ECEbH32 Digital Hardware: Individual Report
Hardware Ogg Vorbis Decoder Project
Jason Zebchuk

Jason Zebchuk
990836315

April 16, 2005



1 Introduction

1.1 Initial Objectives

The goals of this project were to build an Ogg Vorbis hardware decoder.
Preferably this coder was to use Lesleys grad work as a way of communicating
between the different modules.

The Ogg Vorbis audio decoding procedure is actually two separate pro-
cedures. First the Ogg framing system is used to separate packets which
are then decoded into audio according to the Vorbis specification. The ini-
tial plan was to do the Ogg portion in software while translating the Vorbis
portion into hardware.

Ogg Decoder

MicroBlaze
Processor
FSL

Asynchronous
FIFO

Externd
Memory AC97
Controller Controller

AC97
Codec

ZBT Memory

Figure 1: Initial Block Diagram

The design was to use pre-made components for the parts not directly
related to the Ogg Vorbis decoding. So we used the digital clock manager
(DCM), external memory controller (EMC) and FSL links from the EDK
libraries. The AC97 controller used was the result of one of the 2004 classes



projects. The only components original to this project were to be the Vorbis
decoder in hardware and the Ogg decoder in software. Figure 1.1 shows s
block diagram of the system we initial intended to create.

1.2 Outcome

Moving the entire Vorbis decode stage into hardware proved too ambitious
a goal given the time available. In the end only the overlap and add block
was moved into hardware and the remaining blocks remained in software,
as show in Figure 1.2. For more details on the various blocks shown in
this figure, please refer to the group report on the Hardware Based Ogg
Vorbis Decoder, by Mark Teper and Jason Zebchuk. Much work remains
on this project for the future. The resulting implementation is too slow to
be feasible for good quality music.

Ogg Decoder &

Vorbis Decoder

MicroBlaze
Processor

FSL
Asynchronous
FIFO

AC97
Controller

AC97
Codec

Externa
Memory
Controller

ZBT Memory

Figure 2: Final Block Diagram

To accelerate the decoding procedure, moving the inverse modified dis-
crete cosine transform (iMDCT) into hardware should be sufficient to pro-

2



duce acceptable performance. This might be difficult however because the
algorithm used for the iMDCT is difficult to execute in parallel. The algo-
rithm used in the software to compute the iMDCT runs in eight different
stages. Each stage requires access to the entire audio packet before it can
begin, making it difficult to simply pipeline the stages. We came up with
four ideas of how the iMDCT could be moved into hardware efficiently.

The first of these is to connect each phase of the transform with an FSL
reading and writing the packets from the FSL into an internal BRAM and
then writing them out on the next FSL. This solution would make testing
easier since each stage could be done independently. However, it is fairly
inefficient since it requires considerable overhead for the moving of large
quantities of data through the FSLs.

The second idea is to assign a BRAM block for each stage of the algorithm.
Once all the stages were finished, they would connect to the BRAM that
was used in the previous stage. Thus, instead of moving the data between
stages, we would just move the stages to the different BRAMS. This has the
advantage of requiring less complication and overhead from transferring this
considerable amount of data.

Another possibility is to select only portions of the algorithm to imple-
ment in hardware. As an example, a small part of the Butterﬂyélgorithm in
the iMDCT might be implemented in hardware. Such simple transformations
that perform simple manipulations on a range of data might be efficiently
incorporated, but we feel this would be most effective if the hardware blocks
had independent access to the memory, so that only an initial address needs
to be given to the hardware block.

Finally, it may be possible to find a more efficient algorithm that is more
suited to a hardware implementation since the algorithm used was designed
to be an efficiently implemented in software software in mind.

2 Individual Contributions

2.1 Overview

We broke the project down into two different streams, so that much of
the early work could be done individually, before the two stream naturally
merged. I worked on the software stream, while my colleague Mark worked
on the hardware stream.



The development of the software proceeded in several stages. The first,
and largest stage was to create a simple, bare-bones implementation of an
Ogg Vorbis decoder that would run on my GNU/Linux laptop. While I was
doing that, Mark was working on combining the various 6ff-the-shelfhardware
cores that we would need to use, to produce our base hardware platform. At
that point, the hardware and software streams would merge as we ported the
software to work on top of the Microblaze/FPGA platform. Then we would
proceed to move software stages into hardware one at a time.

That was the original plan, and that’s mostly how things happened, with
a few variations as we neared the end of the term. In the end, Mark started
work on the overlap and add module before I had a working version of the
software, and he also spent some time on adding fixed point arithmetic to the
software before I had ported the software to work on the Microblaze system.
In the end, I think the two major problems that we faced were being overly
ambitious to start with, and also taking too much time before beginning work
on our original hardware cores.

2.2 The Software Development Process

The Ogg Vorbis formats are both open and freely available. There are also
open-source libraries that are readily available to support these formats. De-
spite these freely available libraries, and several applications that make use
of these libraries to play Ogg Vorbis file, we decide to write our own Ogg
Vorbis decoder program.

The main reason for this is that we felt the time it would take to port
the available libraries and an application to work on the Microblaze would
be similar to the amount of time it would take us to write our own program.
As well, having our own program would make it easier to move some of the
functionality into hardware blocks, as well as making it easier to test that
our hardware blocks worked correctly.

In addition to this motivation, I felt confident that I was capable of writ-
ing the software in a relatively short period of time. I have experience in
programing in C, not only for school assignments, but also during the year I
spent doing an internship as a software developer. As well, this past summer
I worked as a software developer writing sound processing software in C++.
I have experience in implementing a fast Fourier transform algorithm, and I
felt confident in my ability to complete the Ogg Vorbis decoder. In the end, I
was successful in writing an Ogg Vorbis decoder, but it required about twice

4



as long as we had originally intended.

The major difficulties that I faced during the development of the software
was the vagueness of certain parts of the specification documents. Much of
the specification is provided in the form of pseudo-code. There is some dis-
cussion of the underlying concepts, but many of the key points are described
only in pseudo code. In addition, after looking at the official libraries that
implement the specification, I firmly believe that at least one portion of the
specification document is incorrect. Fortunately, I had access to the source
of the official libraries so I could look at their implementation for guidance.

After I had implemented the specification as I understood it from the
available documentation, I began trying to debug and verify my program.
Using the available libraries, and an example program that came with them,
I was able to verify each stage of the decode process in order. Without
this, it would have taken me considerably longer to get the program working
properly.

After I had finished the initial program that ran on my GNU /Linux lap-
top, I started porting it to work on the Microblaze. At the same time, my
partner Mark began converting my code to use fixed point numbers instead
of floating point. Since I had written the entire program, it was relatively
easy to get it working on the Microblaze. Of course, the initial port to the
Microblaze was several orders of magnitude too slow to be of any practical
use. In an effort to improve performance, I changed the iMDCT implemen-
tation to use static lookup tables to compute trigonometric functions instead
of computing them as required. Finally, T re-wrote the final stage of the
program to use the overlap and add module that my partner created.

Almost all of my time on this project was spent working on software
development. The time I spent working with the hardware, I was mostly
just trying to get the software to run on the Microblaze instead of my laptop.
Once Mark finished the overlap and add module, I worked on testing it on
the hardware, and wrote a program to pass reference data into the module
and compare the results. Thus, I was able to help Mark identify problems in
his module, that he was later able to observe in simulations as to fix.

2.3 Lessons Learned

Having our own software really simplified testing and debugging. Not only
was it much easier to get the code working on the Microblaze, but it was
easier to remove the portion that was eventually implemented in hardware.



Even thought it took longer than expected to write the software, after looking
at the code in the libraries that we might have used, I am certain that we
chose the right path. Even while I was trying to verify my implementation
by comparing the output of each stage with the same output in the reference
implementation, it was difficult to be sure that I was looking at the correct
point in the library.

As well, I was able to take the output from before and after the overlap
and add stage, and give them to Mark in a format that made it easy for him
to generate a ModelSim simulation to verify the design of his module. I then
used the same data, in a different format, to run a similar verification on the
actual hardware. Having real sample data to pass into the overlap and add
module and compare with the correct results made it much easier to test the
hardware module.

In addition to these benefits of having our own code, we also benefited
from using C++ to write the program. Mark converted the code to use fixed
point numbers, but instead of having to change every use of floating point
numbers, he simply had to implement a fixed point class which overloaded
the necessary arithmetic operators, then change the floating point definitions
to use the fixed point class. Having object oriented code also made it easy
to use the overlap and add hardware module that Mark created. I simply
had to replace the overlap and add class I had already written with a similar
class that instead passed the data to FSL connected to the overlap and add
module. Thus, using C++ turned out to have a number of unexpected
benefits.

The major problem that we faced with this project was the lack of suffi-
cient time to implement and debug hardware modules. Our original plan was
to complete the software first, then start the hardware. The main idea was
that writing the software first would make it easier to integrate the hardware
modules with the software, as well as providing a better understanding of
the decoding process. While both of these points proved to be true in the
end, we simply did not have enough time to develop hardware. It would have
been much better to start designing and implementing the hardware while
the software was still being written. The importance of hardware-software
co-design was definitely made clear.



3 Community Contribution

At the beginning of our project, Lesley Shannon approached us with a request
that we use communication modules that she was developing as part of her
research. In return, she offered us additional help to incorporate her modules
into our project. In the end, we decided not to use her modules because of
time constraints, but I would like to acknowledge her intentions, even though
we did not use her modules.

I do not think that anything I learnt would make a significant contribution
to the community. However, I do wish that I had known in advance that the
support for using C++ was adequate. Initially I had reservations about
using C++, and I was wary of using any advanced features of the language.
In retrospect, I believe my worries were undeserved, and I would encourage
people to take advantage of the benefits of using C++, as mentioned above.

One of the Xilinx tools that I used that I believe few other groups were
aware of is the XPS SDK. The SDK is a modified version of the open source
Eclipse project initiated by IBM. Xilinx has modified the platform to work
with their tools, and added an option to associate a software project in
Eclipse with an XPS project. I think the use of this tool is somewhat under
represented, and other groups might benefit from knowing of its existence.

4 Feedback to Xilinx

On the whole, I think Xilinx is doing a decent job with their development
tools. However, there are many instances where things seemed to be almost
right.

First, let me begin by saying that used the Linux version of the Xilinx
tools for much of this project. The biggest complain that I have is that little
effort seems to have gone into porting the code to work on Linux. On several
occasions, I would get an error when trying to start XPS. The error was
related to the middle-ware software that Xilinx used to allow their Windows
based code to run natively on Linux. I was unable to find any mention of
the errors I was getting anywhere on the Xilinx website, and I was only able
to solve the problem after finding mention of it on a support website for a
different application which made of the same middle-ware toolkit.

Another complaint that I have is the integration of the GUI and the com-
mand line tools. All of the real work of the GUI is done using the command



line tools, and as a result, I was able to do much of my development without
using the GUI. At the same time, it seemed that the GUI was necessary for
certain parts of the development process. The impression that I get is that
one should use either only the GUI, or only the command line tools, because
in using them together there is a certain lack of control that I find frustrat-
ing. If the EDK GUI was better, then it might be possible to rely on that
program, but the environment it provides still seems clunky and awkward,
despite the best efforts of Xilinx.

In addition to the general feedback above, here are a number of specific
complaints and suggestions in regards to the Xilinx tools:

The Linux GUIs are slow, and problems specific to the Linux applica-
tions are not well documented.

The XPS SDK is not very well integrated with the XPS. The XPS
should be more aware of SDK projects, and it should be capable of
building them without running the SDK.

More options should be added to the SDK that are specific to the XPS
EDK. Specifically, it should be easier to specify things like stack size
and location.

I had difficulty connecting the software debugger to the XMD when I
ran the XMD from the command line, but it seemed to work fine when
I started both from the within XPS.

It would be nice if I could use the normal gdb debugger, without the
GUI, to debug software.

The mb-gcc and mb-g++ programs seem to be based on older versions
of gcc and g++ respectively. The newer versions of these programs
have many advantages over older ones, especially g+, and I would
like to seem updated versions of mb-gcc and mb-g++ based on more
recent versions of their regular counterparts.

In discussions with my partner about FSLs vs. customs instructions,
we felt that the F'SL concept might possibly have been implemented as
a custom instruction. We found many uses were custum instructions
might have improved the performance of our application, but where
there might have been little, if any, benefit from using a module con-
nected through an FSL.



5 Course Feedback

I appreciated the format of the labs and of the course overall. The biggest
problem I found was learning how to use the tools while at the same time
trying to use them as part of the course project. I think there is enough to
learn in the lab to justify a full year lab. It would be nice if there was a
course in first semester where we had an opportunity to learn how to use the
tools before starting our projects. This would be especially helpful in giving
us an idea of what we should try to do for the projects.

The organization of the lectures does leave something to be desired. The
relative lack of reference materials was similarly disappointing. As a result of
not having a textbook, the lectures were the only real source of information
available, and with only two lectures a week it seemed that we were only
able to cover a limited range of topics with a limited amount of depth. I
think that the idea of creating a new text to meet the needs of this course
should be considered. Or at least the possibility of providing a compendium
of selected chapters from various texts to provide more depth of information
of the topics discussed in lecture.

Overall, I enjoyed the course, and I think the format works well. It might
be possible to start the projects a little earlier, but it would be difficult
to start thinking about the project before having a chance to gain some
appreciation for the Xilinx tools used during the project. I appreciate having
the project end a few weeks before the end of term. The reduced workload
during the last two weeks was greatly appreciated.



