

ECE 532 Digital Hardware: Final Project

Group Report
Photoshop Functionalities on FPGA

Group:
 Pearl Liu (990975307)

George Ng (990857355)

Date: March 28, 2005

Table of Contents

System Design Overview:...1

Goals...1
Original Design ..1
Final Design..1
Block diagram...2
Description of IP Blocks:..3

Outcome...5
Description of the Blocks: ..6

Custom Designed Blocks..6
CoreGen Blocks ... 10
Xilinx SVGA Controller and ZBT RAM Controller Blocks 10
Testbenches and Models ... 12

Description of the Design Tree .. 13
Instructions to run the system.. 16
Instructions to run the Matlab and Verilog Testbench .. 17
References... 18

System Design Overview:

Goals
The goal of the project was to implement a real-time video capture, Photoshop digital
filter processing, and display system on FPGA. The implementation platform is the
Virtex-II XC2V2000 FF896 Speed Grade –4 Development Board.

Original Design
The original design was to use a video capture core that would continuously capture
video data from a digital camera to ZBT RAM. The captured image would then be
processed by a Photoshop type of digital filter implemented in HDL code. The filtered
image would then be displayed on a VGA monitor using a VGA display controller.
The entire process would be performed in real-time.

Final Design
All parts of the proposed project were implemented except for the real-time video
capture component. This decision was taken to simplify our project. Instead of
capturing the image in real-time, an image was loaded from a separate project into the
ZBT RAM. A 32-bit (flipped row order) bitmap image file format was used. From our
research we found that the pixel RGB (red, green, and blue) components in a bitmap
are stored directly in consecutive bytes, where each byte represents the pixel color. To
simplify the design of the memory controller, we decide to use a 32-bit bitmap file
format over a 24-bit bitmap format (the 32-bit bitmap file format uses 24-bits to store
the color data and pads the remaining 8-bits). This was done since the ZBT RAM reads
out 32-bits at a time. In the case of 24-bit bitmaps, the RGB components of a pixel can
potentially straddle a 32-bit boundary, as result; multiple reads may be needed
performed to retrieve a single pixel, thus complicating the memory controller design.

The way our design works is that once there is image data in the ZBT RAM, it will
immediately send the data to the digital filter within the FPGA. The filtered data is
then passed on to a 32 bit x 32 deep FIFO using a custom designed ZBT memory to
FIFO controller. Once the FIFO becomes full, a FIFO to display controller is used
to transfer the filtered data out of the FIFO and to the SVGA display controller. The
SVGA controller provided by Xilinx handled the reads and writes from a ZBT video
memory bank within the display block and the filtered image would be immediately
displayed on the monitor.

 1

Block diagram
Digital Photoshop Filter and Display Blocks

 2

Bitmap image loader
Bitmap image loader is the direct implementation of lab m08. It is used to initially load
image data into a ZBT RAM bank 0. No further description is provided.
Lab m08 can be found at:
http://www.eecg.toronto.edu/~pc/courses/edk/modules/6.3/m08.pdf

Description of IP Blocks:

IP Block Functionality Origin
Custom Blocks
displaypattern.v Top level hardware

block which connects
the FIFO, ZBT
controllers, and
custom controllers

Custom design by
George and Pearl

mem2fifo_ctrl.v Takes image data from
ZBT RAM and inputs
it through the filter
and into the FIFO.

Custom Design by
George

 3

http://www.eecg.toronto.edu/~pc/courses/edk/modules/6.3/m08.pdf

fifo2disp_ctrl.v Takes image data from
the FIFO and inputs it
into display controller

Custom Design by
George

gblur.v Low pass filter code
that blurs an image

Custom Design by
Pearl

emboss.v High pass filter code
that embosses an
image

Custom Design by
Pearl

Xilinx Display Controller and ZBT RAM Controller
ADDR_BUS_INTERFACE.v Address bus interface

for ZBT RAM
controller

Xilinx SVGA IP

BM_MODE_SVGA_CTRL.v SVGA controller Xilinx SVGA IP
modified by
connecting the RAM
and SVGA controller
to the same
pixel_clock

CTRL_BUS_INTERFACE.v Control bus interface
for the ZBT RAM
controller

Xilinx SVGA IP

DATA_BUS_INTERFACE.v Data bus interface for
the ZBT RAM
controller

Xilinx SVGA IP

DRIVE_DAC_DATA.v Directs data to SVGA Xilinx SVGA IP
MEMORY_CTRL.v Memory controller

module of ZBT RAM
Xilinx SVGA IP

PIPELINES.v Provides pipelines for
data WRITES and a
latch for the data
READS in ZBT

Xilinx SVGA IP

SVGA_TIMING_GENERATION.v Generates timing and
control signal for
DAC & VGA output
connector

Xilinx SVGA IP

ZBT_CONTROL.v ZBT RAM controller
top level interface

Xilinx SVGA IP

Xilinx CoreGen
mem_fifo.v CoreGen FIFO

wrapper which is used
as a buffer to store
filtered data and send
to ZBT RAM of
display controller

Instantiated from
CoreGen

 4

Outcome
How Well It Works
Once a bitmap image was loaded into the ZBT RAM with the use of an external image
loader, we were able to blur a bitmap image and display the resulting effect on the
VGA monitor. We discovered that the VGA color output of the Xilinx board was not
accurate. All colors suffered from a tinge of green, especially the color black. We
suspect that this problem might be related to the DAC on the board. Although the
primary colors of red, green and blue were displayed accurately, more complex 24-bit
colors were not displayed accurately. To prove that we had not connected the color
components incorrectly to the display controller, we created a bitmap with the
reference RGB colors as well as more complex 24-bit colors on the same bitmap for
display. When the bitmap was displayed on the monitor, the RGB colors displayed
correctly while other more complicated colors were not.

Suggestion for Further Work or Improvement
Although a blur and an emboss Photoshop filter were created, they were both
implemented in different projects, which meant the user was unable to select the filter
of choice without reprogramming the FGPA. A C program was written to interface
with the FSL to enable the user to select which Photoshop effect to be done on the
bitmap image, but due to time constraint, the FSL was not integrated with the rest of
the system. Thus, further work would be to integrate the FSL with the final design to
allow filter selections.

Real-time image capture would enhance the “coolness” of the project. Due to time
constraints in figuring out the display controller and ZBT RAM controllers, there was
not sufficient time to investigate integration of a video capture core.

More advanced Photoshop filters could be implemented in hardware, potentially any
Photoshop filter imaginable. Photoshop filters implemented in hardware would have a
speed advantage over a software filter, especially on complex filter effects or large
images. More advanced filters would include radial blur, twirl, and ocean ripple effect
filters. These filters would probably involve the FFT core or large matrix
multiplications.

Decompression algorithms for different image formats could be investigated to allow
various types of pictures to be downloaded to the FPGA and processed. This would
save time in the loading process of the image since the compressed image would be
smaller than the uncompressed bitmap format we are currently using. This would
allow jpeg, gif image file format to be filtered.

 5

Description of the Blocks:

Custom Designed Blocks
displaypattern.v

The displaypattern module is the top-level hardware block. This is the block that is
downloaded into the FPGA. It instantiates the ZBT RAM bank 0 controller, the
SVGA video display controller on bank 2, memory to FIFO controller, FIFO to
display controller, the digital Photoshop filters, and the CoreGen FIFO. This block
ties the signals of the ZBT controller for reads from the ZBT RAM. This block also
drives the correct signals to the display controller to allow writing to the video RAM.
This module has a video RAM address counter used to draw the pixels from the FIFO
into the video RAM. The video RAM address counter stops when it reaches the corner
of the screen at 640x480 = 0x4B000.

mem2fifo_ctrl.v

The mem2fifo_ctrl.v controls the transfer of data from the ZBT RAM, through the
filter and into the FIFO. The controller is a Mealy type FSM. The behaviour was
tested in ModelSim by using a testbench called mem_and_fifo.v.

Module Functional Description:
The controller is designed to burst data from the RAM into the digital filter, until the
32 bit x 32 deep FIFO is filled. The data read from the RAM is 32 bits wide. The FIFO
write enable is raised after the initial four clock latency from the ZBT RAM to capture
the incoming data. When the FIFO raises the full flag, the mem2fifo_ctrl stops the
reads from the ZBT RAM and readjusts the ZBT RAM address counter. This is done
since there is there is a five clock latency between the when the full flag is raised and
when the RAM address counter knows to stop counting. The FSM continues this cycle
until the last bitmap pixel is read out from the ZBT RAM, where upon it raises the last
data flag to inform the fifo2disp_ctrl block to read out from the FIFO before it is full.

FSM State Diagram:

 6

IDLE
00

MEMREAD
01

EN_WR2FIFO
10

fifo_full = 1 || last_data = 1 /
mem_addr_ctr_en = 0

wr_en = 0

fifo_empty = 1 / mem_addr_ctr_en = 1
wr_en = 0

mem_delay_ctr = 4 / mem_ctr_en = 1
wr_en = 1

mem_addr_ctr_en = 1
wr_en = 1

mem_addr_ctrl_en = 1
wr_en = 0

reset
mem_addr_ctr_en = 0

wr_en = 0

fifo2disp_ctrl.v

The fifo2disp_ctrl controls the transfer of data stored in the FIFO to the display
controller. The controller is a Mealy type FSM. The behaviour was tested in
ModelSim using a testbench called mem_and_fifo.v.

Module Functional Description:
The controller is designed to read data from the FIFO and transfer it to the display
controller until the FIFO is empty. The FSM is triggered by either the full signal from
the FIFO or last_data signals from the mem2fifo_ctrl block. Data is transferred out of
the FIFO whenever the user_access_ok signal is high. A data_valid signal, which is a
flopped version of the read_en is also generated, since it takes one clock cycle for the
FIFO to output valid data after the read_en is raised.

FSM State Diagram:

 7

IDLE
00

WAIT
01

READ
10

fifo_empty = 1
fifo_full = 1 || last_data = 1 / read_en = 0

user_access_ok = 1 / read_en = 1

user_access_ok = 0 / read_en = 0

fifo_empty = 0 &&
user_access_ok = 1

/ read_en = 1

user_access_ok = 0 / read_en = 0

reset fifo_full = 0 / read_en = 0

gblur.v

This is one of the digital Photoshop filters created. The gblur module is designed to
provide a blurring effect on the bitmap image. The behaviour of the module was tested
in ModelSim using a testbench called gblur_tb.v.

Module Functional Description:
The module coded represents an 8th order Gaussian Finite Impulse Response low pass
filter to give the blur effect. The design is fully synchronous, with active-high
synchronous reset. The coefficients of the filter are implemented as unsigned 8-bit
words (unsigned integers) that are even-symmetric to guarantee that the phase
characteristic will be linear. The coefficients were chosen to give the filter a Gaussian
shape for its impulse response. The module processes 8 bits at a time – this would
represent red, green, or blue components of the 24 bit pixel. Each bit is weighted by
the coefficients that represent a Gaussian curve and summed to produce a filtered
pixel. The functional block diagram for the blur filter is shown below. Three instances
of this module are instantiated to process the RGB components of a single pixel. This
block looks at the FIFO write enable signal to determine if it should process new data
on the clock edge or hold the previous values in the registers until new data arrives to
be processed.

 8

Functional Block Diagram of Blur Filter:

emboss.v

This is one of the digital Photoshop filter created. The emboss module is designed to
provide an emboss effect on the bitmap image. The behaviour of the model was tested
in ModelSim using a testbench called emboss_tb.v.

The module represents a 6th order high pass filter to emboss the picture. Similar to the
blur filter, the emboss filter design is also fully synchronous with active-high
synchronous reset. The module also processes 8 bits at a time, similar to the structure
of the gblur module. However, a high pass filter has non-zero coefficients in the
numerator and denominator in its transfer function and is not coded as a FIR filter
because a FIR filter does not have feedback. The emboss module is coded as an Infinite
Impulse Response filter due to the need to account for the coefficients in the
numerator. The functional block diagram for the emboss filter is shown below. Similar
to the gblur module, three instances of this module are instantiated to process the RGB
components of a single pixel. This block looks at the FIFO write enable signal to
determine if it should process new data on the clock edge or hold the previous values
in the registers until new data arrives to be processed.

Functional Block Diagram of Emboss Filter:

Note: For coefficients that do not have numerical value implies the coefficient is 0. The
variables are shown as a general representation of an IIR filter.

 9

CoreGen Blocks
mem_fifo.v

The FIFO wrapper generated by CoreGen used to instantiate the 32 bit x 32 deep
FIFO. A FIFO is required between the digital filter and the display controller to buffer
the data since our filter can process data on every clock edge, while the write access to
the video RAM through user_access_ok may not be available on every clock edge.

Xilinx SVGA Controller and ZBT RAM Controller Blocks
BM_MODE_SVGA_CTRL.v

The BM_MODE_SVGA_CTRL module comes from the
BM_MODE_SVGA_CTRL.v file of the Bit Mapped Mode SVGA example design
from the Xilinx website. The modifications involved removing the part related to the
IO BUFG since we did not use this in our design. The user memory clock and user
memory ram clock was modified to connect to the system clock of 27 MHz such that
the ZBT memory was synchronized with the rest of the design. This module was
tested using Modelsim by inputting the clock and seeing if the correct time
information came out.

ADDR_BUS_INTERFACE.v

 10

The ADDR_BUS_INTERFACE module comes from the Bit Mapped Mode SVGA
example design from the Xilinx website. No modifications were made to this module.
This module was tested by running it in the FPGA, as part of the test to see if memory
contents could be displayed on a monitor. This module is also the same as the module
provided in the Xilinx ZBT RAM controller package.

CTRL_BUS_INTERFACE.v

The CTRL_BUS_INTERFACE module comes from the
CTRL_BUS_INTERFACE.v file of the Bit Mapped Mode SVGA example design
from the Xilinx website. No modifications were needed. This module was tested by
running it in the FPGA, as part of the test to see if memory contents could be
displayed on a monitor. This module is also the same as the module provided in the
Xilinx ZBT RAM controller package.

DATA_BUS_INTERFACE.v

The DATA_BUS_INTERFACE module comes from the
DATA_BUS_INTERFACE.v file of the Bit Mapped Mode SVGA example design
from the Xilinx website. No modification was made to this module. This module was
tested by running it in the FPGA, as part of the test to see if memory contents could
be displayed on a monitor. This module is also the same as the module provided in the
Xilinx ZBT RAM controller package.

DRIVE_DAC_DATA.v

The DRIVE_DAC_DATA module comes from the DRIVE_DAC_DATA.v file of
the Bit Mapped Mode SVGA example design from the Xilinx website. The
modifications involved adding a clk and reset signal, and adding code to display colour
bars for testing purposes. This module was tested using ModelSim, in conjunction
with the BM_MODE_SVGA_CTRL module.

MEMORY_CTRL.v

The MEMORY_CTRL module comes from the MEMORY_CTRL.v file of the Bit
Mapped Mode SVGA example design from the Xilinx website. This module was tested
by running it in the FPGA, as part of the test to see if memory contents could be
displayed on a monitor, and since it worked the first time no additional testing was
needed.

PIPELINES.v

The PIPELINES module comes from the PIPELINES.v file of the Bit Mapped Mode
SVGA example design from the Xilinx website. This module was tested by running it

 11

in the FPGA, as part of the test to see if memory contents could be displayed on a
monitor. This module is also the same as the module provided in the Xilinx ZBT
RAM controller package.

SVGA_TIMING_GENERATION.v

The SVGA_TIMING_GENERATION module comes from the
SVGA_TIMING_GENERATION.v file of the Bit Mapped Mode SVGA example
design from the Xilinx website. This module was tested using ModelSim, in
conjunction with the BM_MODE_SVGA_CTRL module.

ZBT_CONTROL.v

The ZBT_CONTROL module originated from the Bit Mapped Mode SVGA example
design. This module is also the same as the module provided in the Xilinx ZBT RAM
controller example. This module is also the same as the module provided in the Xilinx
ZBT RAM controller package.

Testbenches and Models
mem_and_fifo_tb.v

Testbench used to test interaction of mem2fifo_ctrl, fifo2disp_ctrl, Xilinx ZBT
controller, and CoreGen mem_fifo. This module instantiates mem2fifo_ctrl,
fifo2disp_ctrl, mem_fifo, zbt_control, and K7N163601A. The testbench simulates the
transfer of data from the ZBT RAM to the FIFO using mem2fifo_ctrl, and the transfer
of data out from the FIFO using fifo2disp_ctrl. To run this testbench execute the
mem_and_fifo_tb.do in the mem_and_fifo directory in ModelSim.

mem_and_fifo Testbench Block Diagram

 12

ZBT_tb.v

The functionality of the RAM controller was tested for read and write transactions.
This connects ZBT_CONTROL to the RAM model K7N163601A.v.

ZBT_tb Testbench Block Diagram

K7N163601A.v

Behavioral simulation RAM model found in module m08.zip, originally called
MMboard_ZBT_behmod.v.

Description of the Design Tree

A file called PhotoshopFunctions.zip is submitted along with this report.
Within the file, there are eight directories: doc, emboss, gblur, imgloader,
mem_and_fifo, ViewSVGAbmp_emboss, ViewSVGAbmp_gblur,
ViewSVGAbmp_orig. The tables below highlight the important contents within each
directory.

doc
Purpose: contains presentation slides
File Purpose
PhotoshopFunctions.pdf Final group report
Presentation.pdf Slides used for presentation during project

demo

emboss
Purpose: to testbench emboss filter
Note: The same matlab files contained in gblur directory were used to test the emboss
filter
File Purpose

 13

emboss.v Emboss filter HDL code
emboss_tb.v Emboss filter HDL testbench code
orange.jpg Original picture of an orange
orange_em.jpg Embossed picture of an orange

gblur
Purpose: to testbench blur filter
File Purpose
gblur.v Blur filter HDL code
gblur_tb.v Blur filter HDL testbench code
gblur.do Do script to test filter
image.in Input image text data for gblur_tb.v
image.out Output image text data from gblur_tb.v
convimg2hex.m Matlab script to convert image to

hexadecimal value for testing
convhex2img.m Matlab script to convert output text data

to an image file for display
orange.jpg Original picture of an orange
orange_blur.jpg Blurred picture of an orange

imgloader
Purpose: to download a bitmap picture to the ZBT memory
File Purpose
System.xmp Project file setup to download bitmap file
System.mhs Hardware specifications of imgloader –

contains ZBT memory, EMC, microblaze
Zbt.ucf Constraint file for ZBT memory and

clock pins assignment
Subdirectories
__xps Directory created by XPS
clk_align_v1_00_a Clock alignment files provided by

module08
data Contains system.ucf generated by BSB
etc Generated by BSB
microblaze_0 microblaze directory generated by BSB
pcores Provided by module08
zbtio ZBT memory directory generated by Base

System Builder – contains pao, mpd,
HDL code for memory

mem_and_fifo
Purpose: to testbench FIFO controllers with ZBT memory and FIFO
File Purpose

 14

mem_and_fifo.npl ISE Project file
mem_and_fifo_tb.v Testbench file to test ZBT ram,

mem2fifo_ctrl.v, fifo2disp_ctrl.v, and
CoreGen 32x32 deep FIFO

mem2fifo_ctrl.v Memory to FIFO controller module,
instantiated by mem_and_fifo_tb.v

fifo2disp_ctrl.v FIFO to display controller module,
instantiated by mem_and_fifo_tb.v

mem_fifo.v Xilinx Module for memory and FIFO
connection

K7N163601A.v Xilinx ZBT ram model, instantiated by
mem_and_fifo_tb.v

ZBT_CONTROL.v Xilinx ZBT controller, instantiated by
mem_and_fifo_tb.v

Subdirectories
__xps Directory created by XPS
clk_align_v1_00_a Clock alignment files provided by

module08
data Contains system.ucf generated by BSB
etc Generated by BSB
microblaze_0 microblaze directory generated by BSB
pcores Provided by module08
zbtio ZBT memory directory generated by Base

System Builder – contains pao, mpd,
HDL code for memory

ViewSVGAbmp_orig
Purpose: to display the original bitmap picture
File Purpose
view_svga.npl ISE Project file
view_svga.ucf Assigns system clock speed and pins for

display controller (VGA and ZBT
memory banks)

displaypattern.v Top level design of the project
Rest of directory contents are described in
Description of IP Block

All files need for the entire system
integration

Subdirectories
__projnav Generated by ISE as part of project tree
doc Generated by ISE
work Generated by ISE for testbenching

purposes

 15

ViewSVGAbmp_gblur
Purpose: to display the blurred bitmap picture
File Purpose
view_svga.npl ISE Project file
view_svga.ucf Assigns system clock speed and pins for

display controller (VGA and ZBT
memory banks)

displaypattern.v Top level design of the project
Rest of directory contents are described in
Description of IP Block

All files need for the entire system
integration

Subdirectories
__projnav Generated by ISE as part of project tree
doc Generated by ISE
work Generated by ISE for testbenching

purposes

ViewSVGAbmp_emboss
Purpose: to display the embossed bitmap picture
File Purpose
view_svga.npl ISE Project file
view_svga.ucf Assigns system clock speed and pins for

display controller (VGA and ZBT
memory banks)

displaypattern.v Top level design of the project
Rest of directory contents are described in
Description of IP Block

All files need for the entire system
integration

Subdirectories
__projnav Generated by ISE as part of project tree
doc Generated by ISE
Work Generated by ISE for testbenching

purposes

ZBT_CONTROL_tb
Purpose: performs simple read and write transactions using the Xilinx RAM controller
File Purpose
ZBT_tb.v Top level testbench
ZBT_tb.do ModelSim do file
img_data.mem RAM initialization data

Instructions to run the system
To view the original bitmap image on the SVGA monitor.

 16

1. Create a 32-bit “flip row order” bitmap in a program like Adobe Photoshop. Some
sample bitmaps are included in the imgloader directory.

2. Program the FPGA using the imgloader project.
3. Open XMD and download a bitmap image to the ZBT RAM. i.e. dow –data

intel.bmp 0x80600000. This will transfer the image over JTAG into the ZBT RAM.
4. Close XMD and XPS and open the ISE project ViewSVGAbmp_orig and generate

the programming file for displaypattern.v
5. Open Impact and download displaypattern.bit to the FPGA
6. The original bitmap should appear on the screen. If it is distorted flip the reset

switch on the multimedia board.
Note:
To view the Gaussian blur filter follow procedure 4 – 5 using the
ViewSVGAbmp_gblur project.
To view the emboss filter follow procedure 4 – 5 using the ViewSVGAbmp_emboss
project.

Instructions to run the Matlab and Verilog Testbench
To test the Verilog digital filters in Matlab.
1. Create a 48x48 size grayscale jpeg image. i.e. mypic.jpg
2. In Matlab:

M = imread('mypic.jpg');
convimg2hex(M);
To create the input data file for the Verilog testbench

3. In ModelSim:
do gblur.do
This will run the filter on the image and create the an output data file for Matlab

4. In Matlab:
A = convtxt2img(48,48);
colormap('gray');
imagesc(A);
To reconstruct the filtered data from the digital filter

 17

References

Michael D. Ciletti, Advanced Digital Design with Verilog HDL, 1st ed. , New Jersey:
Prentice Hall, 2002.

Alan V. Oppenheim and R.W. Schafer with John Buck, Discrete Time Signal
Processing, 2nd Edition, Prentice Hall Inc, 1998.

Create Bitmap Images Using a Text Editor
http://www.developeriq.com/articles/view_article.php?id=137

Bit Mapped Mode SVGA example source file
http://www.xilinx.com/products/boards/multimedia/docs/examples/BM_MODE_S
VGA.zip.

Multimedia Board user guide
http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Multimedia_UserG
uide.pdf

Multimedia Board datasheet
http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Multimedia_Schema
tics.pdf

ZBT RAM memory controller
http://www.xilinx.com/products/boards/multimedia/docs/examples/ZBT.zip

ZBT RAM behavioral simulation model
http://www.eecg.toronto.edu/~pc/courses/edk/modules/6.3/m08.zip

ZBT RAM data sheet
http://www.eecg.toronto.edu/~pc/courses/edk/doc/ZBT_k7n163601a.pdf
(Functional description of page 8 particularly useful)

Xilinx synchronous FIFO data sheet
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf

Connecting Customized IP to the MicroBlaze Soft Processor Using the Fast Simplex
Link (FSL) Channel
http://www.xilinx.com/bvdocs/appnotes/xapp529.pdf

 18

http://www.developeriq.com/articles/view_article.php?id=137
http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Multimedia_UserGuide.pdf
http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Multimedia_UserGuide.pdf
http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Multimedia_Schematics.pdf
http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Multimedia_Schematics.pdf
http://www.xilinx.com/products/boards/multimedia/docs/examples/ZBT.zip
http://www.eecg.toronto.edu/~pc/courses/edk/modules/6.3/m08.zip
http://www.eecg.toronto.edu/~pc/courses/edk/doc/ZBT_k7n163601a.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp529.pdf

	System Design Overview:
	Goals
	Original Design
	Final Design
	Block diagram
	Description of IP Blocks:

	Outcome
	Description of the Blocks:
	Custom Designed Blocks
	CoreGen Blocks
	Xilinx SVGA Controller and ZBT RAM Controller Blocks
	Testbenches and Models

	Description of the Design Tree
	Instructions to run the system
	Instructions to run the Matlab and Verilog Testbench
	References

