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1 Overview of the Project 
 
1.1 Objective 
 
The initial objective of this project is to implement an Audio-to-MIDI (ATM) 
converter on the Xilinx Vertex-II Multimedia Board. The board would sample 
audio (music) signals as an input, and outputs MIDI sequences corresponding to 
the music in real time. 
 
1.2 Background 
 
Musical Instrument Digital Interface (MIDI) is a standard in transmitting musical 
audio information in digital format. The standard is supported by most musical 
synthesizers, where the musical notes are synthesized and/or manipulated. 
 
An ATM Converter adds MIDI compatibility to non-MIDI instruments. It converts 
audio signals produced by conventional instruments into the MIDI standard, thus 
allowing digital manipulation of the musical notes. The audio information can be 
outputted to a MIDI synthesizer. Additionally, the ATM Converter can record 
music into compact MIDI data files. 
 
A good introduction to the MIDI standard can be found at [1] and [2]. 
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1.3 Organization 
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Figure 1 System Block Diagram 

AC97 Controller 
Responsible for capturing audio sample. 

 
External Memory Controller 

Required to access the ZBT memory 
 
UART Controller 

Allows system to output MIDI sequences through the RS232 Port. 
 
FFT Core 

Performs FFT operations for 1024 points. 
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FFT Wrapper 
Allows the FFT core to interface with the FSL bus. 

 
MicroBlaze Processor 

Processes FFT data to determine whether or not a note has played or 
stopped, and sends MIDI sequences to the RS232 port corresponding to 
these events. 

 
Fast Simplex Link (FSL) 

Allows communication between the MicroBlaze Processor (software) and the 
various hardware blocks. 



 6

2 Outcome 
 
Because of the various difficulties we encountered with the FFT, our system is 
unable to convert analog audio signals to MIDI sequences. However, the system 
is capable of capturing audio samples at 8000 Hz and determining which music 
note has been played from the hard-coded FFT data. Upon detecting a note has 
been played, series of bytes will be outputted from the system through the 
RS232 port representing the start of a note, the MIDI channel, index of the note, 
and the velocity (loudness).  
 
We tested the rest of the system with a function that generate stub FFT outputs, 
and everything appears to be functioning correctly. 
 
Since the MIDI interface is not directly compatible to the RS232 interface, a serial 
to MIDI converter must be attached between the RS232 port at the multimedia 
board and the MIDI synthesizer. A comparatively inexpensive solution can be 
ordered from http://www.ittymidi.com/converter_box_info.asp 
 
 
Future Improvements 
 
To reproducing the music more accurately, it is possible to monitor the time 
domain audio information to detect any significant change. We can then perform 
an FFT operation using the audio data follows immediately after the change. This 
not only minimizes the variance in the delay between a note is played and the 
MIDI sequence is sent, it also can give a better representation of the velocity 
(loudness) of the note. 
 
Another possible improvement is, of course, to get the FFT wrapper working. 
Also, using a radix-4 or pipelined version of FFT may slightly improve the 
performance. 
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3 Description of IP Blocks 
 
3.1 AC'97 Sound Controller 
 
The AC97 Sound Controller IP block was provided by previous year’s project. 
The core is responsible for controlling serial data flow between the external AC97 
CODEC chip and the FPGA.  The controller provides the user with capturing 
sound and playback audio signal through the FSL bus.[4]  This IP block was 
used to capture audio signal and stored in the ZBT memory to perform FFT. 
Approximately 6 ms before disabling sound recording, the captured sound will 
contain gibberish data. The sound samples within this timeframe would be 
discarded. 
 
Please refer to ‘AC97 Controller’ document from pervious year for more detail.  
 
 
3.2 External Memory Controller (Xilinx) 
 
The external memory core interfaces the FPGA to the external memory. The data is 
received from the AC97 Controller is written and stored in the external memory. These 
data will later be processed with a FFT module.  Also, the software core is stored in the 
external memory.  Please refer to ZBT memory data sheet provided by Xilinx. 
 
 
3.3 UART (Xilinx) 
 
This is the Uart peripheral for input/output used by the Xilinx Xilkernel. It is used 
to output the MIDI sequences to the RS232 port. 
 
 
3.4 Fast Simplex Link (Xilinx) 
 
The Fast Simplex Link (FSL) is a uni-directional point-to-point communication 
channel bus used to perform fast communication between any two design 
elements on the FPGA when implementing an interface with the FSL bus.  
 
The Fast Simplex Link (FSL) Bus (v2.00a) was implemented in this project.  To 
implement real-time audio processing capability, the FSL bus was used to 
directly read from the AC97 core as well feed the audio signal from Microblaze to 
FFT core and retrieve result from FFT core. 
 
Please refer to Fast Simplex Link (FSL) Bus (v2.00a) data sheet provided by 
Xilinx for detailed information regarding this IP block.  
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3.5 FFT Wrapper 

3.5.1 Description 
 

The Fast Fourier Transform (FFT) wrapper responsible for communicating 
controls signals to the FFT core through the FSL buses.  The wrapper handles 
data inputs from FSL FIFO and signal synchronization issue between the FFT 
core and FSL buses. 
 
The FFT core used is xfft v3.1 provided by Xilinx. This FFT core was generated 
using the LogicCore tool provided by Xilinx.    
 
Features: 

 FFT Architecture option:  Radix-2 
 Uses minimum resources.  
 Forward complex FFT only 
 Transform size N = 1024 
 Input data type: uint16 
 Output data type: uint 32  
 Magnitude of the frequency signal is returned as output  
 Input and Output represented in natural order 
 For use with Xilinx Platform Studio  

 

3.5.2 Theory of Operation 
 
The FFT wrapper reads in N number of input and passes the value to FFT core. 
When all input data are read, the FFT core computes a 1024-point forward DFT.  
Please refer to Fast Fourier Transform data sheet provided by Xilinx for more 
details on how FFT  is implemented.  
 
Input data is represented in natural order, and the output data is also represented 
in natural order.   
 
The input data is accepted as real component only.  The imaginary component of 
the input is set to “0000000000000000” by default.   
 
The FFT wrapper returns magnitude of the result signal as an output. This 
magnitude is calculated by following equation. 
 
Frequency Magnitude ^2 = Real Comp*Real Comp + Imaginary Comp *Imaginary Comp 

 

3.5.3 Limitation 
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The FFT wrapper does not support external input signals to control forward or 
inverse FFT option nor option to change the size of number of point FFT to be 
performed.  Hence, these parameters are fixed for this FFT wrapper 
implementation in the HDL code to meet the requirements of the Audio-to-MIDI 
converter project.  For Audio-to-MIDI converter project, only 1024-point forward 
FFT is allowed. 

 

3.5.4 Design Parameters and Signals 
 
This section describes design parameters, input and output signals 

required by the FFT wrapper. 
 
Design Parameters 
 
C_DWIDTH 
Specifies the width in bits of the master and slave connected to FSL bus.  
 
C_INPUT_FSL_DEPTH 
Specifies the depth of the input FIFO implemented by the FSL bus. The depth 
can be as low as 1 or high as 8192. Since this project is implemented with 1024 
point FFT, the C_INPUT_FSL_DEPTH has been set to 1024 by default.  
 
C_OUTPUT_FSL_DEPTH 
Specifies the depth of the output FIFO implemented by the FSL bus. The depth 
can be as low as 1 or high as 8192. Since this project implements 1024 point 
FFT, the FFT core generates 1024 points of FFT output data. Therefore, the 
C_OUTPUT_FSL_DEPTH has been set to 1024 by default.   
 
Port Name Port Width  Direction Description 
CLK 1 Input Synchronous Clock  
RESET 1 Input FFT wrapper reset (Active High) 
FSL_S_CONTROL 1 Input Slave FSL control signal 
FSL_S_DATA 16 Input Input data bus: Real component only. 

b=16 bits  
FSL_S_EXISTS 1 Input Slave FSL data exists signal 
FSL_M_FULL 1 Input Master FSL full signal 
FSL_S_CLK 1 Output Slave asynchronous FSL clock 
FSL_S_READ 1 Output Slave FSL read signal 
FSL_M_CLK 1 Output Master asynchronous FSL clock 
FSL_M_CONTROL 1 Output Master FSL control signal 
FSL_M_DATA 32 Output Output data bus: Magnitude of output 

FFT data. 
FSL_M_WRITE 1 Output Master FSL write signal 
 
CLK 
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Synchronous clock is used for FFT wrapper.  
 
RESET 
This input signal resets all parameter required for FFT wrapper and FFT core. 
 
FSL_S_CONTROL 
Input signal from FSL core.  A single bit control signal that is propagated along 
with the data at every clock edge.  
 
FSL_S_DATA 
The input data register to store raw data from FSL bus.   
 
FSL_S_EXISTS 
Input signal from FSL core indicating that FIFO contains valid data.  Whenever 
this signal has gone high data is read from FIFO. 
 
FSL_M_FULL 
An input signal from FSL core which indicate that FIFO used by FSL is full.  
Hence data can not be written into FSL until this signal has gone low.  
 
FSL_S_CLK  
This project uses synchronous clock mode, hence FSL_M_CLK has been set to 
CLK.  
 
FSL_S_READ 
Output signal to FSL core that controls the read acknowledge signal of the FIFO. 
When set to ‘1’, the value of FSL_S_DATA and FSL_S_CONTROL are popped 
from the FIFO on a rising clock edge.   
 
FSL_M_CLK 
This project uses synchronous clock mode, hence FSL_M_CLK has been set to 
CLK.  
 
FSL_M_CONTROL 
Output signal to FSL core.  A single bit control signal that is propagated along 
with the data at every clock edge.  
 
FSL_M_DATA 
The output data register to store magnitude of the FFT to FSL FIFO. 
 
FSL_M_WRITE 
An output signal that controls write enable signal of the FIFO.  When set to ‘1’, 
the value of FSL_M_DATA and FSL_M_CONTROL are pushed into the FIFO on 
the rising clock edge. 
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3.5.5 Finite State Machine Description 

 
 
Description of each state: 
 
Reset State: 

In this state, the following internal and external signals are initialized.   
 Internal signal, count, is initialized to “0000”  
 Output signal to FFT core, ce (clock enable) is set to ‘1’. 
 Master reset (sclr) for FFT core is set to ‘1’. 
 Output signal to FFT core, unload signal is set to ‘0’. 
 Data register for imaginary data is set to “00000000000000” by default. 

 
Then, the state is set to ‘Initialization’ state 
 

Initialization State: 
In this state, the following parameters are initialized for the FFT core.  

Reset 

Initialization 

Idle 

Read_Input 

End_of_Read 

Calculate_FFT 

End_Of_Write 

Write_Output 

Reset = ‘1’

Reset =’0’ 

Otherwise Count = ‘100’

Otherwise 

FSL_S_EXISTS = ‘1’

FSL_S_EXISTS = ‘0’
FSL_S_EXISTS = ‘1’ 

nr_of_read = 0 
dv = ‘0’ 

dv = ‘1’ 

Otherwise 

nr_of_write = ‘ 0’ 
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 Load point size of the FFT transform.  For this project, 1024 points 
have been implemented. 

 Set FWD_INV signal to ‘1’ to indicate forward FFT invocation. 
 Start signal is set to ‘1’ to begin reading input data to FFT.  

 
After the Start signal is set to high, we must wait for 3 clock cycle before 

writing input data to FFT core.  A counter has been implemented such that the 
state holds for 3 clock cycles before it is changed to ‘Idle’ state.  
 
Idle State: 

In this state,  
 If FSL_S_EXISTS is ‘1’, then state is changed to ‘Read_Input’ state.  
 While FSL_S_EXISTS is ‘0’, ce (clock enable) signal for FFT core is 

set to ‘0’ so that no invalid data are written as an input. 
 
Read_Input:  

In this state, 
 If FSL_S_EXISTS is ‘1’, then read the data from FSL bus and write as 

input FFT with imaginary component set to “0000000000000000”. 
 If FSL_S_EXISTS is ‘0’, then ce (clock enable) signal for FFT is 

disable so that no invalid data are written as an input.  
 If all of 1024 points are read, then the state is change to 

‘End_Of_Read’ state. 
  

End_Of_Read: 
 This state reads the last input data and changes the state to ‘Calculate_fft’  
 
Calculate FFT:   

In this state, the FFT is performed by the FFT core.  When the signal 
‘done’ is raised to ‘1’,then an input signal ‘unload’ is set to ‘1’ to unload FFT result 
in normal order.  When the output signal, valid data (dv), is raised to ‘1’ which 
indicates that output is ready to be read, then the state will change to 
‘Write_Output’ state.   
 
Write Output:  

In this state, FSL_M_WRITE is set to ‘1’ and output data from FFT core is 
read from FFT core and written to FSL FIFO.  The state will not change until all of 
1024 FFT output point has been written to FSL FIFO.  When all values are 
written, the state is changed to ‘End_of_Write’ state. 
 
End_of_Write:  

In this state, the last FFT result is written to FSL FIFO and then the state 
is changed back to ‘Initialization’ state. 
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3.5.6 Simulation 
  
 The FFT wrapper core was thoroughly simulated before it was 
downloaded to the FPGA.  To do this, ModelSim 6.0 was used to simulate the 
FFT core wrapped with the FFT wrapper.  A test bench was setup using 
ModelSim 6.0 environment by writing do scripts which defines the behaviour of 
FFT wrapper instance.  A test bench had been setup under ISE environment, 
however, it was difficult and more time consuming to modify test vectors in ISE 
than ModelSim.  Therefore, ModelSim was chosen as test bench environment.  
 
 
3.6 Software Sound Processor 
 

3.6.1 Description 
 
The Software Sound Processor allows MicroBlaze processor to retrieve audio 
samples from the AC97 controller, pass these samples to the FFT core, retrieve 
FFT data, and analyzing the FFT data to determine if a MIDI sequence should be 
sent. Currently, the software only detects the presence of the loudest note that 
has been played. 
 
The software first configures the AC97 controller to capture sound samples at 
8000Hz. It reads the sound samples from the AC97 controller via the Fast 
Simplex Link (FSL) and send the sound samples to the Fast Fourier Transform 
(FFT) core in 128 ms chunks via FSL1. Then, the software retrieves the FFT data 
from the FFT core via FSL2 and determine from this data if a note has been 
played or stopped playing. Finally, it determines the MIDI sequence to be sent 
and outputs the MIDI sequence to the RS232 port. The process is illustrated in 
the following figure: 
 

                                                 
1 This function is currently commented out in the software, as the FFT wrapper is not yet functional. 
2 This function is currently replaced with another function that generates hard-coded FFT data. 
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Figure 2 – Software Flow 

 
 

3.6.2 Theory of Operation 
 
Music notes can be represented by the type of note and the octave in which the 
note resides in. The first octave includes notes in the 32.7Hz to 61.74Hz, and the 
Nth octave includes notes from (23.7 × 2N-1) to (61.74 7 × 2N-1) Hertz. Thus, the 
octave N for each note with frequency F can be determined using the following 
inequality: 

F / 2N-1 < 63 Hz 
 

The term frequency / 2N-1 represent the note’s base frequency, which we can use 
to distinguish the type of music note within an octave. There are twelve notes 
within an octave, where each consecutive note has frequency of 12 2 =1.0595 
times greater than the previous note. 
 
The software samples sound at 8000Hz, and pass the stored samples to the Fast 
Fourier Transform (FFT) core in128 ms chunks via the Fast Simplex Link (FSL). 
The FFT core would return the frequency domain representation of the captured 
sound data. 
 

3.6.3 Limitations 
 
At the sampling rate of 8000Hz and FFT vector length of 1024 values, we can 
only detect music notes in the third octave or higher. When the frequency of the 

Initialize AC97 Controller 

Reads Sound Samples 

Send Samples to FFT 

Retrieve Data from FFT 

Output MIDI Sequence 

Any Event?

Yes 

No 
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note falls below the third octave, two or more notes may appear in the same 
frequency range in the FFT output, thus making it difficult or impossible to 
distinguish which note is playing. The current implementation ignores any note 
that falls below the third octave. 
 
There is approximately a 100ms delay between the start of the note to the 
corresponding MIDI sequences being outputted from the RS232 port. Majority of 
the delay comes from the time it takes to gather sound samples for the FFT. 
 
 

3.6.4 Testing 
 
Since the FFT core is not yet functional, a function that generates hard-coded 
FFT results was written for testing purposes. The following test cases were 
considered: 

 First note starts playing 
 A louder note starts playing while the first tone is still playing. 
 Without releasing the note, the same note is played again. 
 All frequencies are below the threshold value. 
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4 Design Tree 
The structure of the project is as describe below: 
 
AudioToMidi\ - Contains the audio to midi system. 

 
system.mhs: A higher level description of the hardware modules in the system 
system.mss: A higher level description of the software modules in the system 

 
AudioToMidi\code\ - The source code for the software component of the audio-to-MIDI  

          converter system. 
system.c – software sound processor.  

            system_demo.c – software sound processor for demo.  
                                   
AudioToMidi\data\: Contains the user constraint file (.ucf) which assigns external pins to 
ports, sets clock speed etc.. 
 
AudioToMidi\pcores\:  Contains user designed peripherals 
 

AudioFFT1024_v1_00_a (Custom IP v1.00) is used to perform 1024 point FFT on 
audio signal.  
Directory Structure Description 
…\audiofft1024_v1_00_a\ Contains 1024 point FFT core 
…\audiofft1024_v1_00_a\data Contains .mpd, .bbd and .pao files 
…\audiofft1024_v1_00_a\hdl\vhdl\ Contains FFT wrapper file and FFT core 

wrapper file.  
…\audiofft1024_v1_00_a\netlist\ Contains generated FFT netlist (.edn) and 

ngc file. 
…\audiofft1024_v1_00_a\simulation Contains ModelSim script used for simulation 
...\audiofft1024_v1_00_a\simulation\
readMe.txt 

This readMe file contains instructions to 
run .do scripts and briefly explains each test 
cases.  

 
     Opb_ac97_controller_v3_10_a (User IP) is used to capture, record and playback       
     audio signals. 

Directory Structure Description 
…\opb_ac97_controller_v3_10_a \ Contains AC97 IP core 
…\opb_ac97_controller_v3_10_a \data Contains .mpd, .bbd and .pao files 
…\ Opb_ac97_controller_v3_10_a \hdl\vhdl\ Contains AC97 controller file.  
…\ Opb_ac97_controller_v3_10_a \netlist\ Contains generated netlist (.edn). 

 
gen_zbt_addr_v1_00_a is used to map the address lines of the ZBT connection to 
the EMC controller.  

  
RS232 is the OPB UART controller core.  The serial connection is used to display 
printf statements mainly for debugging purposes. 
 
lmb_bram is the Block RAM (BRAM) connected by the Local Memory Bus (LMB) 
generated by the Base System Builder.  This BRAM is used to store the xmdstub 
such that the executable can be downloaded to the FPGA. 
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Appendix A: FFT Wrapper Core 
 
A1: audiofft1024.vhd code listing: 
 
----------------------------------------------------------------------------- 
-- audiofft1024 - entity/architecture pair 
------------------------------------------------------------------------------ 
-- 
------------------------------------------------------------------------------ 
-- Filename:          audiofft1024 
-- Version:           1.00.a 
-- Date:              Mon Mar 21 22:21:17 2005 
-- VHDL-Standard:     VHDL'93 
------------------------------------------------------------------------------ 
-- Naming Conventions: 
--  active low signals:                    "*_n" 
--  clock signals:                         "clk", "clk_div#", "clk_#x" 
--  reset signals:                         "rst", "rst_n" 
--  generics:                              "C_*" 
--  user defined types:                    "*_TYPE" 
--  state machine next state:              "*_ns" 
--  state machine current state:           "*_cs" 
--  combinatorial signals:                 "*_com" 
--  pipelined or register delay signals:   "*_d#" 
--  counter signals:                       "*cnt*" 
--  clock enable signals:                  "*_ce" 
--  internal version of output port:       "*_i" 
--  device pins:                           "*_pin" 
--  ports:                                 "- Names begin with Uppercase" 
--  processes:                             "*_PROCESS" 
--  component instantiations:              "<ENTITY_>I_<#|FUNC>" 
------------------------------------------------------------------------------ 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
use ieee.std_logic_arith.all;          
use ieee.std_logic_signed.all; 
--use ieee.std_logic_unsigned.all;       
 
 
------------------------------------------------------------------------------ 
-- 
-- Definition of Parameters 
-- C_WIDTH               : Signal width 
-- 
-- C_INPUT_FSL_DEPTH  : Input FSL bus depth 
-- C_OUTPUT_FSL_DEPTH  : Output FSL bus depth 
-- 
-- Definition of Ports 
-- CLK             : Synchronous clock 
-- RESET           : System reset, should always come from FSL bus 
-- FSL_S_CLK       : Slave asynchronous clock 
-- FSL_S_READ      : Read signal, requiring next available input to be read 
-- FSL_S_DATA      : Input data 
-- FSL_S_CONTROL   : Control Bit, indicating the input data are control word 
-- FSL_S_EXISTS    : Data Exist Bit, indicating data exist in the input FSL bus 
-- FSL_M_CLK       : Master asynchronous clock 
-- FSL_M_WRITE     : Write signal, enabling writing to output FSL bus 
-- FSL_M_DATA      : Output data 
-- FSL_M_CONTROL   : Control Bit, indicating the output data are contol word 
-- FSL_M_FULL      : Full Bit, indicating output FSL bus is full 
-- 
------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
-- Entity Section 
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-------------------------------------------------------------------------------- 
 
entity audiofft1024 is 
  
 generic ( 
  C_INPUT_DWIDTH         : integer := 16; 
  C_OUTPUT_DWIDTH        : integer := 32; 
   
  -- These two parameters determine the default value of 
  -- C_FSL_DEPTH for FSL bus. 
  -- 
  -- Do not change the names of these parameters. 
  -- 
  -- The default depths of the input and output FSL buses 
  -- are set to the total number of input and output 
  -- words respectively. 
  -- 
  -- If you change the default values here, remember to update 
  -- them in audiofft1024_v2_1_0.mpd file. 
   
  C_INPUT_FSL_DEPTH  : natural := 1024; 
  C_OUTPUT_FSL_DEPTH : natural := 1024 
 ); 
  
 port  
 ( 
  -- Bus protocol ports.  
  CLK                          : in std_logic; 
  RESET                          : in std_logic; 
  FSL_S_CLK          : out std_logic; 
  FSL_S_READ          : out std_logic; 
                FSL_S_DATA          : in std_logic_vector(0 to C_INPUT_DWIDTH-1);   
  FSL_S_CONTROL          : in std_logic; 
  FSL_S_EXISTS          : in std_logic; 
  FSL_M_CLK          : out std_logic; 
  FSL_M_WRITE          : out std_logic; 
  FSL_M_DATA          : out std_logic_vector(0 to C_OUTPUT_DWIDTH-1);   
  FSL_M_CONTROL          : out std_logic; 
  FSL_M_FULL          : in std_logic 
 ); 
end audiofft1024; 
 
-------------------------------------------------------------------------------- 
-- Architecture Section 
-------------------------------------------------------------------------------- 
architecture arch_FFT of audiofft1024 is 
 
-- Import external component: 
--  1024 point FFT 
--      * Radix-2 Architecture 
--      * 16 bit signal width 
--      * Clock Enable (ce) option 
--      * Master Reset Option 
--      * No scaling option 
component fft1024radix2 is  
 port ( 
 xn_re                      : IN std_logic_VECTOR(15 downto 0); 
 xn_im                      : IN std_logic_VECTOR(15 downto 0); 
 start                         : IN std_logic; 
 unload                     : IN std_logic; 
 nfft                          : IN std_logic_VECTOR(4 downto 0); 
 nfft_we                    : IN std_logic; 
 fwd_inv                   : IN std_logic; 
 fwd_inv_we             : IN std_logic; 
 sclr                          : IN std_logic; 
 ce                           : IN std_logic; 
 clk                          : IN std_logic; 
 xk_re                      : OUT std_logic_VECTOR(26 downto 0); 
 xk_im                      : OUT std_logic_VECTOR(26 downto 0); 
 xn_index                 : OUT std_logic_VECTOR(9 downto 0); 
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 xk_index                 : OUT std_logic_VECTOR(9 downto 0); 
 rfd                         : OUT std_logic; 
 busy                      : OUT std_logic; 
 dv                          : OUT std_logic; 
 edone                    : OUT std_logic; 
 done                      : OUT std_logic); 
end component fft1024radix2; 
 
 -- signals connected to fft1024radix2 
 signal xn_re              : std_logic_VECTOR(15 downto 0); 
 signal xn_im             : std_logic_VECTOR(15 downto 0); 
 signal start                : std_logic; 
 signal unload            : std_logic; 
 signal nfft                  : std_logic_VECTOR(4 downto 0); 
 signal nfft_we           : std_logic; 
 signal fwd_inv           : std_logic; 
 signal fwd_inv_we    : std_logic; 
 signal sclr                 : std_logic; 
 signal ce                   : std_logic; 
 --signal clk                : std_logic; -- 
 signal xk_re              : std_logic_VECTOR(26 downto 0); 
 signal xk_im              : std_logic_VECTOR(26 downto 0); 
 signal xn_index         : std_logic_VECTOR(9 downto 0); 
 signal xk_index         : std_logic_VECTOR(9 downto 0); 
 signal rfd                   : std_logic; 
 signal busy                : std_logic; 
 signal dv                    : std_logic; 
 signal edone              : std_logic; 
 signal done                : std_logic; 
  
 -- states & bookeeping signals 
 signal count                  : std_logic_vector(4 downto 0); 
 signal input_data          : std_logic_vector(15 downto 0); 
 signal output_data        : std_logic_vector(15 downto 0); 
 signal output_is_valid   : std_logic; 
 signal fsl_is_full            : std_logic; 
 signal dataInBuf            :  std_logic_vector(15 downto 0); 
        signal fftDataBuf_re      : std_logic_vector (15 downto 0); 
        signal fftDataBuf_im     : std_logic_vector (15 downto 0); 
       signal fftMagnitude         : std_logic_vector (31 downto 0);  
    
-- In the Custom Function Wizard you specified the following 
-- Number of input arrays: 1 
-- Size of each input array: 512 
-- This constant contain the total number of input words, 
-- which is the product of the above 
constant NUMBER_OF_INPUT_WORDS  : natural := 16; --1024; 
 
-- In the Custom Function Wizard you specified the following 
-- Number of output arrays: 1 
-- Size of each output array: 512 
-- This constant contain the total number of input words, 
-- which is the product of the above 
constant NUMBER_OF_OUTPUT_WORDS : natural := 16; --1024; 
 
-- Finite States 
type STATE_TYPE is (Initialization, Idle, Read_Inputs, Write_Outputs, Cal_fft, End_Of_Read,End_Of_Write); 
 
signal state        : STATE_TYPE; 
 
-- Counters to store the number inputs read & outputs written 
signal nr_of_reads  : natural range 0 to NUMBER_OF_INPUT_WORDS - 1; 
signal nr_of_writes : natural range 0 to NUMBER_OF_OUTPUT_WORDS - 1; 
 
begin 
 
-- Include FFT 1024 generated core component 
fft1024radix2_I : fft1024radix2 
 port map ( 
 xn_re        => xn_re,       -- : IN std_logic_VECTOR(15 downto 0); 
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 xn_im       => xn_im,       -- : IN std_logic_VECTOR(15 downto 0); 
 start         => start,       -- : IN std_logic; 
 unload      => unload,      -- : IN std_logic; 
 nfft          => nfft,        -- : IN std_logic_VECTOR(4 downto 0); 
 nfft_we   => nfft_we,     -- : IN std_logic; 
 fwd_inv    => fwd_inv,     -- : IN std_logic; 
 fwd_inv_we  => fwd_inv_we,  -- : IN std_logic; 
 sclr        => sclr,        -- : IN std_logic; 
 ce          => ce,          -- : IN std_logic; 
 clk         => clk,         -- : IN std_logic; 
 xk_re       => xk_re,       -- : OUT std_logic_VECTOR(15 downto 0); 
 xk_im       => xk_im,       -- : OUT std_logic_VECTOR(15 downto 0); 
 xn_index    => xn_index,    -- : OUT std_logic_VECTOR(9 downto 0); 
 xk_index    => xk_index,    -- : OUT std_logic_VECTOR(9 downto 0); 
 rfd         => rfd,         -- : OUT std_logic; 
 busy        => busy,        -- : OUT std_logic; 
 dv          => dv,          -- : OUT std_logic; 
 edone       => edone,       -- : OUT std_logic; 
 done        => done);       -- : OUT std_logic; 
 
FSL_S_READ  <= FSL_S_EXISTS   when state = Read_Inputs   else '0'; 
 
The_FFT : process (CLK,RESET) is 
begin  -- process The_SW_accelerator 
     
   if RESET = '1' then                     -- Synchronous reset (active high) 
     -- Initialize all parameters on RESET signal 
     nr_of_reads   <= 0;             
     nr_of_writes  <= 0; 
     count         <= "00000";              -- set counter to zero 
     ce            <= '1';                  -- set clock enable to '1'  
     sclr          <= '1';                  -- set Master Reset to '1' 
     unload        <= '0';                  -- set unload results to '0' 
     start         <= '0';                  -- set start signal to '0' 
     xn_im         <= "0000000000000000";   -- intialize imaginary component to 0 
     state         <= Initialization;       -- goto ready state 
   elsif CLK'event and CLK = '1' then      -- Rising clock edge 
 
     case state is 
       -- INITIALIZATION STATE: Set all require parameters for FFT  
       when Initialization => 
            if count = 0 then     
        sclr          <= '0';         -- Master Reset to '0' 
        nfft_we     <= '1';         -- NFFT set to '1' to invoke signal 
      nfft         <= "00100";      --"01010";     -- Set to 16 point NFFT 
      count        <= count + 1;   -- Update Clock count 
       FSL_M_WRITE   <= '0';         -- set FSL_M_WRITE to '0', no data written to FFT 
    elsif count = 1 then         
     nfft_we     <= '0';          
     nfft         <= "00000";       
     fwd_inv_we  <= '1';         -- Setup fwd or inv NFFT 
     fwd_inv     <= '1';         -- Set to '1' for forward FFT  
     start        <= '1';         -- Set 'start' signal to high 
     count       <= count + 1;   -- update clock count 
     
    elsif count = 2 then           
     fwd_inv_we  <= '0';    
     fwd_inv        <= '0';        
     start              <= '0';         -- down 'start' signal 
     count            <= count + 1;   -- update clock count 
     
    elsif count = 4 then            -- wait for 3 clock cycle before starting to read input     
     count            <= "00000";     -- reset count to zero 
   --  ce                <= '0';         -- clock is disabled 
     nr_of_reads  <= NUMBER_OF_INPUT_WORDS - 1; 
     state             <= Idle;        -- goto next state 'Idle'        
    else 
        count             <= count + 1;   -- otherwise waste clock cycle 
     end if;  
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       -- IDLE STATE: wait until there is an input to read           
       when Idle =>                        
    if (FSL_S_EXISTS = '1') then        -- If data exists 
     dataInBuf    <= FSL_S_DATA;      -- store to a buffer 
     nr_of_reads  <= nr_of_reads - 1; -- subtract number of data read  
     ce            <= '1';             -- enable clock 
     state         <= Read_Inputs;     -- goto Read_Input state 
    else                                -- If data does NOT exists 
     ce            <= '0';             -- disable the clock 
    end if; 
 
       -- READ_INPUT STATE: Reads input and write to xn_re and xn_im port of FFT 
       when Read_Inputs =>                                  
    if (FSL_S_EXISTS = '1') then                          -- If data exists 
     xn_re         <= dataInBuf;                         -- write to FFT 
     xn_im        <= "0000000000000000";                  
     dataInBuf    <= FSL_S_DATA;                        -- read another input 
            
     if (nr_of_reads = 0) then                         -- If all N points are read to FFT  
      nr_of_writes <= NUMBER_OF_OUTPUT_WORDS - 1; 
      state        <= End_Of_Read;                  -- goto next state 
     else 
      nr_of_reads  <= nr_of_reads - 1;              -- If not, continue reading 
     end if; 
            
    else                                               -- If data does NOT exist 
     xn_re   <= dataInBuf;     -- pass the previously read data to FFT 
     xn_im   <= "0000000000000000";                      
     ce      <= '0';                                    -- disable clock 
     state   <= Idle;                                   -- Goto Idle state 
    end if; 
        
       -- END_OF_READ STATE: Wait for FFT to perform calculation   
       when End_Of_Read => 
    xn_re    <= dataInBuf;                                 -- Pass the previously read data to FFT  
    xn_im    <= "0000000000000000";          
    state    <= Cal_fft;                                   -- Goto CAL_FFT state  
        
       -- CAL_FFT STATE: wait for FFT to perform calculation 
       when Cal_fft => 
    ce      <= '1'; 
            
    if edone = '1' then                                   -- If calculation is complete               
     unload <= '1';                                    -- Invoke unload result 
    else 
     unload <= '0';                                    -- else continue wait 
    end if; 
            
    if dv = '1' then                                      -- If valid data is found    
     fftDataBuf_re <= xk_re(26) & xk_re(14 downto 0);  -- read the data 
     fftDataBuf_im <= xk_im(26) & xk_im(14 downto 0); 
     state               <= Write_Outputs;                   -- then goto 'Write_Outputs' state 
    end if; 
        
       -- WRITE_OUTPUTS STATE: Write the FFT result to FSL             
       when Write_Outputs =>            
            
    if (nr_of_writes = 0) then                            -- until all results are read      
     state <= End_Of_Write;                            -- goto next state   
    else 
     if (FSL_M_FULL = '0') then                        -- while FIFO is not full 
      FSL_M_WRITE   <= '1';                         -- write FFT result to FIFO  
      nr_of_writes  <= nr_of_writes - 1; 
                  
     -- calculate maginitude of the frequency 
     fftMagnitude  <= fftDataBuf_re*fftDataBuf_re + fftDataBuf_im*fftDataBuf_im; 
                  
     FSL_M_DATA    <= std_logic_vector (fftMagnitude);    -- Write to FIFO   
     fftDataBuf_re <= xk_re(26) & xk_re(14 downto 0); 
     fftDataBuf_im <= xk_im(26) & xk_im(14 downto 0); 
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     end if; 
    end if; 
        
       -- END_OF_WRITE STATE: Completed one bash    
       when End_Of_Write => 
    fftMagnitude   <= fftDataBuf_re*fftDataBuf_re + fftDataBuf_im*fftDataBuf_im; 
    FSL_M_DATA     <= std_logic_vector (fftMagnitude); 
    FSL_M_WRITE    <= '1';                                    -- Write to FSL FIFO 
    state          <= Initialization;                         -- go back to ready state 
        
       -- OTHERWISE: Reset and goto READY State     
       when others => 
    sclr            <= '0'; 
    ce             <= '1'; 
    nfft            <= "00000"; 
    nfft_we        <= '0'; 
    fwd_inv        <= '0'; 
    fwd_inv_we     <= '0'; 
    start           <= '0'; 
    unload         <= '0'; 
    state          <= Initialization;                         -- goto 'Ready' State 
      
  end case; 
   end if; 
    
end process The_FFT; 
-- [End] of process 
 
end architecture arch_FFT; 
-- [end] of Architecture 
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A2: audiofft1024_v1_00_a.mpd listing: 
 
################################################################### 
## 
## Microprocessor Peripheral Definition :  
##    
## Filename: audiofft1024_v2_1_0.mpd  
## Description:       Microprocessor Peripheral Description 
## Date:              Mar 2 20:42:20 2005  
############################################################################# 
 
BEGIN audiofft1024 
 
##Peripheral Options 
OPTION IPTYPE = PERIPHERAL 
OPTION IMP_NETLIST = TRUE 
OPTION HDL = VHDL 
 
## GENERIC PARAMETERS: 
PARAMETER C_INPUT_DWIDTH = 16, DT=integer 
PARAMETER C_OUTPUT_DWIDTH = 32, DT=integer 
PARAMETER C_INPUT_FSL_DEPTH = 1024, DT = NATURAL, BUS = MFSL:SFSL  
PARAMETER C_OUTPUT_FSL_DEPTH = 1024, DT = NATURAL, BUS = MFSL:SFSL  
 
## Bus Interfaces 
BUS_INTERFACE BUS=SFSL, BUS_STD=FSL, BUS_TYPE=SLAVE 
BUS_INTERFACE BUS=MFSL, BUS_STD=FSL, BUS_TYPE=MASTER 
 
# Global ports 
PORT Clk   = "", DIR=IN, SIGIS=CLK 
# rosinger EDK 6.2i PORT Reset = "", DIR=IN, BUS = MFSL0:SFSL0 
PORT Reset = "", DIR=IN  
 
## proware signals 
PORT FSL_S_CLK     = FSL_S_Clk,     DIR=out, SIGIS=CLOCK, BUS=SFSL,  
PORT FSL_S_READ    = FSL_S_Read,    DIR=out, BUS=SFSL 
PORT FSL_S_DATA    = FSL_S_Data,    DIR=in, VEC=[0:15], BUS=SFSL 
PORT FSL_S_CONTROL = FSL_S_Control, DIR=in,BUS=SFSL 
PORT FSL_S_EXISTS  = FSL_S_Exists,  DIR=in, BUS=SFSL 
 
PORT FSL_M_CLK     = FSL_M_Clk,     DIR=out, SIGIS=CLOCK, BUS=MFSL 
PORT FSL_M_WRITE   = FSL_M_Write,   DIR=out, BUS=MFSL 
PORT FSL_M_DATA    = FSL_M_Data,    DIR=out, VEC=[0:31], BUS=MFSL 
PORT FSL_M_CONTROL = FSL_M_Control, DIR=out, BUS=MFSL 
PORT FSL_M_FULL    = FSL_M_Full,    DIR=in, BUS=MFSL 
 
END 
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Appendix B: Simulation Results 
 
Test Case 1: Single Input Test 

 
 
Test Case 1 - Verification: Matlab Simulation 
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Test Case 2: Multiple Input Test 

 
 
Test Case 3: 27 MHz Clock Test 
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Test Case 4: Low Frequency Input Test 

 
 



Introduction
The Fast Fourier Transform (FFT) is a computationally
efficient algorithm for computing the Discrete Fourier
Transform (DFT). The FFT core uses the Cooley-Tukey
algorithm for computing the FFT1.

Features
• Drop-in module for Virtex-II™, Virtex-II Pro™, 

Spartan-3™, and Virtex-4™ FPGAs

• Forward and inverse complex FFT

• Transform sizes N = 2m, m = 3 – 16

• Data sample precision bx = 8,12,16,20,24

• Phase factor precision bw = 8,12,16,20,24

• Arithmetic types: 

- Unscaled (full-precision) fixed point

- Scaled fixed point

- Block floating point

• Rounding or truncation after the butterfly

• On-chip memory

• Block RAM or Distributed RAM for data or phase 
factor storage

• Run-time configurable forward or inverse operation

• Optional run-time configurable transform point size

• Run-time configurable scaling schedule for scaled 
fixed point

• Three architectures offer an exchange between core 
size and transform time

• For use with Xilinx CORE Generator™ system v6.3i 
and later 

Overview 
The FFT core computes an N-point forward DFT or
inverse DFT (IDFT) where N can be 2m, m = 3–16. The
input data is a vector of N complex values represented
as bx-bit two’s-complement numbers – bx bits for each
of the real and imaginary components of the data sam-
ple (bx = 8,12,16,20,24). Similarly, the phase factors bw
can be 8, 12, 16, 20, or 24 bits wide. 

All memory is on-chip using either Block RAM or Dis-
tributed RAM. The N element output vector is repre-
sented using by bits for each of the real and imaginary
components of the output data. Input data is presented
in natural order, and the output data can be in either
natural or bit/digit reversed order.

Three arithmetic options are available for computing
the FFT:

• Full-precision unscaled arithmetic

• Scaled fixed-point, where the user provides the 
scaling schedule

• Block-floating point

Note: For the scaled fixed-point and block-floating 
point options, superfluous LSBs can be either rounded 
or truncated after scaling.

Several parameters can be run-time configurable: the
point size N, the choice of forward or inverse transform,
and the scaling schedule. Both forward/inverse and
scaling schedule can be changed frame by frame.
Changing the point size resets the core.
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Three architecture options are available: 

• Pipelined, Streaming I/O. Allows continuous data processing.

• Radix-4, Burst I/O. Offers a load/unload phase and a processing phase; it is smaller in size but has 
a longer transform time.

• Radix-2, Minimum Resources. Uses a minimum of logic resources and is also a two-phase solution. 

For detailed information about each option, see  "Architecture Options" on page 4. 

Theory of Operation
The FFT is a computationally efficient algorithm for computing a Discrete Fourier Transform (DFT).
The DFT  of a sequence  is defined as

Equation 1: DFT

where N is the transform size and . The inverse DFT (IDFT) is

Equation 2: IDFT

Algorithm

The FFT core uses the radix-4 and the radix-2 decomposition for computing the DFT. For two-phase
solutions, the decimation-in-time (DIT) method is used, while the decimation-in-frequency (DIF)
method is used for the streaming solution. When using radix-4, the FFT consists of log4 (N) stages, with
each stage containing N/4 radix-4 butterflies. Point sizes that are not a power of 4 need an extra radix-2
stage for combining data.

An FFT using radix-2 has log2 (N) stages, with each stage containing N/2 radix-2 butterflies.

The inverse FFT (IFFT) is computed by conjugating the phase factors.

Finite Word Length Considerations

The radix-4 and radix-2 FFT algorithms process an array of data by successive passes over the input
data array. On each pass, the algorithm performs radix-4 or radix-2 butterflies, where each butterfly
picks up four or two complex numbers and returns four or two complex numbers to the same memory.
The numbers returned to memory by the processor are potentially larger than the numbers picked up
from memory. A strategy must be employed to accommodate this dynamic range expansion. Note that
a full explanation of scaling strategies and their implications is beyond the scope of this document; for
more information about this topic, see items 3 and 4 in the "References"  section on  page 36. 

For a radix-4 DIT FFT, the values computed in a butterfly stage (except the second) can experience a
growth to .

For radix-2, the growth can be up to . This bit growth can be handled in three ways:
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• Performing the calculations with no scaling and carry all significant bits to the end of the 
computation 

• Scaling at each stage using a fixed-scaling schedule

• Scaling automatically using block-floating point

All significant bits are retained when doing full-precision unscaled arithmetic. The width of the data
path increases to accommodate the bit growth through the butterfly.

When using scaling, a scaling schedule is used to scale by a factor of 1, 2, 4, or 8 in each stage. If scaling
is insufficient, a butterfly output may grow beyond the dynamic range and cause an overflow. As a
result of the scaling applied in the FFT implementation, the transform computed is a scaled transform.
The scale factor s is defined as

Equation 3: Scale Factor

where bi is the scaling (specified in bits) applied in stage i.

The scaling results in the final output sequence being modified by the factor 1/s. For the forward FFT,
the output sequence 
X’ (k), k = 0,...,N - 1 computed by the core is defined in Equation 4.

Equation 4: Scaled FFT

For the inverse FFT, the output sequence is

Equation 5: Scaled IFFT

If a radix-4 algorithm uses a scaling schedule of all 2’s, the factor of 1/s will be exactly equal to the factor
of 1/N in the inverse FFT equation (Equation 2). For radix-2, a scaling schedule of all 1’s will provide the
factor of 1/N. Otherwise, additional scaling will be needed.

With block floating point, each data point in a frame is scaled by the same amount, and the scaling is
kept track of by a block exponent. Scaling is performed only when necessary, which is detected by the
core.
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Architecture Options
The FFT core provides three architecture options to offer a trade-off between core size and transform
time. 

• Pipelined, Streaming I/O. Allows continuous data processing. 

• Radix-4, Burst I/O. Offers a load/unload phase and a processing phase; it is smaller in size but has 
a longer transform time. 

• Radix-2, Minimum Resources. Uses a minimum of logic resources and is also a two-phase 
solution. 

Pipelined, Streaming I/O

This solution pipelines several radix-2 butterfly processing engines to offer continuous data process-
ing. Each processing engine has its own memory banks to store the input and intermediate data
(Figure 1). The core has the ability to simultaneously perform transform calculations on the current
frame of data, load input data for the next frame of data, and unload the results of the previous frame
of data. The user can stream in input data and, after the calculation latency, can continuously unload
the results. If preferred, this design can also calculate one frame by itself or frames with gaps in
between.

This architecture supports unscaled full-precision and scaled fixed point arithmetic methods. In the
scaled fixed point mode, the data is scaled after every pair of radix-2 stages.

The unloaded output data can either be in bit reversed order or in natural order. By choosing the output
data in natural order, additional memory resource will be utilized.

This architecture covers point sizes from 8 to 65536. The user has flexibility to select how many pipe-
lined stages to use block RAM for data and phase factor storage.
Figure Top x-ref 1

Figure 1:  Pipelined, Streaming I/O
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Radix-4, Burst I/O

With this solution, the FFT core uses one radix-4 butterfly processing engine and has two processes
(Figure 2). One process is loading and/or unloading the data. The second process is calculating the
transform. Data I/O and processing are not simultaneous. When the FFT is started, the data is loaded
in. After a full frame has been loaded, the core will compute the FFT. When the computation has fin-
ished, the data can now be unloaded. During the calculation process, data loading and unloading can-
not take place. The data loading and unloading processes can be overlapped if the data is unloaded in
digit reversed order.

This architecture has less resource usage than the Pipelined Streaming I/O architecture but a longer
transform time and covers point sizes from 64 to 65536. All three arithmetic types are supported:
unscaled, scaled, and block floating point. Phase factors can be stored in Block RAM or in Distributed
RAM (for point sizes less than or equal to 1024).

Radix-2, Minimum Resources
This architecture uses one radix-2 butterfly processing engine (Figure 3) and has burst I/O like the
radix-4 version. After a frame of data is loaded, the input data stream must halt until the transform
calculation is completed. Then, the data can be unloaded. As with the Radix-4, Burst I/O architecture,

Figure Top x-ref 2

Figure 2:  Radix-4, Burst I/O
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data can be simultaneously loaded and unloaded if the results are presented in bit-reversed order. This
solution supports point sizes N = 8 – 65536 and uses a minimum of block memories.
All three arithmetic types are supported (unscaled, scaled, and block floating point). Both the data
memories and phase factor memories can be in either block memory or distributed memory (for point
sizes less than or equal to 1024).

Figure Top x-ref 3

Figure 3:  Radix-2, Minimum Resources
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Core Symbol and Port Definitions
Figure Top x-ref 4

Figure 4:  Core Schematic Symbol

Table  1:  Core Pinout 

Port Name Port Width Direction Description

XN_RE bxn Input
Input data bus: Real component (bxn = 8, 12, 16, 20, 
24)

XN_IM bxn Input
Input data bus. Imaginary component (bxn = 8, 12, 16, 
20, 24)

START 1 Input

FFT start signal (Active High): START is asserted to 
begin the data loading and transform calculation (for 
the Burst I/O architectures). For continuous data 
processing, START will begin data loading, which 
proceeds directly to transform calculation and then 
data unloading.

UNLOAD 1 Input

Result unloading (Active High): For the Burst I/O 
architectures, UNLOAD will start the unloading of the 
results in normal order. The UNLOAD port is not 
necessary for the Pipelined, Streaming I/O 
architecture.

NFFT 5 Input

Point size of the transform: NFFT can be the size of 
the transform or any smaller point size. For example, 
a 1024-point FFT can compute point sizes 1024, 512, 
256, and so on. The value of NFFT is log2 (point size). 
This port is optional for Pipelined, Streaming I/O 
architecture. 
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XK_INDEX
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NFFT_WE 1 Input

Write enable for NFFT (Active High): Asserting 
NFFT_WE will automatically cause the FFT core to 
stop all processes and to initialize the state of the 
core. This port is optional for Pipelined, Streaming I/O 
architecture.

FWD_INV 1 Input

Control signal that indicates if a forward FFT or an 
inverse FFT is performed. When FWD_INV=1, a 
forward transform is computed. If FWD_INV=0, an 
inverse transform is performed.

FWD_INV_WE 1 Input Write enable for FWD_INV (Active High).

SCALE_SCH for Streaming I/O 
and Radix-4 Burst 
I/O architectures or 2 
x NFFT for Radix-2 
Minimum Resources

Input

Scaling schedule: For Radix-4 Burst I/O and Radix-2 
minimum resources architecture, the scaling schedule 
is specified with two bits for each stage. The scaling 
can be specified as 3, 2, 1, or 0, which represents the 
number of bits to be shifted. An example scaling 
schedule for N =1024, Radix-4 burst I/O is [1 0 2 3 2]. 
For N=128, Radix-2 minimum resources, one possible 
scaling schedule is [1 1 1 1 0 1 2].

For Pipelined Streaming I/O architecture, the scaling 
schedule is specified with two bits for every pair of 
radix-2 stages. For example, a scaling schedule for 
N=256 could be [2 2 2 3]. When N is not a power of 4, 
the maximum bit growth for the last stage is one bit. 
For instance, [0 2 2 2 2] or [1 2 2 2 2] are valid scaling 
schedules for N=512, but [2 2 2 2 2] is invalid. The two 
MSBs of SCALE_SCH can only be 00 or 01.
This port is only available with scaled arithmetic (not 
unscaled or block-floating point). 

SCALE_SCH_W
E

1 Input
Write enable for SCALE_SCH (Active High): This port 
is available only with scaled arithmetic.

SCLR 1 Input Master reset (Active High): Optional port. 

CE 1 Input Clock enable (Active High): Optional port. 

CLK 1 Input Clock

XK_RE[(B-1):0] bxk Output Output data bus: Real component.

XK_IM[(B-1):0] bxk Output Output data bus: Imaginary component.

XN_INDEX log2 (point size) Output Index of input data.

XK_INDEX log2 (point size) Output Index of output data.

RFD 1 Output
Ready for data (Active High): RFD is High during the 
load operation.

BUSY 1 Output
Core activity indicator (Active High): This signal will go 
High while the core is computing the transform.

DV 1 Output
Data valid (Active High): This signal is High when valid 
data is presented at the output.

Table  1:  Core Pinout  (Continued)

Port Name Port Width Direction Description

2
2

NFFTceil ⎛ ⎞× ⎜ ⎟
⎝ ⎠
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EDONE 1 Output
Early done strobe (Active High): EDONE goes High 
one clock cycle immediately prior to DONE going 
active.

DONE 1 Output
FFT complete strobe (Active High): DONE will 
transition High for one clock cycle at the end of the 
transform calculation.

BLK_EXP 5 Output
Block exponent: Available only when block-floating 
point is used.

OVFLO 1 Output

Arithmetic overflow indicator (Active High): OVFLO 
will be High during result unloading if any value in the 
data frame overflowed. The OVFLO signal is reset at 
the beginning of a new frame of data. This port is 
optional and only available with scaled arithmetic.

Table  1:  Core Pinout  (Continued)

Port Name Port Width Direction Description
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Graphical User Interface 
The FFT core graphical user interface (GUI) consists of three screens. Options for each screen are
described below. 

• Component Name: The name of the core component to be instantiated. The name must begin with 
a letter and be composed of the following characters: a to z, 0 to 9, and "_".

• Transform Length: Select the desired point size. All powers of two from 8 to 65536 are available.

• Implementation Options: Select an implementation option, as described in "Architecture Options" 
on page 4. 

- Radix-4, Streaming I/O, and Radix-2 Minimum Resources support point sizes 8 to 65536. 

- Radix-4 Burst I/O architecture supports point sizes 64 to 65536. 

• Transform Length Option: Available only for the Radix-4, Streaming I/O architecture. Select the 
transform length to be run-time configurable or not. The core uses fewer logic resources when the 
transform length is not run-time configurable. 

• Transform Length Information: When the transform length is run-time configurable, the core has 
the ability to reprogram the point size while the core is running; that is, the core can support the 
selected point size and any smaller point size. The GUI displays the supported point sizes based on 

Figure Top x-ref 5

Figure 5:  XFFT Core GUI Main Window
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the Transform Length, Transform Length Option, and Implementation Option selected.

• Precision Options

- Input data width and phase factor data width can be 8, 12, 16, 20, or 24. 

- Output data width (which may be affected by the Scaling Option) is also displayed.

• Optional Pins

- Clock Enable (CE), Synchronous Clear (SCLR), and Overflow (OVFLO) are optional pins. If no 
option is selected, some logic resources are saved. 

• Scaling Options

- Unscaled

- Scaled

- Block Floating Point. Note that Block Floating Point is unavailable with the Pipelined Streaming 
I/O architecture. 

• Rounding Modes: At the output of the butterfly, the LSBs in the datapath need to be trimmed. 
These bits can be truncated or rounded using convergent rounding, an unbiased rounding scheme 
also known as round-to-nearest (even) number. When the fractional part of a number is equal to 
exactly one-half, convergent rounding rounds down if the number is odd (resulting in LSB=0), and 
rounds up if the number is even (resulting in LSB=1). Convergent rounding can be used to avoid 

Figure Top x-ref 6

Figure 6:  XFFT Core GUI Precision and Scaling Option Window
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the DC bias that would be introduced by truncation.

• Memory Options 

- For Pipelined Streaming I/O solution, the data can be partially stored in Block RAM and 
partially in Distributed RAM. The user can select the number of pipelined stages using Block 
RAM for data and phase factor storage. 

- For Radix-4 and Radix-2 burst I/O architecture, either Block RAM or Distributed RAM can be 
used for data and phase factor storage. Data storage in Block RAM is always available, and 
Distributed RAM data storage is supported by the Radix-2 Minimum Resource architecture. 
Phase factor storage is also always available in Block RAM. Phase factor storage can be in 
distributed RAM for all point sizes 1024 or under.

• Output Ordering: This output data can either be in bit reversed order or in natural order, and is 
available only for Pipelined Streaming I/O architecture.

• Optimize Options

- For Radix-4 Burst I/O architecture in Virtex-4, the entire dragonfly can be computed in 
XtremeDSP slices. Selecting Optimize For Speed Using XtremeDSP Slices will allow a faster 
maximum clock speed at the cost of using more XtremeDSP slices. This checkbox is only 
available when the CORE Generator target architecture is Virtex-4.

• Information: Based on the options selected, this area displays the XtremeDSP slice 
count/embedded multiplier usage, block RAM numbers, and estimated slice count.

Figure Top x-ref 7

Figure 7:  XFFT Core GUI Memory Options Window
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XCO Parameters

The following table describes valid entries for the xco parameters. Note that parameters are not case
sensitive. 

Table  2:  XCO Parameters 

XCO Parameter Valid Values

rounding_modes
convergent_rounding
truncation

ce
false
true

scaling_options
scaled
unscaled
block_floating_point

memory_options_phase_factors
block_ram
distributed_ram

output_data_width

If scaling_option is scaled or block_floating_point, then:
output_data_width = input_data_width
If scaling option is unscaled, then:
output_data_width = input_data_width + log2 
(transform_length) + 1

input_width 8, 12, 16, 20, 24

transform_length
8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 
16384, 32768, 65536

run_time_configurable_transform_length
false
true

memory_options_data
block_ram
distributed_ram

number_of_stages_using_block_ram_for_data_and
_phase_factors

0 - 12

output_ordering
bit_reversed_order
natural_order

implementation_options
radix_4_burst_io
pipelined_streaming_io
radix_2_minimum_resources

component_name
Name must begin with a letter and be composed of the 
following characters: a to z, 0 to 9, and "_".

phase_factor_width 8, 12, 16, 20, 24

sclr
false
true

ovflo
false
true

optimize_for_speed_using_xtreme_dsp_slices
false
true
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Control Signals and Timing

Synchronous Clear

Asserting the Synchronous Clear (SCLR) pin results in resetting all output pins, internal counters, and
state variables to their initial values. All pending load processes, transform calculations, and unload
processes stop and are reinitialized. However, internal frame buffers retain their contents. NFFT will be
set to the largest FFT point size permitted (the Transform Length value set in the GUI). The scaling
schedule will be set to 1/N. For the Radix-4 Burst I/O and Pipelined Streaming I/O architectures with
a non-power-of-four point size, the last stage will have a scaling of 1, and the rest will have a scaling of
2. 

Transform Size

The transform point size can be set through the NFFT port if the run-time configurable transform
length option is selected. Valid settings and the corresponding transform sizes are provided in Table 4.
If the NFFT value entered is too large, the core sets itself to the largest available point size (selected in
the GUI). If the value is too small, the core sets itself to the smallest available point size: 64 for the
Radix-4 Burst I/O architectures and 8 for the Radix-2 Minimum Resources and Pipelined Streaming
I/O architecture.

NFFT values are read in on the rising clock edge when NFFT_WE is High. A new transform size
re-times all current processes within the core, so every time a transform size is latched in, regardless of
whether or not the new point size differs from the current point size, the core is internally reset. (Note
that FWD_INV and SCALE_SCH are not reset.) Holding NFFT_WE High continues to reset the core on
every clock cycle.

Table  3:  Synchronous Clear Reset Values

Signal Initial / Reset Value

NFFT maximum point size = N

FWD_INV Forward = 1

SCALE_SCH

1/N

[10 10... 10] for Radix-4 or Pipelined architecture when N is a 
power of 4.

[01 10... 10] for Radix-4 or Pipelined architecture when N is not 
a power of 4.

[01 01... 01] for Radix-2

Table  4:  Valid NFFT Settings

NFFT[4:0] Transform size (N)

00011 8

00100 16

00101 32

00110 64

00111 128

01000 256

01001 512
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Forward/Inverse and Scaling Schedule

The transform type (forward or inverse) and the scaling schedule can be set frame-by-frame without
interrupting frame processing. The transform type can be set using the FWD_INV pin. Setting
FWD_INV to 0 produces an inverse FFT, and setting FWD_INV to 1 creates the forward transform.

The scaling performed during successive stages can be set via the SCALE_SCH pin. The value of the
SCALE_SCH bus is used as pairs of bits [... N4, N3, N2, N1, N0]: each pair representing the scaling
value for the corresponding stage (except for Pipelined Streaming I/O architecture). In each stage, the
data can be shifted by 0, 1, 2, or 3 bits, which corresponds to SCALE_SCH values of 00, 01, 10, and 11.
Stages are computed starting with stage 0 as the two LSBs. For example, when N = 1024, [11 10 00 01 10]
translates to a right shift by 2 for stage 0, shift by 1 for stage 1, no shift for stage 3, a shift of 2 in stage 3,
and a shift of 3 for stage 4. The conservative schedule SCALE_SCH = [10 10 10 11 10] will completely
avoid overflows in the Radix-4 architecture. For the Radix-2 architecture, the conservative scaling
schedule of [01 01 01 10 01] will prevent overflow.

For the pipelined streaming architecture, consider every pair of adjacent radix-2 stages as a group. That
is, group 0 contains stage 0 and 1, group 1 contains stage 2 and 3, and so forth. The value of the
SCALE_SCH bus is also used as pairs of bits [... N4, N3, N2, N1, N0]. Each pair represents the scaling
value for the corresponding group of two stages. In each group, the data can be shifted by 0, 1, 2, or 3
bits which corresponds to SCALE_SCH values of 00, 01, 10, and 11. Groups are computed starting with
group 0 as the two LSBs. For example, when N = 1024, [11 10 00 01 10] translates to a right shift by 2 for
group 0, shift by 1 for group 1, no shift for group 3, a shift of 2 in group 3, and a shift of 3 for group 4.
The conservative schedule SCALE_SCH = [10 10 10 10 11] will completely avoid overflows in the Pipe-
lined Streaming architecture. Note that when N is not a power of 4, the last group only contains one
stage, and the maximum bit growth for the last group is one bit. Therefore, the two MSBs of scaling
schedule can only be 00 or 01. A conservative scaling schedule for N=512 is SCALE_SCH=[01 10 10 10
11]

The user is allowed great flexibility to set the transform type (Forward/Inverse) and the scaling sched-
ule. The FWD_INV and SCALE_SCH values are latched into temporary registers whenever the corre-
sponding WE pins are High. FWD_INV_WE and SCALE_SCH_WE can be asserted at any time before
the frame of data is loaded in. The core will read these temporary registers at XN_RE/XN_IM(0). These
are the values that will be used for that frame of data. There is no way to alter those values once the
transform calculation phase has started. Any WE assertions after XN_RE/XN_IM(0) affect the frame
that follows. 

01010 1024

01011 2048

01100 4096

01101 8192

01110 16384

01111 32768

10000 65536

Table  4:  Valid NFFT Settings (Continued)

NFFT[4:0] Transform size (N)
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Both the scaling schedule and the transform type are registered internally, so there is no need to hold
these values on the pins. Also, if the scaling and transform type are constant through multiple frames,
(that is, no new values are latched in) registered values will apply for successive frames. The scaling
schedule and transform type are not reset when NFFT_WE is asserted.

The initial value and reset value of FWD_INV is forward = 1. The scaling schedule is set to 1/N. That
translates to [10 10 10 10... 10] for the Radix-4 architectures, and [01 01...01] for the Radix-2 architecture.
The core will read in (2*number of stages) bits for the scaling schedule. So, when the point size
decreases, the leftover MSBs will be ignored.

Overflow

The Overflow (OVFLO) signal (used only with fixed-point scaling) will be High during unloading if
any point in the data frame overflowed. For the Radix-4 Burst I/O and Radix-2 Minimum Resources
architectures, The OVFLO signal will go High as soon as an overflow occurs during the computation
and remain High during the entire time the frame is unloading. 

Block Exponent

The Block Exponent (BLK_EXP) signal (used only with the block-floating point option) contains the
block exponent. This signal will be valid during the unloading of the data frame. The value present on
the port represents the total number of bits the data was scaled during the transform. For example, if
BLK_EXP has a value of 00101b = 5, this means the output data (XK_RE, XK_IM) was scaled by 5 bits
(shifted right by 5 bits), or in other words, was divided by 32, in order to fully utilize the available
dynamic range of the output data path.

Timing for Pipelined Streaming I/O

Asserting START starts the data loading phase, which will immediately flow into the transform calcu-
lation phase and then the data unloading phase. Pulsing START once will allow the transform calcula-
tion for a single frame. Pulsing START every N clock cycles will allow continuous data processing.
Alternatively, holding START High will also allow continuous data processing (Figure 8). If START is
pulsed at any time during the loading of the current frame (when XN_INDEX = 0 to N-1), it signals to
the core that another frame needs to be loaded after the current one. If no NFFT_WE, FWD_INV_WE,
or SCALE_SCH_WE were asserted before the initial START, then the defaults will be used. This archi-
tecture can also support non-continuous data streams (Figure 9). Simply assert START at any time to
begin data loading. After the data frame is loaded, the core will proceed to calculate the transform and
then output the results.

Input data (XN_RE, XN_IM) corresponding to a certain XN_INDEX should arrive four clock cycles
later than the XN_INDEX it matches (Figure 10). In this way, XN_INDEX can be used to address exter-
nal memory or a frame buffer storing the input data. RFD will remain High with XN_INDEX during
the loading phase when it is valid to input data.

BUSY will go High while the core is calculating the transform. DONE will go High during the last cycle
of the calculation phase. EDONE will go High one cycle before that. The cycle after DONE goes High,
the core begins unloading. During the unloading phase, while valid output results are present on
XK_RE/ XK_IM, DV (Data Valid) will be High. During unloading, XK_INDEX will correspond to the
XK_RE/XK_IM being presented.
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Figure Top x-ref 8

Figure 8:  Timing for Continuous Streaming Data
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Figure Top x-ref 9

Figure 9:  Timing for Non-Continuous Data Stream

Figure Top x-ref 10

Figure 10:  Beginning of Data Frame
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Timing for Radix-4 Burst I/O and Radix-2 Minimum Resources

The START signal begins the data loading phase, which leads directly to the calculation phase. As with
the Pipeline Streaming I/O architecture, START being pulsed at any time during the loading of the cur-
rent frame (when XN_INDEX = 0 to N-1) signals the core that another frame will be processed after the
current one.

Input data (XN_RE, XN_IM) corresponding to a certain XN_INDEX should arrive four clock cycles
later than the XN_INDEX it matches (Figure 10). In this way, XN_INDEX can be used to address exter-
nal memory or a frame buffer storing the input data. RFD will remain High with XN_INDEX during
the loading phase when it is valid to input data.

BUSY will go High while the core is calculating the transform. DONE will go High during the last cycle
of the calculation phase. EDONE will go High one cycle before that.

After START is asserted and the data is loaded and processed, two options are available to unload data: 

• To output the data in natural order, UNLOAD should be asserted (Figure 11). 

• To output data in bit/digit reversed order, the user can assert START again. While the next frame of 
data is loaded, the results will be presented in bit/digit reversed order at the same time (Figure 12). 

DV remains High during data unloading in both cases.

START and UNLOAD can be tied High (Figure 13). In this case, the core will alternate between
load/calculate and unload. The core will continuously load, process, and unload data. 

There is a latency of k CLK cycles after triggering an unload before the output data XK_RE/XK_IM is
presented (k = 7 for Radix-4 Burst I/O and k = 5 for Radix-2 Minimum Resources). If the unload process
is triggered by pulsing UNLOAD after transform calculations are completed and DONE has gone
High, then there is a delay of k clock cycles after UNLOAD before XK_RE(0) and XK_IM(0) appear on
their ports. If UNLOAD is pulsed during transform calculation before DONE has gone High, then
XK_RE and XK_IM will appear k clock cycles after DONE has gone High which means the calculation
is complete. If bit/digit reversed unloading is triggered by pulsing START, then XK_RE and XK_IM
will appear k clock cycles after START (Figure 14).
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Figure 11:  Unload Output Results in Natural Order
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Figure Top x-ref 12

Figure 12:  Unload Results in Bit/Digit Reversed Order 
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Figure 13:  Timing for Burst I/O Solutions
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Figure Top x-ref 14

Figure 14:  Unloading Results in Bit/Digit Reversed Order
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Performance and Resource Usage
The following tables list the resource usage and transform time for a selected set of parameters. For a variety of
point sizes and input data/phase factor bit widths, the slice count, Block RAM count, and XtremeDSP slice/embed-
ded hardware multiplier count is listed. Also, the maximum clock frequency is listed next to the transform time.
The transform time is described by the number of clock cycles or number of microseconds needed to perform the
transform calculation. (Time for loading and unloading the data is not included in that value.) For the non-stream-
ing I/O architectures, an additional column is provided, which contains the number of clock cycles and microsec-
onds needed to load and calculate the transform.

These numbers were obtained using scaled fixed-point arithmetic with truncation after the butterflies. Data and
phase factor storage is in Block RAM for the burst I/O architectures. For the streaming I/O architecture, the default
value in the GUI is used for distributing data and phase factor storage between Block RAM and Distributed RAM.
The slice counts are approximately the same if using block floating point arithmetic.

Table  5:  Performance and Resource Utilization for the Virtex-II Family: Pipelined, Streaming I/O

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

MULT 
18x18

Max. Clock 
Frequency (MHz)

Transform Time

DeviceClock 
Cycles

Time (µs)

-6 -5 -6 -5

64 16 16 1280 1 8 188 169 64 0.34 0.38 2v250

256 16 16 1769 4 12 188 143 256 1.36 1.79 2v1000

1024 16 16 2294 7 16 188 169 1024 5.45 6.06 2v1500

2048 16 16 2545 10 20 188 143 2048 10.89 14.32 2v3000

8192 16 16 3141 24 24 188 143 8192 43.57 57.29 2v4000

65536 16 16 4285 150 28 n/a 169 65536 n/a 387.79 2v8000

64 24 24 2463 2 24 148 134 64 0.43 0.48 2v2000

1024 24 24 4526 12 48 148 134 1024 6.92 7.64 2v6000

8192 24 24 6252 37 72 148 134 8192 55.35 61.13 2v6000

Note:  ISE 6.3i speed file - Production 1.118 2004-08-11.

Table  6:  Performance and Resource Utilization for the Virtex-II Family: Radix-4, Burst I/O

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

MULT 
18x18

Max. Clock 
Frequency 

(MHz)

Transform Time Data Load + Transform Time

DeviceClock 
Cycles

Time (µs) Clock 
Cycles

Time (µs)

-6 -5 -6 -5 -6 -5

64 16 16 1331 8 9 195 149 91 0.47 0.61 155 0.79 1.04 2v1000

256 16 16 1411 7 9 195 149 289 1.48 1.94 545 2.79 3.66 2v1000

1024 16 16 1498 7 9 195 149 1319 6.76 8.85 2343 12.02 15.72 2v1000

2048 16 16 1649 7 9 195 149 3117 15.98 20.92 5165 26.49 34.66 2v1000

8192 16 16 1753 22 9 195 149 14387 73.78 96.56 22579 115.79 151.54 2v3000

65536 16 16 2167 158 9 n/a 175 131129 n/a 749.31 196665 n/a 1123.80 2v8000

64 24 24 2669 12 36 152 138 97 0.64 0.70 161 1.06 1.17 2v3000
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1024 24 24 2968 11 36 152 138 1321 8.69 9.57 2345 15.43 16.99 2v3000

8192 24 24 3107 33 36 152 138 14389 94.66 104.27 22581 148.56 163.63 2v6000

Note:  ISE 6.3i speed file - Production 1.118 2004-08-11.

Table  7:  Performance and Resource Utilization for the Virtex-II Family: Radix-2, Minimum Resources

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices(2) Block 
RAM (2)

MULT 
18x18

Max. Clock 
Frequency 

(MHz)

Transform Time Data Load + Transform Time

DeviceClock 
Cycles

Time (µs) Clock 
Cycle

Time (µs)

-6 -5 -6 -5 -6 -5

64 16 16 530/709 3/0 3 188 169 265 1.41 1.57 329 1.75 1.95 2v250

256 16 16 567/1365 3/0 3 192 166 1079 5.62 6.50 1335 6.95 8.04 2v250

1024 16 16 630/3053 3/0 3 176 150 5187 29.47 34.58 6211 35.29 41.41 2v250

2048 16 16 717 5 3 179 156 11338 63.34 72.68 13386 74.78 85.81 2v250

8192 16 16 808 18 3 166 142 53334 321.29 375.59 61526 370.64 433.28 2v1500

65536 16 16 1062 130 3 168 147 524497 3122.01 3568.01 590033 3512.10 4013.83 2v6000

64 24 24 973 5 12 152 138 277 1.82 2.01 341 2.24 2.47 2v1000

1024 24 24 1175 5 12 152 138 5190 34.14 37.61 6214 40.88 45.03 2v1000

8192 24 24 1276 25 12 152 138 53336 350.89 386.49 61528 404.79 445.86 2v3000

Notes: 
1. ISE 6.3i speed file - Production 1.118 2004-08-11.
2. Second number is if input data and phase factors are stored in distributed memory.

Table  8:  Performance and Resource Utilization for the Virtex-II Pro Family: Pipelined, Streaming I/O

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

MULT 
18x18

Max. Clock 
Frequency (MHz)

Transform Time

DeviceClock 
Cycles

Time (µs)

-7 -6 -7 -6

64 16 16 1279 1 8 214 198 64 0.30 0.32 2vp4

256 16 16 1768 4 12 214 198 256 1.20 1.29 2vp7

1024 16 16 2284 7 16 214 198 1024 4.79 5.17 2vp20

2048 16 16 2545 10 20 214 198 2048 9.57 10.34 2vp20

8192 16 16 3120 24 24 214 198 8192 38.28 41.37 2vp30

65536 16 16 4252 150 28 214 198 65536 306.24 330.99 2vp70

64 24 24 2462 2 24 165 153 64 0.39 0.42 2vp20

Table  6:  Performance and Resource Utilization for the Virtex-II Family: Radix-4, Burst I/O (Continued)

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

MULT 
18x18

Max. Clock 
Frequency 

(MHz)

Transform Time Data Load + Transform Time

DeviceClock 
Cycles

Time (µs) Clock 
Cycles

Time (µs)

-6 -5 -6 -5 -6 -5
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1024 24 24 4518 12 48 165 153 1024 6.21 6.69 2vp30

8192 24 24 6238 37 72 165 153 8192 49.65 53.54 2vp50

Note:  ISE 6.3i speed file - Production 1.88 2004-08-11.

Table  9:  Performance and Resource Utilization for the Virtex-II Pro Family: Radix-4, Burst I/O

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

MULT 
18x18

Max. Clock 
Frequency 

(MHz)

Transform Time
Data Load + Transform 

Time

Device
Clock 
Cycles

Time (µs) Clock 
Cycles

Time (µs)

-7 -6 -7 -6 -7 -6

64 16 16 1330 8 9 223 205 91 0.41 0.44 155 0.70 0.76 2vp7

256 16 16 1410 7 9 223 205 289 1.30 1.41 545 2.44 2.66 2vp7

1024 16 16 1492 7 9 223 205 1319 5.91 6.43 2343 10.51 11.43 2vp7

2048 16 16 1637 7 9 223 205 3117 13.98 15.20 5165 23.16 25.20 2vp7

8192 16 16 1723 22 9 223 205 14387 64.52 70.18 22579 101.25 110.14 2vp20

65536 16 16 2132 158 9 223 205 131129 588.02 639.65 196665 881.91 959.34 2vp70

64 24 24 2665 12 36 170 158 97 0.57 0.61 161 0.95 1.02 2vp30

1024 24 24 2948 11 36 170 158 1321 7.77 8.36 2345 13.79 14.84 2vp30

8192 24 24 3076 33 36 170 158 14389 84.64 91.07 22581 132.83 142.92 2vp50

Note:  ISE 6.3i speed file - Production 1.88 2004-08-11.

Table  10:  Performance and Resource Utilization for the Virtex-II Pro Family: Radix-2, Minimum Resources

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices(2) Block 
RAM(2) MULT 

18x18

Max. Clock 
Frequency 

(MHz)

Transform Time Data Load + Transform Time

DeviceClock 
Cycles

Time (µs) Clock 
Cycles

Time (µs)

-7 -6 -7 -6 -7 -6

64 16 16 531/709 3/0 3 223 200 265 1.19 1.33 329 1.48 1.65 2vp4

256 16 16 567/1365 3/0 3 223 205 1079 4.84 5.26 1335 5.99 6.51 2vp4

1024 16 16 630/3053 3/0 3 207 186 5187 25.06 27.89 6211 30.00 33.39 2vp4

2048 16 16 716 5 3 216 193 11338 52.49 58.75 13386 61.97 69.36 2vp4

8192 16 16 774 18 3 194 174 53334 274.92 306.52 61526 317.14 353.60 2vp7

65536 16 16 1061 130 3 201 181 524497 2609.44 2897.77 590033 2935.49 3259.85 2vp70

64 24 24 971 5 12 170 158 277 1.63 1.75 341 2.01 2.16 2vp7

Table  8:  Performance and Resource Utilization for the Virtex-II Pro Family: Pipelined, Streaming I/O (Continued)

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

MULT 
18x18

Max. Clock 
Frequency (MHz)

Transform Time

DeviceClock 
Cycles

Time (µs)

-7 -6 -7 -6
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1024 24 24 1154 5 12 170 158 5190 30.53 32.85 6214 36.55 39.33 2vp7

8192 24 24 1245 25 12 170 158 53336 313.74 337.57 61528 361.93 389.42 2vp20

Notes: 
1. ISE 6.3i speed file - Production 1.88 2004-08-11.
2. Second number is if input data and phase factors are stored in distributed memory.

Table  11:  Performance and Resource Utilization for the Virtex-4 Family: Pipelined, Streaming I/O 

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

XtremeDSP
Slices

Max. Clock 
Frequency (MHz)

Transform Time

DeviceClock 
Cycles

Time (µs)

-11 -10 -11 -10

64 16 16 1126 1 8 335 299 64 0.19 0.21 4vsx25

256 16 16 1539 4 12 335 299 256 0.76 0.86 4vsx25

1024 16 16 1975 7 16 335 299 1024 3.06 3.42 4vsx25

2048 16 16 2161 10 20 315 281 2048 6.50 7.29 4vsx25

8192 16 16 2664 24 24 315 281 8192 26.01 29.15 4vsx25

65536 16 16 3713 150 28 315 281 65536 208.05 233.22 4vsx35

64 24 24 2156 2 24 269 242 64 0.24 0.26 4vsx25

1024 24 24 3887 12 48 256 230 1024 4.00 4.45 4vsx25

8192 24 24 5320 37 72 256 230 8192 32.00 35.62 4vsx35

Note:  ISE 6.3i speed file - Preview 1.47 2004-08-11.

Table  12:  Performance and Resource Utilization for the Virtex-4 Family: Radix-4, Burst I/O 

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

Xtreme
DSP

Slices

Max. Clock 
Frequency 

(MHz)

Transform Time
Data Load + Transform 

Time

Device
Clock 
Cycles

Time (µs) Clock 
Cycles

Time (µs)

-11 -10 -11 -10 -11 -10

64 16 16 1291 8 9 303 273 100 0.33 0.37 164 0.54 0.60 4vsx25

64 16 16 893 8 28 410 360 100 0.24 0.28 164 0.40 0.46 4vsx25

256 16 16 1367 7 9 303 273 292 0.96 1.07 548 1.81 2.01 4vsx25

256 16 16 974 7 28 421 370 292 0.69 0.79 548 1.30 1.48 4vsx25

1024 16 16 1445 7 9 303 273 1322 4.36 4.84 2346 7.74 8.59 4vsx25

1024 16 16 1052 7 28 421 370 1322 3.14 3.57 2346 5.57 6.34 4vsx25

2048 16 16 1555 7 9 303 273 3120 10.30 11.43 5168 17.06 18.93 4vsx25

2048 16 16 1162 7 28 315 281 3120 9.90 11.10 5168 16.41 18.39 4vsx25

Table  10:  Performance and Resource Utilization for the Virtex-II Pro Family: Radix-2, Minimum Resources (Continued)

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices(2) Block 
RAM(2) MULT 

18x18

Max. Clock 
Frequency 

(MHz)

Transform Time Data Load + Transform Time

DeviceClock 
Cycles

Time (µs) Clock 
Cycles

Time (µs)

-7 -6 -7 -6 -7 -6
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The dynamic range characteristics are shown by performing slot noise tests. First, a frame of complex Gaussian noise
data samples is created. An FFT is taken to acquire the spectrum of the data. To create the slot, a range of frequencies
in the spectra is set to zero. To create the input slot noise data frame, the inverse FFT is taken, then the data is quan-
tized to use the full input dynamic range. Because of the quantization, if a perfect FFT is done on the frame, the
noise floor on the bottom of the slot will be nonzero. The Input Data figures, which basically represent the dynamic
range of the input format, display this.

8192 16 16 1643 22 9 303 273 14390 47.49 52.71 22582 74.53 82.72 4vsx25

8192 16 16 1251 22 28 315 281 14390 45.68 51.21 22582 71.69 80.36 4vsx25

65536 16 16 2083 158 9 303 273 131132 432.78 480.34 196668 649.07 720.40 4vsx35

65536 16 16 1771 158 28 342 305 131132 383.43 429.94 196668 575.05 644.81 4vsx35

64 24 24 2306 12 36 248 224 124 0.50 0.55 188 0.76 0.84 4vsx25

64 24 24 1597 12 64 410 360 118 0.29 0.33 182 0.44 0.51 4vsx35

1024 24 24 2528 11 36 248 224 1330 5.36 5.94 2354 9.49 10.51 4vsx25

1024 24 24 1824 11 64 256 230 1328 5.19 5.77 2352 9.19 10.23 4vsx35

8192 24 24 2677 33 36 248 224 14398 58.06 64.28 22590 91.09 100.85 4vsx35

8192 24 24 1972 33 64 256 230 14398 56.23 62.59 22588 88.23 98.21 4vsx35

Note:  ISE 6.3i speed file - Preview 1.47 2004-08-11.

Table  13:  Performance and Resource Utilization for the Virtex-4 Family: Radix-2, Minimum Resources

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices(2) Block 
RAM(2)

Xtreme
DSP

Slices

Max. Clock 
Frequency 

(MHz)

Transform Time Data Load + Transform Time

DeviceClock 
Cycles

Time (µs) Clock 
Cycle

Time (µs)

-11 -10 -11 -10 -11 -10

64 16 16 515/728 3/0 3 330 297 283 0.86 0.95 347 1.05 1.17 4vsx25

256 16 16 564/1270 3/0 3 330 297 1082 3.28 3.64 1338 4.05 4.51 4vsx25

1024 16 16 634/3462 3/0 3 308 269 5190 16.85 19.29 6214 20.18 23.10 4vsx25

2048 16 16 671 5 3 308 269 11341 36.82 42.16 13389 43.47 49.77 4vsx25

8192 16 16 733 18 3 276 243 53337 193.25 219.49 61529 222.93 253.21 4vsx25

65536 16 16 1023 130 3 290 256 524545 1808.78 2049.00 590081 2034.76 2305.00 4vsx35

64 24 24 860 5 12 266 240 331 1.24 1.38 395 1.48 1.65 4vsx25

1024 24 24 994 5 12 256 230 5199 20.31 22.60 6223 24.31 27.06 4vsx25

8192 24 24 1128 25 12 256 230 53345 208.38 231.93 61537 240.38 267.55 4vsx25

Notes: 
1. ISE 6.3i speed file - Production 1.118 2004-08-11.
2. Second number is if input data and phase factors are stored in distributed memory.

Table  12:  Performance and Resource Utilization for the Virtex-4 Family: Radix-4, Burst I/O  (Continued)

Point 
Size

Input 
Data 

Width

Phase 
Factor 
Width

Slices
Block 
RAM

Xtreme
DSP

Slices

Max. Clock 
Frequency 

(MHz)

Transform Time
Data Load + Transform 

Time

Device
Clock 
Cycles

Time (µs) Clock 
Cycles

Time (µs)

-11 -10 -11 -10 -11 -10
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This slot noise input data frame is fed to the FFT core to see how shallow the slot becomes due to the finite precision
arithmetic. The depth of the slot shows the dynamic range of the FFT.

Figures 15 through 24 show the effect of input data width on the dynamic range. All FFTs have the same bit width
for both data and phase factors. Block floating point arithmetic is used with rounding after the butterfly. The figures
show the input data slot and the output data slot for bit widths of 24, 20, 16, 12, and 8.

Figure Top x-ref 15

Figure 15:  Input Data: 24 Bits

Figure Top x-ref 16

Figure 16:  FFT Core Results: 24 Bits
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30
Figure Top x-ref 17

Figure 17:  Input Data: 20 Bits

Figure Top x-ref 18

Figure 18:  FFT Core Results: 20 Bits

Figure Top x-ref 19

Figure 19:  Input Data: 16 Bits
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Figure Top x-ref 20

Figure 20:  FFT Core Results: 16 Bits

Figure Top x-ref 21

Figure 21:  Input Data: 12 Bits

Figure Top x-ref 22

Figure 22:  FFT Core Results: 12 Bits
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32
There are several options available that also affect the dynamic range. Consider the arithmetic type
used.

Figures 25, 26, and 27 display the results of using unscaled, scaled (scaling of 1/1024), and block float-
ing point. All three FFTs are 1024 point, Radix-4 transforms with 16-bit input, 16-bit phase factors, and
convergent rounding.

Figure Top x-ref 23

Figure 23:  Input Data: 8 Bits

Figure Top x-ref 24

Figure 24:  FFT Core Results: 8 Bits
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After the butterfly computation, the LSBs of the data path can be truncated or rounded. The effects of
these options are shown below in Figures 28 and 29. Both transforms are 1024 points with 16-bit data
and phase factors using block floating point arithmetic.

Figure Top x-ref 25

Figure 25:  Full-Precision Unscaled Arithmetic

Figure Top x-ref 26

Figure 26:  Scaled (scaling of 1/N) Arithmetic

Figure Top x-ref 27

Figure 27:  Block Floating Point Arithmetic
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For illustration purposes, the effect of point size on dynamic range is displayed Figures 30-32. The FFTs
in these figures use 16-bit input and phase factors along with convergent rounding and block floating
point arithmetic.

Figure Top x-ref 28

Figure 28:  Convergent Rounding

Figure Top x-ref 29

Figure 29:  Truncation

Figure Top x-ref 30

Figure 30:  64-point Transform
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All of the above dynamic range plots show the result of a Radix-4 architecture. Figures 33-34 show two
plots for the Radix-2 architecture. Both use 16-bit input and phase factors along with convergent round-
ing and block floating point.

Figure Top x-ref 31

Figure 31:  2048-point Transform

Figure Top x-ref 32

Figure 32:  8192-point Transform

Figure Top x-ref 33

Figure 33:  64-point Radix-2 Transform
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Ordering Information
The XFFT core may be downloaded from the Xilinx IP Center for use with the Xilinx CORE Generator
v6.3i and later. The Xilinx CORE Generator system is bundled with all Alliance Series Software pack-
ages at no additional charge. Information about additional Xilinx LogiCORE modules is available on
the Xilinx IP Center.

To order Xilinx software, please visit the Xilinx Silicon Xpresso Cafe or contact your local Xilinx sales
representative. 

Revision History 

Figure Top x-ref 34

Figure 34:  1024-point Radix-2 Transform

Date Version Revision

03/28/03 1.0 Xilinx release in new template.

07/14/03 2.0 Modified Figures 8 through 14, inclusive.

12/11/03 2.1 Updated to v2.1 release.

05/21/04 3.0 Updated to v3.0 release.

11/11/04 3.1
Updated document to support core v3.1 release - updated performance and 
resource utilization tables for Virtex-II and Virtex-II Pro. Also added performance 
and resource utilization tables for Virtex-4.
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Summary MicroBlazeTM has the ability to use its dedicated FSL bus interface to integrate a customized IP core into 
a MicroBlazeTM soft processor-based system. This document describes possible methods to include 
customized IP cores into a Soft Core Processor (SCP)-based design.

The FSL interface is described in great detail, and a reference application involving a 1-dimensional 
Inverse Direct Cosine Transform (IDCT) is used to show how the implementation of a customized core 
can be done in software and hardware. The first part of this document deals with the different methods of 
integrating user IP cores into a soft processor-based system. The second part contains a short overview 
on MicroBlaze and the FSL interface. After that, the reference design, which can be downloaded from 
the Xilinx web site, is explained. The last point of this document contains the conclusion regarding the 
use of the FSL interface 

Introduction One advantage of a Soft Core Processor (SCP) is its flexibility: it uses only the processor features 
required for a specific application. Another advantage is its ability to integrate customized user 
Intellectual Property (IP) cores, which can result in a dramatic acceleration in software execution time 
due to algorithms being executed in parallel in hardware and not sequentially in software. MicroBlaze is 
a powerful and inexpensive SCP solution for the VirtexTM and SpartanTM-II/3-based FPGA series. 
MicroBlaze combines all the flexibility advantages of SCP. 

Generally, there are two ways to integrate a customized IP core into a MicroBlaze-based embedded soft 
processor system. One way is to connect the IP on the On-chip Peripheral Bus (OPB). The OPB is part 
of the IBM Core ConnectTM on-chip bus standard. The second way is to connect the user IP to the 
MicroBlaze dedicated Fast Simplex Link (FSL) bus system. If the application is time-critical, the user IP 
should be connected to the FSL bus system; otherwise, it can be connected as a slave or master on the 
OPB. If the customized core is connected to the dedicated FSL interface, it is then possible to use 
predefined C functions to use the user core in the application software. This document deals primarily 
with the connection of a user IP on the MicroBlaze FSL interface. For more information regarding the 
connection of a user IP on the OPB, please refer to the user core template document: 

www.xilinx.com/ise/embedded/edk_docs.htm

Integration of a 
User IP into a 
Soft Processor-
Based System

There are different ways to connect a user IP into a soft microprocessor-based system. In general, every 
application can be realized and implemented either as software algorithm or as structural hardware. It is 
important to use the hardware implementation advantage (parallel execution), which allows the 
realization of strict timing-driven applications and the ability to control the user IP in software (e.g., C or 
C++). Figure 1 demonstrates how the parallel execution advantage can be used. The software routine 
needs 12 clock cycles to calculate the result G; however, in hardware it takes only 2 clock cycles to 
compute the same result.

Application Note: MicroBlaze
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Figure 1:  Software versus hardware

It is important to be able to use the customized IP core in the application program. Without an easy way 
to control the user IP, it doesn’t make sense to include the core. One possible way is to integrate the user 
IP as an on-chip bus system (like the core connect bus). During the design stage of the core, the designer 
has to take the bus standard into account; that is, the designer has to make sure that he or she conforms 
to the bus specification if the core gets connected to the bus. This can be very time-consuming, a liability 
which no engineer can afford today. In some cases, templates, for example, the Xilinx IPIF user core 
template, exist. These templates make it easy and fast to connect an IP core on the Core connect bus. The 
next and more critical drawback to connecting the user IP to an on-chip bus is that most of the time the 
bus protocol overhead takes too much time and the speed advantage gets lost. Therefore, other different 
ways to include a customized user IP core are possible. One is to integrate the user IP as co-processor (if 
the processor has such a co-processor interface). If the soft processor has a special dedicated interface 
like the ARC Tangent, Tensilica, NIOS, or MicroBlaze soft processor, it is also possible to integrate a 
user IP. A soft processor is available as HDL source code or as a structural netlist. Therefore, it can be 
integrated into an ASIC or a FPGA.

Soft Processors Targeting ASIC Versus FPGA
It is important to understand the advantage of the flexibility made possible by using an FPGA design 
instead of an ASIC design. After the ASIC is manufactured, there is no way to reconfigure the logic 
inside the ASIC device. It would even be too costly to change the mask and manufacture a new ASIC. 
For a SCP, which targets the ASIC market, it is essential to be flexible in software. After the processor-
based system with the customized instruction is mapped in an ASIC, it is possible to change the 
application only in software (changing the C-Code). Figure 2 shows an example on this. The first bar 
shows the execution time of a whole software program. Using a SCP with customized instructions 
reduces the overall execution time of the software program dramatically. If, for instance, the ASIC 
already exists but an aspect of the application changes for one customized instruction, then some 
modifications must be done.

load A
load B
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load C
load F
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load E 
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Figure 2:  Increasing software execution speed

In an ASIC design, the only way is to not use the customized instruction but to address the new 
application requirement in software. Now, the overall software execution time will increase again; 
however, for an ASIC solution, it is the only way. Soft processors such as the ARC Tangent, the 
Tensilica, and the NIOS soft processor integrate the customized instruction completely in their execution 
unit and are useful if the target hardware is not changeable (ASIC).

FPGA devices instead allow for the reconfiguration of the internal logic very easily, quickly, and 
cheaply. Even in the last stages of the design, it is still possible to easily change the hardware inside the 
chip. If we look at the above example again, it is possible to change the new application requirement at 
any stage of the design in hardware, and it is not necessary to do the change in software. It is not that 
important to have the flexibility in software, because the flexibility in hardware has not been lost. For 
FPGA designs, it is not necessary or useful to include the customized user IP in the instruction set and 
inside the processor core, the RISC architecture. The next section details problems encountered when the 
customized IP core is included in the RISC architecture.

MicroBlaze FSL Interface Versus Customized Instruction
The integration of a customized IP core within the execution unit is very restrictive. One of the biggest 
restrictions is due to the nature of RISC processor architecture itself. Figure 3 shows a usual RISC 
processor architecture. Modern RISC architectures have a two-input and a one-output execution unit 
(ALU). Applications that require more than two input values and more than one output value are not 
optimal for these architectures, and several instructions have to be generated. Custom packet processing 
applications, for instance, require a lot of different dynamically changeable inputs (mask bits) and 
outputs. Those applications are not suitable for customized instructions because it is possible to use only 
two inputs (usually 64 bits) and one output (usually 32 bits).

SW_F1 SW_F2 SW_F3 SW_F4

I I I I

I I I SW_F4 Flexibility

Overall software execution time
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Figure 3:  Including a customized IP within the RISC architecture (Customized Instruction)

Another bottleneck is the customized instruction itself. If the critical path of the whole system is through 
the user IP, the whole soft processor will decrease in performance (processor frequency), because the 
user IP is included within the soft processor architecture itself. If the RISC architecture doesn’t allow the 
designer to stall the pipeline, the processor can’t run at a higher frequency than the critical path would 
allow. The bigger the customized IP is, the more the designer must be careful not to decrease the whole 
processor performance. It is even not acceptable to cascade logic within one customized instruction, and 
several customized instructions have to be built. The software integration of customized instruction can’t 
be handled directly from the compiler, thus the user has to use inline assembly to work with them. The 
customized instructions have to be implemented in software as inline assembler code and inline 
pragmas. This could produce a C application code, which is neither very clean nor portable.

Xilinx provides, with the MicroBlaze soft processor and the dedicated FSL interface, a very powerful, 
easy and flexible way to implement a customized user IP. Regarding the I/Os of the core, it is possible to 
use more than 2 dynamic inputs and more than 1 output because up to 16 FSL interface busses are 
provided. The user can use 8 inputs to the customized IP core and 8 outputs. Figure 4 shows the basic 
idea of connecting the customized user IP via the FSL interface onto the MicroBlaze. It is possible to 
provide the customized user IP core with many more inputs/outputs from another processor or external 
logic, and the big advantage is it is not necessary to change or extend the MicroBlaze core or the RISC 
architecture itself.
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Figure 4:  Including a customized IP via the FSLinterface onto MicroBlaze

Regarding the maximum frequency of the customized user IP, it won’t decrease the clock frequency of 
MicroBlaze, because it is independent and the user core doesn’t affect the internal MicroBlaze RISC 
architecture. It is no problem that the customized user IP is a subset of several IP cores that are cascaded 
together. The fact that the customized user core is implemented outside the processor architecture itself 
brings another advantage. If, for instance, the core takes 100 clock cycles to calculate a complex result, 
MicroBlaze can execute in the meantime a different application code and doesn’t have to wait for the 100 
clock cycles. The integration of the hardware in software doesn't require inline assembled code because 
the FSL interface has predefined C-macros that can be used for sending parameters to the hardware unit 
and to receive the result. Another powerful usage of the FSL is inter-processor communication. Two 
MicroBlaze processors have a very fast and clean way to communicate with each other. In the following 
sections, first MicroBlaze and then the FSL interface are discussed in greater detail. One example shows 
how a 1-dimension IDCT core gets connected in hardware within the EDK – XPS system builder and 
how to integrate the core in software.

General Description of the MicroBlaze Soft Processor
MicroBlaze is a standard 32-bit RISC Harvard-style Soft Processor, which is especially developed for 
the Virtex and Spartan-II/3-based FPGA architecture. The 32 by 32-bit registers are lookup table (LUT) 
RAM based. It guarantees a very short register access time. For memory, either the on-chip block RAM 
or off-chip memory can be used. The access time to the on-chip block RAM is minimal because there are 
dedicated routing resources to access them. Due to the fact that MicroBlaze is using the available FPGA 
resources very efficiently, it is possible to clock MicroBlaze up to 150 MHz. Thus, up to 125 Dhrystone 
MIPS can be reached. It is consequently the industry‘s fastest SCP for FPGAs. The MicroBlaze SCP can 
be customized for any application. Its barrel shifter, divide unit, data cache, instruction cache, and the 
FSL bus system are optional. The sizes of the caches are configurable from 2 to 64 Kbytes. Standard 
peripherals are provided as well and are Core Connect compatible. Consequently, they can be integrated 
in an embedded design very easy. These peripherals are either free, such as the memory controller, 
UART, interrupt controller, and timer, or commercial cores such as the Ethernet controller, gigabit 
Ethernet controller, PCI, HDLC, etc. All commercial IP Cores can be evaluated. For all free cores, the 
VHDL and the C-Code (TCP/IP stack) are readable. MicroBlaze is used in different areas such as 
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network applications, telecommunication applications, control, and consumer markets. Figure 5 shows a 
typical MicroBlaze SCP with its peripherals.

The Embedded Development Kit (EDK) includes the soft processor core and a standard set of 
peripherals and is available from Xilinx and its distribution partners. The kit includes a complete set of 
GNU-based software tools including the compiler, assembler, debugger, and linker. Variations of the kit 
include development boards that support the Virtex-E, Virtex-II, Virtex-II Pro, Spartan-II, Spartan-IIE, 
and Spartan-3 series of FPGAs.

For more information regarding MicroBlaze, please refer to the following link:

http://www.xilinx.com/ipcenter/processor_central/microblaze/index.htm

Detailed Description of the FSL Interface
This section describes the special FSL interface in detail. MicroBlaze contains eight input and eight 
output FSL interfaces. The FSL channels are dedicated unidirectional point-to-point data streaming 
interfaces. The FSL interfaces on MicroBlaze are 32 bits wide. Further, the same FSL channels can be 
used to transmit or receive either control or data words. A separate bit indicates whether the transmitted 
(received) word is control or data information. The performance of the FSL interface can reach up to 300 
MB/sec. This throughput depends on the target device itself. The FSL bus system is ideal for 
MicroBlaze-to-MicroBlaze or streaming I/O communications.

The main features of the FSL interface are:

• Unidirectional point-to-point communication

Figure 5:  MicroBlaze-based embedded processor system
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• Unshared non-arbitrated communication mechanism
• Control and Data communication support
• FIFO-based communication
• Configurable data size
• 600 MHz standalone operation

The FSL bus is driven by one Master and drives one Slave. Figure 6 shows the principle of the FSL bus 
system and the available signals.

Figure 6:  FSL interface

FSL peripherals may be created as a Master or a Slave to the FSL bus. A peripheral connected to the 
master ports of the FSL bus pushes data and control signals onto the FSL. All peripherals that act as a 
master to the FSL bus should create a bus interface of the type MASTER for the bus standard FSL in the 
Microprocessor Peripheral Description (MPD) file. A peripheral connected to the slave ports of the FSL 
bus reads and pops data and control signals from the FSL. All peripherals that are a slave to the FSL bus 
should create a bus interface of the type SLAVE for the bus standard FSL in the MPD file. The put and 
get instructions of MicroBlaze can be used to transfer the contents of a MicroBlaze register onto the FSL 
bus and vice-versa. The FSL bus configuration of MicroBlaze can be used in conjunction with any of the 
other bus configurations. Below is a brief overview of the FSL-related predefined C-functions available 
in EDK.

// Blocking Data Read and Write to Local Link no. id
microblaze_bread_datafsl(val, id) 
microblaze_bwrite_datafsl(val, id) 

// Non-blocking Data Read and Write to Local Link no. id
microblaze_nbread_datafsl(val, id) 
microblaze_nbwrite_datafsl(val, id) 

// Blocking Control Read and Write to Local Link no. id
microblaze_bread_cntlfsl(val, id) 
microblaze_bwrite_cntlfsl(val, id) 

// Non-blocking Control Read and Write to Local Link no. id
microblaze_nbread_cntlfsl(val, id) 
microblaze_nbwrite_cntlfsl(val, id) 

For more detailed information regarding the FSL bus information, please refer to the FSL bus data sheet 
(containing timing diagrams) and to the MicroBlaze user guide.
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Description of the 
Application

As an application to demonstrate the use of the FSL interface, a 1-dimension IDCT is used. This DSP 
application highlights very well the performance win that could be reached. A 1-dimension IDCT 
realized in software would require a high execution time because the C- program would consist mainly 
of loops which get executed sequentially by the processor. If the application is implemented as its own 
hardware module, the execution time requires much fewer clock cycles. The used 1-IDCT core on the 
FSL interface is an example and needs approximately 150 LUTs and the latency of 64 clock cycles. 
Please note this IDCT core is used to show how to implement a user core on the FSL interface. The 
software application writes 8 values from memory to the FSL. The IDCT core gets the data and 
calculates the result. When the result is available, MicroBlaze reads the data (8 words) back from the 
FSL. The IDCT core is connected to the FSL interface as shown in Figure 7.

Figure 7:  Including the 1-dimensional IDCT IP via the FSL interface onto MicroBlaze

For the FSL0 connection, the MicroBlaze is the Master on the FSL bus and the IDCT core is the Slave. 
Thus, MicroBlaze controls the data sent on the FSL0 bus to the IDCT core. For the FSL1 bus, it is vice 
versa, and the IDCT core is the Master and the MicroBlaze the Slave. The IDCT controls the data on the 
FSL1 bus. 

By cascading the 1-dimensional IDCT core, it is possible to integrate a 2-dimensional IDCT core (Figure 
8). The 1-D IDCT block will read from the FSL0 input and put the data out on the FSL1 bus. The corner-
turn module also reads from FSL1 and puts out on FSL2. The last 1-D IDCT is also reading from the 
FSL2 and puts out the data on FSL3, which transfers the result back to MicroBlaze.

By doing this, the current 1-IDCT block can be used without any modification as a part in a 2-
dimensional IDCT core. It also gives the user much more flexibility since it is possible to decide for 
another connection scheme at anytime.

Figure 8:  Block Diagram for using a 1-D IDCT to implement a 2-D IDCT
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Integration in Hardware
This section describes how to integrate the user IP in a MicroBlaze-based embedded processor design. 
For this integration, the EDK 6.1 software tool is used. Figure 9 shows the embedded MicroBlaze design 
with the customized IDCT core and some OPB standard peripherals.

The whole embedded system consists of the MicroBlaze itself, two FSL bus systems, the user core, an 
OPB on-chip bus, two OPB peripherals (UART lite and the MicroBlaze Debug module), and the on-chip 
block RAM. The application program is stored in the on-chip block RAM.

Figure 10 shows in detail how the IDCT core is connected onto the MicroBlaze FSL interface. The IDCT 
is available in VHDL code. It is also possible to use a netlist instead.

Figure 9:  Embedded processor system - hardware
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Figure 10:  Figure 10: Detailed connection of the 1-dimensional IDCT IP to MicroBlaze

The control signals are provided from the FSL interface. External signals like the global system clock or 
the system reset can be integrated easily. In addition to the VHDL source code, a Microprocessor 
Peripheral Definition (MPD) file and a Peripheral Analyze Order (PAO) file are necessary. The MPD file 
defines the interface of the peripheral. The PAO file contains a list of HDL files that are needed for 
synthesis, and defines the analyze order for compilation. It is necessary to save all the files in a dedicated 
directory. The file structure in the XPS project should look like the following: 

where the xil_idct_v1_00_a/data folder contains the MPD and the PAO file. The vhdl folder contains the 
VHDL source code of the user IP. If all the files are implemented correctly, the customized user core can 
be integrated in the Xilinx Platform Studio (XPS) and the bitstream of the hardware system can be 
generated.
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Integration in Software
The next step is to integrate the user core into the software, the C application program. The application 
program is very simple and writes some data to the core and reads it back. The data block which will be 
written to the core consists of 8 input values. Before the next data block is written to the IDCT core, 
MicroBlaze waits for the resulting data block. Obviously, the resulting data block contains the 8 output 
values from the IDCT core. For writing into the user core, the predefined functions are used. For the 
example, the non-blocking write and read commands are used. The predefined functions are defined in 
the mb_interface.h file.

Verification of the Hardware
The verification of the hardware can be done in very different ways. The aim is to verify the FSL bus 
system and to be sure the data is transferred to the IP core and read back from the IP core correctly. It will 
be assumed that the customized IP core, in this case the IDCT core, already has the correct functionality. 
For the reference design, the verification was done with ModelSim 5.7e, and do script files are provided 
with the reference design. It can be seen from the output wave window that both the write to the core and 
the read from the core are successful.

Verification of the Software
To verify the software, the GNU debugger is used. The debugger can be started from XPS and is included 
in EDK. The opb_mdm debug module is used for the communication between MicroBlaze and the Xilinx 
Microprocessor Debugger (XMD) interface. On top of XMD, the GNU debugger GUI can be used.

Reference Design The reference design targets the Memec Insight 2vp7 demo board (XC2VP7 -4, FG456 package). It has 
been implemented with the Xilinx EDK / ISE 6.2i software. The utilization values are completely device 
and implementation tool dependent. The total design requires 4 IOBs, 4 MULT18x18 elements, 4 
RAMB16s and about 1300 slices, and the embedded soft processor design runs at a frequency of 100 
MHz.

The MicroBlaze – FSL 1 dimension IDCT reference design can be downloaded from:

http://www.xilinx.com/bvdocs/appnotes/xapp529_6_1.zip

http://www.xilinx.com/bvdocs/appnotes/xapp529_6_2.zip

Conclusion The MicroBlaze SCP with its powerful FSL interface can improve the performance of a whole 
application dramatically by outsourcing time-critical tasks into hardware. Besides the tremendous 
performance win, the solution is changeable until the last stage of the project by taking advantage of the 
flexibility of SCP and the FPGA architecture. By using customized instructions, the user is bounded to 
only two inputs and one output from the customized logic. With the FSL interface it is possible to have 
up to 8 inputs and 8 outputs, which allows much more flexibility, and cascaded logic within the 
customized core doesn’t affect or lock the MicroBlaze RISC unit. The RISC architecture doesn’t get 
manipulated and stays self-contained because it is not necessary to extend the processor RISC core. 
Predefined C functions are provided in EDK for integrating the customized user IP in a very easy and 
clean way in the C/C++ application program. If the target FPGA architecture is a Spartan-II, Spartan-IIE, 
or Spartan-3, it is even better, as these families are the most cost-effective solution that is available for 
high-performance embedded processor designs.

Revision History The following table shows the revision history of this document.
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