

ECE532 Digital Hardware

Real-Time Audio Processing

Group Report

28th March, 2005

Ajmal Khan 990843735
Mohammad Tariq Rafique 991016734

Table of Contents
TABLE OF CONTENTS ..2
1 OVERVIEW...3

1.1 PROJECT GOALS ..3
1.2 SYSTEM OVERVIEW...3
1.3 BLOCKS OVERVIEW...4

2 OUTCOME ..5
2.1 FURTHER WORK & IMPROVEMENTS..5

3 BLOCK DESCRIPTIONS ..5
3.1 AC97 CONTROLLER ..5
3.2 FFT/IFFT..5
3.3 EQUALIZER..8
3.4 FFT CONTROLLER...10
3.5 ECHO...11
3.6 MICROBLAZE [5]...11

4 DESIGN TREE ..12
5 REFERENCES...13

1 Overview

1.1 Project Goals
The objective of this project was to implement Real-Time Audio Processing capability in
the frequency and time domain using the Xilinx Multimedia Board. For frequency
domain processing, we would provide the ability to manipulate the gains of select
frequencies (an equalizer) and for time domain, the ability to generate an echo.

1.2 System Overview

Figure 1 – System Block Diagram, excluding Echo Block

The AC97 is used to capture audio data, which is then buffered on the MicroBlaze until
sufficient samples have been accumulated to complete a frame. The data is then sent to

the FFT and the FFT Controller is used to initiate the Fourier transform from the
MicroBlaze. The equalizer multiplies the frequency coefficients from the FFT block and
then forwards the data to the IFFT input buffer. Once this is complete, the MicroBlaze
signals the IFFT Controller to begin the inverse operation. Upon completion, the
MicroBlaze reads back the data and sends it to the AC97 controller for playback.

Note that Figure 1 does not include the echo capability, since we were unable to
incorporate the echo block into the complete system due to lack of time. The diagram
below shows how the echo block was implemented on a separate system.

Figure 2 – Block diagram of echo block implementation

Here the echo block was connected to the AC97 directly using the FSL bus. The
MicroBlaze was simply used to initialize the AC97 Controller through the OPB.

1.3 Blocks Overview
The AC97 Audio controller was code modified by students taking ECE532 in 2004. It
allows for playback and recording using the FSL bus.
The FFT & IFFT blocks provide FSL interfaces to the Xilinx implementation of the
Fourier Transform and the inverse. These blocks ensure that there are enough samples
to the do the transforms and provide a mechanism to extract the data once the
transforms are complete.
FFT & IFFT controllers simply send initiation commands to the FFT & IFFT blocks
through the MicroBlaze and read back scale factor information.

The Equalizer applies gains to the frequency components generated by the FFT.
The Echo Block provides applies an echo effect to the sound currently being played
back.

2 Outcome
We are able to play back sound using by taking the Fourier transform of the incoming
data and then applying the inverse transform. The sound is sometimes distorted as if
the AC97 playback was saturating. This is because the FFT and IFFT apply scaling
factors to utilize the full dynamic range available from 16 bits.
We have been able to extract the scaling factors from the FFT and IFFT, but are unable
to utilize them to scale the audio.
The equalizer has been implemented, but can only apply fixed gains that are set at
compile time through the block ram initialization file in ISE.
The Echo Block has been implemented separately but has not been integrated with the
whole system due to Block RAM size restrictions on the FPGA.
The User Interface to the project has not been implemented.

2.1 Further Work & Improvements
We need to effectively scale the data being received from the FFT and IFFT blocks so
that the AC97 output does not saturate and that the sound plays at a constant volume.
Currently the MicroBlaze is being used for transferring data and working with mono
audio. In the future we can connect all the components directly through the FSL bus.
This would free up the MicroBlaze for other tasks such as managing the Graphical User
Interface. This user interface can be implemented through a monitor and a mouse
connected to the PS/2 port on the multimedia board.
To overcome the Block RAM restrictions on the FPGA we can use external ZBT
memory to access the echo data.

3 Block Descriptions
Our project used several IP blocks, which are detailed below.

3.1 AC97 Controller
The AC97 controller was used to provide an FSL interface to the onboard audio codec.
It was configured to record and playback using the FSL bus. The block was written by
students taking ECE532 in 2004 and can be found on the ugsparc system at
/nfs/ugsparcs/cad/cad/cad2/ece532s/2004projects/ac97controller-driver/design_fsl.zip.

3.2 FFT/IFFT
The FFT and IFFT block were used to transform the audio stream to/from the frequency
domain. These blocks were written using Xilinx’s FFT core v3.1 [1]. The blocks act as
an interface to Xilinx’s FFT core and their functionality is summarized in Figure 3 and
Figure 4.

Is Data Available in Input
FIFO and Has Start Control

Been Signalled?
No

Wait 1 Clock Cycle

Read In 512 Samples From
Input FIFO and Send to

FFT Core

Want Until FFT Core
Signals Done

Wait 5 Cycles For Data to
Unload

Write FFT Frame to Output
FIFO

Signal
Done

Control

Signal FFT Core to Load
and Process Data

Signal FFT Core
to Unload Data

Figure 3 – Functionality of FFT block.

Is Data Available in Input
FIFO and Has Start Control

Been Signalled?
No

Wait 1 Clock Cycle

Read In 512 Samples From
Input FIFO and Send to

FFT Core

Want Until FFT Core
Signals Done

Wait 5 Cycles For Data to
Unload

Write Audio Frame to
Output FIFO

Signal FFT Core to Load
and Process Data

Signal FFT Core
to Unload Data

Figure 4 - Functionality of IFFT block.

As can be seen, the only difference between the FFT and IFFT is the external control
signaling done. Since the FFT core requires a 16-bit real and imaginary component
every clock cycle, it was decided to use the 32 bits of the FSL bus to store the real and
imaginary components of the FFT. The real component was stored in the upper 16, and
the imaginary in the lower 16. That way, each element in the FSL contained both the
real and imaginary component of the current sample and both could be read out in 1
clock cycle.

The FFT core provided by Xilinx comes in 3 flavours: pipelined (the fastest and
most resource consuming) and radix-4 and radix-2 (the slowest and least resource
consuming), both of which are meant for burst mode processing. We used the radix-2
FFT and generated it using the parameters in Table 1.

Parameter Value
Transform Length 512
Input Data Width 16

Phase Factor Width 16
Optional Pins None

Scaling Options Block Floating Point
Rounding Modes Convergent Rounding

Memory Options - Data Block RAM
Memory Options – Phase Factors Block RAM

Table 1 - Parameters used to generate the FFT core.

 In order to use this block in XPS, minor changes had to be made to the block
data files. The MPD file had to be changed to include the STYLE = MIX option, which
instructs XPS that this block uses both netlists and HDL. Also, a BBD file was created
which listed the two netlist files used by the block that were generated using ISE.
 Before implementation, the block was tested using an HDL test bench in
ModelSim. The FFT and IFFT block were tested separately. We tested using a
constant value as input to the FFT and compared the output with the expected value of
only DC. The resultant DC output was used as input to the IFFT and compared with the
original constant input. Also, alternating values of 32767 and –32767 were FFT’ed to
make sure no overflow issues occurred and the result was compared to MATLAB. The
results verified the successful operation of the block, however it was noticed that the
output was scaled incorrectly. From the simulation, it was realized that the blk_exp
output from the FFT core could be used to scale the resulting output correctly. The
blk_exp reports how many bits the input to the current frame was shifted right. We
know each input frame must be divided by 512, or shifted right 9 bits. Thus, we were
able to use the amount the FFT and IFFT shifted by and compensate the output
accordingly.
 Upon implementation of the block in hardware, we realized that it was not
working correctly. We were able to take the output of the FFT and used MATLAB to
invert it to determine what signal the FFT block transformed. We found out that the FFT
block had transformed an input that was delayed by 1 sample, which indicated that the
block was sending input data to the FFT core 1 cycle too late. However, this
contradicted the results of our simulation, which indicated correct timing. This may be a
bug in the FFT core simulation files or related to some other issue that we are not aware
of. We were able to fix the problem by sending data to the FFT core 1 cycle sooner.

3.3 Equalizer
The equalizer block performs the processing on the FFT data. Each frequency bin of
the input is multiplied by a gain that is variable. In order to allow fractional
multiplication, the gain used was a fraction of 2. For example, if the gain is 4, the input
is multiplied by 4 and then shifted right 1 bit, to provide a total gain of 2. This provides
gain increments of 0.5, which was deemed suitable for our purposes. The block uses
Xilinx’s Dual Port Block Memory v6.1 [2] and Multiplier v7.0 [3](note, referenced
documentation is for older version of core, since newer version is not available online)
cores. The dual port memory is used to store the gains to apply to the FFT frame. Dual
port memory was used so that the gains could be updated without interfering with the
multiplication process. Two multiplier cores were used to perform the multiplication for
both the real and imaginary components of the input frame. The functionality of the
block is summarized in Figure 5.

Is Data Available in Input
FIFO? No

Multiply Real and Imaginary
Input by Gain Value

Write Out Processed Data
to Output FIFO

Read Current Gain Value

If Current Frame
Processed,
Signal Done

Figure 5 - Functionality of equalizer block.

The dual port memory was configured with the parameters in Table 2.

Parameter Value
Memory Size – Width A 16
Memory Size – Depth A 512
Memory Size – Width B 16

Port A Options Read Only
Port B Options Write Only, No Read On Write

Port A Design Options Handshaking Pins
Port A Design Options – Pin Polarity Rising Edge Triggered, Active High

Port B Design Options Handshaking Pins
Port B Design Options – Pin Polarity Rising Edge Triggered, Active High

Primitive Selection Optimize For Area
Simulation Model Options Disable Warning Messages

Initial Contents – Global Init Value 2
Table 2 – Parameters used to generate the dual port block memory core.

The multipliers were configured with the parameters in Table 3.

Parameter Value
Multiplier Type Parallel

Multiplier Type – Multiplier Construction Use 18x18 Multiplier Blocks
Multiplier Type – Virtex II Multiplier Optimization Speed

Layout Create RPM
Layout - Shape Rectangular Shape
Input Options Register Inputs

Input Options – Port A - Width 16
Input Options – Port A – Data Type Signed

Input Options – Port B – Width 16
Input Options – Port B – Data Type Unsigned

Output Options - Width 32
Output Options Registered

Handshaking Signals ND, RFD, RDY
Pipeline Minimum Pipelining

Table 3 - Parameters used to generate the multiplier core.

 Since we are multiplying the input, it is necessary to check for overflow after
applying the gains. Checking for overflow was done in two cases: for negative
numbers, if bits 31 to 16 are not all 1’s, overflow has occurred, in which case the output
is set to the largest 16-bit negative number, -32768. For positive numbers, if bits 31 to
16 are not all 0’s, overflow has occurred, in which case the output is set to the largest
16-bit positive number, 32767. If overflow has not occurred, then the 32-bit result of the
multiplication is shifted right 1 bit and the lower 16-bits are taken as the result.
 As with the FFT cores, the same modifications had to be made to the relevant
data files in order for the block to use the Xilinx cores. Unfortunately, there was not
enough time to fully simulate the block before implementation. Only a single case of
non-overflow input was tested, which worked correctly. Therefore, it is not entirely
unexpected that the equalizer core did not function correctly in hardware. Also, the
second FSL interface to the block that would allow for updates to the gains was not
implemented either. The block as it currently is, simply takes input samples and
multiplies by 2 and then shifts right 1 bit, effectively applying a gain of 1 to all
frequencies.

3.4 FFT Controller
The FFT controller is used to communicate with the FFT blocks via the MicroBlaze. The
controller performs two functions: it signals the FFT to start processing and it reads
back the blk_exp value of the FFT blocks. The functionality of the controller is
summarized in Figure 6.

Is Data Available in Input
FIFO? No

Yes, Read Data
From Input FIFO
and Signal Start

Control

Is There a Scale Value to
Output? No

Yes, Write Scale
Factor to Output

FIFO
Figure 6 - Functionality of FFT controller.

Two controllers were used in our design: one for the forward FFT and another for the
inverse FFT. The controller for the FFT block is used to begin processing on the current
audio frame and to read back the scale amount for the forward FFT. The IFFT
controller is only used to read back the scale factor used, since it is signaled to start by
the Equalizer block.
 The controller does not use any other IP, since it is a fairly simple block. Also,
simple simulations were carried to make sure the block was responding correctly to
external requests.

3.5 Echo
The echo block adds an echo effect to incoming audio data. The block uses Xilinx’s
Single Port Block Memory v6.1 [4] core as a buffer. The block implements an FSL
Interface to read and write audio data. The buffer is used as a circular buffer. Reads
begin from the start of the memory, while writes start at the end of the memory. After
every write into the echo block, a read is performed while the read and write pointers
are incremented. Since the size of block memory is a power of 2, the appropriate bit
size can be chosen for the address registers such that they wrap around upon overflow.
The block memory was generated using the parameters in Table 4.

Parameter Value
Memory Size – Width 16
Memory Size – Depth 16384

Write Mode No Read on Write
Port Design Options None Selected

Output Register Options None
Design Options – Pin Polarity Rising Edge Triggered, Active High

Primitive Selection Optimize For Area
Simulation Model Options Disable Warning Messages

Initial Contents – Global Init Value 0
Table 4 – Parameters used to generate the single port block memory

3.6 MicroBlaze [5]
This block was taken from the library. We used version 3.00a with default parameters,
except for the parameter C_FSL_LINKS, which was set to 4 in order to have 4 FSL links
connected to the Microblaze. The reference clock frequency and bus frequency were
both set at 27 MHz and 64 KB of local data and instruction memory were used. Also,
XMD with software debug stub was used for debugging purposes. The MicroBlaze was
used to buffer and window the incoming audio stream to send to the FFT core and to
display and process the user interface. The functionality of the MicroBlaze is
summarized in Figure 7. Testing the software code and hardware block functionality
was done using the XMD stub and GDB.

Read 256 Samples From
AC97 Controller

Append New 256 Sample
Block To Previous 256

Sample Block To Create a
512 Sample Frame

Window Input Frame with
Triangle Window

Signal FFT Controller to
Start

Read In Scale Values From
Controllers

Read and Scale 256
Samples From IFFT Block

Sum Previous 256 Sample
Block to Current 256

Sample Block

Write 256 Samples to AC97
Controller

Read, Scale and Save
Remaining 256 Samples

From IFFT Block

Write Frame to FFT Block

Figure 7 - Functionality of MicroBlaze.

4 Design Tree
Our design tree is organized as follows. Each hardware block has a directory
“name_of_block_core”. Each block has two subdirectories: one directory for the ISE
project of the block that contains all design files and test benches and a second
directory that is to be copied to the pcores directory of an XPS project directory. The
XPS project directory is under the directory “project” and contains the final hardware
setup. That is, the AC97 controller, FFT/IFFT blocks, FFT controllers, equalizer and the
MicroBlaze. The software is setup to read 512 samples of audio from the AC97
controller and send the frame off to the FFT block. The FFT block passes the frame
onto the equalizer block which then finally passes the frame to the IFFT block. The

audio data is then read back and sent to the AC97 controller to output. The following is
a list of the hardware blocks included in our design tree:

• echo_block – the echo block
• eq_core – the equalizer block
• fft_core – the FFT block
• fft_ctrl_core – the FFT controller
• ifft_core – the IFFT block
• inbuf_core – block from initial design that was to be used to buffer input data
• led_core – simple block used for debugging purposes to control the LEDs
• m2s_core – block from initial design that converted the stereo audio stream to

mono
• s2m_core – block from initial design that converted the processed mono audio

stream to stereo

The testEchoBlock directory contains the XPS implementation and demonstrates the
echo block. It also contains a preliminary user interface in
testEchoBlock/code/testEchoBlock.c

The “doc” directory contains our project documentation, namely, this report, and our
individual reports as well, in PDF format.

5 References

[1] Xilinx Intellectual Property: Fast Fourier Transform, “Fast Fourier Transform
v3.1”, November, 2004,
http://www.xilinx.com/ipcenter/catalog/logicore/docs/xfft.pdf

[2] Xilinx Intellectual Property: Dual-Port Block Memory, “Dual-Port Block Memory
v6.1”, May, 2004,
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dp_block_mem.pdf

[3] Xilinx Intellectual Property: Multiplier Generator, “Multiplier Generator v6.0”,
Novemeber, 2002,
http://www.xilinx.com/ipcenter/catalog/logicore/docs/mult_gen.pdf

[4] Xilinx Intellectual Property: Single-Port Block Memory, “Single-Port Block
Memory v6.1”, May, 2004,
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sp_block_mem.pdf

[5] Xilinx: MicroBlaze Resource Page, “MicroBlaze Processor Reference Guide”,
August, 2004, http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf

http://www.xilinx.com/ipcenter/catalog/logicore/docs/xfft.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dp_block_mem.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/mult_gen.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sp_block_mem.pdf

	Overview
	Project Goals
	System Overview
	Blocks Overview

	Outcome
	Further Work & Improvements

	Block Descriptions
	AC97 Controller
	FFT/IFFT
	Equalizer
	FFT Controller
	Echo
	MicroBlaze [5]

	Design Tree
	References

