ECE532: Project Report

Real-time User Adjustable Video Filtering

Patrick Lie  991060757
April 12, 2004

Overview

Goal

To create an embedded system that demonstrates real-time video filtering using a Xilinx Virtex II multimedia board.  

System Description

Video is taken in via the Analog Devices 7185 video decoder [1] on the multimedia board.  The video decoder takes either a NTSC or PAL analog video signal and outputs 10-bits of video encoded in YCrCb format at 27 MHz.  The 10-bit video information and 27MHz video clock are then passed to the FPGA and processing logic.  The YCrCb video is decoded to RGB format and then a two dimensional fast Fourier transform (2D-FFT) is performed on each video frame.  Through the mouse and push buttons, user is then able to selectively removed parts of each transformed “frame” thus filtering out certain frequencies.  An inverse 2D-FFT operation is then performed on the altered 2D-FFT frame and the result is outputted to a VGA monitor.  A block diagram for the system is shown in Fig 1.


[image: image8.wmf])

512

(

017

.

2

)

64

(

164

.

1

)

512

(

392

.

0

)

512

(

813

.

0

)

64

(

164

.

1

)

512

(

596

.

1

)

64

(

164

.

1

-

+

-

=

-

-

-

-

-

=

-

+

-

=

Cb

Y

B

Cb

Cr

Y

G

Cr

Y

R


Fig 1.  Block diagram of system functionality.

IP

Several cores were used for this project, however many of them fall under the categories of Video capture, FFT, and Video output.

Video Capture

The video capture core is a single core comprised of several smaller cores.  These cores were taken from an example on the Xilinx website and slightly modified in some places for this project.  The component cores of the video capture core are listed below.

Line Field Decoder
This core takes the raw output of the video decoder and decodes the framing signals that describe whether the data is video blanking or active video, and also whether the active video is field 1 or 2 of the interlaced video stream.

422 to 444 Conversion
This core takes in a single 10 bits of YCrCb data and outputs it as three 10-bit values for Y, Cr and Cb values.  

YCrCb to RGB conversion
This core takes in the 10-bit values for each of the Y, Cr and Cb components and outputs the corresponding 10-bit R, G and B values.

De-interlacing

This core deinterlaces the input video stream.  It outputs a progressive scan video stream.

FFT
The FFT core is taken from Xilinx’s LogiCORE IP set.  The FFT core can be customized using the Xilinx CORE Generator to a 1024-point FFT using streaming I/O.

Video Output
The video output cores were taken from Xilinx examples for bitmapped video output to a VGA monitor.  They provide the timing signals needed to run the VGA monitor, as well as the logic to access pixels stored in frame buffer memory.

Outcome

Unfortunately there was not enough time to complete the entire project.  At this time, only the video capture was functioning properly.  The VGA monitor was controllable; however it wasn’t able to display data yet.  The work that still needed to be done was implement a frame buffer to where pixels could be written too at the slower decoder clock, and read from at the faster VGA monitor clock.  Also the FFT modules needed to be put into place to read from the frame buffer and output to another frame buffer that would contain the transformed image.  Lastly the mouse and push button inputs need to be enabled and Microblaze C code needed to be written to allow the user to select which parts of the transformed frame buffer to filtered out.

Description of Blocks

Video Capture

As stated before, these cores were taken from a Xilinx example for video capture.  Modifications made were to encompass all of the separate cores into one video capture core.  This was done because of possible clock skew issues between the cores that would cause the complete pipeline to fail.  Putting all the cores together ensured that this would not happen.  The overall structure of the video capture core is shown below in Fig 2, with the YCrCb to RGB conversion taking place after the 422 to 444 conversion and before de-interlacing.

[image: image2.png]Video Format

Field Number

Line Gount

Sample Count
Analog =
et Progressive
e Scan
or PAL

Digital Video





Fig 2.  Video Capture block diagram [2]
Line Field Decoder
In the video stream, beginning and ending sequences mark stretches of blanking video and active video as shown in Fig 3.  These sequences are four samples long, so a FIFO is implemented to hold the samples so they can be matched to patterns determining whether the video is active or blanking, and also whether it is field one or two of the interlaced video.  When one of these sequences is detected, three outputs, Fo, Vo and Ho, change to indicated what type of video is currently being outputted.

[image: image3.png]| ——

) [sample 720[sample 721]sample 722 [sample 855 [sample 856 [sample 857
co|v o[y fo]y o | v
360 | 720 361 [ 722 427 | 855

o0 80 10 80 10
A
~
EAV Inserted Digtal Blanking Code
re)  Note 1: FF 00 00 XY - Timing Reference (EAV and SAV) (

Note 2: Digital Blanking Data = 80,10,80,10.
Note 3: Video Data Words Are Conveyed (27MWords/s) Cb, Y, Cr, Y, Cb, Y, etc.




Fig 3.  Beginning and ending sequences marked by FF 00 00 XY. [3]
422 to 444 Conversion
In the video stream, Y data comes on every sample; however Cr and Cb data alternate every other sample (Fig 3).  Therefore what this core does is it first separates the Y component from the 10-bit value simply by taking the appropriate bits.  Then to have Cr and Cb components output on every clock, the core simply duplicates the Cr and Cb data when it is not available from the input.  Three 10-bit values for the Y, Cr and Cb components are outputted at half the 27 MHz clock rate, since Cr and Cb values come every 2 clock cycles.

YCrCb to RGB Conversion

Conversion between YCrCb colour space and RGB colour is done by three simple equations shown below.

[image: image1.wmf]Camera

FPGA

User Interface

Video In

Video Out

Mouse & Buttons

Interface

Multimedia Board

Displays

Mouse

2D-FFT

2D-IFFT


[image: image4.wmf])

3

)

2

)

1


These equations are implemented through standard Xilinx precision multipliers.

De-interlacing

To de-interlace, the missing line of video is created by interpolating between four other video lines, this is done by storing the video lines inside FPGA memory blocks.  Each missing line is created by averaging the pixel values between the other four lines as shown below in Fig 4.

[image: image5.png]Pixel Read
Address

Pixel Write
Address

1/6
l Phantom Line N-2
Write Address Read Address
Pixel In Line Buffer A PixelOut | (3} 2

(>
\
8

Write Address Read Address
Pixel In Line Buffer B Pixel Out

Scaling

Wire
Shift 10

Write Address Read Address
Pixel In Line Buffer C Pixel Out

Write Address Read Address
Pixel In Line Buffer D Pixel Out

285 10_120801




Fig 4.  De-interlacing by four line averaging. [4]
FFT
Version 2.0 of Xilinx’s Fast Fourier transform was used, the datasheet can be found at http://www.xilinx.com/ipcenter/catalog/logicore/docs/xfft.pdf.

Video Output
The only core used from the Xilinx example was the core to generate the timing signals for the VGA monitor.  The timing generation core takes in the pixel clock and outputs horizontal and vertical sync signals as well as the blanking signal needed to run the monitor.  ModelSim simulation results are shown below in Fig 5 for a 50 MHz pixel clock.
[image: image6.png]Bl Edt Vew Insert Fomat Toos Window

EES Lt BBA MK (NE[|QRQAE

Now [00ps

0 ps to 8271 ns [





Fig 5. ModelSim simulation for SVGA timing generation.
Description of Design Tree

Code
· Test.c: test code to grab values off of the GPIO

Pcores


fft_1024_v1_00_a: Contains files for Fast Fourier transform core.


Svga_timing_generation_v1_00_a: Contains SVGA timing generation core.


Test_counter_v1_00_a:  Contains a 24-bit binary counter core.


Video_capture_v1_00_a: Contains the video capture core and associated files.

Bibliography

[1]
“ADV 7185: Professional NTSC/PAL Video Decoder with 10-Bit CCIR656 Output”, Analog Devices Inc, 2002, http://www.analog.com/UploadedFiles/Data_Sheets/436811360ADV7185_0.pdf
[2]
John F. Snow, “Develop Professional Digital Video Applications”, XCell Journal 2002, http://www.xilinx.com/publications/products/services/xc_pdf/xc_videoapps44.pdf
[3]
Gregg Hawkes, “XAPP286: Line Field Decoder”, Xilinx Reference Design Example, http://www.xilinx.com/products/boards/multimedia/docs/examples/Video_Input_Processing_Examples.zip
[4]
Gregg Hawkes, “XAPP285: Video Scan Line De-Interlacing”, Xilinx Reference Design Example, http://www.xilinx.com/products/boards/multimedia/docs/examples/Video_Input_Processing_Examples.zip
� EMBED Equation.3  ���








[image: image7.wmf])

512

(

017

.

2

)

64

(

164

.

1

)

512

(

392

.

0

)

512

(

813

.

0

)

64

(

164

.

1

)

512

(

596

.

1

)

64

(

164

.

1

-

+

-

=

-

-

-

-

-

=

-

+

-

=

Cb

Y

B

Cb

Cr

Y

G

Cr

Y

R

_1143286060.unknown

_1143289101.unknown

_1143113933.vsd

