

ECE532 - Digital Hardware
Individual Project Report

Audio-to-MIDI Converter

Sang-Joon Lee 990908354

Table of Content

1 Introduction..3

1.1 Objective...3

1.2 Background ..3

2 Work Breakdown Structure..4

2.1 How was the project partitioned?..4

2.2 Problems Encountered ...5

2.2.1 Incorrect FFT Core Problem..6

2.2.2 Generating Netlist..6

2.2.3 GENERATING BITSTREAM ...6

2.2.4 FFT SIMULATION TEST BENCH ...6

2.2.5 FSL Automated Wrapper generator...7

2.2.6 MODELSIM 5.8 Compilation Issue..7

2.3 Other tools used ...7

2.4 Design Methodology...7

2.5 What did you learn?..9

2.6 Anything else you spent your time on (related to the project)?9

3 Community Contribution ..10

4 Course Feedback ..10

1 Introduction

1.1 Objective

The initial objective of this project is to implement an Audio-to-MIDI (ATM)
converter on the Xilinx Vertex-II Multimedia Board. The board would sample
audio (music) signals as an input, and outputs MIDI sequences corresponding to
the music in real time.

1.2 Background

Musical Instrument Digital Interface (MIDI) is a standard in transmitting musical
audio information in digital format. The standard is supported by most musical
synthesizers, where the musical notes are synthesized and/or manipulated.

An ATM Converter adds MIDI compatibility to non-MIDI instruments. It converts
audio signals produced by conventional instruments into the MIDI standard, thus
allowing digital manipulation of the musical notes. The audio information can be
outputted to a MIDI synthesizer. Additionally, the ATM Converter can record
music into compact MIDI data files.

2 Work Breakdown Structure

2.1 How was the project partitioned?

The Audio-to-MIDI converter project can be partitioned into two major

components: the implementation of FFT core with FSL bus and software
processor that analyzes audio signals in real-time for MIDI conversion.

The implementation of FFT involves generating the FFT core and importing it to
Xilinx Platform Studio (XPS) and developing a wrapper for FFT to correctly
communicate with FSL bus. The software processor involves analyzing result
from FFT data to extract information on current music note being played.

My responsibility for this project was to implement FFT core in XPS and writing
wrapper for the FFT core to communicate with FSL bus.

Due to lack of knowledge of the tool and unfamiliarity with design steps, one
member’s work was always reviewed by the other member for correctness. This
method allowed both group members to be familiar with other member’s system,
and at the same time, it ensured that the project is well integrated with each
other’s work.

The following table lists a general work breakdown structure of this project:

Research and Development Phase
 Task Description Responsibility
1 Research Audio to MIDI conversion method

- MIDI specification and audio to MIDI
conversion method
- Algorithm to detect and extract behaviour of
current music note being played

James, Sang-Joon

2 Capture sound into ZBT memory and playback
using AC97 Controller

Sang-Joon, James

3 Research on FFT implementation
 - Number of points required for audio signal
processing.

Sang-Joon James

4 Research on how FSL works Sang-Joon , James
5 Generate FFT core and import to XPS

- Learn to generate Coregen tool under ISE
environment
- Learn to import core into XPS.
- Write .mpd .bbd and .pao files

Sang-Joon

6 FFT Wrapper version 1

James

7 FFT Wrapper version 2 Sang-Joon

- Rewrote FFT wrapper with automated
FSL wrapper generation tool provide in
XPS.

- Correct FSM
8 Generate Netlist and Bitstream Sang-Joon

Simulation and Verification Phase
Task Description
Hardware IP: FFT Wrapper - Setup testbench using ModelSim 6.0

- Create .do file and setup simulation
parameters for each test cases.

Test case 1: single test input (PASS)
Test case 2: multiple test input (PASS)
Test case 3: low-frequency input (PASS)
Test case 4: 27 MHz test case (PASS)

- Simulate and debug VHDL code (FSM) using
the test bench

Software IP: Sound Processor - Perform software review and verify
functionality of code by hard-coded input data
and comparing with expected output.

Integration Phase
Task Description
Hardware IP: FFT Wrapper Use AC97 Controller to capture sound signals and

push data into FSL FIFO to perform FFT on
sound signals

Software IP: Sound Processor - Integrate with Hardware FFT
- Write to FSL FIFO.
- Read from FSL FIFO.

2.2 Problems Encountered

During the development stage of this project, we ran into numerous major
as well as minor problems. The problems were mostly due to lack of knowledge
on how the tool works. Also, there were some cases where problem was cause
by wrong assumptions made during development and simulation phase.

The following sections describe major problems I have encountered during the
development phase of our project in detail.

2.2.1 Incorrect FFT Core Problem

Problem: A FFT core with 512 point was generated with radix-4 architecture
option. However, simulations showed that FFT core does not produce correct
result. This has been verified with Matlab result as well as similar result from
other group using the FFT core.

Solution: To avoid this problem, another FFT core was generated using radix-2
architecture option. Simulations show that this FFT functions correctly. This
algorithm is slower than radix-4 implementation, however, it was decided that it is
sufficient for this project.

2.2.2 Generating Netlist
Problem: To import generated FFT core into XPS, three data files, .mpd, .bbd
and .pao file were created. However was not able to generated Netlist

What I tried:

- Tried to mimic a version of .mpd , .bbd and .pao file from other pcore
directory.. however, this was not

- Tried to create a new set of files by referencing FSL example posted
on the website. however was not able to generate FSL

Solution:

- Match the folder name and wrapper name, rather than matching
generated core name to the folder name.
- Include .ngc netlist folder for FFT.

2.2.3 GENERATING BITSTREAM
Problem: Was not able to generate bitstream. This is because the Xilinx tool did
not copy .ngc and .edn file to implementation folder properly for FFT cores.
Therefore, an error was generated during ngdbuild phase.

Solution:
To avoid this problem .ngc and .edn file was manually copied to
<root>/implementation folder before bitstream was generated. A batch file was
also created to automate this process.

2.2.4 FFT SIMULATION TEST BENCH
Description: The FFT wrapper and core function correctly during simulation,
however when FFT core is downloaded to hardware, FFT core does not produce
correct result.

Problem: A potential cause of this problem is due to incorrect test bench. This is
caused because the simulation test bench does not take the behaviour of FSL
into account. We made an assumption that the FSL bus behave as shown in the
Xilinx data sheet. Therefore, our simulation only included FFT wrapper
communicating with FFT core and input directly feed into FFT wrapper. This test
bench does not test FSL bus and its timing into analysis which results into
incorrect result during the integration stage.

Solution: Included the FSL bus into testbench. However, we were not able to
test this correction in hardware due to timing constraints.

2.2.5 FSL Automated Wrapper generator
Problem : When a function provide by Xilinx XPS to automatically generate a
template for FSL wrapper. However, when the FSL bus is deleted from the
project, the hardware specification files does not delete the external connection
parameters from the .mhs file. This generates error when generating netlist and
bitstream.
 Solution: Manually delete the lines from hardware specification file (.mhs).

2.2.6 MODELSIM 5.8 Compilation Issue
Problem: Older versions of ModelSim (ModelSim 5.8) does not allow compilation
due to missing library files. It does not allow compilation nor simulation of any
HDL code.

Solution: This problem was resolved by using ModelSim version 6.0 for
compilation and simulation.

2.3 Other tools used

To verify the functionality of the FFT core, Matlab software simulation was

used to compare the output results.

Also, to creating a test bench, an alternative method to ModelSim was
considered. A test bench had been setup under ISE environment, however, it
was difficult and more time consuming to modify test vectors in ISE than
ModelSim. Therefore, ModelSim was chosen as test bench environment.

2.4 Design Methodology

Design Flow

 The following figure illustrates design flow that we took to developing this

First, the design specification and requirements of the system was determined.
The system was divided into software and hardware modules. The functionality
of each module and the interface and how module communicates with each other
were determined.

After each module was design, each of the modules were tested by other team
member. Also, to ensure correctness and due to limit of knowledge of the tool, a
peer review was performed on each other’s work at each stage of the design flow.

Sources Code Control Method

Whenever we get something working, we sent the files and/or the entire project
to each other and save it into the hard drive. Whenever we want to make
modifications to these working copies, we will duplicate the files into another
directory to avoid these files to be overwritten. These working version were
backup in a zipped file with a set of naming convention to note date and time of
the latest version of the project.
Also, any medication made to source code were comment with initial of person
who has modified the code. This comment has been removed from final version
of the project.

Simulation and Testing

The simulation and test was performed separately for two main component of
this project: implementation of FFT in hardware and sound processor in software.

Design Specifications

Design

Code

Simulation & Testing

Integration

The implementation of hardware IP, FFT, was simulated as a module using a
testbench under ModelSim environment. A set of test vectors were
predetermined to ensure full coverage of test. Also, to verify the simulation
results, the outputs of the FFT result were compared with outputs from Matlab
simulation.

The software IP, sound processor, was tested using a dummy FFT data inputs.
The outputs were compared with known expected outputs to verify the
functionality of the sound processor.

2.5 What did you learn?

Through this project, I learnt:

 how to generate a core and import it into XPS
 design steps to generating bitstream setting up folder structures and

writing files to import user pheriperal
 how to debug using GBD
 how to setup test bench using ISE and ModelSim
 how to write test script using
 how to wrap a core to interface with FFT

I learnt that a working simulation does not ensure that hardware implementation
works as expected. During the integration stage, we have encountered various
problems. Also, I assume that FSL core functions correctly as shown in the data
sheet. This assumption lead to

2.6 Anything else you spent your time on (related to the project)?

In the initial stage of the project, we spent most of time reading FFT core data
sheet to fully understand how FFT works. Also, when we realized that FFT
should be implemented with FSL bus due to bandwidth limitation problems, we
had to research and fully understand behaviour of FSL bus instance before
moving on the design stage.

Also, during the design specification stage of the project, we spent significant
time on researching MIDI specification to develop method to implement audio to
MIDI converter in hardware. Initially, our goal of the project involved connecting
a MIDI compatible musical instrument to Multimedia board. However, this
implementation involved building a custom hardware that converts serial port to
MIDI port. Due to time constraints as well as technical difficulties, we concluded
that this idea was not feasible. Therefore, another portion of our researching
time was spent on finding alternative solution to this problem. A number of
solutions were proposed by each of our member. We chose that implementing
on CONPORT using serial port was the easiest option.

3 Community Contribution

We have identified a problem with the radix-4 implementation of FFT generated
with an outdated version of Coregen. This problem was found after another
group has reported on the bulletin board. This problem was verified comparing
the FFT result with a known set of expected outputs.

4 Course Feedback

I felt that it will be helpful if you had more guidance on how the tools work and
what are the debugging steps to take, perhaps tutorial on different approach to
debug. I felt that I spent most of the time trying to figure out how to do something
even for a simple implementation. For every hour of implementation, I spent
more than five hours on researching how the tool works and what are the steps I
need to take to make the tool work.

Also, I found that the GDB and XMD tools are useful to debug software modules.
However, it was difficult to figure out problems with XPS tools. For example,
when I was attempting to import the FFT core, it was difficult to figure out what
was wrong by looking at the error message on the XPS console.

I am very satisfied with the current grading structure. However, I think having a
weekly lab section for marks is a good idea as well. I think this may have forced
us to get small things working with the Multimedia board and understand the tool
by attacking isolated problems.

