Ogg Vorbis Decoder

ECE540 Project
Jason Zebchuk
Mark Teper

Overview

The goals of this project were to build an Ogg Vorbis hardware decoder. Preferably this coder was to use Lesley’s grad work as a way of communicating between the different modules.

	
[image: image1]
Figure 1: Initial schematic plan

The Ogg Vorbis audio decoding procedure is actually two separate procedures. First the Ogg framing system is used to separate packets, followed by the Vorbis audio decoder. The initial plan was to do the Ogg portion in software while translating the Vorbis portion into hardware.

The design was to use pre-made components for the parts not directly related to the Ogg Vorbis decoding. So the digital clock manager (DCM), external memory controller (EMC) and FSL links were are all from the EDK libraries. The AC97 controller used was the result of one of the 2004 classes’ projects. The only components original to this project was to be the Vorbis decoder in hardware and the Ogg decoder in software.

Outcome

	
[image: image2]
Figure 2: Final Result

Moving the entire Vorbis decode stage into hardware was too ambitious a goal given the time available. In the end only the overlap and add block was moved into hardware while the remaining blocks remained in software.

This leaves a lot of work remaining on this project for the future. Most of this work is to improve performance until music can be played real time.
One of the thing that should be done to improve performance to an acceptable level is moving the inverse modified discrete cosine transform (iMDCT) into hardware. This is difficult however because the algorithm used for the iMDCT is difficult to execute in hardware. The algorithm used in the software to compute the iMDCT runs in eight different stages. Each stage requires access to the entire audio packet before it can begin, making it difficult to simply pipeline the stages. To solve this, we came up with three ideas of how the iMDCT could be moved into hardware efficiently.

The first of these is to connect each phase of the transform with an FSL reading and writing the packets from the FSL into an internal BRAM. When the stage is done it would write the entire BRAM out using a FSL to the next stage. This solution would make testing easier since each stage could be done independently. However, it is fairly inefficient since it requires considerable overhead for the moving of large quantities of data through the FSLs.

The second idea is to assign a BRAM block for each stage of the algorithm. Once all the stages were finished, they would connect to the BRAM that was used in the previous stage. Thus, instead of moving the data between stages, we would just move the stages to the different BRAMS. This has the advantage of having less overhead from transferring this considerable amount of data, but it more complicated.

Finally, it may be possible to find a more efficient algorithm that is more suited to a hardware implementation since the algorithm used was designed with software in mine.

Description of the Blocks

Software Blocks: Ogg Vorbis Software

Vorbis is a non-proprietary, patent-free audio compression format developed by the Xiph.org Foundation. The vorbis format consists of a series of packets, and the standard practice is to use the Ogg framing format to store these packets in a file, or to transmit them as part of a data stream. The Ogg framing format was also developed by the Xiph.org Foundation. Documentation for both of these standards is available at www.xiph.org/ogg/vorbis. Free, open-source libraries and utilities that implement these formats are also available at the same website.

Despite the freely available libraries, we decided to implement our own Ogg Vorbis decoder. We felt that we would learn more through this process, and we felt that this understanding would make it easier to implement some portion of the decoding process in hardware. Once we had finished the software, and had it working on a Linux laptop, it was a simple matter to port the code to work on the Microblaze soft processor. Writing our own software certainly made that stage of the process much simpler.

As mentioned above, the decoding process has two separate domains – Ogg and Vorbis. The Ogg framing format is relatively simple. Each Ogg frame contains upto 255 segments, each with 0 to 255 bytes of data. These segments are combined to form packets, and those packets are passed on to the Vorbis domain. A C++ class was written to encapsulate the ogg framing functionality into a single unit. This was particularly useful because the Vorbis decoder reads the data as a bit stream, so each read uses an artibrary number of bits. This class was one of the motivations for writing the code in C++, and in fact, most of the Vorbis decoder was written in C-compatible C++.

The Vorbis decoder constists of two general stages – the setup stage, and the audio decode stage. The first three vorbis packets are headers that contain information used to setup and prepare the audio decoder. This setup information includes code books used to compressed the data, as well as other configuration settings for the decoder. Once the headers have been processed, the remaining audio packets are processed according to the diagram in Figure 3.

	[image: image3.wmf]Vorbis Packets

Vorbis Decoder

OggStream class

Floor Decode

Code Books

Residue Decode

Floor Synthesis

and Dot Product

iMDCT

Raw data

PCM data

Figure 3: Audio Packet Decode Stages

The data in the audio packets is compressed by using Huffman codes. The first two stages in the decode process use the codebooks contained in the headers to decode the information stored in the audio packets. First, a floor function is decoded. The floor is a piece-wise linear function that provides coarse grain information about the frequency spectrum. Then, a residue function is decoded to provide more finer-grained details of the frequency spectrum. Next, the floor values are synthesized from the decoded function, and these are multiplied with the residue values in the dot product stage. This provides a final frequency spectrum which is passed to the iMDCT stage. The iMDCT algorithm is broken down into eight kernel stages, and a single post-processing stage. In the actual implementation, the three of the kernel stages have been combined, so there are a total of seven different iMDCT stages in the software. The details of the algorithm that was implemented are available in the paper “The use of multirate filter banks for coding of high quality digital audio,” by T. Sporer, K. Brandenburg and B. Edler (available online at www.iocon.com/resource/docs/ps/euspico_corrected.ps .

After the inverse modified discrete cosine algorithm computes the PCM data, it is passed to an overlap and add module to reconstruct the original audio samples. In our original implementation, this module was implemented as another C++ class, but in the final version of the project, this module was implemented as a hardware block on the FPGA. The original software implement that ran on top of the Linux operating system also contained a C++ class to play the audio data on through the computers soundcard.

Hardware Blocks: Prebuilt EDK PCores

The following pre-build modules from the EDK were used.

External Memory Controller (ver 1_10_c):

Documentation at:
 http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_emc.pdf
Modified as outlined in:

http://www.eecg.toronto.edu/~pc/courses/edk/modules/6.3/m08.pdf
Fast Synchronous Link (ver 2_00_a):

Documentation at:
www.xilinx.com/bvdocs/ipcenter/data_sheet/FSL_V20.pdf

AC97 Controller (ver 4_00_a):

Documentation at:

http://www.eecg.toronto.edu/~pc/courses/432/2004/projects/ac97controller.doc

ZBTIO (ver 2_10_a);

Download and documentation at:

http://www.eecg.toronto.edu/~pc/courses/edk/modules/6.3/m08.zip
Hardware Block: ISE Coregen modules

As well the following ISE blocks were used internally to within the overlap and add module. Not each of these documentation can be found through the coregent builder utility

Synchronous FIFO Corelib

Dual Port Memory Corelib

Multiplier Corelib

Hardware block: Overlap and Add

	
[image: image4]
Figure 4:Overlap and add block diagram

The overlap and add is the final stage in the process to decode an Ogg Vorbis file. The overlap and add combines and mixes the signals from one packet with another to create a smooth sound. The difficulty arises since the packets do not need to be the same size.

To mix the packets the signals are multiplied by the increasing and decreasing edges of sine waves. If the packets are of different sizes, then the sine waves are scaled to the size of the smaller wave.

In order to do this efficiently the tasks was divided into many parts. The outer most layers written into wrapper.v provide a single FSL wrapper for the module. It reads in packets, determining their size from the first byte in the packets. From there packets are alternatively placed in either the top or bottom FSL for later interlacing.

The control of the overlap is done in the overlap.v file. This process involves reading packets and determining what is to be done to this packet with respect to the next one. There are four possible stages for the machine to be in. The first is skipping before merge, which occurs when the next package is larger then the current package. The second stage is the actual merge operation. The third stage is the skip at output, this stage is the exact opposite of skip at input and occurs when the current package is larger then the previous one. The final stage is run alone which occurs when the current package is longer then either the previous or next package and thus there is some time for which this package is not being mixed.

This stage is also responsible for determining the percentage of the merge that has been completed. Using this data the value of the sine for that percentage is fetched from the dual port ram, one for the top piece and one for the bottom piece of information. The sine values are multiplied by the packet values at both the top and bottom channels before being added pack together.

Once this is done the data is written back out onto the FSL for transmittion directly to the AC97 controller.

Description of Design Tree

/Project
· The project used at the demo includes a copy of all the important files and code used

· Important folders are the

· /Pcores: Contains all the pcores this project used or modified

· /SDKProjects/oggplayer: Contains all the software associated with the project including the software core
/Overlap

· Contains all the code in the form of an ISE project needed to build the overlap and add core component.

· Important files described above

Ogg decoder

FSL

OPB

FPGA

ZBT Memory

FIFO

Asynchronous

FSL

Codec

AC 97

Voris Decoder

Controller

AC 97

Manager

Clock

Digital

Controller

Memory

External

MicroBlaze

Ogg + Vorbis decoder

FSL

OPB

FPGA

ZBT Memory

FIFO

Asynchronous

FSL

Codec

AC 97

Processor

FSL out

Sum / Select

Memory

Multiplier

Multiplier

FIFO

FIFO

Packet

Manager

FSL in

Overlap and

Add

Controller

AC 97

Manager

Clock

Digital

Controller

Memory

External

MicroBlaze

Processor

