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Overview 

Introduction 
Vocoders are used to compress audio information in multimedia and 

communication systems.  Specifically, vocoders are typically used to encode voice 
information by modeling speech so that the salient features are captured in as few bits as 
possible.  They are also commonly used in musical applications to achieve synthetic, 
robot-like sounds from acoustic sources.   

 
Channel vocoders are a subset of vocoders that achieve compression by breaking 

down the signal content into frequency components.  Analog vocoders use sub-band 
filtering (the process of applying a bank of band-pass filters to the audio signal) to 
achieve this frequency decomposition.  Because voiced sounds can be approximated by 
sinusoids, a periodic pulse generator recreates voiced sounds.  Since unvoiced sounds are 
noise-like, a pseudo-noise generator is applied, and all values are scaled by the energy 
estimates given by the band-pass filter set.  A channel vocoder can achieve an intelligible 
but synthetic voice using 2,400 bps. 

 
The real-time channel vocoder we developed works by analyzing the frequencies 

in the modulator (voice) signal, splitting them into bands with a fast fourier transform 
(FFT), finding the magnitude of each band, and then amplifying the corresponding bands 
of a carrier signal by that magnitude.  Typically the carrier will be a frequency-rich signal 
such as noise. 
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Figure 1- System Block Diagram 



 
In order to create our vocoder, we needed to use the AC97 Core (from the AC97 

Project, ECE532 2004) to record and output audio, FFT Core (from CoreGen, 
XFFT_v3.1) to transform audio data into the frequency domain, UART to communicate 
text to the monitor, and FSL and OPB instances to communicate and control the cores 
from the Microblaze.  

 
We developed the FFT controller to send/receive data from the FFT core via FSL, 

and to latch control and configuration signals from the OPB Bus.  Since the FFT Core 
works in burst mode, the input FSL to the FFT Controller must be filled with the same 
number of samples as the FFT point-size.  For example, when performing a 512-point 
FFT, the user application must transfer 512 audio samples onto the FFT’s FSL input.  
The FFT Core will begin calculation and automatically write the results back to the FSL 
bus once the appropriate command is written onto the OPB Bus at the address of the FFT 
Controller.  This command specifies the scaling schedule, point size, and direction 
(forward/inverse) of the FFT operation.   

 
The user application (‘system.c’) achieves vocoding by multiplying the 

coefficients of the left and right audio channels.  Typically, the user will input voice on 
one channel and white noise on the other.  Please see outcomes and future work sections 
for suggestions on improving the application software. 

 

Outcome 
 The streaming FFT and IFFT operations work flawlessly on streaming audio at 
the standard CD quality sampling rate of 44.1 kHz.  Recovered audio from the transform 
operation sounds identical to the source material when input levels are adjusted 
appropriately (to avoid clipping from loud sounds).  The vocoder operation is over-
zealous and attempts to modify the entire carrier spectrum by the spectrum of the 
modulator.  For example, the vocoder operation will multiply all 512 coefficients from a 
512-point FFT, which is unnecessary to achieve the intended effect.  Typical vocoders 
used in musical applications use only 8/16/32 channels (to achieve data compression).  
As a result, our vocoder operation results in a voice that sounds like a robot talking under 
water.  It’s a very interesting effect but it is unnecessarily computer intensive (the 
coefficient multiplications are performed entirely in the Microblaze) and is not the 
intended effect. 
 
 A very simple fix to achieve 32-band vocoding with the available software is to 
simply drop all but 32 channels in the transform of the modulator. So, for example, using 
a 128 point FFT we would preserve 32 points (in the frequency range of voice) and 
discard the other 96 coefficients.  
 
Future Work 

Now that the FFT works perfectly, many other frequency domain functions can be 
performed in addition to vocoding, such as equalizers, frequency shifting/pitch alteration 



etc.  Extension to 2D FFT for video applications will require a reduction in the depth 
parameters of the FSL if a second FFT is instantiated, since our design already uses up 
almost all of the BRAM on the FPGA. Since the audio sounds better when using a larger 
FFT (a 1024pt FFT sounds better than using a 64pt FFT), we would recommend reducing 
the size of the FSL to the AC97 Core. Multiple reads from the AC97 could be used to fill 
up one FSL to an FFT (since the FSL must be at least as large as the number of data 
points used by the FFT). 
  

Block Description 
AC97 Codec 

We used the core and drivers from the AC97 Project (2004 ECE532 project) to 
record and output audio. We changed the init_sound function in the AC97.c driver to use 
the RCA audio jacks in order to receive two independent channels of input (see the 
LM4249A datasheet for the required register values). The AC97 core that we used had an 
FSL interface for data transfer from the Microblaze and an OPB interface for control. We 
noticed that when we used the FSL to get large amounts of data from the AC97, the FSL 
depth had to be set to twice the actual sample size to get good sounding audio (so if we 
were trying to get 512 samples at once, the FSL depth had to be 1024). We aren’t sure 
why this occurs, but it’s important to note (this also puts constraints on the size of the 
FSL depth, since we were running short on BRAM when using large FSL depths).   
 
FFT Controller 

We used COREGEN to instantiate the XFFT_v3.1, 2048pt Radix-4 burst mode 
FFT core within our FFT controller. This core had a bug for CoreGen v.6.3i. This was 
fixed by patching with the appropriate service pack. In order to integrate the core we had 
to create VHDL wrappers for a controller that communicated with FSL and OPB. The 
OPB had control signals to start the FFT operation, as well as specify scaling, direction 
(FFT or inverse FFT), and size (of the N-pt FFT). The data to and from the FFT core was 
transferred through two FSL paths. The VHDL controller managed the connections 
between the various components and achieved proper timing through the use of two state 
machines.  See Figure 2 for an illustration of these connections.  
 
 The OPB state machine and interface handler are responsible for initiating an FFT 
calculation and configuring the FFT core beforehand.  FFT configuration values for 
length, scaling schedule, and direction (forward/inverse) are latched from the OPB data 
bus when a chip select signal is raised.   
 
 The FSL state machine will begin emptying the contents from the FSL input bus 
when the OPB state machine has completed configuration of the FFT core.  Results of the 
calculation are immediately written back to the FSL output bus and made available to the 
Microblaze processor. 
 

We created a test-bench for the FFT controller, with a model of the FSL and OPB 
behaviour. This test-bench was used to exhaustively test the FFT before we tested in 
hardware. We should have implemented the FSL and OPB models using the actual cores 



instead of modeling the behaviour ourselves, since we ran into a number of problems due 
to incorrect assumptions about the FSL/OPB behaviour. We fixed all the problems with 
the test-bench and it now accurately models the FFT Controller and communication with 
the FSL and OPB.  
 

 
Figure 2 - FFT Controller Functional Block Diagram 

 
FSL 

One set of FSLs was used to communicate with the AC97 core and another set 
was used for communicating data to the FFT. The FFT Controller that we wrote and the 
AC97 controller from the AC97 Core managed data transfer onto and off the FSL. We 
created a Modelsim test-bench and test-vectors to verify the operation of the FSL and 
determine the correct timing to use in communicating with the FFT controller that we 
built. 
 
OPB 
The OPB was used to send control signals to and from the AC97 core and FFT core. 



 
UART 
The UART was used for debugging purposes, and can also be used to display text from 
software.  
 
 

Design Tree 
 
1)  hw - contains rtl, testbench, and Modelsim scripts.  Also contains  
    a pcore directory that can be dropped into other XPS projects.   
 
2)  sw - contains system.c source file for implementing vocoding using 
    fft core.   
     
3)  ise - contains 'hw' contents in ise project 'fft_controller', ready to run 
    presynthesis simulation by typing 'presynth.do' within project directory 
    from Modelsim prompt.  Another project entitled 'fsl' was the ise project 
    we used to verify the operation of the fsl links used in the vocoder. 
     
4)  xps - contains 'sw' contents and 'pcore' contents in xps project format, 
    ready to run in fft/ifft audio mode with vocoding off. 
     
5)  doc - contains final report 


