

ECE532

Project Group Report

DIGITAL ADAPTIVE EQUALIZATION FOR
SERIAL DATA COMMUNICATION

March 27, 2005

(991360255)
(991470065)

Boris Spokoinyi
Ryan Janzen

Media Board
FPGA
 µBlaze

Tuning
algorithm

U.I.

Digital
Equalizer

RS232

UART

Codec

Video-in
or audio-in

Video or
audio

interface

Signal
generator

or PC

Dispersive
channel

PC

BER calculation

random #
gen.

Seed
signal

Overview

Initial Goals

The purpose of this project is to build an adaptive equalizer on FPGA to equalize
asynchronous serial data that have been distorted by a certain channel. The serial data
would travel from a RS232 port of PC, through a long cable, that introduces distortion
and noise, then it would travel to audio input on Multimedia Board, get equalized using
the weights from µBlaze, then the equalized data would be fed to µBlaze for error
calculation. Using Genetic Algorithm the weights would be calculated by µBlaze based
on the calculated error from difference in equalized and actual data.

Initial block diagram

Media Board
FPGA

µBlaze

GA algorithm

U.I.

Equalizer

RS232

UART

Codec

audio-in

AC97

Test input
PC

Error calculation

Table of random #s

LA
Reg

Modified Goals

In final design the error is calculated in hardware instead of µBlaze. Random number
generator is replaced by a lookup table with a pre-computed pseudorandom sequence
(PRS) of numbers. A second, 8-bit PRS is hard-wired in the error calculation logic.
Logical Addressable Register (LAregister) is added to make equalizer’s registers
accessible from OPB bus. Audio input is used only for verifying that we can read from
microphone input from µBlaze. The actual data, original and distorted, is pre-computed
and fed from µBlaze to the equalizer. In future the data could be fed from microphone
through AC97 core as it was intended.

Modified block diagram

IP blocks used

• MicroBlaze
• AC97 core, from one of previous year’s projects
• Xilinx GPIO core
• Xilinx UARTlite core
• Custom “equalizer” core
• Custom “LAregisiter” core

Outcome
Due to time constraints we did not have time to integrate µBlaze GA code with equalizer
core and LAregister core. By itself, µBlaze GA code worked well for a simple error
surface, where error is the sum of all weights squared. A complete convergence was
observed, for this simple case, in about 5s with 27MHz clock. AC97 core worked well
from µBlaze: samples were successfully recorded into the memory from microphone
input. The equalizer was successfully simulated in Quartus and later in ModelSim; it
correctly equalizes a sample pre-coded low-passed PRS sequence using static weights.

Description of IP Blocks & Other System Segments

µBlaze code: GA algorithm

Introduction to Genetic Algorithm based equalization

The goal of equalizer is to minimize error between a correct signal and an equalized one.
Adaptive equalization is used in cases where the channel can change from place to place
or with the passage of time. There are basically two major ways to adaptively update
weights of an equalizer. One possible way is to adjust the weights using a gradient
descent approach, such as LMS, and another way is do random search. Gradient descent
is a fast way to find a weight vector corresponding to the minimal error but it only gives a
suboptimal solution and has performance problems when there is a lot of noise. A
random search by itself is a very slow method but it is guaranteed to eventually converge
to the optimal solution. Genetic Algorithm is a sort of combination of random search and
gradient descent. The gradient descent is performed through averaging (crossbreeding) of
weights between different weight vectors (individuals) and keeping only the best
performing ones. Random perturbations (mutations) are introduced to the weights to
perform random search, usually near the local minima, so that optimal solution is
eventually found.

Code description GA.c

The GA code consists of several functions for each of the Genetic operations:
crossbreeding, mutation, picking the best individuals, and calculating error for each
individual based on the error provided by the equalizer core.

Crossbreeding void crossbreed()

This part of GA algorithm is a major mechanism by which the solution converges to a
local minimum. In this implementation, crossbreeding is done by having two imbedded
loops: one selects first parent and the other selects the second parent. A parent-to-parent
crossbreeding happens with certain probability, which in this case is implemented by
taking a random number from PRS table and seeing if it exceeds a certain threshold.

Mutation void mutate()

Mutation is necessary so that the solution eventually finds an absolute minimum on the
error surface. Mutation is performed on each individual except the best individuals (elite).
Mutation is not performed on the elite because if it was then the best solution would be
lost.

Calculating errors void calcErrs()

Error is calculated at each iteration for each individual in the population. The weight
vector of each individual is transferred to LAregister’s register_portCoeffI along with 16
bits of a distorted data to register_portSignalI. After this the software loops until a status
register, register_portStatusI, is read from LAregister indicates that the equalization and
error calculation is done in the Equalizer core. The error is read from
register_portErrorO port of LAregister. µBlaze also reads the equalized data from
LAregister so it can be output for comparison. This procedure is repeated for each
individual.

For testing of GA algorithm a simple test error calculation is performed by simply
squaring and adding all weights of a weight vector. The GA in this case finds a weight
vector that has all weights of zero.

Sorting to find the Elite void findElite()

A simple sorting of the population is performed to find out the two best performing
individuals (elite). A simple algorithm is employed, where an individual with minimum
error is searched through the population and is then placed at position 0, then the next
best individual is found in similar fashion and placed at position 1.

Equalizer IP Core v.1.00b
equalizer_v1_00_b
Authors: Ryan Janzen, Boris Spokoinyi
2005.03

Dynamic Equalization of communication data received from a noisy or distorting
channel. The core implements a delay-tap-line, where all the delayed versions of the
input signal are multiplied by set coefficients, and summed together to form an output
signal. The coefficients can be set as a matched filter, matched to the shape of the
transmitted pulses, to combat noise. They can also be set to form a filter which undoes
the effect of a distorting channel’s impulse response. (The latter is used in this project.)

Key features:

• Dynamic Equalization using 8-Delay-Tap Line
• Binary Threshold Detection and Output bit sequencing
• Compatible with Frame-based communication schemes, with beginning of each

data frame containing a pre-determined Pseudo-Random Sequence (PRS) of bits
for frame synchronization and error rate detection.

• Error Rate Detection

In this project, the coefficients are controlled dynamically by the Genetic Algorithm. The
error rate calculation is fed back into the GA. These two exchanges of data take place
once every data frame.

I/O Ports
Port Dir. Width
clk 1 External clock
reset_b 1 External ~reset
coeffArrayIn 64 8x Coefficents, 8-bit each.

First is coeffArrayIn[7:0]
signalIn 16 Sample of received analog communication signal
statusIn

I

8 (desc. below)
statusOut 8 (desc. below)
statusOutIsValid 1 (Can enable an external latch)
dataBlockOut 8 Sequence of output bits, equalized and thresholded

corresponding to 8 samples at 2nd half of frame
dataBlockIsValid 1 (Can enable an external latch)
errorRate 16 Cumulative analog error calculation for PRS

section of frame. Unsigned
errorRateIsValid 1 (Can enable an external latch). Error available

before end of frame.
signalOut

O

32 Equalized analog sample (optional). Signed.
Flow controlled by statusIn

During the first part of each frame, the equalizer output is compared with a hard-coded 8-
bit pseudorandom sequence (PRS) of bits which correspond to actual known bits which
are to be sent by the transmitter at the beginning of the frame. The purpose is to have an
indication of the error rate between transmitter, distorting channel, equalizer, and output
bit sequence. Each equalized sample, which is a quantized analog value, is subtracted
from the corresponding bit in the PRS. The discrepancy’s absolute value is accumulated
on an errorRate register. After the 8-sample sequence is complete, plus an additional 4-
sample delay which accounts for the EQ latency, the errorRateIsValid bit is asserted.

The remainder of each frame contains the actual communication data. The equalizer
output samples are threshold-detected (>0 or <0) to interpret a communication bit. Bits
are sequenced into a byte, which is the data output of the frame.

The errorRate is made available as soon as possible during each frame, so that the
software has as much advance time as possible to read it and calculate new coeff's, which
are needed at the beginning of the next frame.

Timing: Data segmentation in 1 frame.
Coefficient Data in.

Frame – 16 Samples, 1 for each bit.
Samples from distorted channel written one at a time to core.
Pre-determined PRS (8 bits) Data (8 bits)

 Error total out
 Byte

out

Interface protocol:

• SW writes coeffArray.
• Assert statusIn[2] (3rd bit from right) to 1. "Start of frame"
• Write signalIn, which is the a sample of a single symbol.
• Assert statusIn[0] to 1
• Wait for statusOut[0] to go to 1. (can tie this to an interrupt, in LAregister)
• Clear statusIn[0] to 0, and write new signalIn.
• Assert statusIn[0] to 1.
• ...so on for rest of input symbol samples. 16 in total.
• At end of frame of signalIn's, statusOut[2] will go to 1. "End of frame"
• Read output data byte and error.
• Clear statusIn[2] to 0 to acknowledge.
• Repeat all, for next frame

Status Registers:

statusIn
[7:0]

Control bits (active high) statusOut
[7:0]

Status bits (active high)

0 Sample available
(cycle 0,1 for next sample)

 0 Sample complete

1 1 Error complete
Error out valid

2 Frame active
~Data out acknowledge

 2 Frame complete
Data out valid

3 3
4 4
5 5

Truncated sample #
counterSampleBlock[2:0]

6 6
7 7

State –
Top level state machine

Hardware compatibility versions:

• 1_00_a Self-contained input/output data registers
• 1_00_b Asynchronous inputs/outputs, assuming external latches. Designed

for opb_LAregister_v2_00_a

The core is written in Verilog, with the following modules:
signalproc.v Top level HDL of core. Instantiates equalizer and

errorChecker. Implements threshold detection (slicing) of
equalized signal, and sequences the resulting binary data.
Contains state machine.

equalizer.v Dynamic delay-tap-line equalizer. Uses embedded multipliers.
Contains state machine.

errorChecker.v Analyzes EQ output signal during first part of frame,
comparing samples to an internally hardcoded PRS,
accumulating an analog error total.

MULT18X18.v Xilinx instantiation of Virtex II embedded multiplier
signExtend_8_18 Vector bit expansion, from 8bit to 18bit, with sign extension.
signExtend_16_18 Vector bit expansion, from 16bit to 18bit, with sign extension.

“Frame” also referred to as “block” within code.

The hardware design logic was verified. Simulation waveforms are shown as follows.

Simulation 1

Simulation 2

Logical Addressable Register IP Core v. 2.00a
opb_LAregister_v2_00_a
Authors: Ryan Janzen, Boris Spokoinyi

LAregister makes data transfer possible between the µBlaze and another custom core
(EQ in this case), using memory-addressable hardware registers. This custom core was
generated by the XPS Create/Import Peripheral Wizard to include OPB addressable
register capability, and then modified so that the registers could be interfaced with
hardware ports. It is intended that these ports be connected to corresponding ports in the
custom core of interest, using XPS/MHS.

 Software interface Hardware interface
I registers

“inputs to the
external core”

Software writes a bytes/word
to the appropriate memory
address.
Read-back is possible.

Data is continuously available on the
ports
register_port<name>I

O registers

“outputs from
the external
core”

Software reads a bytes/word
from the appropriate memory
address.
Write-back is disabled and
has no effect.

External core strobes output vector on
register_port<name>O
External core asserts
register_port<name>O_latch
Data is latched every bus clock cycle
when this signal is high.

The design presented here has been customized for the EQ core. Data ports have been
given names and widths that correspond with EQ ports.

The LAregister core contains 32 registers, each one 32-bits wide. There are ports which
give the EQ core access to register data, and these ports are to be connected to the EQ
core ports in XPS/MHS. “I” ports are to be written to by software and are “inputs to the
EQ core”. “O” ports are readable, but not writable, by software and are “outputs from the
EQ core”. Within the LAregister HDL, O ports are inputs and I ports are outputs.

Upon including the core in a system in XPS, address ranges are to be set up as one
contiguous block. In this case, ports and their address locations are as follows:

Addr.
Byte
offset

Wired port, “I”/“O” bits Direction Internal reg

0 ~ 255 register_portCoeffI 2040 bus->port slv_reg0 & slv_reg1 &
slv_reg2 & slv_reg3 &
slv_reg4 & slv_reg5 &
slv_reg6 & slv_reg7

1016 register_portStatusI 8 bus->port slv_reg30(0 to 7)
1018~9 register_portSignalI 16 bus->port slv_reg30(16 to 31)

1020 register_portStatusO 8 port->reg->bus slv_reg31(0 to 7)
1021 register_portDataO 8 port->reg->bus slv_reg31(8 to 15)
1022~3 register_portErrorO 16 port->reg->bus slv_reg31(16 to 31)
 Latch enable signals:
- register_portStatusO_latch 1 port->reg -
- register_portDataO_latch 1 port->reg -
- register_portErrorO_latch 1 port->reg -

The core has a VHDL design, with the following modules:

opb_LAregister.vhd Top level HDL of core. Originally generated by Create

Peripheral Wizard. Modified to contain i/o ports as above.
user_logic.vhd Originally generated by Create Peripheral Wizard.

Modified to contain i/o ports which are connected to
registers in the entity, as in the above table. Particularly for
O ports, the registers were given enable signals which are
connected to the external _latch signals.

Test Procedure, independent of external core
• In XPS/MHS, after inserting the core and setting memory addresses, add the

ports.
• In MHS, hard wire the "O" ports (port-->reg-->bus) to random 0's and 1's.

Simulated data from Verilog core, to be latched to reg.
PORT register_portStatusO = 0b10001011

• Hard wire the "latch" signal for each “O” port - some to "0", some to "1". This
will cause only certain “O” registers to continually latch the port data. The others
will remain initialized at zero.

• In software, or XMD, try read from the logical addresses you have set for these
registers.

• When the software writes to the "I" ports, that data should appear on the output
port wires you have access to. Eventually, connect those wires to another core.

OPB Interrupt controller v1.00c
This component is provided with EDK 6.3.

Embedded Multipliers Virtex II – MULT18X18
8 hard multipliers are instantiated from the EQ core. Each has two 18-bit inputs and a
36-bit output, for signed, twos-complement numbers. They are treated as asynchronous
and take 1 clock cycle for the operation to complete.

Description of Design Tree

• uBlaze source code (GA algorithm): file GA.c
• Equalizer core: folder pcores\equalizer_v1_00_b
• LAregister core: folder pcores\opb_LAregister_v2_00_a
• LAregister software drivers: folder drivers\ opb_LAregister_v2_00_a

Resource Requirements
• Xilinx Multimedia Board
• PC for serial data transmission and equalization verification

