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1.  Overview 
This project uses the Xilinx Multimedia board and the MicroBlaze embedded processor 
to function as a music player similar to Apple’s iPod mp3 player.  This project was built 
based on last year’s Guitar Project and AC97 controller project to include playback 
control and storage of recorded audio.  The audio format used is 16-bit PCM data.   
 
The main storage medium is the Compact Flash (CF) slot, accessed through the Xilinx 
System ACE interface.  Music can therefore be recorded to and/or retrieved from CF 
media.  Additionally, it also features storage and playback using on-board ZBT RAM in 
case if compact flash is not present. 
 
The playback control status of the system will be displayed using the RS232 serial 
CONPORT connection connected to a computer screen.  It will tell the user if the 
system is playing back data, recording data and control audio processing options. 
 
The main goal of this project is to show that it is possible to use the microprocessor to 
access the Compact Flash hardware to store and retrieve data.  Access to the Compact 
Flash resource increases the number of uses for this board.  For example, it can act as a 
network storage device by incorporating TCP/IP functionalities in the microblaze soft 
processor. 
 

2.  Outcome and Problems Encountered 

2.1 Outcome 
Overall, we are pleased with the outcome of the project.  The audio record/playback 
function works as expected, thanks to the excellent documentations provided by last 
year’s students as well as information found on the course website.  
 
We were able to record and playback successfully onto the ZBT RAM and implement 
playback control using the keyboard.  System status is displayed using the RS232 
interface through a dummy terminal running on a PC.  Recording and playback onto 
onboard RAM was to mitigate the event that the Compact Flash did not function.   
 
We were able to read and write data to the Compact Flash card.  However it was not as 
transparent as we had thought since the XilFatFS API call sysace_fwrite() was not 
functioning.  As a result we resorted to writing one sector at a time using the commands 
sector_read()and sector_write(), which prevented the written data to be read by 
other devices such as a Windows PC.  We were also not able to access the entire card, 
perhaps due to reserved sectors in the file system that are not accessible using the API 
calls we chose to use.  As a result, we could only store about 1MB of data onto a 16MB 
Compact Flash card. 
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2.2 Problems Encountered 

2.2.1 Compact Flash Issues 
The Xilinx EDK includes software to enable access to the Compact Flash card through 
the System ACE interface.  The software library is called the XilFatFS (Xilinx FAT File 
System) library.  It contains several API calls which are 'equivalent' to standard C file 
access functions such as sysace_fwrite() and sysace_fread () functions.  We were 
able to succesfully create a file name on the compact flash and see the file appear in a 
windows machine.  However the sysace_fwrite() functions did work on the 
hardware, constantly freezing during operation.  We were not able to write data into the 
file on the compact flash.  There was not enough time to debug the problem further.  
The problem was traced down to a subroutine called by the sysace_fwrite() function 
that updates the directory listing.  This could be a suggested future work topic for 
students next year to get the FAT FS commands to function. 
 
Additionally, the System ACE chip requires very particular formatting of the compact 
flash.  The following answer record was found in the Xilinx wbsite which talks about 
formatting CF cards for use on the board: 
http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=14456 
 
This method did not work for our board.  However, we had Canon digital cameras that 
uses compact Flash cards and that allowed us to properly format the cards. 
 
Instead we were able to demonstrate that we were still able to read and write to the 
compact flash on a sector-by-sector basis.  So the compact flash was more like the ZBT 
RAM where it is a device with a mapped memory space that we can write to.  This 
function works well, except for the fact that the data written was not readable with a PC 
connected via a USB adaptor.  The original idea was to use the PC to copy audio to the 
Compact Flash card and use the Multimedia board to play it back.    Alternatively, the 
user could record their voice or anything else they wanted to onto the compact flash, and 
then copy that onto their PC for archiving. 
 
We also did not expect to the System ACE controller to transfer data to the Compact 
Flash so slowly.  Instead of directly reading/writing to the card, all the data had to be 
buffered in advance. 

2.2.2 User Defined Core Issues 
Initially we intended to incorporate several audio-processing features, implemented on 
hardware, such as bass enhancement and vocal enhancement.  These audio filters were 
to be implemented as FIR (Finite Impulse Response) filters generated by CoreGen.  
CoreGen is an IP (intellectual property) customization tool that contains many commonly 
used components such as adders, memory blocks and DSP blocks.  The coefficients for 
the filters were derived using simulations from MatLab (more on this later).  The cores 
worked very well in simulation within Modelsim.  However they didn’t respond when 
implemented in hardware in the FPGA.  Due to time limitations we were unable to 
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incorporate the FIR core into the system.  A full description of this core and the 
simulation results are described in section 5. 
 
To show that we knew how to integrate a user-defined core to our microprocessor 
through the FSL, we made a simpler core which performs a phase delay effect.  
Essentially it is a fifo that delays the audio samples, thus adding very small echo effect. 
 

3.  Description of the Blocks 
 

3.1 Hardware Blocks and System Block Diagram 
 
The figure below shows the overall system block diagram of the Xpod music player.  
The main playback control is achieved in software, which calls the appropriate hardware 
drivers to playback audio, record audio or stop. 
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3.1.1 AC97 CODEC and Audio Controller (v3.01a ): 
 
The AC97 controller allows the Microblaze soft processor to interface with the AC97 
audio CODEC chip LM4549A.  We had initially tried using the audio controller from 
last year’s MP3 lab to record.  However it did not seem to work properly.  As a result 
controller was taken from last year’s AC97 project and used it as the foundation to 
implement the additional hardware and software to make the music player.   
 
For more information regarding how to setup audio using this enhanced controller, please 
refer to the document entitled “AC97 Sound Controller with Device Driver” located at 
http://www.eecg.toronto.edu/~pc/courses/432/2004/projects/ac97controller.doc. 
 
The AC97 CODEC is an ASIC manufactured by National Semiconductors.  Its 
datasheet can be found here: http://www.national.com/pf/LM/LM4549A.html.  It 
converts analog audio to PCM coded data and vice versa. 
 

3.1.2 UART Core (v1.00b): 
This core is used to interface with the RS232 physical layer (PHY) chip to enable status 
reporting to a computer screen and user interaction.  For example, it will display the 
words “Recording” when data is being recorded.  User input is collected via the RS232 
interface from the keyboard.  Depending on the key pressed the software ware will 
behave differently.  More details about the software user interface can be found in the 
software section of this report. 
 
Incorporating RS232 functionality can be included in the design during the initial system 
within the BSB (Base System Builder) wizard or add it in later on within the 
“Add/Remove Cores” dialog in XPS.  The stdio.h library will be copied to the 
appropriated directories to allow standard commands such as xil_printf(), which 
functions the same as the standard C function printf(). 
  
 

3.1.3 FSL ‘BUS’ (v2.00a): 
FSL stands for Fast Simplex Link.  Essentially the FSL is a high speed FIFO for direct 
oneway links between hardware cores and the MicroBlaze processor.  Upto 8 FSL 
busses can be used in a given system, giving the designer great flexibility.  Because the 
GIPO bus is already populated with 3 cores that constantly send data back and forth, 
bandwidth on this bus will therefore be limited.  It is unlikely that we can fit audio 
playback and recording abilities on this bus and still maintain other functions.  
Therefore, a dedicated FSL link was established to interface the MicroBlaze processor 
with the AC97 CODEC to transfer PCM encoded audio data.  Since the FSL bus is 
unidirectional, two links were used for the AC97 CODEC.  One is dedicated for 
receiving audio data from the CODEC and the other is used exclusively for sending out 
audio data. 
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Additionally, two more FSL links were used to interface the MicroBlaze with the audio 
processing core.  Data is sent via the first FSL bus to the core for audio processing and 
retrieved via the second FSL bus.  This allows high-speed transfer of data between the 
processor and the core since we can simultaneously send and receive data similar to 
duplex communication. 
 
Setting up the system to use multiple FSL busses is very straightforward.  Again this 
can be done within XPS’s GUI or manually by editing the MHS configuration file.   
Within the GUI, multiple FSL buses can be added by going into the “Add/Remove 
Cores” dialog and going to the "Bus Connections" tab.  Add in the desired number of 
FSL instances on the selection box on the right. 
 

 
 
Finally, go to the "Parameters" tab and set the C_FSL_LINKS to the number of FSL 
buses that will be used in the system. 
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Within the C Programming environment, Xilinx has provided four API calls to access the 
FSL through blocking and non-blocking functions.  Application note #529 (located at: 
http://www.xilinx.com/bvdocs/appnotes/xapp529.pdf) shows an example of how to 
integrate a user-defined core, which include cores generated within CoreGen, into a 
MicroBlaze system built within XPS.  This application note was used to integrate our 
core into the MicroBlaze system.  It contains instructions on how to write the 
appropriate wrappers to integrated the core with the FSL. 
 
 

3.1.4 OPB System ACE Controller (v1.00b): 
The System Advanced Configuration Environment (System ACE) was designed to 
configure the FPGA at power-up.  It has several options for storing configuration data.  
Storage media that can be used are: standard Compact Flash memory cards (types I and 
II) and IBM Microdrives (upto 8Gb in capacity).   
 
We are taking advantage System ACE compact flash interface and used it to store data 
used by the software.  The System ACE interface provides an external storage solution 
making it an excellent choice for this project because of its requirement for large amounts 
of storage. 
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The OPB System Ace Controller is an IP core supplied by Xilinx that acts as a bridge 
between the microprocessor and the actual System ACE controller chip that also resides 
on the multimedia board.  The System ACE controller chip in turn interfaces with the 
compact flash card for reading and writing data.  This core is included as a list of 
available cores that can be instantiated within XPS in the “add/remove cores” dialog box. 
 
The XilFatFS library is available as an API for use that provides file read/write 
capabilities.  For more information on this API please refer to chapter 8 of the EDK OS 
and Libraries Reference Manual located here: 
http://www.xilinx.com/ise/embedded/oslibs_rm.pdf. 
 
 
The following is a list of other useful documents that were referenced when we were 
researching the System ACE interface: 
 
System ACE White Paper – Introduces the System ACE CF storage option (page 3): 
http://www.xilinx.com/bvdocs/whitepapers/wp151.pdf 
 
System ACE CF datasheet – Contains port descriptions and timing information: 
http://direct.xilinx.com/bvdocs/publications/ds080.pdf 
 
Main documentation page for the OPB_Sysace IP core: 
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=opb_sysa
ce&iLanguageID=1 
 
System ACE main page: 
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=system_ace 
 

3.1.5 External Memory Controller (1.10b): 
To mitigate the risk of not being able to fully access the compact flash resource to store 
data, we also implemented data storage using the onboard ZBT RAM memory blocks.  
This memory controller, when instantiated within XPS, allocates a block (or several 
blocks depending on how much is needed) of memory addresses to allow access to the 
ZBT RAM.  The lower and upper limit of the memory space that represents the ZBT 
RAM can be found in the MHS file or in the “Address” tab of the “Add/Remove cores” 
dialogue box. 
 
This feature was based on tutorial module 8 (version 6.3) from the ECE532H1S website.  
Please refer to http://www.eecg.toronto.edu/~pc/courses/edk/modules/6.3/m08.pdf for 
more information. 
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3.1.6 MicroBlaze Embedded Processor (v3.00a): 
The Xilinx MicroBlaze soft processor is the main control unit of the whole system.  It is 
responsible for writing and retrieving sound information from the CF and data processing 
during playback.  Reading and writing data is accomplished using the XilFatFS library 
that utilizes the OPB_SysACE. 
 
The embedded processor is also responsible for providing a user interface for playback 
control.  It provides the current state of operation of the music player - such as recording 
and playback.  Communications with the user is accomplished using the RS232 
interface on the physical layer.  The MicroBlaze soft processor interfaces with the 
UART controller (which in turn interfaces with the RS232 Physical layer driver) via the 
GPIO (General Purpose IO) bus. 
 
The MicroBlaze system is created using Xilinx’s EDK (Embedded Development Kit), 
particularly within XPS.  It is a 32-bit RISC processor embedded within the FPGA.  As 
for the Xilinx Multimedia board, the MicroBlaze processor resides in the Virtex-II FPGA 
device.  Upto four soft processors can be instantiated.   
 
All information regarding MicroBlaze can be found at its homepage in the Xilinx 
Website: http://www.xilinx.com/microblaze. 
 

4. Description of the Software 
 
The following section describes the following code blocks used in the project. 
 
1.  User interface C code 
2.  Audio record/playback subroutine 
2.  C code to read/write to ZBT 
3.  C code to read/write to compact flash card 
4.  C code to read/write audio through AC97 
7.  C code for audio processing (fast forward, slow down) 
 
The executable is stored in ZBT RAM because it is too big to fit in the on-chip BRAM. 
 

4.1 User Interface 
The main user interface software resides in the is written in C.  According to the input 
from the user, this code executes helper functions to accomplish the desired task.  The 
following keys are used to control the functionality of the user interface: 
 
r: to start recording audio, calls recording subroutine 
p: play back whatever was recorded, calls playback subroutine 
s: stop recording or stop playing 
s: copy recorded data to Compact Flash 
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l: copy data from CF to memory 
 
options during playback: 
1: no effect 
2: slow down / low frequency effect 
3: fast forward / high frequency effect 
4: echo effect 
 
Prompts are displayed through the Xilinx COM port through the RS232 interface to 
indicate the operational mode and status of the system. 
  
 

4.2  Audio Record/Playback from AC97 and save to ZBT Subroutine 
The audio record and playback calls up the fsl block read and block write functions to 
send and retrieved audio data from the AC97 CODEC.  Once the data is retrieved, it is 
immediately saved to ZBT Ram.  Currently, one ZBT RAM chip is used, allowing for 
upto 2MB of audio storage. 
 
void record() 
{ 
        Xuint16 soundbyte; 
 
        sound = (Xuint16*)MEM_BASE_ADDR; 
        printf("Recording\n\r" ); 
        while( sound < (Xuint16*)MEM_TOP_ADDR && 
               XUartLite_mIsReceiveEmpty(XPAR_RS232_BASEADDR) ) 
        { 
                microblaze_bread_datafsl(soundbyte, 0); 
                *sound = soundbyte; 
                sound++; 
        } 
} 
 
 

4.3 Compact Flash card Reading/Writng subroutine 
The user has a choice to copy the data from ZBT RAM to Compact Flash for long term 
storage.  The code reads/writes one sector of the Compact Flash card at a time using the 
function write_sector() which comes as a XilFatFS library.  Data retrieval is done using 
the read_sector() function, also from the XilFatFS library.  To learn how to set up 
Compact Flash reading and writing, please see the Appendix. 
 
const int number_of_sector = 1300; 
const int sector_size = 1024; 
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void saveCF() 
{ 
        int i; 
        printf("Saving to CF\n\r"); 
        sound = (Xuint16*)MEM_BASE_ADDR; 
        for( i = 0; i < number_of_sector; i++ ) 
        { 
                write_sector( i+1, (BYTE*)sound ); 
                sound = sound + sector_size/4; 
        } 
        printf("\r Done.\n\r"); 
} 
 
void loadCF() 
{ 
        int i; 
        printf("Loading from CF...\n\r"); 
        sound = (Xuint16*)MEM_BASE_ADDR; 
        for( i = 0; i < number_of_sector; i++ ) 
        { 
                read_sector( i+1, (BYTE*)sound ); 
                sound = sound + sector_size/4; 
        } 
        printf("\r Done.\r\n\n"); 
} 
 
Since we used a digital camera to format the CF, we had no control of the number of 
sectors and the size of each of the sector.  Therefore, number_of_sector  and 
sector_size are derived experimentally with the multimedia board.  In our case, we 
found that we could continuously write to 1300 sectors, and each sector contains 512 
bytes. 
 

4.4 Software Audio Processing Subroutine 
Two software audio processing were implemented.  The first speeds up playback by 2x.  
This is accomplished by playing back every other audio samples.  For example, if there 
are 10 samples of audio data, only the 1st, 3rd, 5th etc. sample will be played.  This 
effectively speeds up playback.  The second function slows down playback by a factor 
of 2.  To accomplish this, each audio sample is played twice. 
 
void slowDown() 
{ 
        Xuint16 soundbyte; 
        printf("low freq\n\r"); 
        while( sound < (Xuint16*)MEM_TOP_ADDR && 
               XUartLite_mIsReceiveEmpty(XPAR_RS232_BASEADDR) ) 
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        { 
                soundbyte = *sound; 
                microblaze_bwrite_datafsl(soundbyte, 0); 
                microblaze_bwrite_datafsl(soundbyte, 0); 
                sound++; 
        } 
} 
 
void fastForward() 
{ 
        Xuint16 soundbyte; 
        printf("high freq\n\r"); 
        while( sound < (Xuint16*)MEM_TOP_ADDR && 
               XUartLite_mIsReceiveEmpty(XPAR_RS232_BASEADDR) ) 
        { 
                soundbyte = *sound; 
                microblaze_bwrite_datafsl(soundbyte, 0); 
                sound+=2; 
        } 
} 
 

5. Description of the User Defined Hardware 
 

5.1 FIR Filter for Audio Filtering 
A Distributed Arithmetic Filter was chosen to do audio filtering.  This is generated 
using CoreGen software that comes with ISE.  We first attempted to do a bass boost 
function.  The bass boost was designed to have gain from 0KHz to 5KHz.  The 
coefficients of the filter is derived using MatLab and the frequency response is given in 
the figure below: 
 
<insert frequncy response plot> 
 
The impulse response, which will be used to simulate the filter is given in the following: 
 
 
The coefficients are: 
 
-3, -5, -6, -6, -2, 3, 10, 18, 25, 29, 31, 29, 25, 18, 10, 3, 2, -6, -6,-5, -3      
 
We are using V9.0 of the core and its data sheet can be found at the following url: 
http://www.xilinx.com/ipcenter/catalog/logicore/docs/da_fir.pdf. 
 
The filter is configured to the following specifications: 
• Single Rate Filter configuration 
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• 21 taps, symmetric 
• input data width 16 
• registered outputs (which means that the output value will remain there until the next 
data is ready) 
 
The input and output ports are as follows: 
 

 
 
 
CoreGen creates the VHDL file and netlist after the core has been configured.  The 
VHDL code is instantiated in a top level test wrapper in ISE for simulation.  ISE was 
chosen for simulation becuase it has the graphical test-bench generator and automatic 
ModelSim script generation. 
 
During simulation, a 1 is applied followed by a chain of zeros.  The output should be the 
same as the values in the impulse response.  We were able to confirm this by simulating 
the core alone and have the output show the impulse response values: 
 

 
 
Next the filter is integrated with two FSL buses as show in the system block diagram and 
the simulation results also match the impulse response: 
 

Inputs: 
DIN -> Data In 
CLK -> Clock 
ND  -> New Data (for the core) active high 
RST -> Reset (active hgh) 
 
Outputs: 
DOUT -> Data Out 
RDY  -> Output Data Ready 
RFD  -> Ready for (new) data 
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5.2 Alternative Hardware Audio Core -- Echo 
 
To show that we're not stupid and we can actually get a core working, we've decided to 
use a different core that was not generated by CoreGen.  Instead of using a FIR filter we 
replaced the FIR with a FIFO to delay audio data to create an echoing effect.  The audio 
samples are passed into the fifo.  The data that pops back out of the FIFO is therefore 
audio from an earlier time.  This data is combined with the audio that is currently being 
played back to create the echoing effect. 
 

6. Description of the Design Tree 
 
The structure of our design is described below: 
 
system.mhs: hardware configurations 
 
system.mss: software configurations 
 
data/system.ucf: user constraint file, specifications of pin connections 
 
drivers/ac97_v1_00_a: drivers for the ac97 sound controller 
 
pcores/. 
 clk_align_v1_00_a 
 echo_v1_00_a : adds echo effects to sound 

fir_filter_v1_00_a :  
fsl_v20_v1_00_b 
gen_zbt_addr_v1_00_a 
opb_ac97_controller_v3_10_a 
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code/. 

system.c : contains code for UI, sound processing, and interact with echo core and 
ac97 controller 
sysace_test.c : code that we used to test the compact flash with the xsysace driver. 

 
simulation/. 
 fir_sim : simulation of the fir filter 
 fsl : simulation of the FSL 
 

APPENDIX 1: Step-by-Step instructions on how to Setup the 
System ACE Compact Flash hardware for reading and writing 
data 
 
Assumptions: 
• A base system has already been configured manually or with the BSB 
• Have read through the documentation presented in section 3.1.5 
• Interrupts are not used with the System ACE 
 
Step 1: Instantiate the OPB_Sysace into the MicroBlaze system 
 
This is done by going into Project --> Add/Remove Cores.  In the "Peripherals" tab (the 
first one), add in the opb_sysace peripheral.  This is the controller core that will 
interface with the external System ACE chip.  Do not close the dialog yet. 
 
Step 2: Connect the OPB_Sysace to the MicroBlaze system 
 
In the second tab called "Bus Connections", the opb_sysace peripheral will be listed as an 
item to be connected to the system bus.  Connect this as a slave on the OPB. 
 
Step 3: Assign an address location for the OPB_Sysace 
 
In the third tab called "Addresses", you will need to define an address location for the 
opb_sysace peripheral.  The minimum size is 64k.  You can define any address that is 
currently not occupied by any other bus peripheral.  You can let XPS do the job for you 
by first checking the "lock" box for all other peripherals, then hitting the "Generate 
Addresses" button on the bottom of the dialog box. 
 
Step 4: Add the OPB_Sysace ports into the MicroBlaze system 
 
In the "Ports" tab, scroll along the peripherals list until you see the listing for 
opb_sysace_0 (the instance name).  Underneath the name are the available ports for this 
peripheral.  Select all the ports except for the one called SysACE_IRQ or 
SysACE_MPIRQ since these relate to interrupt features which we are not using.  
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Connect the OPB_clk and SysACE_clk signals to sys_clk_s, the system clock.  
Select all other remaining ports and press the "Make External" button on the right. 
 
Step 5: Set data bus width for OPB_Sysace 
 
In the last tab, the "Parameters" tab, use the drop down menu and choose the OPB_sysace 
entry.  A parameter called C_MEM_WIDTH is displayed.  Depending on how wide your 
data bus is, you may need to change this value.  For example, if you are using 8-bit data, 
then change the width to 8.  More information can be found from the data sheet by 
clicking on the "Open PDF Doc" button. 
 
Step 6: Save the new hardware configuration data into the MHS file 
 
Hit the OK button to save. 
 
Step 7: Update the UCF (user constraint file) to make connections between the 
FPGA and the System ACE chip 
 
The FPGA pins are used for mapping.  You can copy this into your UCF file. 
 
Net opb_sysace_0_SysACE_MPA<0> LOC = AJ1; 
Net opb_sysace_0_SysACE_MPA<1> LOC = AF4; 
Net opb_sysace_0_SysACE_MPA<2> LOC = AG3; 
Net opb_sysace_0_SysACE_MPA<3> LOC = AK2; 
Net opb_sysace_0_SysACE_MPA<4> LOC = AE8; 
Net opb_sysace_0_SysACE_MPA<5> LOC = AF9; 
Net opb_sysace_0_SysACE_MPA<6> LOC = AH5; 
Net opb_sysace_0_SysACE_MPD<0> LOC = AE3; 
Net opb_sysace_0_SysACE_MPD<1> LOC = AD6; 
Net opb_sysace_0_SysACE_MPD<2> LOC = AD7; 
Net opb_sysace_0_SysACE_MPD<3> LOC = AF1; 
Net opb_sysace_0_SysACE_MPD<4> LOC = AG1; 
Net opb_sysace_0_SysACE_MPD<5> LOC = AD4; 
Net opb_sysace_0_SysACE_MPD<6> LOC = AE4; 
Net opb_sysace_0_SysACE_MPD<7> LOC = AD8; 
Net opb_sysace_0_SysACE_MPD<8> LOC = AE7; 
Net opb_sysace_0_SysACE_MPD<9> LOC = AG2; 
Net opb_sysace_0_SysACE_MPD<10> LOC = AH2; 
Net opb_sysace_0_SysACE_MPD<11> LOC = AD5; 
Net opb_sysace_0_SysACE_MPD<12> LOC = AE5; 
Net opb_sysace_0_SysACE_MPD<13> LOC = AC9; 
Net opb_sysace_0_SysACE_MPD<14> LOC = AD9; 
Net opb_sysace_0_SysACE_MPD<15> LOC = AH1; 
Net opb_sysace_0_SysACE_CEN LOC = AH6; 
Net opb_sysace_0_SysACE_WEN LOC = AJ4; 
Net opb_sysace_0_SysACE_OEN LOC = AK4; 
 
The system is now ready to read and write to the Compact Flash. 
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APPENDIX 2: Step-by-Step instructions on how to Setup 
software to achieve basic Compact Flash read and write 
functions 
 
Step 1: Set up the XilFatFs library for use in XPS 
 
In the XPS environment, go to Project --> Software Platform Settings.  At the bottom of 
the "Software Platform" tab, there is a list of API libraries that you can include.  Check 
the one called XilFatFs.  Click OK to exit the dialog box.  Finally go to Tools --> 
Generate Libraries and BSPs.  This will update your MSS file and copy the necessary 
header files to your "include" directory in your project folder. 
 
Now the software environment is ready to be used. 
 
Step 2: Setting up Initiating the System ACE in your code 
 
At the top of the file you will need to declare the following line 
 
#include <sysace.h> 
 
Several function calls are required to properly initialize the System ACE.  The 
following is an example of what you need to do to initialize the code to run System ACE.  
This is the same code used in our project: 
 
int main() 
{ 
 … 
 init_ace(); 
 … 
} 
 
Step 3: Writing Data to the Compact Flash 
 
Since we were not able to use the API calls described in chapter 8 of the following 
document http://www.xilinx.com/ise/embedded/oslibs_rm.pdf, we used the lower level 
API calls to read and write to the Compact Flash card.  The functions are sector_read () 
and sector_write() to send and receive data from the Compact Flash Card.  It is best 
illustrated using an example: 
 
int main() 
{ 
 const int number_of_sector = 1300;  //number of sectors on CF 

const int sector_size = 1024;  // number of bytes in each sector 
 BYTE data[sector_size]; 
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 … 
 init_ace(); 
 … 
 write_sector( 1, data ); 
 … 
 read_sector( 1, data ); 
} 
 
 
A few noteworthy items: 
1.  When writing sectors, it is important to know the size of each sector so that you can 
properly write data to the compact flash. 
2.  Make sure the compact flash is properly formatted  


