Real-Time Audio Mixer

ECE532H1S

Digital System Design

Group Report
Peter Michaels

Kevin Lui

Table of Contents:

31. Overview

42. Outcome

4Notable Problems Encountered

4Audio Codec

5Uart Interrupts

53. Description of the Blocks

5a) Existing Components

5AC97 Audio Codec

5AC97 Controller

6Echo Core:

6Fast Simplex Link (FSL) Bus

6MicroBlaze Processor (v. 5.00c)

7b) Modified Components

7AC97 Driver:

8c) Custom Components

8Audio Mixer

9User Interface:

114. Description of Design Tree:

11Top Level:

11Drivers:

11Software Modules:

11Hardware Modules:

1. Overview

The goal of this project was to design an audio mixer that mixed two audio inputs and allowed for the control of the mixing in real-time. In addition to mixing the signals, the user would be able to record and playback mixed sound and apply different audio effects to the mixed sound: echo, reverberation, time-stretching, and filtering. Finally, to prevent problems caused by sound variation in the source inputs, the design would have used an FFT that would equalize the magnitudes. The entire system and all real-time functions would be controlled by an easily navigated user interface.
[image: image2.bmp][image: image3.bmp][image: image4.bmp]
[image: image5.bmp]

Xilinx Virtex II FPGA

Development Board

The above figure is a model of our final design. As a result of a team member leaving the group we scaled back our initial design and eliminated the FFT module and some of the effects.

We reused components from previous projects, mainly the AC97 controller plus driver and the echo block. As expected we made use of IP supplied by Xilinx as part of the development environment. We contributed the Mixer hardware module, modified the AC97 driver to suit our needs and created the UI and all code associated with the implemented features.

2. Outcome

Overall, many of the projects originally proposed components were implemented successfully. Many useful functions such as recording and playback, memory accesses for recording and playback, and the user interface were the most successful parts of this project, having no problems in their execution.

Unfortunately, the namesake of the project was one of the few pieces that were not successfully completed in time. The hardware logic for the digital audio mixer was created, simulated and synthesized, but did not work correctly when integrated into the rest of the system. To offset this temporarily, a software implementation of the mixer was attempted, but that yielded noisy output due to the increased delays caused by the software implementation.

The sound effects blocks such as echo and time stretching were implemented and working, but did not produce obvious perceivable results. This could have been easily remedied by increasing the delay for the echo, and increasing the time stretching effect.

Notable Problems Encountered

Audio Codec

One of the audio codec chip’s capabilities is that it allows on-chip mixing of audio signals coming into the chip. However, we discovered that if the on-chip mixers are used, the mixed signal is not sent to the recording registers, which would gather data to be sent to the MicroBlaze. Instead, the mixer outputs are sent directly to the chip outputs, which drive the line-out connection on the board.

We originally wanted to perform on-chip mixing of the stereo signal to generate a mono signal, which could then be mixed with the microphone without any loss of signal data. However, we discovered that this could not be done in the way we wanted. As a result, we had to disable mixing within the chip. What this meant is that the recording registers could only be configured to record either the left or right channel of the stereo input and the microphone input. One of the channels from the stereo input would be lost. While this was not a severe threat to the project, it did reduce the quality of our sound output.

Uart Interrupts

While implementing our interrupt based UI, it was discovered that both the receive and the send handling routines must be instantiated. Initially, we just instantiated the receive handler since we were only interested in user input triggering and interrupt, but it was quickly discovered that the xil_printf() calls outside the main thread i.e. in the routine handler were never executed. Further testing concluded that the send handler must also be instantiated even if it is an empty stub.

3. Description of the Blocks
a) Existing Components

AC97 Audio Codec

The audio system for the Xilinx XUP Virtex II Pro Development Board is implemented on the LM4550 AC97 codec chip from National Semiconductor. The Virtex II Pro development board only allows two different incoming signals, microphone input (mono) and line-in (stereo). The codec converts analog audio data to PCM data and vice versa. Its datasheet can be found here: www.national.com/opf/LM/LM4550.html It is also included in the source tree as a reference.

A few things should be noted about the codec, the two mixers are always on, so if any signals are sent to them, the signals will be combined. Further, if the mixers are used, the result will be output, without having a chance to be processed further. To connect the audio codec to the FPGA, we followed the guidelines outlined in the XUP User Guide documentation that came with the XPS suite and the board schematics.
The key to activating the codec is to map the AUDIO_RESET_Z signal to one of the DIP switches on the board and pull it high for the codec to activate. The codec resets if the signal is low for a few clock cycles and then it is pulled high.
Document: www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf
Schematics: www.xilinx.com/univ/XUPV2P/Documentation/EXTERNAL_REV_C_SCHEMATICS.pdf
AC97 Controller

The controller for the AC97 audio codec was taken from the 2005 project “Real-Time Audio Processing”. The exact core used was “opb_ac97_controller_v4_00_a”. This controller provided the ability to communicate with the audio codec device and included the ability to use FSL links to communicate with the MicroBlaze.
Original documentation from the 2005 project: www.eecg.toronto.edu/~pc/courses/432/2005/projects/realtimeaudio.pdf

Further information regarding this core was sourced from the 2004 project “AC97 Sound Controller with Device Driver”. More information about this module can be found in the original documentation found here: www.eecg.toronto.edu/~pc/courses/432/2004/projects/ac97controller.doc
Echo Core:

The echo core, version 1.00a, was taken unmodified from the XPod project from 2005. It was connected in the UI using the FSL. A sample of audio is written to the FSL and a sample is read back before it is processed further or output to the AC97 core.

Port Connections:
· Clk – sys_clk_s

· Reset – net_gnd

The echo core is coded in VHDL and consists of a FSL interface for reading and writing, an instantiation of a FIFO buffer whose depth is programmable. The audio sample coming through the FSL is stored in the FIFO then data from the FIFO is combined with the audio sample and returned on the FSL.
Link to doc: www.eecg.toronto.edu/~pc/courses/432/2005/projects/xpod.pdf
Fast Simplex Link (FSL) Bus

The FSL is a bus connection provided by Xilinx for high speed data transfers between the MicroBlaze and other hardware blocks. Each instance of an FSL is represented by two uni-directional links, which provide capability for bi-directional data transfer when used together. Each link is implemented as an asynchronous FIFO which allows different clock domains on each end of the link. The main use for the FSL links are when speed or bandwidth are important, since these are dedicated lines and don’t suffer from congestion problems like the OPB bus does.

Important note: While each instantiation of the FSL on the MicroBlaze provides two connections (master and slave), each instantiation of the actual bus link is only a single connection. When referencing an FSL ID for use with the getfsl() and putfsl() (blocking) functions, the ID is the FSL instance number on the MicroBlaze, not the bus instance number. ie. If a block connects to MFSL0 and SFSL0 on the MicroBlaze using bus links fsl_v20_0 and fsl_v20_1, the FSL ID for data in both directions is 0.
MicroBlaze Processor (v. 5.00c)

The MicroBlaze is an IP core implemented by Xilinx which provides a processor implemented on the FPGA. The means that the processor can be readily reconfigured to suit whatever needs the designer has. On the other hand, this also means that it is considerably slower than a standard processor implemented in ASICs.

Like any processor, the MicroBlaze is designed to process instructions passed into it. The program used for our system was written in C and compiled to run on the MicroBlaze. Since there was no operating system installed on our system, low level hardware accesses had to be implemented using the available hardware drivers directly.

More information about the MicroBlaze can be found here: www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze
b) Modified Components

AC97 Driver:

The AC97 Driver, version 1.00a, was taken from the “Real-Time Audio Processing” project from 2005. The driver is used with the AC97 Core, version 4, described in the above section “Existing Components”.

The driver was modified to so that two samples are recorded; the table below describes the register settings further.

The settings were made in the void init_sound(int sample_rate) function in xac97.c file of the driver.
	Reg
	Name
	Value
	Function

	02h
	Master Volume
	0x0000
	Controls the AMP Output volume, it’s been set to 0dB gain. Too much gain results in noise.

	04h
	Line Level Volume
	0x0000
	Controls the Stereo Output volume, it’s been set to 0dB gain.

	06h
	Mono Volume
	0x8000
	Controls the Mono Output volume, it’s been set to Mute. Mono Output has not been implemented on the board, so the register is Muted to reduce noise.

	0Ah
	PC_Beep_Volume
	0x8000
	Controls the PC_Beep function, which can mix a standard noise into the output, it’s been set to Mute.

	0Ch
	Phone_Volume
	0x8000
	Controls the Phone Input, it hasn’t been implemented on the dev board. The register is set to Mute to reduce noise.

	0Eh
	Mic Volume
	0x8008
	Controls the Volume of both Mic Inputs, only one is implemented on the dev board. The register is set to Mute the signal so it doesn’t go into MIX1 and set to 0dB gain before it enters the record select.

	10h
	Line In Volume
	0x8000
	Controls the Stereo Line Input to the MIX1, it’s been set to Mute since on-codec signal mixing was not required.

	12h
	CD Volume
	0x8000
	Controls the CD Input to the MIX1, that input is not implemented on the dev board. The register is set to Mute to reduce noise.

	14h
	Video Volume
	0x8000
	Controls the Video Input to the MIX1, that input is not implemented on the dev board. The register is set to Mute to reduce noise.

	16h
	Aux Volume
	0x8000
	Controls the Auxiliary Input to the MIX1, that input is not implemented on the dev board. The register is set to Mute to reduce noise.

	18h
	PCM Out Volume
	0x0808
	Controls the volume from the DAC to the output. Both the right and left channels have been set to 0dB gain to reduce noise.

	1Ah
	Record Select
	0x0400
	Controls the Record Select Mux, it’s been set to accept Line In as left channel and Mic as the right channel.

	1Ch
	Record Gain
	0x0000
	Controls the gain/attenuation applied to audio before it is sampled at the ADC. It’s been set to 0dB to eliminate the addition of noise.

	20h
	General Purpose
	0x8000
	Controls various mux controls. The POP control of the mux which decides which mixer the sound will enter from the DAC has been set, so MIX1 is bypassed.

	2Ah
	Extended Audio Control/Status
	0x0001
	Setting the least significant bit, activates VRA, which allows for the programming the sampling rate.

	2Ch
	PCM DAC Rate
	44100
	Sets the sampling rate of the DAC.

	32h
	PCM ADC Rate
	44100
	Sets the sampling rate of the ADC.

 More information on these registers and a block diagram of the AC97 Codec (component # LM4550) can be found on the datasheet, it is linked in Section 3, a), AC97 Audio Codec.
c) Custom Components
Audio Mixer
Implementation:

The audio mixer was designed to be a hardware module which allowed for scalable mixing of two mono audio signals. The scalability meant that during run-time, the ratios in which the two audio signals were mixed could be changed at any time, allowing the user to choose how dominant each sound would be in the output. Audio mixing meant combining the two signals such that both could be heard at once.

To scale the sound inputs, to affect their mixing ratio, the inputs are first adjusted by the following factor before being mixed together.

Input1 = input1 * <input1 mixing percentage> / 50

Input2 = input2 * <input2 mixing percentage> / 50

This means that if we wanted the output to consist of 30% input1 and 70% input2, the amplitudes of each of these signals would be scaled to the appropriate factor before they get mixed together. In this case, the amplitude of input1 would be reduced, while the amplitude of input2 would be increased.

The audio mixer implements the following formula in hardware:

Output = input1 + input2 – (input1 * input2 / <maximum signal amplitude>)

This formula works in the time domain and computes this for each sample of the sound inputs. The addition of the two sounds means combining their amplitudes so that both can be heard. The subtraction term is a scaling factor which prevents the sound output from being louder than the two individual sound inputs. This means that the resulting volume will be the larger of input1 or input2 and not louder.

For this system, 16 bit values for the sound samples were used since that was the size of data which the AC97 controller was designed for. This resulted in the signal amplitude ranging from 0 – 65535 where 0 represents silence, and 65535 is the loudest.

Connection:

The audio mixer core was connected to the rest of the system using Fast Simplex Link (FSL) connections to the MicroBlaze soft processor. The processor, through execution of our program, collected samples from the AC97 audio codec and passed them into the mixer through the FSL. The processed output from the mixer was sent through another FSL link back to the processor where it was sent back to the AC97 codec for playback.

Issues:

As far as we know, the issue around the audio mixer core was a result of the module not writing its outputs to the FSL. The reason for this was unknown at the time of demonstration.

The ModelSim simulation shows how the mixer was reading data from the FSL, generating the correct output values, and should theoretically have written to the FSL.

[image: image1.jpg]000123 _Jou

il o i i
0000232 00000000 (00007825

i
i

1000000 J00T._-{070_ 700 1000 Y000 000, Y000 00T {01000]
1000007070 |T00_J000._ 1000000000 J00T._ Y070 1100 J000..
JO0001234__ 00000238 0000000 00004321 _J00002234
Y000 {O000TE2Y o0000000, LI e

AR AR

000232) 000785
il
G
R G IR IO SR I
2 50 0

Cursor 1 [160 1]

User Interface:

Two UI designs have been completed; one uses a non-blocking read on the Uart to check for user input and the other registers an interrupt routine with the Uart. Both work, although the polling code is more reliable, the interrupt based code has been included as an example.

The below tables lists the commands available to the user:
	1
	Mix Signals

	2
	Play File From Memory

	3
	Record File In Memory

	4
	Apply Echo

	5
	Apply Effect #2

	6
	Stop

Options 4 and 5 are only available once option 1 has been selected. To stop either effect, the user must select it a second time. The polling version, allows selecting the alternate effect to stop the current one – the switch happens automatically.

The code starts by setting up the AC97 codec, the Uart Interrupts and activating the interrupts on the microblaze processor, the latter applies to the interrupt based code only.
· Polling UI

After successful set-up the code enters an infinite loop which consist of a Uart non-blocking read operation XUartLite_Recv(*UartController , *char , int bytes); to check if the user entered a command and then based on that command makes a decision which of the atomic mixing functions to execute. The conditional checks are set-up so that the current function being executed by the digital mixer is known and only commands that are acceptable are followed through. If no command is entered the loop goes through and continues to call the atomic mixing functions, which was set by the last user entered command. The atomic functions have one role; to read two samples from the ac97 codec, apply mixing and any sound effects, and then put the result back on to the ac97 for output.

This type of checking, allows for clean and straightforward control by the user. However, the numerous conditional checks in the infinite loop act to slow down the process and if too many actions are performed inside the atomic mixing functions, the output might contain noise from too many missed samples.
· Interrupt Based UI

After successful set-up of the ac97 and the Uart interrupts, the code enters an infinite loop. This infinite loop has conditional checks on the function signals which designate the current action. The functional signals are set in the Uart interrupt handler, which is triggered each time the user enters a command. The interrupt handler determines if the command is acceptable and then sets the appropriate signals for mixing, mixing + echo, record or playback, etc. Once execution returns to the main loop, the conditional checks trigger a self-contained mixing function. The mixing functions are composed of the atomic sound processing inside a while loop which exits the moment the functional signals are set to FALSE. Thus, to end the sound processing the user must trigger an event through the Uart handler, so that the functional signals can be reset.

This design introduces complications for the control of the UI, one must be careful to anticipate all possible user inputs and reset the signals when appropriate.
4. Description of Design Tree:

Top Level:

system.mhs –

top level hardware descriptions

system.mss –

top level software descriptions

data/

system.ucf –
user constraints file and pin specifications

Drivers:

drivers/

ac97_v1_00_a –
driver for configuring AC97 audio codec

Software Modules:

code/

audioMixer.c
–
software containing the main program and user interface.

This program communicates with hardware using FSLs

audioMixer2.c
–
interrupt based version of the main program. The other

version uses polling.

Hardware Modules:

pcores/

audio_mixer_v1_00_a –
Verilog implementation of audio mixer core

echo_v1_00_a
–
VHDL implementation of echo core

opb_ac97_controller_v4_00_a –
VHDL implementation of AC97 controller

which allows FSLs to be used

Appendix A

Hints for using the AC97 audio codec with the Virtex II Pro

Full documentation for the codec chip can be found here: www.national.com/opf/LM/LM4550.html
1) There is a signal on the codec called AUDIO_RESET_Z. The signal MUST be pulled high by the FPGA before the codec will work. Otherwise, the codec will always be stuck in reset mode. To do this, follow these steps:

a. Add the following two lines into the system.ucf file:

NET AUDIO_RESET_Z LOC = E6;

NET AUDIO_RESET_Z IOSTANDARD = LVTTL;

b. In the Ports view, add a new external pin. Name the pin “AUDIO_RESET_Z” and assign the net to net_vcc. If this doesn’t work, another solution would be to assign it to one of the DIP switches on the board. If this is done, pushing the switch down will pull the codec out of reset.

2) Changes to the codec configuration can be made in drivers/ac97_v1_00_a/src/xac97.c. The configuration is done in the function init_sound().

The following holds true for FSL connections. These have not been tested using OPB connections.

3) If the on-chip mixers are enabled, an internal cycle in the chip will cause sound to come out of the mixer directly onto the outputs, bypassing interface connections to your program. To get access to the data, disable the on-chip mixers and select the appropriate values for the recording register.

4) Data coming from the codec is transmitted in two separate packets. One packet encodes data from the left channel, and the second packet contains data representing the right channel. When reading from the codec chip, you need to perform two reads to get all the signal data. The sources for the left and right channels can be controlled using the recording register. See the datasheet for details.

5) Writing sound out to the codec is also done with two packets, each containing either the left or right channel. If you are sending out a mono signal, send the same data twice, as this seems to reduce noise at the output.

Microphone

AC97 Audio Codec

Line-In

Speaker

RS232 Serial I/O

Mixer Module

(Custom)

AC97 Controller

�

 MicroBlaze

 (Xilinx IP)

XUartLite

(Xilinx IP)

External Memory Controller

External Memory

User Interface

(Custom S/W)

Echo Module

OPB Interface

Terminal

AC97 Driver

OPB Interrupt Controller

