDRE is
port (

Q : out std_logic;
C : in std_logic;
CE : in std_logic;
D : in std_logic;
R : in std_logic);

end component FDRE;

component FDSE is
port (

Q : out std_logic;
C : in std_logic;
CE : in std_logic;
D : in std_logic;
S : in std_logic);

end component FDSE;

component FDR is
port (Q : out std_logic;
C : in std_logic;
D : in std_logic;

30

R :

in std_logic);

end component FDR;

component FDCE is

port (
Q
C
CE
D

CLR :

out std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic);

end component FDCE;

function Addr_Bits (x, y : std_logic_vector(0 to C_OPB_AWIDTH-1)) return integer is
variable addr_nor : std_logic_vector(0 to C_OPB_AWIDTH-1);

begin
addr_nor := X XOr y;
for i in O to C_OPB_AWIDTH-1 loop
if addr_nor(i) = ’1’ then return i;
end if;
end loop;

return(C_OPB_AWIDTH) ;
end function Addr_Bits;

constant

C_AB : integer := Addr_Bits(C_HIGHADDR, C_BASEADDR);

-- the address to decode from the OPB_BUS is set here
-- we are only interested in range from 27 to 29 (recall that this little endian <0 to 31>)
-- for instance OUT_FIFO_ADR = 001 implies that we need to set in the driver file volatile i

subtype

constant
constant
constant
constant
constant
constant
constant

ADDR_CHK is natural range C_OPB_AWIDTH-5 to C_OPB_AWIDTH-3;

IN_FIFO_ADR : std_logic_vector(0 to 2) := "000";
OUT_FIFO_ADR : std_logic_vector(0 to 2) := "001";
FIFO_STATUS_ADR : std_logic_vector(0 to 2) := "010";
FIFO_CTRL_ADR : std_logic_vector(0 to 2) := "011";
AC97_CTRL_ADR : std_logic_vector(0 to 2) := "100";
AC97_READ_ADR : std_logic_vector(0 to 2) := "101";
AC97_WRITE_ADR : std_logic_vector(0 to 2) := "110";

signal opb_ac97_controller_CS : std_logic;

signal opb_ac97_controller_CS_1 : std_logic; -- Active as long as OPB_AC97_CONTROLLER_CS is
signal opb_ac97_controller_CS_2 : std_logic; -- Active only 1 clock cycle during an
signal opb_ac97_controller_CS_3 : std_logic; -- Active only 1 clock cycle during an

-- access

signal xfer_Ack : std_logic;
signal opb_RNW_1 : std_logic;

signal OPB_AC97_CONTROLLER_Dbus_i : std_logic_vector(0 to 15);

31

signal in_FIFO_Write std_logic;

signal in_FIFO0_Read : std_logic;

signal in_FIFO_Read_gated : std_logic;

signal in_Data_FIFOQ std_logic_vector(0 to 15);
signal in_FIFO_Full std_logic;

signal in_Data_Exists std_logic;

signal in_FIFO_Half_Full : std_logic;

signal in_FIFO_Half_Empty : std_logic;

signal out_FIFO_Write std_logic;

signal out_FIFO_Read std_logic;

signal out_Data_Read std_logic_vector(0 to 15);
signal out_Data_FIFO std_logic_vector(0 to 15);
signal out_FIFO_Full std_logic;

signal out_Data_Exists std_logic;

signal out_FIFO_Half_ Full std_logic;

signal out_FIFO_Half_Empty : std_logic;

-- Read Only

signal status_Reg : std_logic_vector(7 downto 0);

-— bit 7 ’1’ if out_FIFO hade a overrun condition

-- bit 6 ’1’ if in_FIFO hade a underrun condition

-- bit 5 If the CODEC is ready for commands

bit 4 Register Access is finished and if it was a read the data
is in AC97_Reg_Read register, reading AC97_Reg_Read_Register will clear

this bit

-- bit 3 out_FIFO_Data_Present

-- bit 2 out_FIFO_Empty

-— bit 1 in FIFO_Empty

-- bit 0 in_FIFO_Full

signal out_FIFO_Overrun : std_logic;

signal in_FIFO_Underrun : std_logic;

signal clear_in_fifo std_logic;

signal clear_out_fifo std_logic;

signal in_fifo_interrupt_en std_logic;

signal out_fifo_interrupt_en std_logic;

signal ac97_Reg_Addr std_logic_vector(0 to 6);
signal ac97_Reg_Read std_logic;

signal ac97_Reg_Write_Data : std_logic_vector(0 to 15);
signal ac97_Reg_Read_Data std_logic_vector(0 to 15);
signal ac97_Reg_Access std_logic;

signal ac97_Got_Request std_logic;

signal ac97_reg_access_S std_logic;

32

signal ac97_Reg_Finished : std_logic;
signal ac97_Reg_ Finished_i : std_logic;

signal register_Access_Finished : std_logic;
signal register_Access_Finished_Set : std_logic;

signal codec_rdy : std_logic;

-- Playback signal
signal sound_data : std_logic_vector(0 to 15);

begin -- architecture IMP

-— Do the OPB address decoding, pselect is a decoder that decodes the address according to t]
—-- opb_ac97_controller_CS goes high when the correct address is decoded
pselect_I : pselect

generic map (

C_AB => C_AB, -- [integer]
C_AW => C_OPB_AWIDTH, -- [integer]
C_BAR => C_BASEADDR) -- [std_logic_vector]
port map (
A => OPB_ABus, -- [in std_logic_vector(0 to C_AW-1)]
AValid => OPB_select, -- [in std_logic]
ps => opb_ac97_controller_CS); -- [out std_logic]

OPB_AC97_CONTROLLER_errAck <= ’0’;
OPB_AC97_CONTROLLER_retry <= ’0’;
OPB_AC97_CONTROLLER_toutSup <= ’0’;

—-- Decoding the OPB control signals
-— generates a pulse if correct address is decoded to enable the controller

opb_ac97_controller_CS_1_DFF : FDR

port map (
Q => opb_ac97_controller_CS_1, —-- [out std_logic]
C => OPB_Clk, —- [in std_logic]
D => OPB_AC97_CONTROLLER_CS, -- [in std_logic]
R => xfer_Ack); -- [in std_logic]

opb_ac97_controller_CS_2_DFF : process (OPB_Clk, OPB_Rst) is
begin -- process opb_ac97_controller_CS_2_DFF
if OPB_Rst = ’1’ then -- asynchronous reset (active high)

33

opb_ac97_controller_CS_2 <= ’0’;
opb_ac97_controller_CS_3 <= ’0’;
opb_RNW_1 <= ’07;

elsif OPB_Clk’event and OPB_Clk =
opb_ac97_controller_CS_2 <=

opb_ac97_controller_CS_3 <=

opb_RNW_1 <= OPB_RNW;

end if;

end process opb_ac97_controller_

CS_2_DFF;

’1’ then -- rising clock edge
opb_ac97_controller_CS_1
and not opb_ac97_controller_CS_2
and not opb_ac97_controller_CS_3;
opb_ac97_controller_CS_2;

—- Selects what to read

Read_Mux : process (status_reg, OPB_ABus, out_Data_Read, ac97_Reg_Read_Data) is
begin -- process Read_Mux
OPB_AC97_CONTROLLER_Dbus_i <= (others => ’0’); -- Reset Dbus_i to ’0’

if (OPB_ABus(ADDR_CHK) = FIFO_STATUS_ADR) then

OPB_AC97_CONTROLLER_Dbus_i(15-status_reg’length+l to 15) <=

elsif (OPB_ABus(ADDR_CHK) = AC97_READ_ADR) then

OPB_AC97_CONTROLLER_Dbus_i(0 to 15) <= ac97_Reg_Read_Data;

else

OPB_AC97_CONTROLLER_Dbus_i(0 to 15) <= out_Data_Read;

end if;
end process

DWIDTH_gt_16 :

Read_Mux;

status_reg;

OPB_AC97_CONTROLLER_Dbus(0 to C_OPB_DWIDTH-17) <= (others => ’0’);
end generate DWIDTH_gt_16;

OPB_rdDBus_DFF :

OPB_rdBus_FDRE : FDRE
port map (
Q => OPB_AC97_CONTROLLER_DBus(I), -- [out std_logic]
C => 0PB_Clk, -- [in std_logic]
CE => opb_ac97_controller_CS_2, -- [in std_logic]

D =>
R =>

OPB_AC97_CONTROLLER_Dbus_i (I-(C_OPB_DWIDTH-16)),

xfer_Ack) ;

end generate OPB_rdDBus_DFF;

-- [in std_logic]

-- Generating read and write pulses to the FIFOs

in_FIFO_write <=
out_FIFO_read <=

34

for I in C_OPB_DWIDTH-16 to C_OPB_DWIDTH-1 generate

[in

if (C_OPB_DWIDTH > 16) generate —-- use only when opb width > 16

-— Shift the

-— zero padded the f:

std_logic]

opb_ac97_controller_CS_2 and (not OPB_RNW_1) when (OPB_ABus (ADDR_CHK)

opb_ac97_controller_CS_2 and OPB_RNW_1 when (OPB_ABus (ADDR_CHK)

IN_!
OuT.

clear_in_fifo <= OPB_DBus(31) and opb_ac97_controller_CS_2 and (not OPB_RNW_1) when (OPB_ABu:
clear_out_fifo <= OPB_DBus(30) and opb_ac97_controller_CS_2 and (not OPB_RNW_1) when (OPB_AB

in_fifo_interrupt_en <= OPB_DBus(29) and opb_ac97_controller_CS_2 and (not OPB_RNW_1) when (
out_fifo_interrupt_en <= OPB_DBus(28) and opb_ac97_controller_CS_2 and (not OPB_RNW_1) when

XFER_Control

: process (OPB_Clk, OPB_Rst) is

begin -- process XFER_Control
if OPB_Rst = ’1’ then -- asynchronous reset (active high)
xfer_Ack <= ’07;
elsif OPB_Clk’event and OPB_Clk = ’1’ then -- rising clock edge

xfer_Ack <= opb_ac97_controller_CS_2;

end if;

end process XFER_Control;

OPB_AC97_CONTROLLER_xferAck <= xfer_Ack;

FIFO_Error_Handle: process (OPB_Clk, OPB_Rst) is
begin -- process FIFO_Error_Handle
if OPB_Rst = ’1’ then -- asynchronous reset (active high)
out_FIFO_Overrun <= ’0’;
in_FIFO_Underrun <= ’0’;

elsif OPB_Clk’event and OPB_Clk = ’1’ then -- rising clock edge
-- Reading FIFO_Status register will clear the error flags
if (clear_in_fifo = ’1’) then

in_FIFO_Underrun <= ’0’;
elsif (in_Data_Exists = ’0’) then --and (in_FIFO_Read = ’17)
in_FIFO_Underrun <= ’1°;

end if;

if (clear_out_fifo = ’1’) then
out_FIFO_Overrun <= ’0’;

elsif (out_FIFO_Full = ’1’) and (out_FIFO_Write = ’1’) and (out_FIFO_read = ’0’) then
out_FIFO_Overrun <= ’17;

end if;
end if;

end process FIFO_Error_Handle;

status_reg(7)
status_reg(6)
status_reg(5)
status_reg(4)
status_reg(3)
status_reg(2)
status_reg(1)
status_reg(0)

out_FIFO_Overrun;
in_FIFO_Underrun;
codec_rdy;
register_Access_Finished;
out_Data_Exists;

not (out_Data_Exists);
not(in_Data_Exists);
in_FIFO_Full;

35

AC97_Write_Reg_Data : process (OPB_Clk, OPB_Rst) is

begin -- process AC97_Write_Reg_Data

if OPB_Rst = ’1’ then -- asynchronous reset (active high)
ac97_reg_write_data <= (others => ’0’);

elsif OPB_Clk’event and OPB_Clk = ’1’ then -- rising clock edge
if (opb_ac97_controller_CS_2 = ’1’) and (OPB_RNW_1 = ’0’) and (OPB_ABus(ADDR_CHK) = AC97

ac97_reg_write_data <= OPB_DBus(C_OPB_DWIDTH-16 to C_OPB_DWIDTH-1); -- the last 16 b

end if;

end if;

end process AC97_Write_Reg_Data;

AC97_Access_Reg : process (OPB_Clk, OPB_Rst) is

begin -- process AC97_Access_Reg
if OPB_Rst = ’1’ then -- asynchronous reset (active high)
ac97_reg_addr <= (others => ’0’);
ac97_reg_read <= ’07;
ac97_reg_access_S <= ’0’;
elsif OPB_Clk’event and OPB_Clk = ’1’ then -- rising clock edge

ac97_reg_access_S <= ’0’;
if (opb_ac97_controller CS_2 = ’1’) and (OPB_RNW_1 = ’0’) and (OPB_ABus(ADDR_CHK) = AC97

ac97_reg_addr <= OPB_DBus(C_OPB_DWIDTH-7 to C_OPB_DWIDTH-1); -- the ac97 has 7 bi
ac97_reg_read <= 0PB_DBus (C_OPB_DWIDTH-8);
ac97_reg_access_S <= ’1’;
end if;
end if;

end process AC97_Access_Reg;

ac97_reg_access_FDCE : FDCE

port map (
Q => ac97_reg_access, -- [out std_logic]
C => (0PB_Clk, -- [in std_logic]
CE => ac97_reg_access_S, -- [in std_logic]
D => 17, -- [in std_logic]
CLR => ac97_Got_Request); -- [in std_logic]

ac97_reg_access_FDSE : FDSE

port map (
Q => register_Access_Finished, -- [out std_logic]
C => 0PB_Clk, -- [in std_logic]
CE => ac97_reg_access_S, -- [in std_logic]
D => 07, -- [in std_logic]
S => register_Access_Finished_Set); -- [in std_logic]

AC97 _Register_SM : process (OPB_Clk, OPB_Rst) is

36

begin -- process AC97_Register_SM
if OPB_Rst = ’1’ then
ac97_Reg_Finished_i
register_Access_Finished_Set <=
elsif OPB_Clk’event and OPB_Clk =
register_Access_Finished_Set <=

if (ac97_Reg_Finished = ’1’ and

<=

-- asynchronous reset (active high)

JOJ;
)O);
117
)07;
ac97_Reg_Finished_i = ’0’) then

then -- rising clock edge

register_Access_Finished_Set <= ’1’;

end if;

ac97_Reg_Finished_i <= ac97_Reg_

end if;
end process AC97_Register_SM;

in_FIFO_Read_gated <= in_Data_Exists;
in_Data_Exists <= ’17;

Using Playback : if (C_PLAYBACK

IN_FIFO : SRL_FIFO
generic map (

- C_DATA_BITS => 16,

- C_DEPTH => 16)

== port map (

- Clk => 0PB_Cl1k,
- Reset => OPB_Rst,

Clear_FIFO =>
FIFO_Write =>
Data_In =>

-= FIFO_Read => in_FIFO_Read_gated, -=
- Data_QOut => in_Data_FIFO,

- FIFO_Full => in_FIFO_Full,

- Data_Exists => in_Data_Exists,

-- Half_Full => in_FIFO_Half_Full,

- Half_Empty => in_FIFO_Half_Empty);

end generate Using_Playback;

No_Playback : if
in_Data_FIFO <=
in_FIFO_Full <= ’0’;
in_Data_Exists <= ’0’;

end generate No_Playback;

(others => ’07);

Using_Recording : if (C_RECORD = 1)

clear_in_fifo, --
in_FIFO_Write, -=
OPB_DBus (C_OPB_DWIDTH-16 to C_OPB_DWIDTH-1),

Finished;

--in_FIFO_Read and

= 1) generate

-- [integer]
-- [integer]
- std_logic]
std_logic]
std_logic]
std_logic]

[in

[in
[in

[in

[in std_logic]
-- [out std_logic]
-- [out std_logic]
-- [out std_logic]
-- [out std_logic]

(C_PLAYBACK = 0) generate

generate

37

[in

std_logic_vect

-- [out std_logic_vector(0 to C_OPB_DWIDTH-1)]

OUT_FIFO :
generic map (

SRL_FIFO

C_DATA_BITS => 16, -- [integer]
C_DEPTH => 16) -- [integer]
port map (
Clk => 0PB_Clk, -- [in std_logic]
Reset => OPB_Rst, -- [in std_logic]
Clear_FIFO => clear_out_fifo, -- [in std_logic]
FIFO_Write => out_FIFO_Write, -- [in std_logic]
Data_In => out_Data_FIFO, -- [in std_logic_vector(0 to C_OPB_DWIDTH-1)]
FIFO_Read => out_FIFO_Read, -- [in std_logic]
Data_Out => out_Data_Read, -- [out std_logic_vector(0 to C_OPB_DWIDTH-1)]
FIFO_Full => out_FIFO_Full, -- [out std_logic]
Data_Exists => out_Data_Exists, -- [out std_logic]
Half_Full => out_FIFO_Half_Full, —-- [out std_logic]

Half_Empty =>
end generate Using_Recording;

No_Recording : if
out_Data_Read <=
out_FIFO_Full <= ’0’;
out_Data_Exists <= ’0’;

end generate No_Recording;

(others => ’07);

out_FIFO_Half_Empty); -

(C_RECORD = 0) generate

- [out std_logic]

--FSL_S_Read <= In_FIFO_Read_gated;

opb_ac97_core_I

generic map (
C_PLAYBACK
C_RECORD
)

port map (
-- signals belonging to Clk clock
Clk => OPB_Clk,
Reset => OPB_Rst,

: opb_ac97_core

=> C_PLAYBACK,
=> C_RECORD

AC97_Reg_Addr =>
AC97_Reg_Read
AC97_Reg_Write_Data =>
AC97_Reg_Read_Data
AC97_Reg_Access =>
AC97_Got_Request =>
AC97_Reg_Finished =>
AC97_Request_Finished =>
CODEC_RDY =>

ac97_reg_
ac97_reg_
ac97_reg_write_data,
ac97_reg_read_data,
ac97_reg_
ac97_got_request, -
ac97_reg_finished,
register_access_finished,
codec_rdy,

region
-- [in
-- [in

addr,
read,

access,

38

std_logic]
std_logic]
-- [in std_logic_vector(0 to 6)]
-- [in std_logic]
-- [in std_logic_vector(0 to 15)]
-- [out std_logic_vector(0 to 15)]
-- [in std_logic]
[out std_logic]

-- [out std_logic]
-- [in std_logic]
-- [out std_logic]

In_Data_FIFO => sound_data, --FSL_S_Data(16 to 31), -- [in std_logic_vector

In_Data_Exists => ’1’,--FSL_S_Exists, -- [in std_logic]
in_FIFO_Read => in_FIFO_Read, -- [out std_logic]

Out_Data_FIFO => Out_Data_FIFO, -- [out std_logic_vector(0 to 15)]
Out_FIFO_Full => Qut_FIFO_Full, -- [in std_logic]

Out_FIFO_Write => Out_FIFO_Write, -- [out std_logic]

-- signals belonging to Bit_Clk clock region

Bit_Clk => Bit_Clk, -- [in std_logic]
Sync => Sync, -- [out std_logic]
SData_QOut => SData_Out, -- [out std_logic]
SData_In => SData_In); -- [out std_logic]

opb_freq_gen_I : opb_freq_gen
generic map(

C_freq_spec_bit => 16) -- 5 use 5 bit for sim purpose
port map(
-- signals
Data_out => sound_data,-- [out std_logic_vector(0 to 15)] -- shift out 16 bit data
Bit_clk => Bit_Clk,--[in std_logic] -- bit_clk from the ac97
Enable => ’1’); --[in std_logic]

end architecture IMP;

- sk skskok ok e ok ok skok ok o ok sk sk ok sk ke ok sk sk ok sk ok ok ok
-= ** Copyright Xilinx, Inc. **
-- ** All rights reserved. *k
- stk skok ok o ok sk skok ok ok sk sk ok sk s ok sk sk sk ok sk ok ok ok ok

-- Filename: opb_ac97_core.vhd

—-— Description:

39

-- VHDL-Standard: VHDL’>93

-- Structure:

- opb_ac97_core.vhd

—- Author: Simon

-- Revision: $Revision: 1.2 $

-- Date: $Date: 2004/03/31 18:42:08 $
-- History:

-- goran 2002-01-24

First Version

-- Naming Conventions:

active low signals:

clock signals:

reset signals:

generics:

user defined types:

state machine next state:
state machine current state:
combinatorial signals:

pipelined or register delay signals:

counter signals:

clock enable signals:

internal version of output port
device pins:

ports:

processes:

component instantiations:

||* n"
"clk",
"rst",
||C *ll
"x_TYPE"
II* nSII
"*_CS"
II* Com"
II* d#ll
"xcntx"
"x ce"
"*_i"

"clk_div#",
"rst_n"

"clk_#x"

"x_pin"
- Names begin with Uppercase
"*_PROCESS"
"<ENTITY_>I_<#|FUNC>

library IEEE;
use IEEE.std_logic_1164.all;

entity opb_ac97_core is
generic (

C_PLAYBACK : integer := 1;
C_RECORD integer := 0
)

port (

—-- signals belonging to Clk clock region

Clk in std_logic;

Reset in std_logic;

AC97_Reg_Addr : in std_logic_vector(0 to 6); -- AC97 Register address
AC97_Reg_Read : in std_logic; -- AC97 Read or not Write control
AC97_Reg_Write_Data : in std_logic_vector(0 to 15); -- AC97 Register value to

40

be

writte:

AC97_Reg_Read_Data : out std_logic_vector(0 to 15); -- AC97 Register Data Read back

AC97_Reg_Access : in std_logic; -- goes high if want to read AC Registers
AC97_Got_Request : out std_logic; -- goes high after one bit_clk cycle when AC_Reg_Ac
AC97_Reg_Finished : out std_logic;

AC97_Request_Finished : in std_logic;

CODEC_RDY : out std_logic;

In Data_FIFO : in std_logic_vector(0 to 15);

In_Data_Exists : in std_logic; -- not used anymore

in_FIFO_Read : out std_logic;

Out_Data_FIFO0 : out std_logic_vector(0 to 15);
Out_FIFO_Full : in std_logic;
Out_FIFO_Write : out std_logic;

-- signals belonging to Bit_Clk clock region

Bit_Clk : in std_logic; —-- generates by AC97

Sync : out std_logic; —-- generates the sync signal so AC97 knows when to receive in:
SData_(Out : out std_logic;

SData_In : in std_logic

)3

end entity opb_ac97_core;

library unisim;
use unisim.all;

architecture IMP of opb_ac97_core is

component SRL16E is
—-— pragma translate_off

generic (
INIT : bit_vector := X"0000"
)3
-- pragma translate_on
port (
CE : in std_logic;
D : in std_logic;

Clk : in std_logic;

A0 : in std_logic;

Al : in std_logic;

A2 : in std_logic;

A3 : in std_logic;

Q : out std_logic);
end component SRL16E;

component FDRSE is
port (

41

: out std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic);

end component FDRSE;

component FDCE is

port
Q
C
CE
D

CLR :

(

: out std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic);

end component FDCE;

component FD is

— pr
gener
INI
);
— pr
port
Q
C :
D :
);

end com

signal
signal
signal

signal
signal
signal
signal

signal
signal
signal
signal
signal
signal

signal
signal

agma translate_off
ic (
T : bit := 70’

agma translate_on

(

: out std_logic;

in std_logic;
in std_logic

ponent FD;
rst_n : std_logic;
sync_i : std_logic;

sync_i_1 : std_logic;

start_from_reset : std_logic;

start_sync : std_logic;
start_sync_clean : std_logic;
reset_sync : std_logic;
new_slot : std_logic;
con_slot : std_logic;
slot_end : std_logic;
slot_end_1 : std_logic;
delay_4 : std_logic;
last_slot : std_logic;

new_data_out : std_logic_vector(19 downto 0);
data_out : std_logic_vector(19 downto 0);

42

signal data_in : std_logic_vector(19 downto 0);

signal data_valid : std_logic;
signal got_read_data : std_logic;
signal got_request : std_logic;
signal read_fifo : std_logic;

signal read_fifo_1 : std_logic;

signal slotO : std_logic_vector(15 downto 0);
signal slotl : std_logic_vector(19 downto 0);
signal slot2 : std_logic_vector(19 downto 0);

signal valid_Frame : std_logic;
signal valid_Control_Addr : std_logic;
signal valid_Control_Data : std_logic;

signal valid_Playback_Data_L : std_logic;
signal valid_Playback_Data_R : std_logic;

signal got_record_data : std_logic;

signal valid_Record_Data_L : std_logic;
signal valid_Record_Data_R : std_logic;
signal fifo_written : std_logic;
signal write_fifo : std_logic;
signal slot_No : natural range O to 5;

signal Bit_Index : integer;

signal ac97_Reg_Access_1 : std_logic;
signal ac97_Reg_Access_2 : std_logic;

signal ac97_read_access : std_logic;
signal ac97_write_access : std_logic;

signal ac97_Reg_Finished_i : std_logic;
signal In_Data_FIFO_i : std_logic_vector(0 to 15); -- 16 bit data from the FIFO which conta
begin -- architecture IMP

-- pragma translate_off
Dbg : process (Bit_Clk) is
variable tmp : std_logic;

43

variable tmp2 : std_logic;

begin -- process Dbg
if Reset = ’1’ then -- asynchronous reset (active high)
Bit_Index <= 15;
tmp =07
tmp2 =07,
elsif Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge

if (tmp = ’1’) then
Bit_Index <= 15;

elsif (tmp2 = ’1’) then
Bit_Index <= 19;

else
Bit_Index <= Bit_Index - 1;
end if;
tmp := start_sync;
tmp2 := slot_end;
end if;

end process Dbg;
-- pragma translate_on

rst_n <= not reset;

In_Data_FIFO_i <= In_Data_FIFO; -- map the in_Data_FIFO port to internal port

Reg_Access_Handle : process (Bit_Clk) is
begin -- process Reg_Access_Handle
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
ac97_Reg_Access_1 <= AC97_Reg_Access;
ac97_Reg_Access_2 <= ac97_Reg_Access_1;

-- detect a rising edge on AC97_Reg_Access, use only the first pulse
if (ac97_Reg_Access_1 ’1’ and ac97_Reg_Access_2 = ’0’) then
valid_Control_Addr <= ’1’;
valid_Control_Data <= not AC97_Reg_Read; -- ’1’ on writes
AC97_Got_Request <= ’1’;

-- resets the valid_Control_Addr and data, and got_request signal
elsif (valid_Control_Addr and got_request) = ’1’ then
valid_Control_Addr <= ’0’;
valid_Control_Data <= ’0’;
AC97_Got_Request <= ’0’;
end if;
end if;

44

end process Reg_Access_Handle;

Setup_Slot0 : process (Bit_Clk) is
begin -- process Setup_SlotO

if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
if (delay_4 and last_slot) = ’1’ then -- Set up data in the last slot starting from 16 |
slot0(15) <= valid_Frame;
slot0(14) <= valid_Control_Addr; -- set to one
slot0(13) <= valid_Control_Data;
slot0(12) <= valid_Playback_Data_L;
slot0(11) <= valid_Playback_Data_R;
got_request <= valid_Control_Addr;

ac97_read_access <= slot0(14) and not slot0(13);
ac97_write_access <= slot0(14) and slot0(13);
end if;
end if;
end process Setup_SlotO;

valid_Frame <= valid_Control_Addr or valid_Playback_Data_L or valid_Playback_Data_R;

-- just tie to the signal to the vector

-- slot 1 = Register Address, use for reading and writing

-— if Read -> Reg value will arrive the next frame from Sdata_in
slot1(19) <= AC97_Reg_Read;

slot1(18 downto 12) <= AC97_Reg_Addr;

slot1(11 downto 0) <= (others => ’0’);

—- slot 2 = value of the Address to be written
slot2(19 downto 4) <= AC97_Reg_Write_Data;
slot2(3 downto 0) <= (others => ’0’);

Sync_SRL16E : SRL16E
-- Once start_Sync goes high, it takes 16 cycle of bit_clk, before reset_Sync goes high
-- this indicates the beginning of the slotO and end of slotO
-- pragma translate_off
generic map (

INIT => X"0000") -- [bit_vector]

-- pragma translate_on

port map (
CE => 17, -- [in std_logic]
D => start_Sync, -- [in std_logic]
Clk => Bit_Clk, -- [in std_logic]

45

A0 => 017, -- [in std_logic]

A1 => 17, -- [in std_logic]
A2 => 17, -- [in std_logic]
A3 => 17, -- [in std_logic]
Q => reset_Sync); -- [out std_logic]

Sync_FDRSE : FDRSE
-- enables the internal Sync signal only when start_Sync goes high
—-- goes low when reset_Sync goes high

port map (
Q => sync_i, -- [out std_logic]
C => Bit_Clk, -- [in std_logic]
CE => start_Sync, -- [in std_logic]
D => 1, -- [in std_logic]
S => 0, -- [in std_logic]
R => reset_Sync); -- [in std_logic]

Sync <= sync_i;

Shift_Sync_internal : process (Bit_Clk) is
-- creates a copy of the sync_i signal that is one clock cycle delay

begin
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
sync_i_1 <= sync_i;
end if;

end process Shift_Sync_internal;

new_slot <= slot_end when last_slot = ’0’ else ’0’;

-- counts 4 + 16 bit

-- generates a delay_4 bit and then enables the 16 bit shift register

-- slot_end will go ’1’ after 16 clock cycle from start sync and each 20
-- clock cycle there after

Delay_4_SRL16 : SRL16E
-- 4 bit shift register
generic map (

INIT => X"0000") -- [bit_vector]

-- pragma translate_on

port map (
CE => 1, -- [in std_logic]
D => new_slot, -- [in std_logic]
Clk => Bit_Clk, -— [in std_logic]
A0 => 17, -- [in std_logic]

AL = 010, -- [in std_logic]

A2 => 07, -- [in std_logic]
A3 => 0, -- [in std_logic]
Q => delay_4); -- [out std_logic]
con_slot <= (start_Sync or delay_4); -- counts either start_Sync or delay4

Delay_16_SRL16 : SRL16E
-- 16 bit shift register
generic map (

INIT => X"0000") -- [bit_vector]

-- pragma translate_on

port map (
CE => 1, -- [in std_logic]
D => con_slot, -- [in std_logic]
Clk => Bit_Clk, -— [in std_logic]
A0 => 17, -— [in std_logic]
Al = 17, -— [in std_logic]
A2 => 17, -- [in std_logic]
A3 = 17, -— [in std_logic]
Q@ => slot_end); -- [out std_logic]

Slot_count_SRL16 : SRL16E
-- pragma translate_off
generic map (

INIT => X"0000") -- [bit_vector]

—-— pragma translate_on

port map (
CE => slot_end, -- [in std_logic]
D => sync_i, -— [in std_logic]
Clk => Bit_Clk, -- [in std_logic]
A0 => 017, -- [in std_logic]
Al => 217, -- [in std_logic]
A2 => 0, -- [in std_logic]
A3 => 17, -- [in std_logic]
Q => last_slot); -- [out std_logic]

-- goes high only when detected last_slot and slot_end goes high
-- At Start up - last_slot = 0, slot_end = 0, and start_from_resest = 1 after first bit_clk
start_Sync <= (last_slot and slot_end) or not start_from_reset;

-- use for start up to avoid ambigous states

start_from_reset_FD : FD
port map (

47

Q => start_from_reset, -- [out std_logic]
C => Bit_Clk, -- [in std_logic]
D => ’1’); -- [in std_logic]

Slot_Cnt_Handle : process (Bit_Clk) is

begin -- process Data_Out_Handle
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
if (start_sync = ’1’) then -- Reset Slot number at the beginning of each frame
slot_No <= 0;
elsif (slot_end = ’1’) then -- Everytime it encounters a slot end, increments the counte:
if (slot_No < 4) then -- only increment up to 4, the rest is useless
slot_No <= slot_No + 1;
end if;
end if;
end if;

end process Slot_Cnt_Handle;

-- Set up data
-— Place appropriate data into new_data_out depending on which slot it is in
-— The process only generates one clock pulse of new_data_out so data don’t overwrite each o
- (start_sync and slot_end only goes high on bit_clk cycle)
-- Data value from OPB (slot#) is set up in the previous slot, and then it gets updated into
- by detected a slot_end or start_sync (denotes start of a new frame)
-= and so data is shifted out in current slot.
process (start_sync, slot_No, slot_end, slotO, slotl, slot2, In_Data_FIF0_i) is
begin -- process
-- reset all data first
new_data_out <= (others => ’0’);
read_fifo <= ’0’;

-- Slot 0, Tag
if (start_sync = ’1’) then
new_data_out (19 downto 4) <= slotO;

read_fifo <= ’07;
-— Slot 1-4
elsif (slot_end = ’1’) then
read_fifo <= ’07;
case slot_No is -- slot_No is 1 behind because, when slot_end is detected, the slot_No

48

when O => new_data_out(slotl’range) <= slotl;
when 1 => new_data_out(slot2’range) <= slot2;

when 2 =>
if (C_PLAYBACK = 1) then -- Left channel
new_data_out (19 downto 4) <= In_Data_FIF0_i;
read_fifo <= slot0(12); -- use
end if;
when 3 =>
if (C_PLAYBACK = 1) then -- Right channel
new_data_out (19 downto 4) <= In_Data_FIF0_i;
read_fifo <= slot0(11);
end if;

when others => null;
end case;
end if;
end process;

-- obselete, input FIFO no longer in use
-- The code is use in operation with the FSL, so this section becomes obselete

Read_FIFO_DFF: process (Bit_Clk) is

begin -- process Read_FIFO_DFF
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
read_FIF0_1 <= read_fifo;
end if;

end process Read_FIFO_DFF;

Reading_the_ FIFO : process (Clk, Reset) is

variable tmp : std_logic;
variable tmp_1 : std_logic;
begin -- process Reading_the_FIFO

if Reset = ’1’ then -- asynchronous reset (active high)
in_FIFO_Read <= ’0’;
tmp =07,
tmp_1 =07,

elsif Clk’event and Clk = ’1’ then -- rising clock edge

in_FIFO_Read <= ’0’;
if ((tmp_1 = ’0’ and tmp = ’1’)) then
in_FIFO_Read <= ’1’;

end if;

tmp_1 := tmp;

tmp = read_FIFO_1;
end if;

end process Reading_the_FIFO;

—-- Shift Data out one by one

Data_Out_Handle : process (Bit_Clk) is

begin -- process Data_Out_Handle
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
SData_0Out <= data_out(19);
if (start_sync = ’1’) or (slot_end = ’1’) then -- beginning of a frame or beginning of .
data_out <= New_Data_Out; -- update the slot to new information
else
data_out (19 downto 0) <= data_out(18 downto 0) & ’0’; -- Shift information
end if;
end if;

end process Data_Out_Handle;

Shifting Data_Coming Back : process (Bit_Clk) is

begin -- process Shifting_Data_Coming_Back
if Bit_Clk’event and Bit_Clk = ’0’ then -- falling clock edge
data_in(19 downto 0) <= data_in(18 downto 0) & SData_In;
end if;

end process Shifting Data_Coming_Back;

Shift_Slot_end : process (Bit_Clk) is

begin
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
slot_end_1 <= slot_end;
end if;

end process Shift_Slot_end;

-— Get Slot 0 data
-— Because the one slot is complete one bit_clk cycle later, data is not register until the
-= is finished

Grabbing_Data_Coming_Back : process (Bit_Clk) is

begin -- process Grabbing_Data_Coming_Back
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
if (sync_i_1 = ’1’ and slot_end_1 = ’1’) then
codec_rdy <= data_in(15); -- bit 15 Codec Ready

50

data_valid <= data_in(14); -- Slot 1 data valid
—-- Slot 2 Status valid

valid_Record_Data_L <= data_in(12); -- Slot 3 L Audio valid
valid_Record_Data_R <= data_in(11); -- Slot 4 R Audio valid
end if;
end if;

end process Grabbing_Data_Coming_Back;

Get_Slot_1_Data : process (Bit_Clk) is
begin -- process Get_Slot_1_Data
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
if (slot_end_1 = ’1’ and slot_No = 2) then
valid_Playback_Data_L <= not data_in(11);
valid_Playback_Data_R <= not data_in(10);
end if;
end if;
end process Get_Slot_1_Data;

Get_Reg_Read_Data : process (Bit_Clk) is

begin -- process Get_Reg_Read_Data
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
-- slot_end_1 <= slot_end;

got_read_data <= ’0’;
if (slot_end_1 = ’1’ and slot_No = 3 and data_valid = ’1’) then
AC97_Reg_Read_Data <= data_in(19 downto 4);
got_read_data <= ’1’;
end if;
end if;
end process Get_Reg_Read_Data;

Get_Record_Data : process (Bit_Clk) is
begin -- process Get_Record_Data
if Bit_Clk’event and Bit_Clk = ’1’ then -- rising clock edge
got_record_data <= ’0’;
if (C_RECORD = 1) then
if (slot_end_1 = ’1’ and slot_No = 4 and valid_Record_Data_L = ’1’) then
Out_Data_FIFO <= data_in(19 downto 4); -- output to FSL right away
got_record_data <= ’1’;
elsif (slot_end_1 = ’1’ and slot_No = 5 and valid_Record_Data_R = ’1’) then

51

Out_Data_FIFO <
got_record_data <=

end if;

end if;
end if;

end process Get_Record_Data;

data_in(19 downto 4);
)17;

-- output to FSL right away

-- Handshaking logic with input FIFO

-- PCM DAC data in, goes to a temporary FIFO to buffer the data

Got_Record_Data_DFF :

port map
Q =>
C =>
CE =>
D =>
CLR =>

Write_FIFO
variable
variable

begin
if Reset

tmp
tmp_1

elsif Clk’event and Clk = ’1°

(

FDCE

write_fifo,

Bit_Clk,

Got_Record_Data,

)1)’

fifo_written);

-- [out
-- [in
-- [in
-- [in

std_logic]
std_logic]
std_logic]
std_logic]

-- [in std_logic]

Handle: process (Clk, Reset) is

tmp
tmp_1

std_logic;
std_logic;

—-- process Write_FIFO_Handle

= 21’ then
fifo_written <= ’0’;

= 707,

JOJ;

fifo_written <= ’0’;
if ((tmp = ’1’) and (tmp_1 = ’0’)) then
fifo_written <= ’17;

end if;

tmp_1

tmp :=
end if;

end process Write_FIFO_Handle;
Out_FIFO_Write <= fifo_written;

ac97_Reg_Finished_i <= (got_read_data and ac97_read_access) or

Req_Finished_DFF

port map

= tmp;
write_fifo;

(

(start_sync and ac97_write_access);

: FDCE

Q => ac97_Reg_Finished,
C => Bit_Clk,

-- asynchronous reset (active high)

-- rising clock edge

-- [in

52

-- [out std_logic]
std_logic]

-- Read operation
-- Write operation

CE => ac97_Reg_Finished_i, -- [in std_logic]
D =>"’17, -- [in std_logic]
CLR => AC97_Request_Finished) ; -- [in std_logic]

end architecture IMP;

library IEEE;
use IEEE.std_logic_1164.all;

entity opb_freq_gen is

generic (
C_freq_spec_bit : integer :=16 -- 5 use 5 bit for sim purpose
)3
port (
-- signals
Data_out : out std_logic_vector(0 to 15); -- shift out 16 bit data
Bit_clk : in std_logic; -- bit_clk from the ac97
Enable : in std_logic

)3
end entity opb_freq_gen;

library unisim;
use unisim.all;

architecture IMP of opb_freq_gen is

component down_counter is
generic (
C_bit : integer
)3
port (
clock: in std_logic;
preset: in std_logic;
count: in std_logic;
Q: out std_logic_vector(C_bit-1 downto 0);
preset_value : in std_logic_vector(C_bit-1 downto 0)
)3

end component down_counter;

component FD is
-- pragma translate_off
generic (
INIT : bit := ’0’
)3

-- pragma translate_on

93

port (
Q : out std_logic;
C : in std_logic;
D : in std_logic
)3

end component FD;

-- constants for frequencies -- "11011" for simulation

constant NOTE_A : std_logic_vector(C_freq_spec_bit-1 downto 0) := X"3688"; -- note_A is 440
signal wave_out_i : std_logic := ’0’; -- set to ’0’ as initial condition for simulation pu
signal rst_i : std_logic := ’0’; -- internal reset that resets the counter when it toggles

signal count_out : std_logic_vector(C_freq_spec_bit-1 downto 0);
signal start_from_reset : std_logic;
signal clr : std_logic;

begin -- architecture

Convert_to_16bit_signal : process (wave_out_i) is

begin
if wave_out_i = ’1’ then
Data_out <= X"2000";
else
Data_out <= X"0008";
end if;

end process Convert_to_16bit_signal;

-— use to initialize signal in case of unstable
start_from_reset_FD : FD

port map (
Q => start_from_reset, -- [out std_logic]
C => Bit_Clk, -- [in std_logic]
D => "1%);

rst_i <= (not start_from_reset) or clr;

o4

-- if Q = delay_value, then set clr to high, sample the value at falling edge
Clear_pulse : process (count_out, Bit_clk) is

begin
if Bit_clk’event and Bit_clk = ’0’ then -- setup at falling edge
if (count_out = "00000") then
clr <= ’1’;
else
clr <= ’0’;
end if;
end if;

end process Clear_pulse;

Toggle_wave_out : process (rst_i, Bit_clk) is
begin
if Bit_clk’event and Bit_clk = ’1’ then -- rising edge
if rst_i = ’1’ then
wave_out_i <= not wave_out_i;
end if;
end if;
end process Toggle_wave_out;

Sound_Freq_Counter : down_counter -- synchronous clear
generic map (
C_bit => C_freq_spec_bit -- [integer]
)
port map (
clock => Bit_clk,-- [in std_logic]
preset => rst_i,-- [in std_logic]
count => Enable,-- [in std_logic]
Q => count_out,-- [out std_logic_vector(C_bit-1 downto 0)]
preset_value => NOTE_A); -- [in std_logic_vector(C_bit-1 downto 0)]

end architecture IMP;

- 3k 3k 3k 5k %k >k 3k 5k 3k >k %k >k 5k 5k >k %k >k %k 5k >k >k %k %k %k >k >k Xk %

95

-- ** Copyright Xilinx, Inc. *x*
-- ** All rights reserved. *ok
- steskskskok ok ok sksk sk o ok sk sk sk sk ok sk sk sk sk ok ok ok

-- Filename: pselect.vhd

—-- Description: Parameterizeable peripheral select (address decode).
-= AValid qualifier comes in on Carry In at bottom

- of carry chain. For version with AValid at top of
-= carry chain, see pselect_top.vhd.

—-- VHDL-Standard: VHDL’93

-- Structure:

- pselect.vhd

—-- Author: B.L. Tise

—-- Revision: $Revision: 1.2 §

-- Date: $Date: 2003/02/07 20:23:35 $

-- History:

-- BLT 2001-04-10 First Version

-- BLT 2001-04-23 Moved function to this file

-- BLT 2001-05-21 Changed library to MicroBlaze

-- BLT 2001-08-13 Changed pragma to synthesis

-- ALS 2001-10-15 C_BAR is now padded to nearest multiple of 4
- to handle lut equations

-- FLO 2002-03-26 Corrected implementation for case where C_AB

—-= is not a multiple of 4 and the C_BAR values
- at the pad bits are not ’0’.

- Removed implementation restriction that

-- required C_AW = C_BAR’length.

-- Added assertion to flag invalid generic

-= combinations.

-- ALS, FLO 2002-04-09 -Implemented XST workaround for the case
-- that C_AB = 0.

-- -Removed remnants of earlier

-- "instantiated-lut" implementation.

-- Naming Conventions:

-- active low signals: "*_n"

-- clock signals: "clk", "clk_div#", "clk_#x"

-- reset signals: "rst", "rst_n"

-- generics: "C_x"

—-- user defined types: "x_TYPE"

o6

-- state machine next state: "*_ns"

-- state machine current state: "*_cs"

-- combinatorial signals: "*_com"

-- pipelined or register delay signals: "*x_d#"
-- counter signals: "*cntx*"

—-- clock enable signals: "x_ce"

-- internal version of output port "x_i"

—-- device pins: "*_pin"

-- ports: - Names begin with Uppercase

-- processes: "*_PROCESS"

-- component instantiations: "<ENTITY_>I_<#|FUNC>
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

library unisim;
use unisim.all;

—— Definition of Generics:

-- C_AB -- number of address bits to decode
- C_AW —-— width of address bus
- C_BAR -- base address of peripheral (peripheral select

-- is asserted when the C_AB most significant
- address bits match the C_AB most significant

-- C_BAR bits

—-- Definition of Ports:

- A -- address input

-- AValid -- address qualifier
- PS -- peripheral select

entity pselect is

generic (
C_AB : integer := 9;
C_AW : integer := 32;

C_BAR : std_logic_vector(0 to 31) := X"FFFF_8000"

)
port (
A : in std_logic_vector(0 to C_AW-1);
AValid : in std_logic;
ps : out std_logic

o7

)3
end entity pselect;

architecture imp of pselect is

component MUXCY is
port (

0 : out std_logic;
CI : in std_logic;
DI : in std_logic;
S : in std_logic
)3

end component MUXCY;

attribute INIT : string;

constant NUM_LUTS : integer := (C_AB+3)/4;
-- C_BAR may not be indexed from O and may not be ascending;

-— BAR recasts C_BAR to have these properties.
constant BAR : std_logic_vector(0 to C_BAR’length-1) := C_BAR;

--signal lut_out : std_logic_vector(0 to NUM_LUTS-1);
signal lut_out : std_logic_vector(0 to NUM_LUTS); -- XST workaround

signal carry_chain : std_logic_vector(0 to NUM_LUTS);

-- synthesis translate_

report "pselect generic error :

off
assert (C_AB <= C_BAR’length) and (C_AB <= C_AW)
n &
<= C_BAR’length) and (C_AB <= C_AW)" &

"(C_AB
" does not hold."
severity failure;

-- synthesis translate_

on

carry_chain(0) <= AValid;

XST_WA : if NUM_LUTS
GEN_DECODE : for i
signal lut_in :
signal invert

begin

GEN_LUT_INPUTS :
-- Generate to
GEN_INPUT : if
lut_in(j) <=
invert(j) <=

end generate;
-- Generate to

—- workaround for XST; remove this
-- enclosing generate when fixed
in O to NUM_LUTS-1 generate

> 0 generate

std_logic_vector(3 downto 0);
std_logic_vector(3 downto 0);

for j in 0 to 3 generate

assign address bits to LUT4 inputs

i < NUM_LUTS-1 or j <= ((C_AB-1) mod 4) generate
A(ix4+3);

not BAR(i*4+j);

assign one to remaining LUT4, pad, inputs

GEN_ZEROS if not(i < NUM_LUTS-1 or j <= ((C_AB-1) mod 4)) generate
lut_in(j) <= ’1’;
invert(j) <= ’0’;

end generate;
end generate;

lut_out(i) <= (lut_in(0) xor invert(0)) and
(Qut_in(1) xor invert(1)) and
(lut_in(2) xor invert(2)) and
(lut_in(3) xor invert(3));
MUXCY_I : MUXCY
port map (
0 => carry_chain(i+l), -—[out]
CI => carry_chain(i), --[in]
DI => ’0’, --[in]

99

S => lut_out(i) --[in]
)

end generate GEN_DECODE;
end generate XST_WA;

ps <= carry_chain(NUM_LUTS); -- assign end of carry chain to output;
-— if NUM_LUTS=0, then
-- PS <= carry_chain(0) <= AValid

end imp;

-—— Next ----

—-— VHDL code for n-bit counter

-- by Simon So, 04/2004

—-- this is the behavior description of n-bit counter
—-- another way can be used is FSM model.

library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity down_counter is

generic(

C_bit : integer
)3
port (

clock : in std_logic;
preset : in std_logic;

count : in std_logic; —-- enable for counter
Q : out std_logic_vector(C_bit-1 downto 0); -- output bus
preset_value : in std_logic_vector(C_bit-1 downto 0)

)

end down_counter;

architecture Behavioral of down_counter is

60

signal Q_i: std_logic_vector(C_bit-1 downto 0);
begin

-- behavior describe the counter
process(clock, count)

begin

if (clock=’1’ and clock’event) then -- rising edge

if preset = ’1’ then -- sync reset

Q_i <= preset_value;

elsif count = ’1’ then
Q_i <= Q_i - 1;

end if;
end if;

end process;

—-- concurrent assignment statement

Q <= Q_1i;
end Behavioral;

C C code

#include "xgpio.h" /* layer 1 GPIO device driver

XGpio Gpio;

/* this would be used to initialize the GPIO */

Status = XGpio_Initialize(&Gpio, XPAR_OPB_GPIO_O_DEVICE_ID);
if (Status !'= XST_SUCCESS)
{

printf("GPIO initialization error\n\r\r");

/* This function just tells the video core to grab one framex*/
void TakeFrame ()
{
XGpio_DiscreteWrite(&Gpio, 1);
}

/* This function ensures that the video core is turned offx/
void VideoOff ()

61

{
XGpio_DiscreteWrite (&Gpio, 6);
}

/* Below is Code that would be used to find the average of a given colour in an image
It only scans one particular line */

#define rowno 239
#define pixels 320

/* this finds the average of the colour redx*/
int findred(*picbaseaddy) /* The base address of the image needs to be passed */
{

int pixel; /* the value of the colour portion of the given pixel */
int avg = 0 ; /* the running average */
for(i=0;i<pixels;i++) /* sum over one row */

{

pixel = (x(picbaseaddy+rowno*pixels*1+ix1) & OxFF000000) >> 24 ; // retrieve from memory
avg += (pixel & 0xOOOOOOFF); // when shifting 1’s get padded in, these are here removed
b
avg /= pixels;
return avg; /returns the average

}

/* same as above but for blue */
int findblue (*myaddy)
{
int pixel;
int avg = 0 ;
for(i=0 ; i<pixels ; i++)
{
pixel = (*(picbaseaddy+rowno*pixels*1+ix1) & O0xFF000000) >> 24 ;
avg += (pixel & 0xOOO0OOOFF) ;
}
avg /= pixels;
return avg;

/* same as above but for green */
int findgreen (*myaddy)
{
int pixel;
int avg = 0 ;
for(i=0 ; i<pixels ; i++)
{
pixel = (*(picbaseaddy+rowno*pixels*1+ix1) & O0xFF000000) >> 24 ;

62

avg
}

avg /=

return

+= (pixel & 0xO00OO0OOQFF);

pixels;
avg;

63

D Simulations

E Specifications Sheets

Relevant spec sheets to this project could not be included. Please see the LM4549A audio controller,
and the ADV7194 for the video encoder and ADV7185 for the video decoder. They are all available
easily on the web in copyrighted PDF format.

64

| :oBed | MOy $00Z dWi] PIepuBlS uIvlse Zyiv 1:G L g Jdy UO 81 UOJE YoUSQISak:aInioalydly Jajunod arAnug

sng snp sng 0

I Jpo/ANN/18)UN0o QY

L L

| Misiann/sunosaqy

(oz) 2] 2| ezl ve)_se) oe) <[ol] 1 £2) 1IN0 UN0o/NN/IBIUN0Y ™ qY/

(2}

Japiaig bai4
9|qeud/Jalunod qy

Uiy Uy L Ly i Hg/1e1uNos gy

8000 ooomx N0 Bejep/ajunod qy

65

,w:ﬂ [[,w:m,,,,,,,,, ,w:N,,,,,,,,,,,,,,,,,,w::,,,,,,,,,,,,,,,,,

|

—
1
1

—

00000000000000000000

00000000000010k0LOLL | —

NNNNMNNNANNNNNNN

| I

L] L] !

L] L] !

I

f

N ENEn| (7Y 6)) Y (Y)))), I)) D

) 0

f f

e r 7] L | L[

Uy e ey L L L e L L L L L

| :obed | :MOY 002 dWI] PIEpUBlS WIBiSeT £0:2E 1| 2| Jdy UOW :8led UoJe youaqisa):aInioaydly 8100 /60 qrAuug

Blep” |0JJU0D PI[BA/INN/2100™ L60B™ Y
JPPE|0JIU0D PIlEA/INN/8100 /G0B ql/

Jejep oegAeid piieaann/ai0d /@oe qY/

66

| elep yoegAe|d pileAann/a100 /eoe Q)
awel) plleA/INn/a100 /6o qi/
210js/iNN/2100~ 260E 0}/
110|S/iNN/100" /6O€ q)/
Qlojs/iNn/2i00" /60€ ai/

10|S U09/INN/2109 /Eoe gV
10|S”MaU/INN/2109™ 2698 aY/

pua 10|S/INN/8109 /EOE QY
QUAS™JBlIS/INN/2100 /GJEB q)/

19Sal wWoJj Mels/inn/elod /eoe gy
Xopul—}g/iNN/2103/60E™ 0/
0u~10|S/iNN/2100™ L60E™ Y/

[eubig [eussju| 8100
QuAs/a100 /60 qY/
Api08p02/2109 /6O QY

2100 woyy Indinp

Ui eleps/a100” L60e qY

|9 11g/2109 268 qY/

81090 0} sindu|

