PCEv1

Stand Alone Web Cam & Server

Design Report 2004

Earl Mai 990791096

Satrukaan Sivagnanasuntharam 990790765

Table of Contents

1Design Report 2004

1Earl Mai 990791096

1Satrukaan Sivagnanasuntharam 990790765Table of Contents

2Table of Contents

3Project Team:

3Introduction

4Overview & Goals

4Resource Requirements

5Outcome

5Design Tree

5Useful Locations of Files

PCEv1

Stand Alone Web Cam & Server

Project Team:

Earl Mai

990791096

Satrukaan Sivagnanasuntharam
990790765

Introduction

FPGAs provide a generic chip with the endless options of features and functionality. With the MicroBlaze 27MHz processor onboard the Virtex II Xilinx Multimedia board, many capabilities including video-in and Ethernet functionality are possible. Our design attempts to utilize these multimedia capabilities and create a standalone video capturing web server.

Overview & Goals

The goal of the design was to implement a fullyfunctional web cam that not only can received video input and process it but to publish it directly onto the web at the same time.

With the processing capabilities of the MicroBlaze processor, the web server would be implemented in software and be connected directly to the internet via the onboard Ethernet controller.

A video core will be designed and implemented in hardware to convert the incoming video into a usable format. For our case, the bitmap image standard will be used to store the images and published upon the web page due to their simplicity. A user interface via a simple HTML web page will control when an image is captured and published.

Combining these two features onto a chip will allow portable solutions where it is required to publish information immediately onto the net, ie video surveillance.

Resource Requirements

Video Input Device (WebCam, Camcorder,VCR)

2 Ethernet Cable

1 Hub (10 BaseT)

Xilinx Multimedia Board

Computer with Mozilla compatible browser

Outcome

The webserver was implemented using the HTTP 1.1 protocol and video input was accomplished using Monty’s core.

The web server was able to send information back and forth between a client connected via Ethernet and video was captured into memory for further processing. No actual image transformations were done from the image stored in memory, but a place was left for code similar to Rohit & Danny’s black and white recognition code could be placed.

Due to limitations in Xilinx’s libraries, information could only be sent with file sizes under the limit of approximately 1.5kbytes. The current design prints out when the image is being captured (UserLed 0 turns off) and the web page is updated accordingly. The second major limitation of the web server lies in the fact that it could not handle successive accesses that were closely fixed together in time. This would cause the web server to hang, and once again, we believe this to be a problem with Xilinx’s libraries.

Hardware components

OPB 10/100 Ethernet media access controller (EMAC)
v1.00m

This FPGA hardware was attached to the appropriate Ethernet physical layer interface (PHY) pins on the multimedia board to provide Ethernet access to the system. This component comes with the EDK6.1 and was mapped to addresses 0x80004000 to 0x80007fff of the OPB bus. The Ethernet interrupt output was attached to the interrupt controller but the interrupt was never handled by the software.

The Ethernet controller was never handled directly; instead it was manipulated by the Xilinx xilnet Embedded Systems Tools (EST) software library.

OPB Interrupt controller
v1.00c

This component was mapped to address 0x80000500 to 0x8000051f of the OPB bus. It was used to handle interrupts produced from the EMAC. It is provided with EDK6.1.

OPB general purpose I/O (GPIO)
v2.00a

The GPIO was used only as a means for the software to manipulate the video capture core. It was set up to be two pins wide and those two pins attached to the “inflags” pins of the video capture core. The software could then turn on and off the video capture core using the “XGpio_mSetDataReg” function call in the software. The GPIO is provided with EDK6.1 and was mapped to OPB bus addresses 0x80000300 to 0x800004ff.

Vidcap
v1.00b

This video capture core was provided by Monty (available at ~pc/532/labs/sampledesigns/videocapture on Ugsparc). The core was attached to the ADV7185 chip output pins on the Xilix multimedia board. The ADV7185 chip takes in video signals and converts them to a 4:2:2 YCrCb signal. The video capture core then writes what it receives from the ADV7185 to memory. The video capture core was setup to write to memory starting at address 0x80280000. The video capture core was activated by the GPIO as indicated above. The video capture was also setup to indicate when it was operational by activating USER LED0 on the Xilinx multimedia board.

ZBT memory

The external memory was implemented using a sample model provided at ~pc/532/labs/sampledesigns/zbt_test on Ugsparc. The ZBT memory was mapped to 0x80200000 to 0x803fffff in memory. The top 1.5megabytes was used for the Video capture core (from 0x80280000) and the bottom 512k was used for the Xilinx memory file system.

Local Memory

The local memory was mapped on the local memory bus from 0x00000000 to 0x0000ffff on the Local Memory controller (lmb_bram_if_cntlr v1.00b). This was done because the program source code was significantly large and we had difficulty using it in the ZBT memory alongside the video capture core. The C_MASK for the controller was setup to 0x80000000 so that the OPB bus resides in the upper 50% of the memory 4GB memory space, and the LMB resides in the lower 50%.

Embedded Systems Tools (EST) Software Libraries

Xilinx Memory File System library (LibXil MFS)
v1.00a

The LibXil MFS treats part of available memory as a file system. This was used by the sample web server’s code so that additional web pages can be setup without adding too much complexity to the code. To test the sample code, the MFS was setup to use ZBT memory from 0x80200000 to 0x8027ffff. The code we had added in bypassed this library, but this component was left in since it may still be useful when creating larger and more elaborate web servers.

To Enable the LibXil MFS the following lines was written to system.mss:

BEGIN LIBRARY

 PARAMETER LIBRARY_NAME = xilmfs

 PARAMETER LIBRARY_VER = 1.00.a

 PARAMETER numbytes = 524288

 PARAMETER base_address = 0x80200000

 PARAMETER init_type = MFSINIT_NEW

 PARAMETER need_utils = false

END

Xilinx Net
v1.00a

The LibXil Net uses the Ethernet controller to provide a high-level application layer Socket API. This library facilitates an easy way of sending TCP/IP packets over the Ethernet thus allowing the web server to only be concerned about the HTTP application layer protocol. To activate the LibXil Net the following lines was written to system.mss:

BEGIN LIBRARY

 PARAMETER LIBRARY_NAME = xilnet

 PARAMETER LIBRARY_VER = 1.00.a

 PARAMETER device_type = ethernet

 PARAMETER emac_type = emac

END

Source Code

The Source code used was modified from a Xilinx Board design example http://www.xilinx.com/products/boards/multimedia/docs/examples/MicroBlaze_Media_Brd_Demo_jtag_edk3_2_sp1.zip. After several failed attempts at conversion, it was confirmed that this sample project does not work on EDK6.1. However, the sample source code could still be reused in this new project. Bitmap files included in the server was converted into a ascii strings using the following C program:

int main(int argc,char *argv[]){

 if(argc==3){

 FILE *f=fopen(argv[1],"rb");

 printf("unsigned char %s[]={\n",argv[2]);

 while(!feof(f)){

 printf("%d,",fgetc(f));

 }

 printf("};");

 fclose(f);

 }else{

 printf(“Usage: \“conv\” <image file> <variable name> \“>\” <destiation file>”);

 }

}

The program creates C header files that contain a single array of characters that represent an image. This header file is then included in the webserver source code so it could send the image that was converted over a network and have it reproduced on the other end. Example of use: “conv b.bmp bmp_image > bmp2.h” then simple add the line “#include bmp2.h” in any C file to include the image.

The following is the web server code. The first section is the global variables and function prototypes and includes, the addition we made here is to add the include bmp2.h which is our image file. Most of the other global variables are pretty much ignored as we use better ones later on. The provided http header actually reads “HTTP/1.0 200 OK”, the use of hex instead of ASCII strings doesn’t seem apparent, we use our own http header later on that fits better with the http protocol.

/*

/**

*

* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"

* AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND

* SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,

* OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,

* APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION

* THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,

* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE

* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY

* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE

* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR

* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF

* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

* FOR A PARTICULAR PURPOSE.

*

* (c) Copyright 2002 Xilinx Inc.

* All rights reserved.

*

**/

/***/

/***************************** Include Files *********************************/

#include <stdio.h>

#include <string.h>

#include <net/xilnet_config.h>

#include <net/xilsock.h>

#include <mfs_config.h>

#include <web.h>

#include <xgpio_l.h>

#include <xemac_l.h>

#include <xparameters.h>

/* This header file contains an bitmap image that we can send over the internet */

#include "bmp2.h"

/*

 * Function prototypes and global variables

 */

unsigned char dip[2];

unsigned char *bg_tab[] = {"#63B1B1","#FFFFCC","#808040","#FFCC99","#CC6600", "#99FF99"};

unsigned char http_hdr[17] = {0x48,0x54,0x54,0x50,0x2f,0x31,0x2e,0x30,0x20,0x32,0x30,0x30,0x20,0x4f,0x4b,0x0d,0x0a};

unsigned char file_not_found[24] = {0x48,0x54,0x54,0x50,0x2f,0x31,0x2e,0x30,0x20,0x34,0x30,0x34,0x20,0x4e,

 0x6f,0x74,0x20,0x46,0x6f,0x75,0x6e,0x64,0x0d,0x0a};

unsigned int led_tab[16] = {0x0f,0x0e,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x01,0x00};

unsigned char d2 = 0xf;

int count = 0;

void do_proc_req(int);

void create_index (void);

void do_proc_conns();

The following is the main program. It first initializes the xilnet library and informs it to use ip address 1.2.3.4 (if another ip is desired, this is where you replace it; there is no mechanism provided for automatically obtaining an ip). It then sets up the EMAC controller and the MFS library. We also initilialized the GPIO tristate buffer for output signaling only on the two active pins. Also note that we changed all the \n’s to \n\r’s in the printf statements since \n doesn’t seem to mean the same as \n\r in the output terminal. The main program ends by initializing and binding a socket for incoming signals, and then has an infinite loop that waits and processes incoming connections.

int main()

{

 int n = 0;

 int s;

 int err;

 struct sockaddr_in addr;

 unsigned int gpio_data = 0;

 //struct mfs_file_block mfs_file_system[25];

 /*

 * Set up MAC & IP addresses and intialise Ethernet HW Table

 */

 xil_printf("startup \r\n");

 xilnet_eth_init_hw_addr("00:60:08:27:11:7b");

 xilnet_eth_init_hw_addr_tbl();

 xilnet_ip_init("1.2.3.4");

 /*

 * Initialize MAC Baseaddress, set MAC address and enable it

 */

 xilnet_mac_init(XPAR_OPB_ETHERNET_0_BASEADDR);

 XEmac_mSetMacAddress(XPAR_OPB_ETHERNET_0_BASEADDR, mb_hw_addr);

 XEmac_mEnable(XPAR_OPB_ETHERNET_0_BASEADDR);

 xil_printf("ip: %d.%d.%d.%d \r\n", mb_ip_addr[0], mb_ip_addr[1],mb_ip_addr[2],mb_ip_addr[3]);

 /*

 * Initialise the File System and create files

 */

 mfs_init_fs(MFS_NUMBYTES, (char*) MFS_BASE_ADDRESS, MFS_INIT_TYPE);

 //mfs_init_fs(25*sizeof(struct mfs_file_block), (char*) mfs_file_system, MFS_INIT_TYPE);

 create_index();

 /*

 * set LEDs to output and DIP switches to input

 */

 XGpio_mSetDataDirection(XPAR_OPB_GPIO_0_BASEADDR, 0xfffffffc);

 /*

 * Create, Bind, Listen on Server Socket

 */

 s = xilsock_socket(AF_INET, SOCK_STREAM, 0);

 if (s == -1) {

 xil_printf("socket() error \r\n");

 exit(1);

 }

 addr.sin_family = AF_INET;

 addr.sin_addr.s_addr = INADDR_ANY;

 addr.sin_port = SERVER_PORT;

 err = xilsock_bind(s, (struct sockaddr *)&addr, sizeof(struct sockaddr));

 if (err == -1) {

 xil_printf("bind() error \r\n");

 exit(1);

 }

 err = xilsock_listen(s, 4);

 if (err == -1) {

 xil_printf("listen() error \r\n");

 exit(1);

 }

 /*

 * Start Accepting Connections on Server Socket

 */

 for (;;) {

 int alen = 0;

 /*

 * Set gpio_data to be displayed on LEDs

 */

 count = count % 6;

 gpio_data = ((unsigned short)d2);

 /*XGpio_mSetDataReg(XPAR_MYGPIO_BASEADDR, gpio_data);*/

 /*

 * Accept new connections

 */

 alen = sizeof(struct sockaddr);

 err = xilsock_accept(s, (struct sockaddr *)&addr, &alen);

 if (xilsock_status_flag & XILSOCK_NEW_CONN) {

 /*

 * Add new web connection

 */

 add_web_conn(err);

 }

 /*

 * Process all existing connections

 */

 do_proc_conns();

 }

 return(0);

}

The following are controls to manipulate an array of connections. Whenever a new connection is created, its info is added to the list so that the server knows to check if that connected client wishes to display more information. After the connection is broken, the server removes it from the list.

/*

 * Web Connections Management

 */

unsigned char iswebinit = 0;

/*

 * Initialise all web conns

 */

void init_web_conns() {

 int i;

 for (i = 0; i < MAX_WEB_CONNS; i++) {

 web_conns[i].s =-1;

 web_conns[i].file_name = NULL;

 web_conns[i].bytes_rem = 0;

 web_conns[i].state = WEB_CONN_FREE;

 }

 iswebinit = 1;

}
/*

 * Add a web connection

 */

int add_web_conn(int s) {

 int i;

 if (!iswebinit)

 init_web_conns();

 for (i = 0; i < MAX_WEB_CONNS; i++) {

 if (web_conns[i].state == WEB_CONN_FREE)

 break;

 }

 if (i <= MAX_WEB_CONNS) {

 web_conns[i].s = s;

 web_conns[i].state = WEB_GET;

 return i;

 }

 xil_printf("no free conns \r\n");

 return -1;

}

/*

 * Free a web connection

 */

void free_web_conn(int s) {

 web_conns[s].s = -1;

 web_conns[s].state = WEB_CONN_FREE;

}

This function processes all the connections. Note reference to xilsock_sockets, this is undocumented; it contains additional data about each connected socket such as what information was requested and each sockets information can be referenced by using the socket number as a reference in the xilsock_sockets array.

/*

 * Process all web connections

 */

void do_proc_conns() {

 int i;

 for (i = 0; i < MAX_WEB_CONNS; i++){

 do_proc_req(i);

 // reset buf ptrs of sockets

 xilsock_sockets[web_conns[i].s].recvbuf.buf = NULL;

 xilsock_sockets[web_conns[i].s].recvbuf.size = 0;

 }

}

This next area is where all the web pages are stored in global memory. Index_html, index2_html, index_end, index1 and bg are parts of the original web servers sample html pages. Index1 and bg are the headers for the web pages, and index_end was the end, which leaves index_html and index2_html as the core of the website. Following that is our code, which is based on the real http protocol and includes the protocol header string in the body of each file. The web pages we created used a macro we created called def_html which uses the “#” macro operator to allow us to include strings as normal text without the need for quotation marks and slashes (thus allowing us to copy and paste html code as is without the need to change quotes to \” and putting the entire web page in one line). We then include several files that contain our html code wrapped in a macro call (these files are called index_html.def and test_html, they shall be discussed later).

/*

 * Routine that processes requests :

 * filenames < 10 ;

 */

#define SND_PTR_SIZE (1500-40)

unsigned char *index1 = "<html><head></head><body bgcolor=\"";

unsigned char *bg = "#63B1B1";

unsigned char *index_html = "\"><center> Web Server on Xilinx Virtex II MicroBlaze/Multimedia Board</center>
A Simple Web Server running on MicroBlaze.Check out the following demos.<p>2-bit LED Display:<p>Type in a hex value and see it displayed as a 2-bit binary value on the LED display on reload.
<form action=\"pl\" method=\"get\">Hex Value<input type=\"text\" size=\"1\" name=\"textbox\"><p><input type=\"submit\" value=\"Submit\">
</form><p>Changing Colors :<p>See the background color of the page change everytime when reloaded.<p>Yet Another File on MicroBlaze<p>DIP Switches:<p>Set Dip Switches 0 1 and see it displayed as binary on reload<p>DIP Value: ";

unsigned char* index_end = "</body></html>";

unsigned char *index2_html = "\"><center> Web Server on Xilinx Virtex II MicroBlaze/Multimedia Board</center>
index2.html on MicroBlaze.<p>Back</body></html>";

#define def_html(x,size,y) unsigned char x[]=\

"HTTP/1.1 200 OK\r\nContent-length:"#size\

"\nContent-type: text/html\r\n\r\n"#y

#include "index_html.def"

#include "test.def"

unsigned char bmp_hdr[] = "HTTP/1.1 200 OK\r\nContent-length: 374\nContent-type: image/bmp\r\n\r\n";

/* Constants for GET */

#define G 0x47

#define E 0x45

#define T 0x54

do_proc_req processes a web connection. Note that sendbuf is a buffer provided by the xilnet library, it is however unnecessary and can be replaced with another buffer. The input from a connection is obtained from xilsock_send[].recvbuf.buf, this is where data appears from the client application. The first thing done is to check if the packet received was an acknowledge or a data request (this is done using xilsock_status_flag). If the packet was an acknowledge, then the program assumes it’s a disconnection notice and removes it from the list of active sockets; we initially assumed that an acknowledge might be a means to send additional data in chunks, this was tried and failed, but the residual code still remains in the program (perhaps it will work in later versions). If the receiving packet was a data packet, it is first checked to determine if it was for information from a edit box (this is for the original web page that had an edit box that allowed for the manipulation of leds on the xilinx multimedia board).

/*

 * Process a Web Connection

 */
void do_proc_req(int n) {

 char fname[15] = {0};

 int j, num, fd;

 char *tok;

 unsigned int dip_val = 0;

 unsigned char *sndptr = (unsigned char*)(sendbuf+LINK_HDR_LEN+IP_HDR_LEN*4+(TCP_HDR_LEN*4));

 int i1len, bglen;

 unsigned char * buf = xilsock_sockets[web_conns[n].s].recvbuf.buf;

 if (!buf)

 return;

 /*

 * Ack for Data Sent

 */

 if (xilsock_status_flag & XILSOCK_TCP_ACK) {

 if(web_conns[n].bytes_rem!=0){

memset(sendbuf, 0, LINK_FRAME_LEN);

xil_printf("Sending More Data\r\n");

memcpy(sndptr,test_html+1000,1004);

 num = xilsock_send(web_conns[n].s, sendbuf, 1000);

xil_printf("sending test 2\r\n\r");

web_conns[n].bytes_rem=0;

 }else{

xil_printf("Closing Connection\r\n");

xilsock_close(web_conns[n].s);

free_web_conn(n);

xil_printf("Closed\r\n");

 }

 }

 /*

 * GET Request

 */

 else if (xilsock_status_flag & XILSOCK_TCP_DATA) {

 /*

 * Read DIP switches

 */

 dip_val = 0/*XGpio_mGetDataReg(XPAR_MYGPIO_BASEADDR)*/;

 dip[0] = ((dip_val & 0x00000008)>>3) + 48;

 dip[1] = ((dip_val & 0x00000004)>>2) + 48;

 i1len = strlen(index1);

 bglen = strlen(bg_tab[count]);

 tok = strtok(buf, " ");

 tok = strtok('\0', " ");

 tok = tok+1;

 xil_printf("Processing Request...\r\n");

 if (tok[0] == 'p' && tok[1] == 'l') {

 d2 = tok[11];

 switch(d2) {

 case '0':

 d2 = led_tab[0];

 break;

 case '1':

 d2 = led_tab[1];

 break;

 case '2':

 d2 = led_tab[2];

 break;

 case '3':

 d2 = led_tab[3];

 break;

 case '4':

 d2 = led_tab[4];

 break;

 case '5':

 d2 = led_tab[5];

 break;

 case '6':

 d2 = led_tab[6];

 break;

 case '7':

 d2 = led_tab[7];

 break;

 case '8':

 d2 = led_tab[8];

 break;

 case '9':

 d2 = led_tab[9];

 break;

 case 'a': case 'A':

 d2 = led_tab[10];

 break;

 case 'b': case 'B':

 d2 = led_tab[11];

 break;

 case 'c': case 'C':

 d2 = led_tab[12];

 break;

 case 'd': case 'D':

 d2 = led_tab[13];

 break;

 case 'e': case 'E':

 d2 = led_tab[14];

 break;

 case 'f': case 'F':

 d2 = led_tab[15];

 break;

 default:

 d2 = led_tab[0];

 break;

 }

 }

 else {

 strcpy(fname,tok);

 }

The rest of the function does the actual transmittion of files. This is done by first clearing a chunk of memory from the top of the send buffer so that the xilnet send function can fill in the tcp/ip headers, after which there is an else-if sequence, one if statement for each file. The first if statement was to display test.html which was a test to display large text files, as of yet there was no mechanism discovered to facilitate this transaction. The next is to transfer index.html, which was stored in the string earl_html to distinguish it from the original index_html; during this transfer the video capture core becomes activated as it was at this point where an image was supposed to be displayed on the screen. There is also an bitmap image that is displayed, this image required the concatenation of the http header to the data since we didn’t include it in the image data array unlike what we did for the html pages. The remaining code displays the original web page along with any web page in the memory file system. This code also manipulates certain web page code to alter its background colour.

 memset(sendbuf, 0, LINK_FRAME_LEN);

 /*

 * Fill HTTP header and send requested file

 */

 memcpy(sndptr, http_hdr, 17);

 if (!(*fname))

 strcpy(fname, "index.html");

 if(strcmp(fname,"test.html")==0){

 memcpy(sndptr,test_html,1004);

 num = xilsock_send(web_conns[n].s, sendbuf, 1000);

 xil_printf("sending test 1\r\n\r");

 }

 else if(strcmp(fname,"index.html")==0){

 int I;

 memcpy(sndptr,earl_html,strlen(earl_html));

 num = xilsock_send(web_conns[n].s, sendbuf, strlen(earl_html));

 xil_printf("DONE Sending \r\nCapturing Image");

 XGpio_mSetDataReg(XPAR_OPB_GPIO_0_BASEADDR, 3);

 for(I=0;I<650000;I++){

if((I%10000)==0)xil_printf(".");

 }xil_printf("\r\nDone\r\n");

 XGpio_mSetDataReg(XPAR_OPB_GPIO_0_BASEADDR, 0);

 }

 else if(strcmp(fname,"image1.bmp")==0){

 xil_printf("IMAGE 1\r\n");

 memcpy(sndptr, bmp_hdr, strlen(bmp_hdr));

 memcpy(sndptr+strlen(bmp_hdr), bmp_image, sizeof(bmp_image));

 /*memcpy(sndptr, file_not_found, 24);

 memcpy(&sndptr[24], "File Not Found", strlen("File Not Found"));*/

 n = xilsock_send(web_conns[n].s, sendbuf, strlen(bmp_hdr)+sizeof(bmp_image));

 xil_printf("image sent\n\r");

 }else if(strcmp(fname,"image2.bmp")==0){

xil_printf("IMAGE 2\r\n");

 memcpy(sndptr, file_not_found, 24);

 memcpy(&sndptr[24], "File Not Found", strlen("File Not Found"));

 n = xilsock_send(web_conns[n].s, sendbuf, strlen(sndptr));

 }

 else if ((fd = mfs_file_open(fname, MFS_MODE_READ)) < 0) {

 xil_printf("file not found \r\n");

 memcpy(sndptr, file_not_found, 24);

 memcpy(&sndptr[24], "File Not Found", strlen("File Not Found"));

 n = xilsock_send(web_conns[n].s, sendbuf, strlen(sndptr));

 }

 else {

 int diplen = 0;

 j = mfs_file_read(fd, (sndptr+17+i1len+bglen), (1514-14-20-20));

 if (!strcmp(fname, "index.html")) {

 strcat((sndptr+17+i1len+bglen), dip);

 diplen = 2;

 }

 memcpy((sndptr+17+i1len), bg_tab[count], bglen);

 memcpy((sndptr+17), index1, i1len);

 num = xilsock_send(web_conns[n].s, sendbuf, j+17+i1len+bglen+diplen);

 memset(sendbuf, 0, 1514);

 xil_printf("done..\r\n");

 mfs_file_close(fd);

 }

 count++;

 }

}

This procedure creates web pages in the memory file system. We found this function redundant since all its doing is duplicating memory in the program into the memory file system. It would be far more convenient to simply get the web pages from program memory like we did for our files. However, MFS could be used to dynamically store and display web pages in a future versions of this system.

/*

 * Create Index and Index1 HTML files

 */

void create_index(void) {

 int fd;

 int tmp;

 if ((fd = mfs_file_open("index.html", MFS_MODE_CREATE)) == -1) {

 xil_printf("cant create\r\n");

 exit(-1);

 }

 if ((fd = mfs_file_open("index.html", MFS_MODE_WRITE)) == -1) {

 xil_printf("cant open index for write\r\n");

 exit(-1);

 }

 if ((tmp = mfs_file_write(fd, index_html, strlen(index_html))) == 0) {

 xil_printf("cant write to file \r\n");

 exit(-1);

 }

 mfs_file_close(fd);

 if ((fd = mfs_file_open("index2.html", MFS_MODE_CREATE)) == -1) {

 xil_printf("index2 cant create\r\n");

 exit(-1);

 }

 if ((fd = mfs_file_open("index2.html", MFS_MODE_WRITE)) == -1) {

 xil_printf("index2 cant open for write\r\n");

 exit(-1);

 }

 if ((tmp = mfs_file_write(fd, index2_html, strlen(index2_html))) == 0) {

 xil_printf("cant write index2\r\n");

 exit(-1);

 }

 mfs_file_close(fd);

}

/*

 * Stack Overflow & Interrupt Handler Dummy Functions

 */

void _stack_overflow_exit(void) {

 xil_printf("Stack Overflow \r\n");

}

void _interrupt_handler() {

}

Application Notes

Using the XilNet library

· Data received from socket “s” is stored in “xilsock_sockets[s].recvbuf.buf”

· Packets types are identified by xilsock_status_flag. The XILSOCK_TCP_DATA bit of that flag indicates if the packet is a data packet. The XILSOCK_TCP_ACK bit identifies if it is an acknowledge packet.

· When using xilsock_send, the buffer used needs to have blank space at the beginning, the size of which is LINK_HDR_LEN+IP_HDR_LEN*4+(TCP_HDR_LEN*4). This blank space is not included in the length argument of the function.

· Xilsock_send cannot transmit more than 1.5k of data at a given time and doesn’t wait for an acknowledge before transmitting subsequent packets.

Design Tree

Cores Used:

Monty’s Video-In

Code Used:

Xilinx Webserver (Severely modified)

Hardware Used:
EMAC, INTC, GPIO, ZBT

Libraries Used:
XILMFS, XILNET

Useful Locations of Files

drwxr-xr-x 2 sivagna 512 Apr 6 16:40 code

Final Version of our Code with a working web server. (revision 3) The previous 2 revisions attempted to send files that were broken up into <1.5k pieces.

drwxr-xr-x 2 sivagna 512 Apr 6 15:28 code2

Test code of the web server, “chunks”. (revision 2)

drwxr-xr-x 2 sivagna 512 Apr 6 15:34 code3

Test code of the web server, “send all”. (revision 1)
drwxr-xr-x 2 sivagna 512 Mar 29 16:31 data

-rwx------ 1 sivagna 12228 Apr 2 14:01 system.ucf

Contains all the pin out declarations, ie the Ethernet,UserLEDs and Video Input.

drwxr-xr-x 5 sivagna 512 Mar 29 16:32 pcores

Cores used in this project which include Monty’s core and the ZBT.

-rwx------ 1 sivagna 2717 Mar 29 16:40 system.mss

Software description.

-rwx------ 1 sivagna 9861 Apr 6 10:20 system.mhs

Hardware description

-rwx------ 1 sivagna 857 Apr 6 17:43 system.xmp

Main project file, open this with XPS.

EMAC

Web Server

(Blaze

SVGA Output

WebCamVideo In

In

]

OPB BUS

