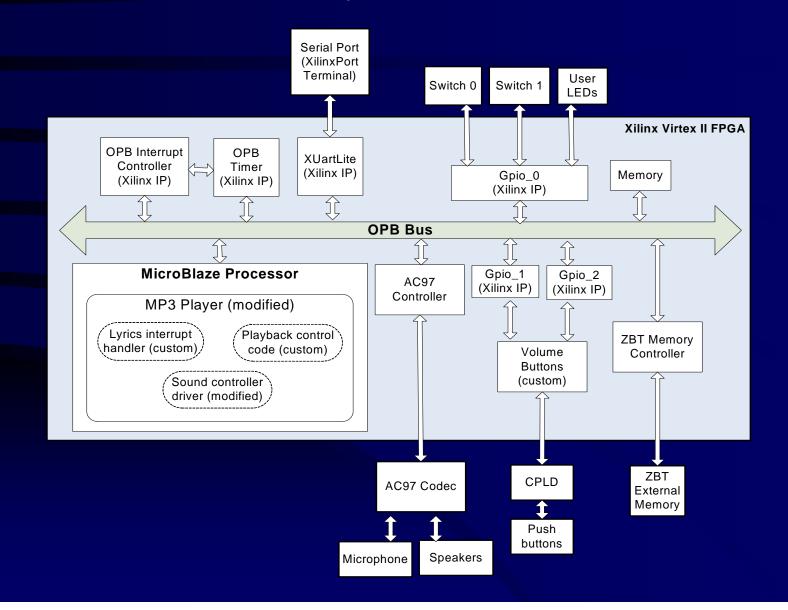
ECE532: Digital Hardware

Karaoke Machine

Jen Pollock Frances Lau


Initial Project Objective

- To create a karaoke machine that will:
 - Play a pre-recorded sound file mixed with microphone input
 - Display lyrics that are synchronized with the music
 - Have buttons that control the playback of the song and the volume of the song and the singer
 - Read pre-recorded audio and lyrics files from compact flash

Final Project Results

- Created a karaoke machine that:
 - Plays a pre-recorded sound file mixed with microphone input
 - Displays lyrics that are synchronized with the music
 - Has switches that control the playback of the song (pause and restart)
 - Has buttons that control the volume
 - Reads pre-recorded audio and lyrics files from memory (downloaded using XMD)

System

System Components

• Existing components:

- Basic structure: Microblaze processor, OPB bus
- AC97 codec and controller
- Gpio
- Interrupt controller
- Timer
- UARTlite

System Components

- Modified components:
 - MP3 player
 - Added code to display lyrics
 - Added code to read status of push buttons and control volume
 - Added code to pause and restart the song
 - Sound controller driver
 - Changed initialization function
 - Unmute microphone
 - Reduce PCM volume (song)
- Custom components:
 - Volume buttons hardware block

Challenges

- CPLD was unable to support desired push button function
 - Used push button Normal mode to set volume
 - Used switches instead of push buttons to control playback
- User Input Switch 0 used for reset, and we needed two switches
 - Connected the CPLD reset signal to the system reset

Challenges

 Poor documentation and lack of availability of formatting tools for compact flash
– Compact flash goal was dropped

Challenges

- The MP3 Player was not available initially
 - For Milestone 1, we created our own system, building on top of the AC97 Controller project from last year.
 - This system does the following:
 - Records sound:
 - Records sound from the microphone and saves this into memory (custom C program)
 - Saves the data from the memory into a data file (TCL script)
 - Plays recorded sound:
 - Downloads the data file into memory (XMD)
 - Plays the sound (custom C program)
 - Later, the MP3 Player was available, so we decided to use that instead

Design Process

- Built the system incrementally, starting with working components
- Tested each feature separately before integration
- Set well defined boundaries between modules
- Worked within the structure of the available mp3 player

What we learned

- How to resolve problems due to interactions between different IP blocks
 - Clock frequencies
- The importance of simulations
 - Found errors in our Volume Buttons custom hardware module
- The importance of optimizing code for slower processors