

ECE532H1S: Digital Hardware
Project Group Report

SUPER MARIO BROS.FPGA

Daniel Ng
990829181

Seung Woo Hur

990828994

Date: March 27, 2005

Overview

Goals:

The goal of this project is to recreate the Super Mario Bros. video game on the Xilinx
Virtex-II Multimedia Board. The functionality of the project is split into three sections:

• Video output
• User input
• Audio output

The main focus of the project is on the development of the video output section. This
involves the creation of a video core to display a graphical output from the SVGA
interface on the multimedia board to a monitor. After the video core is developed, a core
that accepts keyboard input from the UART is created. Finally, an audio core that plays
MP3 files is used to generate audio output through speakers connected to the multimedia
board.

Figure 1: Block diagram of initialized planned project

Figure 2: Block diagram of the final product

Outcome

The results of the development of each section are:

Video Output:

Result
Video output was successfully completed. We were able to display a moving Mario and
a moving enemy (goomba) moving on brown ground with a sky blue background. These
objects were implemented as hardware state machines in Verilog.

Suggested Improvement
A significant improvement to this core would be to implement only the display controller
in Verilog, while providing the inputs to the controller in software. This would simplify
the programming process and drastically decrease the size of the synthesized graphics
core.

User Input:

Result
User input was implemented but with the push buttons on the multimedia board instead
of the keyboard. Pressing a button resulted in Mario flying in an up-right direction.

Suggested Improvement
Implement the keyboard as the user input instead of the push buttons.

Audio Output:

Result
Audio output was not successfully completed.

Suggested Improvement
Implement the MP3 tutorial module to play in-game music while the game was running.

Brief Descriptions of IP Blocks Used in Final Product

Our final product does not contain any software IPs, and thus it does not utilize the
MicroBlaze processor. The project consists of the Bit Mapped Mode SVGA IP provided
by Xilinx and our custom Mario IP written in Verilog.

Bit Mapped Mode SVGA IP:

The Verilog code for this IP was provided Xilinx’s Multimedia Board Examples web
page. The IP consists of two different cores: an SVGA timing generator and a ZBT
memory controller.

SVGA Timing Generator Core

SVGA timing generator creates the timing signals for the SVGA output, controls the
memory address provided to the DAC, and generates a user_access_ok signal that
dictates when data can be written into the ZBT memory.

ZBT Memory Controller Core

ZBT memory controller accepts the control, address and data signal inputs and carries out
write/read operations on the external ZBT memory. When user_access_ok is high, it

writes to the ZBT RAM, and when it is low, it reads from the ZBT and sends the read
data to the DAC.

Mario IP:

The Mario IP core generates the graphics information that is sent to the ZBT memory and
accepts user input from the push buttons of the multimedia board. The graphics are
created by state machines that generate the data, address, and control signals for the bus
interface to produce the proper graphics. The state machines are controlled by the
user_access_ok signal and the pixel clock, which is the main system clock (27MHz). The
code to provide push button input was modified from lab m06 and is used to control the
state machine that controls how Mario is displayed on the screen.

Detailed Descriptions of the Blocks

Bit Mapped Mode SVGA IP:

The Bit Mapped Mode SVGA IP provided by Xilinx consists of 9 files that are structured
in the following hierarchy:

BM_MODE_SVGA_CTRL.v
 SVGA_TIMING_GENERATION.v
 DRIVE_DAC_DATA.v
 MEMORY_CTRL.v
 ZBT_CONTROL.v
 PIPELINES.v
 DATA_BUS_INTERFACE.v
 ADDR_BUS_INTERFACE.v
 CTRL_BUS_INTERFACE.v

BM_MODE_SVGA_CTRL.v

This file is the top level module for the bit mapped mode SVGA display. It contains
SVGA output ports, ZBT memory input/output ports, user input ports, a reset input port,
and a pixel clock input port. The SVGA output, ZBT memory, reset, and pixel clock
ports are connected to pins on the multimedia board. The user input ports define the
information written into the ZBT memory when the user_access_ok signal received from
the SVGA_TIMING_GENERATION module is HIGH. This module instantiates the
SVGA_TIMING_GENERATION, DRIVE_DAC_DATA, and MEMORY_CTRL
modules.

SVGA_TIMING_GENERATION.v

This module creates the horizontal synch, vertical synch, composite synch, and composite
blank timing signals for the SVGA output, controls the memory address input to the
DAC, and generates a user_access_ok signal that dictates when data can be written into
the ZBT memory.

The module increments through each individual pixel from the top-left corner to the
bottom-right corner on each rising edge of the pixel clock. For each pixel that is to be
displayed on the screen, the user_access_ok output is asserted LOW and a memory
address for that specific pixel of the screen is outputted to the DAC. The DAC reads the
memory location and outputs the specific color for that monitor pixel. When the module
increments past the last pixel on a line or the screen, the screen is temporarily blanked
according to SVGA specifications. During this blanking, user_access_ok is asserted
HIGH and data can be written into the ZBT memory.

DRIVE_DAC_DATA.v

This module generates the color output for a certain pixel and its inputs are controlled by
the SVGA_TIMING_GENERATION and BM_MODE_SVGA_CTRL modules. The
DAC input data is controlled by the SVGA_TIMING_GENERATION module, and the
BM_MODE_SVGA_CTRL module generates the control input signals.

MEMORY_CTRL.v

This module and its submodules perform the read and write operations to the ZBT
memory. Its inputs are controlled by the SVGA_TIMING_GENERATION module, the
BM_MODE_SVGA_CTRL module, and the user inputs. When the user_access_ok
signal is asserted LOW, the SVGA_TIMING_GENERATION module controls the
memory. If user_access_ok is asserted HIGH, the BM_MODE_SVGA_CTRL module
and the user inputs control the memory. This module instantiates the ZBT_CONTROL
module, which instantiates the PIPELINES, DATA_BUS_INTERFACE,
ADDR_BUS_INTERFACE, and CTRL_BUS_INTERFACE modules.

Mario IP: Mario.v (custom core)

The Mario core module instantiates and provides the inputs for the
BM_MODE_SVGA_CTRL module to generate the required graphics. When the
user_access_ok signal is asserted LOW, the BM_MODE_SVGA_CTRL module accepts
the control, address, and data input signals for the memory from the Mario module.
While user_access_ok is LOW, the address is incremented. Several state machines
determine what data is written for a certain address location. To display Mario and the
enemy, the state machine accepted a starting address input for both objects. The state
machine draws these objects relative to the starting address provided. This starting
address input is used to allow for object movement. The rest of the address locations that

do not display either Mario or the enemy are set to display either the blue sky or the
brown floor.

This module also counts each displayed frame during a period of one second. The count
resets to zero after each second. For this project, the monitor runs at 60 Hz, so 60 frames
are counted each second. This frame count is used to implement movement on the
screen. For example, to make Mario’s legs move, our state machine is set to draw his
legs at a certain position for the first 30 frames of the second. For the second 30 frames,
the legs are redrawn at a different position to simulate leg movement. This idea is also
used to make Mario and the enemy move across the screen. For every 10 frames of the
second, the starting address for Mario and the enemy are incremented a certain amount.

Design Tree Description:

The zip file sent contains a folder that should be put into the pcores directory of an XPS
project, the UCF file, and this group report.

The folder contains the folders and files necessary to add an instance of the Super Mario
core to an XPS project. The files include the Verilog files for our core, the netlist file
generated from synthesis in ISE, mpd file, pao file, and bbd file.

Any XPS project that does not use the ZBT memory bank0 and the SVGA DAC will run
Super Mario properly when its bit stream is generated and downloaded.

	ECE532H1S: Digital Hardware
	SUPER MARIO BROS.FPGA
	Daniel Ng
	990829181
	Overview
	Goals:
	Figure 1: Block diagram of initialized planned project
	Figure 2: Block diagram of the final product

	Outcome
	Video Output:
	Result
	Suggested Improvement
	User Input:
	Result
	Suggested Improvement

	Audio Output:
	Result
	Suggested Improvement
	Brief Descriptions of IP Blocks Used in Final Product

	Bit Mapped Mode SVGA IP:
	SVGA Timing Generator Core
	ZBT Memory Controller Core

	Mario IP:
	Detailed Descriptions of the Blocks
	Bit Mapped Mode SVGA IP:
	BM_MODE_SVGA_CTRL.v
	SVGA_TIMING_GENERATION.v
	DRIVE_DAC_DATA.v
	MEMORY_CTRL.v
	Mario IP: Mario.v (custom core)

