

Interactive Video Game

Tim Li Leo Hwang

The Project

- A video game where the user interacts by making gestures into a camera
- Video game elements are superimposed onto the person's outline, then displayed

Initial Goals

- Video output for display
- Video input for user control
- An outline detection scheme to capture the user's actions
- 4. A game with which the user can interact

Results

- Similar to initial goals, but
 - User holds a coloured flag instead of making gestures
 - Video output is not as clean as we would want

Final Design

Project Blocks

- Video Output (hardware)
 - From Xilinx Multimedia Board Example
 - Modified to work in XPS
- Video Input (hardware)
 - Took Lesley's video_input block and the standalone ZBT controller
 - Made a Verilog piece to connect the two parts and deciphered the signals correctly

Project Blocks (cont.)

- ZBT bank switcher (hardware+software)
 - Custom block, acts as a big MUX between three ZBT RAM chips
 - Rotates modules' (camera/processing/monitor)
 connections between the memories
 - Switch buffers when a signal is toggled from the Microblaze (via GPIO)
 - Switching is aligned to vertical blanking interval
 - Good, because modules can work without modification and in parallel

Project Blocks (cont.)

- Detecting user's motion (software)
 - User holds and moves a red flag
 - Implemented a detection algorithm which gives a rough location of the red flag
- Video Game (software)
 - Takes input from the user detection block
 - Draws elements into the ZBT memory (via EMC)
 - Rotates memory buffers by toggling the ZBT bank switch block

Design Process

- Try to get blocks to work on their own
 - Integrate by adding bit by bit together
 - Test in between each addition

- Video Output was working first in ISE
- Modified so it would work in XPS

Design Process (cont.)

- 3. Added a simple version of the ZBT bank switcher
- 4. Video Input working in ISE
- Modified to work in XPS (like for video out)
- Extended the ZBT bank switcher to accommodate for video input

Design Process Illustration

Design Process Illustration (cont.)

What We Learned

- How to use Xilinx tools and the organization of files
- Tools have room for a lot of improvement
- NTSC format
- Some Verilog
- ZBT memory control

Demonstration

Problems Encountered

- Video output and input cores working in ISE, but cannot import into XPS
- Problems with video output showing random dots
- Video input showing false colours at edges
- Program data segment getting overwritten

Video In/Out Cores and XPS

- Want to use cores in XPS, but get many errors
- Solutions:
 - Convert HDL module names to lowercase
 - Replace OBUFs with assign
 - Separate IOBUFs into separate _I, _O, _T wires

Dots in Video Output

 Dots would appear in the video output, when controlled by Microblaze program

Solution:

- Our output frequency was slightly off the specs, 40.5Hz instead of 40Hz -> attached DCM multiplier/divider to 50MHz clock
- Resulted in less dots appearing
- Also synchronized drawing program to VSYNC signal

Video Input and False Colours

- False colours esp. around edges
- Possible Solution:
 - Modify YCbCr -> RGB module
 - But this was not pursued, in order to work on more critical pieces

Memory Getting Overwritten

- Using the ZBT EMC, variables in a program would be reset while executing
- Solution:
 - Wizard project creation placed data segment into ZBT memory, which was cleared on commands like ClearScreen()
 - Forced the placement of text/data/stack/etc into local memory by modifying program>LinkScr