
1. Overview 
 
Goals 
 
The purpose of the project was to implement a character recognition system using Xilinx’s 
Virtex-II Multimedia Board and Xilinx’s development software platforms, ISE and EDK.  The 
project is an offshoot of our ECE496 Design Project where we had to develop a robotic rover 
capable of gathering and processing visual and audio clues in predefined formats. The character 
recognition system would augment the robot’s existing image processing and autonomous 
capabilities by enabling it to recognize and interpret characters within the images of clues it 
captures with its webcam. 
 
Description of IPs 
 
Shown below in Fig. 1 is the system block diagram for our project. Our character recognition 
system begins with a computer (presumably our robot) inputting an image of a visual clue that it 
has taken, over a parallel cable connection, onto the Xilinx multimedia board’s ZBT memory. 
ZBT memory uses an external memory core (EMC) , which acts as a controller to enable the 
image data to be downloaded onto ZBT memory. 
 
The image data is then sent over a fast simplex link (FSL) bus to the Microblaze processor, 
which then relays it to the RGB/greyscale converter to change the image from a colour image to 
a greyscale image.  Since the visual clues are in the form of black text against a white 
background, converting an image of a clue to greyscale serves reduce the amount of detail and, 
therefore, noise in the image to be processed. The RGB/greyscale converter was implemented in 
hardware using the FPGA and VHDL.  
 
The greyscale image is sent back to the Microblaze over another FSL to perform the rest of the 
character recognition process. The image processing block used by the Microblaze is a software 
component written in C that compares the reference characters stored on ZBT memory with the 
image of the clue using various image processing algorithms to determine the reference 
character(s) that best matches the character(s) within the clue.  
 
The once a reference character has been chosen by the image processing block as the one that 
best matches image of the visual clue taken, the plain text value associated with that reference 
character is displayed using the UART. 
 
This was our original design and is the final design that we have implemented. We had hoped to 
convert more of the software implementation to hardware but due to the complex manipulation of 
floating-point values that our software is required to do and time constraints, we had to settle for 
a system that was implemented mostly in software.  



 
Fig. 1: System block diagram of character recognition system. 
 
2. Outcome 
 
The each individual block works on its own. However, we haven’t had the time to put everything 
together because the conversion of the image processing block from MATLAB to C was 
completed only recently and was too big to fit onto the BRAMs of the multimedia board. 
 
The character recognition software was first implemented in MATLAB, then the code was 
transferred to C on ugsparc machines (with gcc), and finally it was transferred to the Xilinx board 
using XPS. Currently it is running successfully on all three platforms. The program is fairly 
robust as it was able to make reasonable judgments regarding the degree of similarity between 
two images even in the presence of noise artificially added to images.     
 
If more time was available to us, we would put all the IPs together and test the overall result. 
As described in the overview the image is supposed to be converted to greyscale and then passed 
on to the character recognition block. Right now, both character recognition and greyscale 
converter work on their own but do not communicate with each other.  
 
 



3. Description of the Blocks 
 
ZBT Memory: One 2MB memory bank was used for this project. The memory occupies 
addresses 0x80600000 to 0x807fffff. The design provided by Tutorial M08 worked, so no 
changes were necessary. For this project, the memory has been set up to operate at 50MHz in 
order to match the clock speed of the FSLs used in the RGB/greyscale converter. The system was 
tested using C application to write and read data to and from the ZBT memory.   
 
clk_align_v1_00_a: The clk_align core was used ensure that the clock to the ZBT memory is 
properly aligned to the internal clk. The design provided by Tutorial M08 worked, so no changes 
were necessary. 
 
fsl_v20_v1_00_b: Three instances of fast simplex link (FSL) were used in this project. The FSL 
instance, download_link, was used to download images quickly from the hard drive onto ZBT 
memory. The other 2 instances, mb_to_hw and hw_to_mb , were used relay image information 
from ZBT memory to the RGB/greyscale converter hardware (using the Microblaze as an 
intermediary) and to send the output of the RGB/greyscale converter to the Microblaze for further 
processing, respectively. The standard interfaces that came with fsl_v20_v1_00_b worked, so no 
changes were necessary. download_link was tested by downloading images to memory and then 
timing the difference between ZBT with FSL and ZAB without FSL. It turned out that ZBT with 
FSL was about 6 times faster than without. 
 
RGB/Greyscale Converter (idct.vhd):  This converter is used convert a colour image into a 
greyscale image to reduce the amount of information in the image that the Image Processing 
software block is required to process. The design was adapted from Xilinx’s Application Notes 
XAPP529 and XAPP637. Both are available on the Xilinx’s website, under Application Notes. 
The FSL wrapper code for XAPP529’s was used to integrate the RGB/greyscale converter into 
the project using FSLs (specifically using FSL instances  mb_to_hw and hw_to_mb). The convert 
takes in 24-bit pixel data and masks the red and blue components of the pixel, leaving only the 
green component. The resulting image is a greyscale. A test bench for this block was created 
using ISE’s Test Bench Waveform tool. The output of the simulation is shown below. 

Fig. 2: Simulation of RGB/greyscale converter. 
 
 
 



Character Recognition Software: 
 
As discussed earlier, the character recognition software was intended to be used on an 
autonomous rover which gathers visual clues (consists of black text printed on white 
background). The ability to recognize characters in a clue is critical for giving maximum 
autonomy to the rover.  
 
The algorithm for character recognition was not developed by us. In fact, some research was done 
on the web to find out a good way of solving this problem. Many different algorithm exist but the 
one we used is described in the paper “Text Character Recognition: Identification of Hebrew 
Letters”  by Lavi Zmstein of University of Florida. 
(http://www.mil.ufl.edu/publications/fcrar03/%7BHebrew%7D%20Letter%20Recognition.pdf) 
 
In this histogram method of character recognition we first find the location of all black pixels in 
the image. Once that is done, the centroid of each character is calculated. Then the distance 
vectors are calculated for each pixel from the centroid. These distances are then normalized by 
the maximum distance from the centroid to get some values between 0 and 1. Then 21 bins are 
created between 0 and 1 with 0.05 increments. All normalized distance values are then put into 
these bins according to their magnitude. These bins are normalized again by the total number of 
bins. Finally this procedure is repeated for the input image which has to be classified. Once these 
profiles are created for the training images and the input image, each training profile is compared 
to input image profile to produce a number which represent the likelihood that two images are 
same. If the number is closer to zero, it represent a higher likelihood. 
 
Now each block of this algorithm will be described for both Matlab and C code respectively. 
 
classify_mod.m: A Matlab function which reads in images of numbers 1-10 from a local 
directory and calls blah and blah1 functions to create profiles of training images. Once that is 
done it calls blah and blah1 again to create a profile for input image which has to be classified. 
Finally it calls kl function to compare the profiles and prints out the result of comparison on 
screen. 
 
blah.m: This function finds out the locations of all black pixels and then finds the centroid of the 
character. Then it calculates the distance vector of each pixel to centroid and normalizes all 
distances with max distance. After normalization it call hist fuction which bins all the values into 
21 bins from 0 to 1 with 0.05 increment. Finally it normalizes all bin values again and returns it 
to classify_mod. 
 
blah1.m: This has a similar functionality as blah except that it after its finds the location of black 
pixels, it bins the rows and columns separately into 5 bin each without calculating a distance 
vector. It returns the normalized bin values to classify_mod. 
 
kl_mod.m: This role of this function is simply to compare the bin profiles which were generated 
earlier using blah and blah1. It returns a number which represent the likelihood that the characters 
are similar. 
 

http://www.mil.ufl.edu/publications/fcrar03/%7BHebrew%7D Letter Recognition.pdf


nosie_test.m: This function can be used to add Gaussian noise to images and then compare them 
to see noise immunity of this algorithm 
 
runtest_mod.m: This function can be used to compare all characters with each other. It produces 
a color map in which the similarity of two characters is represented by shades of gray. 
Completely white means 100% match and black means that the characters are completely 
different. 
 
 
Now the description of C functions: 
 
small_main.c: This file just has the same functionality as classif_mod. It can read in pixels 
values from the ZBT or alternatively you can just define a pattern yourself in a two dimensional 
array. So basically it compares two patterns (in the file I call them sample and input image). It 
calls smaller() function to create the profiles and compare the result. Finally it prints out the result 
on screen. 
 
smaller.c: This fuction implements the functionality of blah and blah1. First it finds out the 
locations of all black pixels and then finds the centroid of the character. Then it calculates the 
combined magnitude of x & y pixel locations and normalizes them. After normalization it call  
bins all the values into 21 bins from 0 to 1 with 0.05 increment. Finally it normalizes all bin 
values again. After that it implements the functionality of blah by creating 5 bins each (calls 
hist1.c) for row and column locations and normalize these bins with total number of elements in 
bins. Finally it calls kl1 and kl2 to compare the two profiles created 
 
hist1.c: creates 5 bins and allocates the values into appropriate bins. 
 
sqrt.c: Finds the square root of an integer using newton’s method of approximation using several 
iteration this was created to avoid using math.h library which is quite large and overflows bram. 
 
kl.c: same function as kl_mod. It basically just compares the bin profiles created by smaller(). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Description of the Design Tree 
 

 
 
Main Directory: Project 

File Directory Purpose Origin 
Idct.vhd Xil_idct_v1_00_a RGB/greyscale 

converter VHDL file 
XAPP529, modified 
by Eric Wang 

Idct_core.vhd 
Xil_Idct_v1_00_a.vhd 

Xil_idct_v1_00_a Wrappers for 
RGB/greyscale 
converter 

XAPP529, modified 
by Eric Wang 

Clk_align.vhd Clk_align_v1_00_a Ensure clock alignment 
between ZBT memory 
and internal clk 

Tutorial M08 

Testidct.npl Testidct ISE Project file for 
simulating 
RGB/Greyscale 
converter 

ISE 

Converter_tb.tbw Testidct Test bench used to 
simulate 
RGB/Greyscale 
converter. 

ISE 



Converter.c TestApp C file used to write and 
read from converter 

XAPP529, modified 
by Eric Wang 

TestApp.c TestApp Used to test ZBT 
memory 

Base System Builder 

Test_Mem.c TestApp Used to read from and 
write to ZBT memory 

Tutorial M08 

 

 
 
The decription of C files in  src directory is 
 



small_main.c:  The main function which calls smaller() to generate a profile for image and 
compare 
smaller.c:  
hist1.c: creates 5 bins and allocates the values into appropriate bins. 
sqrt.c: Finds the square root of an integer using newton’s method of approximation. 
kl.c:  It basically just compares the bin profiles created by smaller(). 
 
 


