ECE532 - Digital Hardware
Individual Project Report

Audio-to-MIDI Converter

James Shu-Hen Chen 991163904

Table of Contents

Topics Page
R 11 Yo [o) 1
2. What 1 did in thisS ProjecCtcoii i 1
WOTKS 1 NAVE DONE ...it it e e e e e e e e e e e e e 1
Difficulties ENCOUNTEIEAoieie it e e e e e e e e e re e 3
Other TOOIS USEAuiie i e e e e e e e e e e 3
ProjeCt Managemento e e 4
LESSONS LEAINEMieie ittt et e e e et e e et e e e e e 5
Something else | spent my time ONot e 5
3. Community CoNtrDULIONo. i e e e e e e e e e e e eaas 6
4. Feedback t0 XiliINXt e e e e 6

5. Course Feedback

1. Introduction

Background

Musical Instrument Digital Interface (MIDI) is a standard in transmitting musical audio
information in digital format. The standard is supported by most musical synthesizers,
where the musical notes are synthesized and/or manipulated.

An Audio-to-MIDI (ATM) converter adds MIDI compatibility to non-MIDI instruments. It
converts audio signals produced by conventional instruments into the MIDI standard,
thus allowing digital manipulation of the musical notes. The audio information can be
outputted to a MIDI synthesizer. Additionally, the ATM Converter can record music into
compact MIDI data files.

Objective

The goal of this project is to implement an ATM converter on the Xilinx Vertex-Il
Multimedia Board. The board would capture audio signals and outputs, detect any event
in the music, and output MIDI sequences corresponding to these events.

Please refer to the Group Project Report for detailed description about this project.

2. What | Did In This Project

Works | have done

Research: Music and MIDI Specification

| researched about the MIDI specification regarding how to represent music with MIDI
sequences. | also found information on the Internet concerning the frequency of music
notes.

Writing the FFT Wrapper

| wrote the first version of the FFT wrapper, including the logic and states required for
loading/unloading data to/from the FSL and FFT core. The first version of the FFT
wrapper was passed to my partner to be written in a style similar to the FSL Core
Wrapper generated by XPS’ Custom Function Wizard.

For more detail regarding the FFT wrapper, please refer to the project group report.

FFT Simulation

To fully understand how the generated FFT core functions, we decided to simulate only
the generated core. | determined the appropriate test vectors to be fed into the FFT core
and the expected results, while my partner worked on writing the simulation scripts.
After both of us worked together to debug the simulation scripts, different test vectors
were considered to test the following items which we were uncertain about:

1. Is the test script correct?
A constant non-zero offset is fed to the FFT core as inputs and we observe whether
or not the output has a non-zero value at the lowest frequency component and zero
elsewhere.

Page 1 of 7

2. Isthe FFT core accepting signed or unsigned integers?
Assuming the FFT core accepts signed integers, inputting a sine wave zero offset.
We then observe whether or not the first output of the FFT (the lowest frequency
component) is zero or a large number. If it is zero, the FFT core is accepting signed
integers.

3. Does the FFT core output frequency domain representation for the first Nyquist or for
both the first and second Nyquist?

4. lIsthe FFT core actually functioning correctly?
Various test vectors, including relatively random ones, were fed into the FFT core. |
used MATLAB to generate the FFT results from the same input vectors and
compared the MATLAB results with the results outputted by the FFT core.

FFT Wrapper Simulation & Verification

| devised most of test cases to simulate and verify the functionality of the FFT wrapper,
including the following:

1. Data is not available at the FSL when the FFT wrapper is ready to accept inputs, and
was slowly fed into the FSL (one data in a few clock cycles). This test case best
mimics the situation because the audio is captured at a relatively slow rate compared
to the time it takes to fetch and process the audio data.

2. Data is available at the FSL while the FFT wrapper is ready to accept inputs, and
continues to exist until the last data is loaded. This situation may occur with some
earlier versions of the software.

We assumed the FSL FIFO with depth greater than 1024 will never be full at the output
side of the FFT wrapper. This is because the software will always have to read 1024
points of FFT data before the FFT core receives enough data points from the software to
perform the next set of FFT operation.

Debugging FFT Wrapper

This process took a very significant amount of time for both me and my partner. Because
FFT was an indispensable part of the system, we spent as much time as possible to
make it functional.

Both of us carefully inspected each signal in the simulation results for any timing or
logical errors with the wrapper. We also tried debugging the FFT core on the hardware
by making the wrapper write the state information to the FSL whenever it makes a state
transition. As well, we made the wrapper write the same data to FSL whenever it writes
any data to the FFT core.

Software Sound Processor

| wrote the software to allow MicroBlaze processor to coordinate the various pieces of
hardware, as well as process the FFT data to determine the correct MIDI sequences to
be sent. For more detail regarding the software sound processor, please refer to the
project group report.

Page 2 of 7

Testing the Software Sound Processor

| also tested and debugged the software sound processor by writing a function that
generates hard-coded FFT results. From the hard-coded FFT results, the software
sound processor was able to determine the correct MIDI sequences to be sent.

Difficulties Encountered

The first major hurdle we have encountered is that the generated radix-4 FFT core was
not generating expected output. For a long time we thought we are incorrectly feeding
data to the FFT core, but after we discussed with another group that were also using the
FFT core, we found out they have encountered similar problem. We avoided this
problem by replacing the FFT core with a radix-2 version.

Originally we planned to run the software from BRAM. However, as the software grew
large, it did not fit into the BRAM with the default size. This caused the XMD to display
some error messages that | did not quite understand at the time when | was
downloading the executable file to BRAM. When | figured out what caused the problem, |
attempted to increase the size of the BRAM but for some unknown reason it still gave
me the same error. The problem was avoided by running the software from ZBT memory
instead of the BRAM.

Other Tools Used
| have used MATLAB to verify the FFT results generated by the FFT core.

Page 3 of 7

Project Management

Since the FFT is an critical part of our project, we tried to spend as much time as
possible on getting the FFT to work. However, we still failed to come out with a fully
functional version of the FFT. Please refer to the Lessons Learned section on how we
can improve our project development process to ensure success.

Design Flow

We followed a design flow similar to the Waterfall model. The model is illustrated in the
following figure:

4 1\
Requirements
& J
\ 4
4 1\
Design Planning
& J
A 4
4 1\
Code & Modifications
& J
\ 4
4 1\
Verification
|\ J
A 4
4 1\
Integration
|\ J

First, we list out the requirements of the system. Then we plan our design based on the
requirements. This includes defining the organization of the system, functionalities of
each module, and how each module communicate with each others.

Followed by the design planning is coding in VHDL (hardware) or C (software). We then
verify the developed code, isolating them from the rest of the system when possible, by
simulation, testing, and/or inspection. Finally, we integrate the developed code with the
rest of the system.

At many points, we have to go back to the previous step. For instance, after integration,
we may need to verify the code once more. After successful verification, we would then
go back to develop code for something else. Likewise, we will need to go back to fix our
code if verification showed any inconsistencies with the requirements.

We may occasionally need to go back to design planning if we see that the plans are not
feasible.
Source Code Control

Because the team only consists of two people, source code control was not a difficult
task. We simply inform each other (usually verbally or through online instant messenger)
about which portion of the code one is modifying.

Page 4 of 7

Whenever we get something working, we will send the files and/or the entire project to
each other and save it into the hard drive. Whenever we want to make maodifications to
these working copies, we will duplicate the files into another directory to avoid these files
to be overwritten.

Simulation & Testing

| have performed simulation and testing on the FFT wrapper and the software sound
processor. For more detailed information, please refer to the “Works | have done”
section in this report.

In order to minimize the effort required to develop and test our software and hardware,
we attempt to simulate or test each developed code as soon as a significant portion is
completed. For instance, we simulated the FFT wrapper as soon as we developed the
portion to initialize the FFT core to accept incoming data.

Lessons Learned

| have learned that there can be many unexpected events in an embedded system’s
development process, as these unexpected events caused significant delays in our
project development.

A fatal mistake we made in this project is that we did not think of simulating the FFT
wrapper with the FSL until a day before the project demo. We assumed if all the signals
behaved correctly, it is going to work with FSL. However, it is quite likely that we made
be some misinterpretation when we read the FSL's datasheet and that FSL actually
works differently than how we think it works.

Another mistake we made was to design a project that heavily depends on the FFT,
which we could not make it work in the given timeframe. Again, this is linked to the fact
that we did not anticipate the unexpected events. However, we should have planned a
project such that it does not depend so heavily on a function that we are not exactly sure
how to implement.

Something else | spent my time on

I have recorded sounds from various instruments and performed FFT transform on these
sound samples with MATLAB. Instruments that | have considered include guitar (what
we originally planned to use to demonstrate our system), violin, piano, and flute. It turns
out that guitar is not a very ideal instrument to use because each note it produces would
have a frequency component that is almost as loud as the main frequency component.
This may occasionally confuse our Audio-to-MIDI converter.

Also, | have tried to find inexpensive, off-the-shelf RS232 to MIDI converters, as well as
researched about how to build a serial to MIDI converter.

Page 5 of 7

3. Community Contribution

We verified some problem with the radix-4 implementation of FFT generated with a
slightly outdated version of CoreGen.

| have discovered a trick to compile XPS projects on the local hard drives on the ECF
PC machines. This can significantly speed up the process of generating netlist and
bitstream, especially when the network usage is high. The trick goes as follows:

1. Click on Start Menu - Programs

2. Double-click on any one of the folders under Programs.
An explorer window will pop up, showing the content of that folder. The folder should
be located somewhere on the C drive.

3. Click on the “Folders” icon near the top of the explorer window.

Because the current folder is on the C drive, the C drive will show up in the tree shown
on the left side of the window. Now, one can copy the project directory to the local hard
drive and opens the XPS project by double-clicking the system.xmp file. When
generating the netlist and/or bistream, the 1/0 operations are performed on the local hard
drive rather than a network drive.

4. Feedback to Xilinx

There seem to be a bug with regards to the XMD window. When | type the “stop”
command to stop the processor from running, the XMD window will appear to be frozen
for a long time if the execution cannot be stopped. If | close the XMD window by clicking
on the “x” button at the top right corner while the XMD window appears to be frozen, the
entire computer occasionally will restart itself. | have encountered this situation in the
design centre, the ECF PC lab, and at the microprocessor lab in Bahen Centre.

Also, it seems like the compilation process will go into an infinite loop (I waited for more
than an hour and it did not terminate) after | modify a .vhd file and try to generate the
bitstream. At once, this even occurred when | clean the project before clicking the
“generate bitstream” menu item. The compilation process goes from generating netlist to
generating bistream, back to generating netlist, and so on.

5. Course Feedback

It would be helpful if we have had more guidance on how to use the tools. It is, of course,
difficult to do so because these tools are relatively new. However, most of the time we
have spent on this project is on trying to figure out how to do something that could be
very simple if someone has taught us how to.

As a personal opinion, | think it could be beneficial to have a project proposal draft that
does not count for marks due in the first two weeks of the term. This draft would consider
two or more projects, and students can get feedback on how feasible the projects are.

Also, | think most of the materials covered during the first half of the term can be covered
within a slightly shorter time so that we can spend more time on the other things, or
perhaps squeeze in a few lectures on how to use the various tools we may utilize when
developing our project.

Page 6 of 7

Having to start the project earlier would definitely help spread out the workload, but it
could also mean that we would have to propose our project at an earlier time when we
do not have much idea about how the tools work and how to go about implementing the
project. Having more guidance in selecting the project may be necessary if the project is
to be started earlier.

I am happy with the grading structure, as well as the “open” lab concept. If we were to be
graded every week, we may be forced to spend a vast amount of time in some weeks
when we encounter unexpected problems. | believe the “open” lab concept can benefit
most students in planning their time (instead of having unexpected problems messing up
their schedule).

| also find the weekly progress reports helpful in terms of helping us to keep our project
on schedule.

Page 7 of 7

